xref: /openbmc/linux/kernel/bpf/verifier.c (revision 46290c6bc0b102dc30250ded4f359174a384c957)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 
29 #include "disasm.h"
30 
31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
33 	[_id] = & _name ## _verifier_ops,
34 #define BPF_MAP_TYPE(_id, _ops)
35 #define BPF_LINK_TYPE(_id, _name)
36 #include <linux/bpf_types.h>
37 #undef BPF_PROG_TYPE
38 #undef BPF_MAP_TYPE
39 #undef BPF_LINK_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all paths through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns either pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 	/* length of verifier log at the time this state was pushed on stack */
178 	u32 log_pos;
179 };
180 
181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
182 #define BPF_COMPLEXITY_LIMIT_STATES	64
183 
184 #define BPF_MAP_KEY_POISON	(1ULL << 63)
185 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
186 
187 #define BPF_MAP_PTR_UNPRIV	1UL
188 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
189 					  POISON_POINTER_DELTA))
190 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
191 
192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
196 static int ref_set_non_owning(struct bpf_verifier_env *env,
197 			      struct bpf_reg_state *reg);
198 static void specialize_kfunc(struct bpf_verifier_env *env,
199 			     u32 func_id, u16 offset, unsigned long *addr);
200 static bool is_trusted_reg(const struct bpf_reg_state *reg);
201 
202 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
203 {
204 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
205 }
206 
207 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
208 {
209 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
210 }
211 
212 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
213 			      const struct bpf_map *map, bool unpriv)
214 {
215 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
216 	unpriv |= bpf_map_ptr_unpriv(aux);
217 	aux->map_ptr_state = (unsigned long)map |
218 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
219 }
220 
221 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
222 {
223 	return aux->map_key_state & BPF_MAP_KEY_POISON;
224 }
225 
226 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
227 {
228 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
229 }
230 
231 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
232 {
233 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
234 }
235 
236 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
237 {
238 	bool poisoned = bpf_map_key_poisoned(aux);
239 
240 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
241 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
242 }
243 
244 static bool bpf_helper_call(const struct bpf_insn *insn)
245 {
246 	return insn->code == (BPF_JMP | BPF_CALL) &&
247 	       insn->src_reg == 0;
248 }
249 
250 static bool bpf_pseudo_call(const struct bpf_insn *insn)
251 {
252 	return insn->code == (BPF_JMP | BPF_CALL) &&
253 	       insn->src_reg == BPF_PSEUDO_CALL;
254 }
255 
256 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_JMP | BPF_CALL) &&
259 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
260 }
261 
262 struct bpf_call_arg_meta {
263 	struct bpf_map *map_ptr;
264 	bool raw_mode;
265 	bool pkt_access;
266 	u8 release_regno;
267 	int regno;
268 	int access_size;
269 	int mem_size;
270 	u64 msize_max_value;
271 	int ref_obj_id;
272 	int dynptr_id;
273 	int map_uid;
274 	int func_id;
275 	struct btf *btf;
276 	u32 btf_id;
277 	struct btf *ret_btf;
278 	u32 ret_btf_id;
279 	u32 subprogno;
280 	struct btf_field *kptr_field;
281 };
282 
283 struct bpf_kfunc_call_arg_meta {
284 	/* In parameters */
285 	struct btf *btf;
286 	u32 func_id;
287 	u32 kfunc_flags;
288 	const struct btf_type *func_proto;
289 	const char *func_name;
290 	/* Out parameters */
291 	u32 ref_obj_id;
292 	u8 release_regno;
293 	bool r0_rdonly;
294 	u32 ret_btf_id;
295 	u64 r0_size;
296 	u32 subprogno;
297 	struct {
298 		u64 value;
299 		bool found;
300 	} arg_constant;
301 
302 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
303 	 * generally to pass info about user-defined local kptr types to later
304 	 * verification logic
305 	 *   bpf_obj_drop
306 	 *     Record the local kptr type to be drop'd
307 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
308 	 *     Record the local kptr type to be refcount_incr'd and use
309 	 *     arg_owning_ref to determine whether refcount_acquire should be
310 	 *     fallible
311 	 */
312 	struct btf *arg_btf;
313 	u32 arg_btf_id;
314 	bool arg_owning_ref;
315 
316 	struct {
317 		struct btf_field *field;
318 	} arg_list_head;
319 	struct {
320 		struct btf_field *field;
321 	} arg_rbtree_root;
322 	struct {
323 		enum bpf_dynptr_type type;
324 		u32 id;
325 		u32 ref_obj_id;
326 	} initialized_dynptr;
327 	struct {
328 		u8 spi;
329 		u8 frameno;
330 	} iter;
331 	u64 mem_size;
332 };
333 
334 struct btf *btf_vmlinux;
335 
336 static DEFINE_MUTEX(bpf_verifier_lock);
337 
338 static const struct bpf_line_info *
339 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
340 {
341 	const struct bpf_line_info *linfo;
342 	const struct bpf_prog *prog;
343 	u32 i, nr_linfo;
344 
345 	prog = env->prog;
346 	nr_linfo = prog->aux->nr_linfo;
347 
348 	if (!nr_linfo || insn_off >= prog->len)
349 		return NULL;
350 
351 	linfo = prog->aux->linfo;
352 	for (i = 1; i < nr_linfo; i++)
353 		if (insn_off < linfo[i].insn_off)
354 			break;
355 
356 	return &linfo[i - 1];
357 }
358 
359 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
360 {
361 	struct bpf_verifier_env *env = private_data;
362 	va_list args;
363 
364 	if (!bpf_verifier_log_needed(&env->log))
365 		return;
366 
367 	va_start(args, fmt);
368 	bpf_verifier_vlog(&env->log, fmt, args);
369 	va_end(args);
370 }
371 
372 static const char *ltrim(const char *s)
373 {
374 	while (isspace(*s))
375 		s++;
376 
377 	return s;
378 }
379 
380 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
381 					 u32 insn_off,
382 					 const char *prefix_fmt, ...)
383 {
384 	const struct bpf_line_info *linfo;
385 
386 	if (!bpf_verifier_log_needed(&env->log))
387 		return;
388 
389 	linfo = find_linfo(env, insn_off);
390 	if (!linfo || linfo == env->prev_linfo)
391 		return;
392 
393 	if (prefix_fmt) {
394 		va_list args;
395 
396 		va_start(args, prefix_fmt);
397 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
398 		va_end(args);
399 	}
400 
401 	verbose(env, "%s\n",
402 		ltrim(btf_name_by_offset(env->prog->aux->btf,
403 					 linfo->line_off)));
404 
405 	env->prev_linfo = linfo;
406 }
407 
408 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
409 				   struct bpf_reg_state *reg,
410 				   struct tnum *range, const char *ctx,
411 				   const char *reg_name)
412 {
413 	char tn_buf[48];
414 
415 	verbose(env, "At %s the register %s ", ctx, reg_name);
416 	if (!tnum_is_unknown(reg->var_off)) {
417 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
418 		verbose(env, "has value %s", tn_buf);
419 	} else {
420 		verbose(env, "has unknown scalar value");
421 	}
422 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
423 	verbose(env, " should have been in %s\n", tn_buf);
424 }
425 
426 static bool type_is_pkt_pointer(enum bpf_reg_type type)
427 {
428 	type = base_type(type);
429 	return type == PTR_TO_PACKET ||
430 	       type == PTR_TO_PACKET_META;
431 }
432 
433 static bool type_is_sk_pointer(enum bpf_reg_type type)
434 {
435 	return type == PTR_TO_SOCKET ||
436 		type == PTR_TO_SOCK_COMMON ||
437 		type == PTR_TO_TCP_SOCK ||
438 		type == PTR_TO_XDP_SOCK;
439 }
440 
441 static bool type_may_be_null(u32 type)
442 {
443 	return type & PTR_MAYBE_NULL;
444 }
445 
446 static bool reg_not_null(const struct bpf_reg_state *reg)
447 {
448 	enum bpf_reg_type type;
449 
450 	type = reg->type;
451 	if (type_may_be_null(type))
452 		return false;
453 
454 	type = base_type(type);
455 	return type == PTR_TO_SOCKET ||
456 		type == PTR_TO_TCP_SOCK ||
457 		type == PTR_TO_MAP_VALUE ||
458 		type == PTR_TO_MAP_KEY ||
459 		type == PTR_TO_SOCK_COMMON ||
460 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
461 		type == PTR_TO_MEM;
462 }
463 
464 static bool type_is_ptr_alloc_obj(u32 type)
465 {
466 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
467 }
468 
469 static bool type_is_non_owning_ref(u32 type)
470 {
471 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
472 }
473 
474 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
475 {
476 	struct btf_record *rec = NULL;
477 	struct btf_struct_meta *meta;
478 
479 	if (reg->type == PTR_TO_MAP_VALUE) {
480 		rec = reg->map_ptr->record;
481 	} else if (type_is_ptr_alloc_obj(reg->type)) {
482 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
483 		if (meta)
484 			rec = meta->record;
485 	}
486 	return rec;
487 }
488 
489 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
490 {
491 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
492 
493 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
494 }
495 
496 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
497 {
498 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
499 }
500 
501 static bool type_is_rdonly_mem(u32 type)
502 {
503 	return type & MEM_RDONLY;
504 }
505 
506 static bool is_acquire_function(enum bpf_func_id func_id,
507 				const struct bpf_map *map)
508 {
509 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
510 
511 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
512 	    func_id == BPF_FUNC_sk_lookup_udp ||
513 	    func_id == BPF_FUNC_skc_lookup_tcp ||
514 	    func_id == BPF_FUNC_ringbuf_reserve ||
515 	    func_id == BPF_FUNC_kptr_xchg)
516 		return true;
517 
518 	if (func_id == BPF_FUNC_map_lookup_elem &&
519 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
520 	     map_type == BPF_MAP_TYPE_SOCKHASH))
521 		return true;
522 
523 	return false;
524 }
525 
526 static bool is_ptr_cast_function(enum bpf_func_id func_id)
527 {
528 	return func_id == BPF_FUNC_tcp_sock ||
529 		func_id == BPF_FUNC_sk_fullsock ||
530 		func_id == BPF_FUNC_skc_to_tcp_sock ||
531 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
532 		func_id == BPF_FUNC_skc_to_udp6_sock ||
533 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
535 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
536 }
537 
538 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
539 {
540 	return func_id == BPF_FUNC_dynptr_data;
541 }
542 
543 static bool is_callback_calling_kfunc(u32 btf_id);
544 
545 static bool is_callback_calling_function(enum bpf_func_id func_id)
546 {
547 	return func_id == BPF_FUNC_for_each_map_elem ||
548 	       func_id == BPF_FUNC_timer_set_callback ||
549 	       func_id == BPF_FUNC_find_vma ||
550 	       func_id == BPF_FUNC_loop ||
551 	       func_id == BPF_FUNC_user_ringbuf_drain;
552 }
553 
554 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
555 {
556 	return func_id == BPF_FUNC_timer_set_callback;
557 }
558 
559 static bool is_storage_get_function(enum bpf_func_id func_id)
560 {
561 	return func_id == BPF_FUNC_sk_storage_get ||
562 	       func_id == BPF_FUNC_inode_storage_get ||
563 	       func_id == BPF_FUNC_task_storage_get ||
564 	       func_id == BPF_FUNC_cgrp_storage_get;
565 }
566 
567 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
568 					const struct bpf_map *map)
569 {
570 	int ref_obj_uses = 0;
571 
572 	if (is_ptr_cast_function(func_id))
573 		ref_obj_uses++;
574 	if (is_acquire_function(func_id, map))
575 		ref_obj_uses++;
576 	if (is_dynptr_ref_function(func_id))
577 		ref_obj_uses++;
578 
579 	return ref_obj_uses > 1;
580 }
581 
582 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
583 {
584 	return BPF_CLASS(insn->code) == BPF_STX &&
585 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
586 	       insn->imm == BPF_CMPXCHG;
587 }
588 
589 /* string representation of 'enum bpf_reg_type'
590  *
591  * Note that reg_type_str() can not appear more than once in a single verbose()
592  * statement.
593  */
594 static const char *reg_type_str(struct bpf_verifier_env *env,
595 				enum bpf_reg_type type)
596 {
597 	char postfix[16] = {0}, prefix[64] = {0};
598 	static const char * const str[] = {
599 		[NOT_INIT]		= "?",
600 		[SCALAR_VALUE]		= "scalar",
601 		[PTR_TO_CTX]		= "ctx",
602 		[CONST_PTR_TO_MAP]	= "map_ptr",
603 		[PTR_TO_MAP_VALUE]	= "map_value",
604 		[PTR_TO_STACK]		= "fp",
605 		[PTR_TO_PACKET]		= "pkt",
606 		[PTR_TO_PACKET_META]	= "pkt_meta",
607 		[PTR_TO_PACKET_END]	= "pkt_end",
608 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
609 		[PTR_TO_SOCKET]		= "sock",
610 		[PTR_TO_SOCK_COMMON]	= "sock_common",
611 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
612 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
613 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
614 		[PTR_TO_BTF_ID]		= "ptr_",
615 		[PTR_TO_MEM]		= "mem",
616 		[PTR_TO_BUF]		= "buf",
617 		[PTR_TO_FUNC]		= "func",
618 		[PTR_TO_MAP_KEY]	= "map_key",
619 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
620 	};
621 
622 	if (type & PTR_MAYBE_NULL) {
623 		if (base_type(type) == PTR_TO_BTF_ID)
624 			strncpy(postfix, "or_null_", 16);
625 		else
626 			strncpy(postfix, "_or_null", 16);
627 	}
628 
629 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
630 		 type & MEM_RDONLY ? "rdonly_" : "",
631 		 type & MEM_RINGBUF ? "ringbuf_" : "",
632 		 type & MEM_USER ? "user_" : "",
633 		 type & MEM_PERCPU ? "percpu_" : "",
634 		 type & MEM_RCU ? "rcu_" : "",
635 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
636 		 type & PTR_TRUSTED ? "trusted_" : ""
637 	);
638 
639 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
640 		 prefix, str[base_type(type)], postfix);
641 	return env->tmp_str_buf;
642 }
643 
644 static char slot_type_char[] = {
645 	[STACK_INVALID]	= '?',
646 	[STACK_SPILL]	= 'r',
647 	[STACK_MISC]	= 'm',
648 	[STACK_ZERO]	= '0',
649 	[STACK_DYNPTR]	= 'd',
650 	[STACK_ITER]	= 'i',
651 };
652 
653 static void print_liveness(struct bpf_verifier_env *env,
654 			   enum bpf_reg_liveness live)
655 {
656 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
657 	    verbose(env, "_");
658 	if (live & REG_LIVE_READ)
659 		verbose(env, "r");
660 	if (live & REG_LIVE_WRITTEN)
661 		verbose(env, "w");
662 	if (live & REG_LIVE_DONE)
663 		verbose(env, "D");
664 }
665 
666 static int __get_spi(s32 off)
667 {
668 	return (-off - 1) / BPF_REG_SIZE;
669 }
670 
671 static struct bpf_func_state *func(struct bpf_verifier_env *env,
672 				   const struct bpf_reg_state *reg)
673 {
674 	struct bpf_verifier_state *cur = env->cur_state;
675 
676 	return cur->frame[reg->frameno];
677 }
678 
679 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
680 {
681        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
682 
683        /* We need to check that slots between [spi - nr_slots + 1, spi] are
684 	* within [0, allocated_stack).
685 	*
686 	* Please note that the spi grows downwards. For example, a dynptr
687 	* takes the size of two stack slots; the first slot will be at
688 	* spi and the second slot will be at spi - 1.
689 	*/
690        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
691 }
692 
693 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
694 			          const char *obj_kind, int nr_slots)
695 {
696 	int off, spi;
697 
698 	if (!tnum_is_const(reg->var_off)) {
699 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
700 		return -EINVAL;
701 	}
702 
703 	off = reg->off + reg->var_off.value;
704 	if (off % BPF_REG_SIZE) {
705 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
706 		return -EINVAL;
707 	}
708 
709 	spi = __get_spi(off);
710 	if (spi + 1 < nr_slots) {
711 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
712 		return -EINVAL;
713 	}
714 
715 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
716 		return -ERANGE;
717 	return spi;
718 }
719 
720 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
721 {
722 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
723 }
724 
725 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
726 {
727 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
728 }
729 
730 static const char *btf_type_name(const struct btf *btf, u32 id)
731 {
732 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
733 }
734 
735 static const char *dynptr_type_str(enum bpf_dynptr_type type)
736 {
737 	switch (type) {
738 	case BPF_DYNPTR_TYPE_LOCAL:
739 		return "local";
740 	case BPF_DYNPTR_TYPE_RINGBUF:
741 		return "ringbuf";
742 	case BPF_DYNPTR_TYPE_SKB:
743 		return "skb";
744 	case BPF_DYNPTR_TYPE_XDP:
745 		return "xdp";
746 	case BPF_DYNPTR_TYPE_INVALID:
747 		return "<invalid>";
748 	default:
749 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
750 		return "<unknown>";
751 	}
752 }
753 
754 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
755 {
756 	if (!btf || btf_id == 0)
757 		return "<invalid>";
758 
759 	/* we already validated that type is valid and has conforming name */
760 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
761 }
762 
763 static const char *iter_state_str(enum bpf_iter_state state)
764 {
765 	switch (state) {
766 	case BPF_ITER_STATE_ACTIVE:
767 		return "active";
768 	case BPF_ITER_STATE_DRAINED:
769 		return "drained";
770 	case BPF_ITER_STATE_INVALID:
771 		return "<invalid>";
772 	default:
773 		WARN_ONCE(1, "unknown iter state %d\n", state);
774 		return "<unknown>";
775 	}
776 }
777 
778 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
779 {
780 	env->scratched_regs |= 1U << regno;
781 }
782 
783 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
784 {
785 	env->scratched_stack_slots |= 1ULL << spi;
786 }
787 
788 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
789 {
790 	return (env->scratched_regs >> regno) & 1;
791 }
792 
793 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
794 {
795 	return (env->scratched_stack_slots >> regno) & 1;
796 }
797 
798 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
799 {
800 	return env->scratched_regs || env->scratched_stack_slots;
801 }
802 
803 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
804 {
805 	env->scratched_regs = 0U;
806 	env->scratched_stack_slots = 0ULL;
807 }
808 
809 /* Used for printing the entire verifier state. */
810 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
811 {
812 	env->scratched_regs = ~0U;
813 	env->scratched_stack_slots = ~0ULL;
814 }
815 
816 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
817 {
818 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
819 	case DYNPTR_TYPE_LOCAL:
820 		return BPF_DYNPTR_TYPE_LOCAL;
821 	case DYNPTR_TYPE_RINGBUF:
822 		return BPF_DYNPTR_TYPE_RINGBUF;
823 	case DYNPTR_TYPE_SKB:
824 		return BPF_DYNPTR_TYPE_SKB;
825 	case DYNPTR_TYPE_XDP:
826 		return BPF_DYNPTR_TYPE_XDP;
827 	default:
828 		return BPF_DYNPTR_TYPE_INVALID;
829 	}
830 }
831 
832 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
833 {
834 	switch (type) {
835 	case BPF_DYNPTR_TYPE_LOCAL:
836 		return DYNPTR_TYPE_LOCAL;
837 	case BPF_DYNPTR_TYPE_RINGBUF:
838 		return DYNPTR_TYPE_RINGBUF;
839 	case BPF_DYNPTR_TYPE_SKB:
840 		return DYNPTR_TYPE_SKB;
841 	case BPF_DYNPTR_TYPE_XDP:
842 		return DYNPTR_TYPE_XDP;
843 	default:
844 		return 0;
845 	}
846 }
847 
848 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
849 {
850 	return type == BPF_DYNPTR_TYPE_RINGBUF;
851 }
852 
853 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
854 			      enum bpf_dynptr_type type,
855 			      bool first_slot, int dynptr_id);
856 
857 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
858 				struct bpf_reg_state *reg);
859 
860 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
861 				   struct bpf_reg_state *sreg1,
862 				   struct bpf_reg_state *sreg2,
863 				   enum bpf_dynptr_type type)
864 {
865 	int id = ++env->id_gen;
866 
867 	__mark_dynptr_reg(sreg1, type, true, id);
868 	__mark_dynptr_reg(sreg2, type, false, id);
869 }
870 
871 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
872 			       struct bpf_reg_state *reg,
873 			       enum bpf_dynptr_type type)
874 {
875 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
876 }
877 
878 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
879 				        struct bpf_func_state *state, int spi);
880 
881 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
882 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
883 {
884 	struct bpf_func_state *state = func(env, reg);
885 	enum bpf_dynptr_type type;
886 	int spi, i, err;
887 
888 	spi = dynptr_get_spi(env, reg);
889 	if (spi < 0)
890 		return spi;
891 
892 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
893 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
894 	 * to ensure that for the following example:
895 	 *	[d1][d1][d2][d2]
896 	 * spi    3   2   1   0
897 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
898 	 * case they do belong to same dynptr, second call won't see slot_type
899 	 * as STACK_DYNPTR and will simply skip destruction.
900 	 */
901 	err = destroy_if_dynptr_stack_slot(env, state, spi);
902 	if (err)
903 		return err;
904 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
905 	if (err)
906 		return err;
907 
908 	for (i = 0; i < BPF_REG_SIZE; i++) {
909 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
910 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
911 	}
912 
913 	type = arg_to_dynptr_type(arg_type);
914 	if (type == BPF_DYNPTR_TYPE_INVALID)
915 		return -EINVAL;
916 
917 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
918 			       &state->stack[spi - 1].spilled_ptr, type);
919 
920 	if (dynptr_type_refcounted(type)) {
921 		/* The id is used to track proper releasing */
922 		int id;
923 
924 		if (clone_ref_obj_id)
925 			id = clone_ref_obj_id;
926 		else
927 			id = acquire_reference_state(env, insn_idx);
928 
929 		if (id < 0)
930 			return id;
931 
932 		state->stack[spi].spilled_ptr.ref_obj_id = id;
933 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
934 	}
935 
936 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
937 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
938 
939 	return 0;
940 }
941 
942 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
943 {
944 	int i;
945 
946 	for (i = 0; i < BPF_REG_SIZE; i++) {
947 		state->stack[spi].slot_type[i] = STACK_INVALID;
948 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
949 	}
950 
951 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
952 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
953 
954 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
955 	 *
956 	 * While we don't allow reading STACK_INVALID, it is still possible to
957 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
958 	 * helpers or insns can do partial read of that part without failing,
959 	 * but check_stack_range_initialized, check_stack_read_var_off, and
960 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
961 	 * the slot conservatively. Hence we need to prevent those liveness
962 	 * marking walks.
963 	 *
964 	 * This was not a problem before because STACK_INVALID is only set by
965 	 * default (where the default reg state has its reg->parent as NULL), or
966 	 * in clean_live_states after REG_LIVE_DONE (at which point
967 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
968 	 * verifier state exploration (like we did above). Hence, for our case
969 	 * parentage chain will still be live (i.e. reg->parent may be
970 	 * non-NULL), while earlier reg->parent was NULL, so we need
971 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
972 	 * done later on reads or by mark_dynptr_read as well to unnecessary
973 	 * mark registers in verifier state.
974 	 */
975 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
976 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
977 }
978 
979 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
980 {
981 	struct bpf_func_state *state = func(env, reg);
982 	int spi, ref_obj_id, i;
983 
984 	spi = dynptr_get_spi(env, reg);
985 	if (spi < 0)
986 		return spi;
987 
988 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
989 		invalidate_dynptr(env, state, spi);
990 		return 0;
991 	}
992 
993 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
994 
995 	/* If the dynptr has a ref_obj_id, then we need to invalidate
996 	 * two things:
997 	 *
998 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
999 	 * 2) Any slices derived from this dynptr.
1000 	 */
1001 
1002 	/* Invalidate any slices associated with this dynptr */
1003 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1004 
1005 	/* Invalidate any dynptr clones */
1006 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1007 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1008 			continue;
1009 
1010 		/* it should always be the case that if the ref obj id
1011 		 * matches then the stack slot also belongs to a
1012 		 * dynptr
1013 		 */
1014 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1015 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1016 			return -EFAULT;
1017 		}
1018 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1019 			invalidate_dynptr(env, state, i);
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1026 			       struct bpf_reg_state *reg);
1027 
1028 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1029 {
1030 	if (!env->allow_ptr_leaks)
1031 		__mark_reg_not_init(env, reg);
1032 	else
1033 		__mark_reg_unknown(env, reg);
1034 }
1035 
1036 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1037 				        struct bpf_func_state *state, int spi)
1038 {
1039 	struct bpf_func_state *fstate;
1040 	struct bpf_reg_state *dreg;
1041 	int i, dynptr_id;
1042 
1043 	/* We always ensure that STACK_DYNPTR is never set partially,
1044 	 * hence just checking for slot_type[0] is enough. This is
1045 	 * different for STACK_SPILL, where it may be only set for
1046 	 * 1 byte, so code has to use is_spilled_reg.
1047 	 */
1048 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1049 		return 0;
1050 
1051 	/* Reposition spi to first slot */
1052 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1053 		spi = spi + 1;
1054 
1055 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1056 		verbose(env, "cannot overwrite referenced dynptr\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	mark_stack_slot_scratched(env, spi);
1061 	mark_stack_slot_scratched(env, spi - 1);
1062 
1063 	/* Writing partially to one dynptr stack slot destroys both. */
1064 	for (i = 0; i < BPF_REG_SIZE; i++) {
1065 		state->stack[spi].slot_type[i] = STACK_INVALID;
1066 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1067 	}
1068 
1069 	dynptr_id = state->stack[spi].spilled_ptr.id;
1070 	/* Invalidate any slices associated with this dynptr */
1071 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1072 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1073 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1074 			continue;
1075 		if (dreg->dynptr_id == dynptr_id)
1076 			mark_reg_invalid(env, dreg);
1077 	}));
1078 
1079 	/* Do not release reference state, we are destroying dynptr on stack,
1080 	 * not using some helper to release it. Just reset register.
1081 	 */
1082 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1083 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1084 
1085 	/* Same reason as unmark_stack_slots_dynptr above */
1086 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1087 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1088 
1089 	return 0;
1090 }
1091 
1092 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1093 {
1094 	int spi;
1095 
1096 	if (reg->type == CONST_PTR_TO_DYNPTR)
1097 		return false;
1098 
1099 	spi = dynptr_get_spi(env, reg);
1100 
1101 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1102 	 * error because this just means the stack state hasn't been updated yet.
1103 	 * We will do check_mem_access to check and update stack bounds later.
1104 	 */
1105 	if (spi < 0 && spi != -ERANGE)
1106 		return false;
1107 
1108 	/* We don't need to check if the stack slots are marked by previous
1109 	 * dynptr initializations because we allow overwriting existing unreferenced
1110 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1111 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1112 	 * touching are completely destructed before we reinitialize them for a new
1113 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1114 	 * instead of delaying it until the end where the user will get "Unreleased
1115 	 * reference" error.
1116 	 */
1117 	return true;
1118 }
1119 
1120 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1121 {
1122 	struct bpf_func_state *state = func(env, reg);
1123 	int i, spi;
1124 
1125 	/* This already represents first slot of initialized bpf_dynptr.
1126 	 *
1127 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1128 	 * check_func_arg_reg_off's logic, so we don't need to check its
1129 	 * offset and alignment.
1130 	 */
1131 	if (reg->type == CONST_PTR_TO_DYNPTR)
1132 		return true;
1133 
1134 	spi = dynptr_get_spi(env, reg);
1135 	if (spi < 0)
1136 		return false;
1137 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1138 		return false;
1139 
1140 	for (i = 0; i < BPF_REG_SIZE; i++) {
1141 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1142 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1143 			return false;
1144 	}
1145 
1146 	return true;
1147 }
1148 
1149 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1150 				    enum bpf_arg_type arg_type)
1151 {
1152 	struct bpf_func_state *state = func(env, reg);
1153 	enum bpf_dynptr_type dynptr_type;
1154 	int spi;
1155 
1156 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1157 	if (arg_type == ARG_PTR_TO_DYNPTR)
1158 		return true;
1159 
1160 	dynptr_type = arg_to_dynptr_type(arg_type);
1161 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1162 		return reg->dynptr.type == dynptr_type;
1163 	} else {
1164 		spi = dynptr_get_spi(env, reg);
1165 		if (spi < 0)
1166 			return false;
1167 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1168 	}
1169 }
1170 
1171 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1172 
1173 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1174 				 struct bpf_reg_state *reg, int insn_idx,
1175 				 struct btf *btf, u32 btf_id, int nr_slots)
1176 {
1177 	struct bpf_func_state *state = func(env, reg);
1178 	int spi, i, j, id;
1179 
1180 	spi = iter_get_spi(env, reg, nr_slots);
1181 	if (spi < 0)
1182 		return spi;
1183 
1184 	id = acquire_reference_state(env, insn_idx);
1185 	if (id < 0)
1186 		return id;
1187 
1188 	for (i = 0; i < nr_slots; i++) {
1189 		struct bpf_stack_state *slot = &state->stack[spi - i];
1190 		struct bpf_reg_state *st = &slot->spilled_ptr;
1191 
1192 		__mark_reg_known_zero(st);
1193 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1194 		st->live |= REG_LIVE_WRITTEN;
1195 		st->ref_obj_id = i == 0 ? id : 0;
1196 		st->iter.btf = btf;
1197 		st->iter.btf_id = btf_id;
1198 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1199 		st->iter.depth = 0;
1200 
1201 		for (j = 0; j < BPF_REG_SIZE; j++)
1202 			slot->slot_type[j] = STACK_ITER;
1203 
1204 		mark_stack_slot_scratched(env, spi - i);
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1211 				   struct bpf_reg_state *reg, int nr_slots)
1212 {
1213 	struct bpf_func_state *state = func(env, reg);
1214 	int spi, i, j;
1215 
1216 	spi = iter_get_spi(env, reg, nr_slots);
1217 	if (spi < 0)
1218 		return spi;
1219 
1220 	for (i = 0; i < nr_slots; i++) {
1221 		struct bpf_stack_state *slot = &state->stack[spi - i];
1222 		struct bpf_reg_state *st = &slot->spilled_ptr;
1223 
1224 		if (i == 0)
1225 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1226 
1227 		__mark_reg_not_init(env, st);
1228 
1229 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1230 		st->live |= REG_LIVE_WRITTEN;
1231 
1232 		for (j = 0; j < BPF_REG_SIZE; j++)
1233 			slot->slot_type[j] = STACK_INVALID;
1234 
1235 		mark_stack_slot_scratched(env, spi - i);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1242 				     struct bpf_reg_state *reg, int nr_slots)
1243 {
1244 	struct bpf_func_state *state = func(env, reg);
1245 	int spi, i, j;
1246 
1247 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1248 	 * will do check_mem_access to check and update stack bounds later, so
1249 	 * return true for that case.
1250 	 */
1251 	spi = iter_get_spi(env, reg, nr_slots);
1252 	if (spi == -ERANGE)
1253 		return true;
1254 	if (spi < 0)
1255 		return false;
1256 
1257 	for (i = 0; i < nr_slots; i++) {
1258 		struct bpf_stack_state *slot = &state->stack[spi - i];
1259 
1260 		for (j = 0; j < BPF_REG_SIZE; j++)
1261 			if (slot->slot_type[j] == STACK_ITER)
1262 				return false;
1263 	}
1264 
1265 	return true;
1266 }
1267 
1268 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1269 				   struct btf *btf, u32 btf_id, int nr_slots)
1270 {
1271 	struct bpf_func_state *state = func(env, reg);
1272 	int spi, i, j;
1273 
1274 	spi = iter_get_spi(env, reg, nr_slots);
1275 	if (spi < 0)
1276 		return false;
1277 
1278 	for (i = 0; i < nr_slots; i++) {
1279 		struct bpf_stack_state *slot = &state->stack[spi - i];
1280 		struct bpf_reg_state *st = &slot->spilled_ptr;
1281 
1282 		/* only main (first) slot has ref_obj_id set */
1283 		if (i == 0 && !st->ref_obj_id)
1284 			return false;
1285 		if (i != 0 && st->ref_obj_id)
1286 			return false;
1287 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1288 			return false;
1289 
1290 		for (j = 0; j < BPF_REG_SIZE; j++)
1291 			if (slot->slot_type[j] != STACK_ITER)
1292 				return false;
1293 	}
1294 
1295 	return true;
1296 }
1297 
1298 /* Check if given stack slot is "special":
1299  *   - spilled register state (STACK_SPILL);
1300  *   - dynptr state (STACK_DYNPTR);
1301  *   - iter state (STACK_ITER).
1302  */
1303 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1304 {
1305 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1306 
1307 	switch (type) {
1308 	case STACK_SPILL:
1309 	case STACK_DYNPTR:
1310 	case STACK_ITER:
1311 		return true;
1312 	case STACK_INVALID:
1313 	case STACK_MISC:
1314 	case STACK_ZERO:
1315 		return false;
1316 	default:
1317 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1318 		return true;
1319 	}
1320 }
1321 
1322 /* The reg state of a pointer or a bounded scalar was saved when
1323  * it was spilled to the stack.
1324  */
1325 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1326 {
1327 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1328 }
1329 
1330 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1331 {
1332 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1333 	       stack->spilled_ptr.type == SCALAR_VALUE;
1334 }
1335 
1336 static void scrub_spilled_slot(u8 *stype)
1337 {
1338 	if (*stype != STACK_INVALID)
1339 		*stype = STACK_MISC;
1340 }
1341 
1342 static void print_verifier_state(struct bpf_verifier_env *env,
1343 				 const struct bpf_func_state *state,
1344 				 bool print_all)
1345 {
1346 	const struct bpf_reg_state *reg;
1347 	enum bpf_reg_type t;
1348 	int i;
1349 
1350 	if (state->frameno)
1351 		verbose(env, " frame%d:", state->frameno);
1352 	for (i = 0; i < MAX_BPF_REG; i++) {
1353 		reg = &state->regs[i];
1354 		t = reg->type;
1355 		if (t == NOT_INIT)
1356 			continue;
1357 		if (!print_all && !reg_scratched(env, i))
1358 			continue;
1359 		verbose(env, " R%d", i);
1360 		print_liveness(env, reg->live);
1361 		verbose(env, "=");
1362 		if (t == SCALAR_VALUE && reg->precise)
1363 			verbose(env, "P");
1364 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1365 		    tnum_is_const(reg->var_off)) {
1366 			/* reg->off should be 0 for SCALAR_VALUE */
1367 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1368 			verbose(env, "%lld", reg->var_off.value + reg->off);
1369 		} else {
1370 			const char *sep = "";
1371 
1372 			verbose(env, "%s", reg_type_str(env, t));
1373 			if (base_type(t) == PTR_TO_BTF_ID)
1374 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1375 			verbose(env, "(");
1376 /*
1377  * _a stands for append, was shortened to avoid multiline statements below.
1378  * This macro is used to output a comma separated list of attributes.
1379  */
1380 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1381 
1382 			if (reg->id)
1383 				verbose_a("id=%d", reg->id);
1384 			if (reg->ref_obj_id)
1385 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1386 			if (type_is_non_owning_ref(reg->type))
1387 				verbose_a("%s", "non_own_ref");
1388 			if (t != SCALAR_VALUE)
1389 				verbose_a("off=%d", reg->off);
1390 			if (type_is_pkt_pointer(t))
1391 				verbose_a("r=%d", reg->range);
1392 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1393 				 base_type(t) == PTR_TO_MAP_KEY ||
1394 				 base_type(t) == PTR_TO_MAP_VALUE)
1395 				verbose_a("ks=%d,vs=%d",
1396 					  reg->map_ptr->key_size,
1397 					  reg->map_ptr->value_size);
1398 			if (tnum_is_const(reg->var_off)) {
1399 				/* Typically an immediate SCALAR_VALUE, but
1400 				 * could be a pointer whose offset is too big
1401 				 * for reg->off
1402 				 */
1403 				verbose_a("imm=%llx", reg->var_off.value);
1404 			} else {
1405 				if (reg->smin_value != reg->umin_value &&
1406 				    reg->smin_value != S64_MIN)
1407 					verbose_a("smin=%lld", (long long)reg->smin_value);
1408 				if (reg->smax_value != reg->umax_value &&
1409 				    reg->smax_value != S64_MAX)
1410 					verbose_a("smax=%lld", (long long)reg->smax_value);
1411 				if (reg->umin_value != 0)
1412 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1413 				if (reg->umax_value != U64_MAX)
1414 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1415 				if (!tnum_is_unknown(reg->var_off)) {
1416 					char tn_buf[48];
1417 
1418 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1419 					verbose_a("var_off=%s", tn_buf);
1420 				}
1421 				if (reg->s32_min_value != reg->smin_value &&
1422 				    reg->s32_min_value != S32_MIN)
1423 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1424 				if (reg->s32_max_value != reg->smax_value &&
1425 				    reg->s32_max_value != S32_MAX)
1426 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1427 				if (reg->u32_min_value != reg->umin_value &&
1428 				    reg->u32_min_value != U32_MIN)
1429 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1430 				if (reg->u32_max_value != reg->umax_value &&
1431 				    reg->u32_max_value != U32_MAX)
1432 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1433 			}
1434 #undef verbose_a
1435 
1436 			verbose(env, ")");
1437 		}
1438 	}
1439 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1440 		char types_buf[BPF_REG_SIZE + 1];
1441 		bool valid = false;
1442 		int j;
1443 
1444 		for (j = 0; j < BPF_REG_SIZE; j++) {
1445 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1446 				valid = true;
1447 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1448 		}
1449 		types_buf[BPF_REG_SIZE] = 0;
1450 		if (!valid)
1451 			continue;
1452 		if (!print_all && !stack_slot_scratched(env, i))
1453 			continue;
1454 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1455 		case STACK_SPILL:
1456 			reg = &state->stack[i].spilled_ptr;
1457 			t = reg->type;
1458 
1459 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1460 			print_liveness(env, reg->live);
1461 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1462 			if (t == SCALAR_VALUE && reg->precise)
1463 				verbose(env, "P");
1464 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1465 				verbose(env, "%lld", reg->var_off.value + reg->off);
1466 			break;
1467 		case STACK_DYNPTR:
1468 			i += BPF_DYNPTR_NR_SLOTS - 1;
1469 			reg = &state->stack[i].spilled_ptr;
1470 
1471 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1472 			print_liveness(env, reg->live);
1473 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1474 			if (reg->ref_obj_id)
1475 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1476 			break;
1477 		case STACK_ITER:
1478 			/* only main slot has ref_obj_id set; skip others */
1479 			reg = &state->stack[i].spilled_ptr;
1480 			if (!reg->ref_obj_id)
1481 				continue;
1482 
1483 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1484 			print_liveness(env, reg->live);
1485 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1486 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1487 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1488 				reg->iter.depth);
1489 			break;
1490 		case STACK_MISC:
1491 		case STACK_ZERO:
1492 		default:
1493 			reg = &state->stack[i].spilled_ptr;
1494 
1495 			for (j = 0; j < BPF_REG_SIZE; j++)
1496 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1497 			types_buf[BPF_REG_SIZE] = 0;
1498 
1499 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1500 			print_liveness(env, reg->live);
1501 			verbose(env, "=%s", types_buf);
1502 			break;
1503 		}
1504 	}
1505 	if (state->acquired_refs && state->refs[0].id) {
1506 		verbose(env, " refs=%d", state->refs[0].id);
1507 		for (i = 1; i < state->acquired_refs; i++)
1508 			if (state->refs[i].id)
1509 				verbose(env, ",%d", state->refs[i].id);
1510 	}
1511 	if (state->in_callback_fn)
1512 		verbose(env, " cb");
1513 	if (state->in_async_callback_fn)
1514 		verbose(env, " async_cb");
1515 	verbose(env, "\n");
1516 	mark_verifier_state_clean(env);
1517 }
1518 
1519 static inline u32 vlog_alignment(u32 pos)
1520 {
1521 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1522 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1523 }
1524 
1525 static void print_insn_state(struct bpf_verifier_env *env,
1526 			     const struct bpf_func_state *state)
1527 {
1528 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1529 		/* remove new line character */
1530 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1531 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1532 	} else {
1533 		verbose(env, "%d:", env->insn_idx);
1534 	}
1535 	print_verifier_state(env, state, false);
1536 }
1537 
1538 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1539  * small to hold src. This is different from krealloc since we don't want to preserve
1540  * the contents of dst.
1541  *
1542  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1543  * not be allocated.
1544  */
1545 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1546 {
1547 	size_t alloc_bytes;
1548 	void *orig = dst;
1549 	size_t bytes;
1550 
1551 	if (ZERO_OR_NULL_PTR(src))
1552 		goto out;
1553 
1554 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1555 		return NULL;
1556 
1557 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1558 	dst = krealloc(orig, alloc_bytes, flags);
1559 	if (!dst) {
1560 		kfree(orig);
1561 		return NULL;
1562 	}
1563 
1564 	memcpy(dst, src, bytes);
1565 out:
1566 	return dst ? dst : ZERO_SIZE_PTR;
1567 }
1568 
1569 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1570  * small to hold new_n items. new items are zeroed out if the array grows.
1571  *
1572  * Contrary to krealloc_array, does not free arr if new_n is zero.
1573  */
1574 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1575 {
1576 	size_t alloc_size;
1577 	void *new_arr;
1578 
1579 	if (!new_n || old_n == new_n)
1580 		goto out;
1581 
1582 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1583 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1584 	if (!new_arr) {
1585 		kfree(arr);
1586 		return NULL;
1587 	}
1588 	arr = new_arr;
1589 
1590 	if (new_n > old_n)
1591 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1592 
1593 out:
1594 	return arr ? arr : ZERO_SIZE_PTR;
1595 }
1596 
1597 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1598 {
1599 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1600 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1601 	if (!dst->refs)
1602 		return -ENOMEM;
1603 
1604 	dst->acquired_refs = src->acquired_refs;
1605 	return 0;
1606 }
1607 
1608 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1609 {
1610 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1611 
1612 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1613 				GFP_KERNEL);
1614 	if (!dst->stack)
1615 		return -ENOMEM;
1616 
1617 	dst->allocated_stack = src->allocated_stack;
1618 	return 0;
1619 }
1620 
1621 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1622 {
1623 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1624 				    sizeof(struct bpf_reference_state));
1625 	if (!state->refs)
1626 		return -ENOMEM;
1627 
1628 	state->acquired_refs = n;
1629 	return 0;
1630 }
1631 
1632 static int grow_stack_state(struct bpf_func_state *state, int size)
1633 {
1634 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1635 
1636 	if (old_n >= n)
1637 		return 0;
1638 
1639 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1640 	if (!state->stack)
1641 		return -ENOMEM;
1642 
1643 	state->allocated_stack = size;
1644 	return 0;
1645 }
1646 
1647 /* Acquire a pointer id from the env and update the state->refs to include
1648  * this new pointer reference.
1649  * On success, returns a valid pointer id to associate with the register
1650  * On failure, returns a negative errno.
1651  */
1652 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1653 {
1654 	struct bpf_func_state *state = cur_func(env);
1655 	int new_ofs = state->acquired_refs;
1656 	int id, err;
1657 
1658 	err = resize_reference_state(state, state->acquired_refs + 1);
1659 	if (err)
1660 		return err;
1661 	id = ++env->id_gen;
1662 	state->refs[new_ofs].id = id;
1663 	state->refs[new_ofs].insn_idx = insn_idx;
1664 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1665 
1666 	return id;
1667 }
1668 
1669 /* release function corresponding to acquire_reference_state(). Idempotent. */
1670 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1671 {
1672 	int i, last_idx;
1673 
1674 	last_idx = state->acquired_refs - 1;
1675 	for (i = 0; i < state->acquired_refs; i++) {
1676 		if (state->refs[i].id == ptr_id) {
1677 			/* Cannot release caller references in callbacks */
1678 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1679 				return -EINVAL;
1680 			if (last_idx && i != last_idx)
1681 				memcpy(&state->refs[i], &state->refs[last_idx],
1682 				       sizeof(*state->refs));
1683 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1684 			state->acquired_refs--;
1685 			return 0;
1686 		}
1687 	}
1688 	return -EINVAL;
1689 }
1690 
1691 static void free_func_state(struct bpf_func_state *state)
1692 {
1693 	if (!state)
1694 		return;
1695 	kfree(state->refs);
1696 	kfree(state->stack);
1697 	kfree(state);
1698 }
1699 
1700 static void clear_jmp_history(struct bpf_verifier_state *state)
1701 {
1702 	kfree(state->jmp_history);
1703 	state->jmp_history = NULL;
1704 	state->jmp_history_cnt = 0;
1705 }
1706 
1707 static void free_verifier_state(struct bpf_verifier_state *state,
1708 				bool free_self)
1709 {
1710 	int i;
1711 
1712 	for (i = 0; i <= state->curframe; i++) {
1713 		free_func_state(state->frame[i]);
1714 		state->frame[i] = NULL;
1715 	}
1716 	clear_jmp_history(state);
1717 	if (free_self)
1718 		kfree(state);
1719 }
1720 
1721 /* copy verifier state from src to dst growing dst stack space
1722  * when necessary to accommodate larger src stack
1723  */
1724 static int copy_func_state(struct bpf_func_state *dst,
1725 			   const struct bpf_func_state *src)
1726 {
1727 	int err;
1728 
1729 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1730 	err = copy_reference_state(dst, src);
1731 	if (err)
1732 		return err;
1733 	return copy_stack_state(dst, src);
1734 }
1735 
1736 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1737 			       const struct bpf_verifier_state *src)
1738 {
1739 	struct bpf_func_state *dst;
1740 	int i, err;
1741 
1742 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1743 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1744 					    GFP_USER);
1745 	if (!dst_state->jmp_history)
1746 		return -ENOMEM;
1747 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1748 
1749 	/* if dst has more stack frames then src frame, free them */
1750 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1751 		free_func_state(dst_state->frame[i]);
1752 		dst_state->frame[i] = NULL;
1753 	}
1754 	dst_state->speculative = src->speculative;
1755 	dst_state->active_rcu_lock = src->active_rcu_lock;
1756 	dst_state->curframe = src->curframe;
1757 	dst_state->active_lock.ptr = src->active_lock.ptr;
1758 	dst_state->active_lock.id = src->active_lock.id;
1759 	dst_state->branches = src->branches;
1760 	dst_state->parent = src->parent;
1761 	dst_state->first_insn_idx = src->first_insn_idx;
1762 	dst_state->last_insn_idx = src->last_insn_idx;
1763 	for (i = 0; i <= src->curframe; i++) {
1764 		dst = dst_state->frame[i];
1765 		if (!dst) {
1766 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1767 			if (!dst)
1768 				return -ENOMEM;
1769 			dst_state->frame[i] = dst;
1770 		}
1771 		err = copy_func_state(dst, src->frame[i]);
1772 		if (err)
1773 			return err;
1774 	}
1775 	return 0;
1776 }
1777 
1778 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1779 {
1780 	while (st) {
1781 		u32 br = --st->branches;
1782 
1783 		/* WARN_ON(br > 1) technically makes sense here,
1784 		 * but see comment in push_stack(), hence:
1785 		 */
1786 		WARN_ONCE((int)br < 0,
1787 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1788 			  br);
1789 		if (br)
1790 			break;
1791 		st = st->parent;
1792 	}
1793 }
1794 
1795 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1796 		     int *insn_idx, bool pop_log)
1797 {
1798 	struct bpf_verifier_state *cur = env->cur_state;
1799 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1800 	int err;
1801 
1802 	if (env->head == NULL)
1803 		return -ENOENT;
1804 
1805 	if (cur) {
1806 		err = copy_verifier_state(cur, &head->st);
1807 		if (err)
1808 			return err;
1809 	}
1810 	if (pop_log)
1811 		bpf_vlog_reset(&env->log, head->log_pos);
1812 	if (insn_idx)
1813 		*insn_idx = head->insn_idx;
1814 	if (prev_insn_idx)
1815 		*prev_insn_idx = head->prev_insn_idx;
1816 	elem = head->next;
1817 	free_verifier_state(&head->st, false);
1818 	kfree(head);
1819 	env->head = elem;
1820 	env->stack_size--;
1821 	return 0;
1822 }
1823 
1824 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1825 					     int insn_idx, int prev_insn_idx,
1826 					     bool speculative)
1827 {
1828 	struct bpf_verifier_state *cur = env->cur_state;
1829 	struct bpf_verifier_stack_elem *elem;
1830 	int err;
1831 
1832 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1833 	if (!elem)
1834 		goto err;
1835 
1836 	elem->insn_idx = insn_idx;
1837 	elem->prev_insn_idx = prev_insn_idx;
1838 	elem->next = env->head;
1839 	elem->log_pos = env->log.end_pos;
1840 	env->head = elem;
1841 	env->stack_size++;
1842 	err = copy_verifier_state(&elem->st, cur);
1843 	if (err)
1844 		goto err;
1845 	elem->st.speculative |= speculative;
1846 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1847 		verbose(env, "The sequence of %d jumps is too complex.\n",
1848 			env->stack_size);
1849 		goto err;
1850 	}
1851 	if (elem->st.parent) {
1852 		++elem->st.parent->branches;
1853 		/* WARN_ON(branches > 2) technically makes sense here,
1854 		 * but
1855 		 * 1. speculative states will bump 'branches' for non-branch
1856 		 * instructions
1857 		 * 2. is_state_visited() heuristics may decide not to create
1858 		 * a new state for a sequence of branches and all such current
1859 		 * and cloned states will be pointing to a single parent state
1860 		 * which might have large 'branches' count.
1861 		 */
1862 	}
1863 	return &elem->st;
1864 err:
1865 	free_verifier_state(env->cur_state, true);
1866 	env->cur_state = NULL;
1867 	/* pop all elements and return */
1868 	while (!pop_stack(env, NULL, NULL, false));
1869 	return NULL;
1870 }
1871 
1872 #define CALLER_SAVED_REGS 6
1873 static const int caller_saved[CALLER_SAVED_REGS] = {
1874 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1875 };
1876 
1877 /* This helper doesn't clear reg->id */
1878 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1879 {
1880 	reg->var_off = tnum_const(imm);
1881 	reg->smin_value = (s64)imm;
1882 	reg->smax_value = (s64)imm;
1883 	reg->umin_value = imm;
1884 	reg->umax_value = imm;
1885 
1886 	reg->s32_min_value = (s32)imm;
1887 	reg->s32_max_value = (s32)imm;
1888 	reg->u32_min_value = (u32)imm;
1889 	reg->u32_max_value = (u32)imm;
1890 }
1891 
1892 /* Mark the unknown part of a register (variable offset or scalar value) as
1893  * known to have the value @imm.
1894  */
1895 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1896 {
1897 	/* Clear off and union(map_ptr, range) */
1898 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1899 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1900 	reg->id = 0;
1901 	reg->ref_obj_id = 0;
1902 	___mark_reg_known(reg, imm);
1903 }
1904 
1905 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1906 {
1907 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1908 	reg->s32_min_value = (s32)imm;
1909 	reg->s32_max_value = (s32)imm;
1910 	reg->u32_min_value = (u32)imm;
1911 	reg->u32_max_value = (u32)imm;
1912 }
1913 
1914 /* Mark the 'variable offset' part of a register as zero.  This should be
1915  * used only on registers holding a pointer type.
1916  */
1917 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1918 {
1919 	__mark_reg_known(reg, 0);
1920 }
1921 
1922 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1923 {
1924 	__mark_reg_known(reg, 0);
1925 	reg->type = SCALAR_VALUE;
1926 }
1927 
1928 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1929 				struct bpf_reg_state *regs, u32 regno)
1930 {
1931 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1932 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1933 		/* Something bad happened, let's kill all regs */
1934 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1935 			__mark_reg_not_init(env, regs + regno);
1936 		return;
1937 	}
1938 	__mark_reg_known_zero(regs + regno);
1939 }
1940 
1941 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1942 			      bool first_slot, int dynptr_id)
1943 {
1944 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1945 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1946 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1947 	 */
1948 	__mark_reg_known_zero(reg);
1949 	reg->type = CONST_PTR_TO_DYNPTR;
1950 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1951 	reg->id = dynptr_id;
1952 	reg->dynptr.type = type;
1953 	reg->dynptr.first_slot = first_slot;
1954 }
1955 
1956 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1957 {
1958 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1959 		const struct bpf_map *map = reg->map_ptr;
1960 
1961 		if (map->inner_map_meta) {
1962 			reg->type = CONST_PTR_TO_MAP;
1963 			reg->map_ptr = map->inner_map_meta;
1964 			/* transfer reg's id which is unique for every map_lookup_elem
1965 			 * as UID of the inner map.
1966 			 */
1967 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1968 				reg->map_uid = reg->id;
1969 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1970 			reg->type = PTR_TO_XDP_SOCK;
1971 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1972 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1973 			reg->type = PTR_TO_SOCKET;
1974 		} else {
1975 			reg->type = PTR_TO_MAP_VALUE;
1976 		}
1977 		return;
1978 	}
1979 
1980 	reg->type &= ~PTR_MAYBE_NULL;
1981 }
1982 
1983 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1984 				struct btf_field_graph_root *ds_head)
1985 {
1986 	__mark_reg_known_zero(&regs[regno]);
1987 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1988 	regs[regno].btf = ds_head->btf;
1989 	regs[regno].btf_id = ds_head->value_btf_id;
1990 	regs[regno].off = ds_head->node_offset;
1991 }
1992 
1993 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1994 {
1995 	return type_is_pkt_pointer(reg->type);
1996 }
1997 
1998 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1999 {
2000 	return reg_is_pkt_pointer(reg) ||
2001 	       reg->type == PTR_TO_PACKET_END;
2002 }
2003 
2004 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2005 {
2006 	return base_type(reg->type) == PTR_TO_MEM &&
2007 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2008 }
2009 
2010 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2011 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2012 				    enum bpf_reg_type which)
2013 {
2014 	/* The register can already have a range from prior markings.
2015 	 * This is fine as long as it hasn't been advanced from its
2016 	 * origin.
2017 	 */
2018 	return reg->type == which &&
2019 	       reg->id == 0 &&
2020 	       reg->off == 0 &&
2021 	       tnum_equals_const(reg->var_off, 0);
2022 }
2023 
2024 /* Reset the min/max bounds of a register */
2025 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2026 {
2027 	reg->smin_value = S64_MIN;
2028 	reg->smax_value = S64_MAX;
2029 	reg->umin_value = 0;
2030 	reg->umax_value = U64_MAX;
2031 
2032 	reg->s32_min_value = S32_MIN;
2033 	reg->s32_max_value = S32_MAX;
2034 	reg->u32_min_value = 0;
2035 	reg->u32_max_value = U32_MAX;
2036 }
2037 
2038 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2039 {
2040 	reg->smin_value = S64_MIN;
2041 	reg->smax_value = S64_MAX;
2042 	reg->umin_value = 0;
2043 	reg->umax_value = U64_MAX;
2044 }
2045 
2046 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2047 {
2048 	reg->s32_min_value = S32_MIN;
2049 	reg->s32_max_value = S32_MAX;
2050 	reg->u32_min_value = 0;
2051 	reg->u32_max_value = U32_MAX;
2052 }
2053 
2054 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2055 {
2056 	struct tnum var32_off = tnum_subreg(reg->var_off);
2057 
2058 	/* min signed is max(sign bit) | min(other bits) */
2059 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2060 			var32_off.value | (var32_off.mask & S32_MIN));
2061 	/* max signed is min(sign bit) | max(other bits) */
2062 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2063 			var32_off.value | (var32_off.mask & S32_MAX));
2064 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2065 	reg->u32_max_value = min(reg->u32_max_value,
2066 				 (u32)(var32_off.value | var32_off.mask));
2067 }
2068 
2069 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2070 {
2071 	/* min signed is max(sign bit) | min(other bits) */
2072 	reg->smin_value = max_t(s64, reg->smin_value,
2073 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2074 	/* max signed is min(sign bit) | max(other bits) */
2075 	reg->smax_value = min_t(s64, reg->smax_value,
2076 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2077 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2078 	reg->umax_value = min(reg->umax_value,
2079 			      reg->var_off.value | reg->var_off.mask);
2080 }
2081 
2082 static void __update_reg_bounds(struct bpf_reg_state *reg)
2083 {
2084 	__update_reg32_bounds(reg);
2085 	__update_reg64_bounds(reg);
2086 }
2087 
2088 /* Uses signed min/max values to inform unsigned, and vice-versa */
2089 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2090 {
2091 	/* Learn sign from signed bounds.
2092 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2093 	 * are the same, so combine.  This works even in the negative case, e.g.
2094 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2095 	 */
2096 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2097 		reg->s32_min_value = reg->u32_min_value =
2098 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2099 		reg->s32_max_value = reg->u32_max_value =
2100 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2101 		return;
2102 	}
2103 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2104 	 * boundary, so we must be careful.
2105 	 */
2106 	if ((s32)reg->u32_max_value >= 0) {
2107 		/* Positive.  We can't learn anything from the smin, but smax
2108 		 * is positive, hence safe.
2109 		 */
2110 		reg->s32_min_value = reg->u32_min_value;
2111 		reg->s32_max_value = reg->u32_max_value =
2112 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2113 	} else if ((s32)reg->u32_min_value < 0) {
2114 		/* Negative.  We can't learn anything from the smax, but smin
2115 		 * is negative, hence safe.
2116 		 */
2117 		reg->s32_min_value = reg->u32_min_value =
2118 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2119 		reg->s32_max_value = reg->u32_max_value;
2120 	}
2121 }
2122 
2123 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2124 {
2125 	/* Learn sign from signed bounds.
2126 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2127 	 * are the same, so combine.  This works even in the negative case, e.g.
2128 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2129 	 */
2130 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2131 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2132 							  reg->umin_value);
2133 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2134 							  reg->umax_value);
2135 		return;
2136 	}
2137 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2138 	 * boundary, so we must be careful.
2139 	 */
2140 	if ((s64)reg->umax_value >= 0) {
2141 		/* Positive.  We can't learn anything from the smin, but smax
2142 		 * is positive, hence safe.
2143 		 */
2144 		reg->smin_value = reg->umin_value;
2145 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2146 							  reg->umax_value);
2147 	} else if ((s64)reg->umin_value < 0) {
2148 		/* Negative.  We can't learn anything from the smax, but smin
2149 		 * is negative, hence safe.
2150 		 */
2151 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2152 							  reg->umin_value);
2153 		reg->smax_value = reg->umax_value;
2154 	}
2155 }
2156 
2157 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2158 {
2159 	__reg32_deduce_bounds(reg);
2160 	__reg64_deduce_bounds(reg);
2161 }
2162 
2163 /* Attempts to improve var_off based on unsigned min/max information */
2164 static void __reg_bound_offset(struct bpf_reg_state *reg)
2165 {
2166 	struct tnum var64_off = tnum_intersect(reg->var_off,
2167 					       tnum_range(reg->umin_value,
2168 							  reg->umax_value));
2169 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2170 					       tnum_range(reg->u32_min_value,
2171 							  reg->u32_max_value));
2172 
2173 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2174 }
2175 
2176 static void reg_bounds_sync(struct bpf_reg_state *reg)
2177 {
2178 	/* We might have learned new bounds from the var_off. */
2179 	__update_reg_bounds(reg);
2180 	/* We might have learned something about the sign bit. */
2181 	__reg_deduce_bounds(reg);
2182 	/* We might have learned some bits from the bounds. */
2183 	__reg_bound_offset(reg);
2184 	/* Intersecting with the old var_off might have improved our bounds
2185 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2186 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2187 	 */
2188 	__update_reg_bounds(reg);
2189 }
2190 
2191 static bool __reg32_bound_s64(s32 a)
2192 {
2193 	return a >= 0 && a <= S32_MAX;
2194 }
2195 
2196 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2197 {
2198 	reg->umin_value = reg->u32_min_value;
2199 	reg->umax_value = reg->u32_max_value;
2200 
2201 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2202 	 * be positive otherwise set to worse case bounds and refine later
2203 	 * from tnum.
2204 	 */
2205 	if (__reg32_bound_s64(reg->s32_min_value) &&
2206 	    __reg32_bound_s64(reg->s32_max_value)) {
2207 		reg->smin_value = reg->s32_min_value;
2208 		reg->smax_value = reg->s32_max_value;
2209 	} else {
2210 		reg->smin_value = 0;
2211 		reg->smax_value = U32_MAX;
2212 	}
2213 }
2214 
2215 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2216 {
2217 	/* special case when 64-bit register has upper 32-bit register
2218 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2219 	 * allowing us to use 32-bit bounds directly,
2220 	 */
2221 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2222 		__reg_assign_32_into_64(reg);
2223 	} else {
2224 		/* Otherwise the best we can do is push lower 32bit known and
2225 		 * unknown bits into register (var_off set from jmp logic)
2226 		 * then learn as much as possible from the 64-bit tnum
2227 		 * known and unknown bits. The previous smin/smax bounds are
2228 		 * invalid here because of jmp32 compare so mark them unknown
2229 		 * so they do not impact tnum bounds calculation.
2230 		 */
2231 		__mark_reg64_unbounded(reg);
2232 	}
2233 	reg_bounds_sync(reg);
2234 }
2235 
2236 static bool __reg64_bound_s32(s64 a)
2237 {
2238 	return a >= S32_MIN && a <= S32_MAX;
2239 }
2240 
2241 static bool __reg64_bound_u32(u64 a)
2242 {
2243 	return a >= U32_MIN && a <= U32_MAX;
2244 }
2245 
2246 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2247 {
2248 	__mark_reg32_unbounded(reg);
2249 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2250 		reg->s32_min_value = (s32)reg->smin_value;
2251 		reg->s32_max_value = (s32)reg->smax_value;
2252 	}
2253 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2254 		reg->u32_min_value = (u32)reg->umin_value;
2255 		reg->u32_max_value = (u32)reg->umax_value;
2256 	}
2257 	reg_bounds_sync(reg);
2258 }
2259 
2260 /* Mark a register as having a completely unknown (scalar) value. */
2261 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2262 			       struct bpf_reg_state *reg)
2263 {
2264 	/*
2265 	 * Clear type, off, and union(map_ptr, range) and
2266 	 * padding between 'type' and union
2267 	 */
2268 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2269 	reg->type = SCALAR_VALUE;
2270 	reg->id = 0;
2271 	reg->ref_obj_id = 0;
2272 	reg->var_off = tnum_unknown;
2273 	reg->frameno = 0;
2274 	reg->precise = !env->bpf_capable;
2275 	__mark_reg_unbounded(reg);
2276 }
2277 
2278 static void mark_reg_unknown(struct bpf_verifier_env *env,
2279 			     struct bpf_reg_state *regs, u32 regno)
2280 {
2281 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2282 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2283 		/* Something bad happened, let's kill all regs except FP */
2284 		for (regno = 0; regno < BPF_REG_FP; regno++)
2285 			__mark_reg_not_init(env, regs + regno);
2286 		return;
2287 	}
2288 	__mark_reg_unknown(env, regs + regno);
2289 }
2290 
2291 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2292 				struct bpf_reg_state *reg)
2293 {
2294 	__mark_reg_unknown(env, reg);
2295 	reg->type = NOT_INIT;
2296 }
2297 
2298 static void mark_reg_not_init(struct bpf_verifier_env *env,
2299 			      struct bpf_reg_state *regs, u32 regno)
2300 {
2301 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2302 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2303 		/* Something bad happened, let's kill all regs except FP */
2304 		for (regno = 0; regno < BPF_REG_FP; regno++)
2305 			__mark_reg_not_init(env, regs + regno);
2306 		return;
2307 	}
2308 	__mark_reg_not_init(env, regs + regno);
2309 }
2310 
2311 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2312 			    struct bpf_reg_state *regs, u32 regno,
2313 			    enum bpf_reg_type reg_type,
2314 			    struct btf *btf, u32 btf_id,
2315 			    enum bpf_type_flag flag)
2316 {
2317 	if (reg_type == SCALAR_VALUE) {
2318 		mark_reg_unknown(env, regs, regno);
2319 		return;
2320 	}
2321 	mark_reg_known_zero(env, regs, regno);
2322 	regs[regno].type = PTR_TO_BTF_ID | flag;
2323 	regs[regno].btf = btf;
2324 	regs[regno].btf_id = btf_id;
2325 }
2326 
2327 #define DEF_NOT_SUBREG	(0)
2328 static void init_reg_state(struct bpf_verifier_env *env,
2329 			   struct bpf_func_state *state)
2330 {
2331 	struct bpf_reg_state *regs = state->regs;
2332 	int i;
2333 
2334 	for (i = 0; i < MAX_BPF_REG; i++) {
2335 		mark_reg_not_init(env, regs, i);
2336 		regs[i].live = REG_LIVE_NONE;
2337 		regs[i].parent = NULL;
2338 		regs[i].subreg_def = DEF_NOT_SUBREG;
2339 	}
2340 
2341 	/* frame pointer */
2342 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2343 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2344 	regs[BPF_REG_FP].frameno = state->frameno;
2345 }
2346 
2347 #define BPF_MAIN_FUNC (-1)
2348 static void init_func_state(struct bpf_verifier_env *env,
2349 			    struct bpf_func_state *state,
2350 			    int callsite, int frameno, int subprogno)
2351 {
2352 	state->callsite = callsite;
2353 	state->frameno = frameno;
2354 	state->subprogno = subprogno;
2355 	state->callback_ret_range = tnum_range(0, 0);
2356 	init_reg_state(env, state);
2357 	mark_verifier_state_scratched(env);
2358 }
2359 
2360 /* Similar to push_stack(), but for async callbacks */
2361 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2362 						int insn_idx, int prev_insn_idx,
2363 						int subprog)
2364 {
2365 	struct bpf_verifier_stack_elem *elem;
2366 	struct bpf_func_state *frame;
2367 
2368 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2369 	if (!elem)
2370 		goto err;
2371 
2372 	elem->insn_idx = insn_idx;
2373 	elem->prev_insn_idx = prev_insn_idx;
2374 	elem->next = env->head;
2375 	elem->log_pos = env->log.end_pos;
2376 	env->head = elem;
2377 	env->stack_size++;
2378 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2379 		verbose(env,
2380 			"The sequence of %d jumps is too complex for async cb.\n",
2381 			env->stack_size);
2382 		goto err;
2383 	}
2384 	/* Unlike push_stack() do not copy_verifier_state().
2385 	 * The caller state doesn't matter.
2386 	 * This is async callback. It starts in a fresh stack.
2387 	 * Initialize it similar to do_check_common().
2388 	 */
2389 	elem->st.branches = 1;
2390 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2391 	if (!frame)
2392 		goto err;
2393 	init_func_state(env, frame,
2394 			BPF_MAIN_FUNC /* callsite */,
2395 			0 /* frameno within this callchain */,
2396 			subprog /* subprog number within this prog */);
2397 	elem->st.frame[0] = frame;
2398 	return &elem->st;
2399 err:
2400 	free_verifier_state(env->cur_state, true);
2401 	env->cur_state = NULL;
2402 	/* pop all elements and return */
2403 	while (!pop_stack(env, NULL, NULL, false));
2404 	return NULL;
2405 }
2406 
2407 
2408 enum reg_arg_type {
2409 	SRC_OP,		/* register is used as source operand */
2410 	DST_OP,		/* register is used as destination operand */
2411 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2412 };
2413 
2414 static int cmp_subprogs(const void *a, const void *b)
2415 {
2416 	return ((struct bpf_subprog_info *)a)->start -
2417 	       ((struct bpf_subprog_info *)b)->start;
2418 }
2419 
2420 static int find_subprog(struct bpf_verifier_env *env, int off)
2421 {
2422 	struct bpf_subprog_info *p;
2423 
2424 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2425 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2426 	if (!p)
2427 		return -ENOENT;
2428 	return p - env->subprog_info;
2429 
2430 }
2431 
2432 static int add_subprog(struct bpf_verifier_env *env, int off)
2433 {
2434 	int insn_cnt = env->prog->len;
2435 	int ret;
2436 
2437 	if (off >= insn_cnt || off < 0) {
2438 		verbose(env, "call to invalid destination\n");
2439 		return -EINVAL;
2440 	}
2441 	ret = find_subprog(env, off);
2442 	if (ret >= 0)
2443 		return ret;
2444 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2445 		verbose(env, "too many subprograms\n");
2446 		return -E2BIG;
2447 	}
2448 	/* determine subprog starts. The end is one before the next starts */
2449 	env->subprog_info[env->subprog_cnt++].start = off;
2450 	sort(env->subprog_info, env->subprog_cnt,
2451 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2452 	return env->subprog_cnt - 1;
2453 }
2454 
2455 #define MAX_KFUNC_DESCS 256
2456 #define MAX_KFUNC_BTFS	256
2457 
2458 struct bpf_kfunc_desc {
2459 	struct btf_func_model func_model;
2460 	u32 func_id;
2461 	s32 imm;
2462 	u16 offset;
2463 	unsigned long addr;
2464 };
2465 
2466 struct bpf_kfunc_btf {
2467 	struct btf *btf;
2468 	struct module *module;
2469 	u16 offset;
2470 };
2471 
2472 struct bpf_kfunc_desc_tab {
2473 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2474 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2475 	 * available, therefore at the end of verification do_misc_fixups()
2476 	 * sorts this by imm and offset.
2477 	 */
2478 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2479 	u32 nr_descs;
2480 };
2481 
2482 struct bpf_kfunc_btf_tab {
2483 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2484 	u32 nr_descs;
2485 };
2486 
2487 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2488 {
2489 	const struct bpf_kfunc_desc *d0 = a;
2490 	const struct bpf_kfunc_desc *d1 = b;
2491 
2492 	/* func_id is not greater than BTF_MAX_TYPE */
2493 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2494 }
2495 
2496 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2497 {
2498 	const struct bpf_kfunc_btf *d0 = a;
2499 	const struct bpf_kfunc_btf *d1 = b;
2500 
2501 	return d0->offset - d1->offset;
2502 }
2503 
2504 static const struct bpf_kfunc_desc *
2505 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2506 {
2507 	struct bpf_kfunc_desc desc = {
2508 		.func_id = func_id,
2509 		.offset = offset,
2510 	};
2511 	struct bpf_kfunc_desc_tab *tab;
2512 
2513 	tab = prog->aux->kfunc_tab;
2514 	return bsearch(&desc, tab->descs, tab->nr_descs,
2515 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2516 }
2517 
2518 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2519 		       u16 btf_fd_idx, u8 **func_addr)
2520 {
2521 	const struct bpf_kfunc_desc *desc;
2522 
2523 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2524 	if (!desc)
2525 		return -EFAULT;
2526 
2527 	*func_addr = (u8 *)desc->addr;
2528 	return 0;
2529 }
2530 
2531 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2532 					 s16 offset)
2533 {
2534 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2535 	struct bpf_kfunc_btf_tab *tab;
2536 	struct bpf_kfunc_btf *b;
2537 	struct module *mod;
2538 	struct btf *btf;
2539 	int btf_fd;
2540 
2541 	tab = env->prog->aux->kfunc_btf_tab;
2542 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2543 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2544 	if (!b) {
2545 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2546 			verbose(env, "too many different module BTFs\n");
2547 			return ERR_PTR(-E2BIG);
2548 		}
2549 
2550 		if (bpfptr_is_null(env->fd_array)) {
2551 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2552 			return ERR_PTR(-EPROTO);
2553 		}
2554 
2555 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2556 					    offset * sizeof(btf_fd),
2557 					    sizeof(btf_fd)))
2558 			return ERR_PTR(-EFAULT);
2559 
2560 		btf = btf_get_by_fd(btf_fd);
2561 		if (IS_ERR(btf)) {
2562 			verbose(env, "invalid module BTF fd specified\n");
2563 			return btf;
2564 		}
2565 
2566 		if (!btf_is_module(btf)) {
2567 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2568 			btf_put(btf);
2569 			return ERR_PTR(-EINVAL);
2570 		}
2571 
2572 		mod = btf_try_get_module(btf);
2573 		if (!mod) {
2574 			btf_put(btf);
2575 			return ERR_PTR(-ENXIO);
2576 		}
2577 
2578 		b = &tab->descs[tab->nr_descs++];
2579 		b->btf = btf;
2580 		b->module = mod;
2581 		b->offset = offset;
2582 
2583 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2584 		     kfunc_btf_cmp_by_off, NULL);
2585 	}
2586 	return b->btf;
2587 }
2588 
2589 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2590 {
2591 	if (!tab)
2592 		return;
2593 
2594 	while (tab->nr_descs--) {
2595 		module_put(tab->descs[tab->nr_descs].module);
2596 		btf_put(tab->descs[tab->nr_descs].btf);
2597 	}
2598 	kfree(tab);
2599 }
2600 
2601 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2602 {
2603 	if (offset) {
2604 		if (offset < 0) {
2605 			/* In the future, this can be allowed to increase limit
2606 			 * of fd index into fd_array, interpreted as u16.
2607 			 */
2608 			verbose(env, "negative offset disallowed for kernel module function call\n");
2609 			return ERR_PTR(-EINVAL);
2610 		}
2611 
2612 		return __find_kfunc_desc_btf(env, offset);
2613 	}
2614 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2615 }
2616 
2617 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2618 {
2619 	const struct btf_type *func, *func_proto;
2620 	struct bpf_kfunc_btf_tab *btf_tab;
2621 	struct bpf_kfunc_desc_tab *tab;
2622 	struct bpf_prog_aux *prog_aux;
2623 	struct bpf_kfunc_desc *desc;
2624 	const char *func_name;
2625 	struct btf *desc_btf;
2626 	unsigned long call_imm;
2627 	unsigned long addr;
2628 	int err;
2629 
2630 	prog_aux = env->prog->aux;
2631 	tab = prog_aux->kfunc_tab;
2632 	btf_tab = prog_aux->kfunc_btf_tab;
2633 	if (!tab) {
2634 		if (!btf_vmlinux) {
2635 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2636 			return -ENOTSUPP;
2637 		}
2638 
2639 		if (!env->prog->jit_requested) {
2640 			verbose(env, "JIT is required for calling kernel function\n");
2641 			return -ENOTSUPP;
2642 		}
2643 
2644 		if (!bpf_jit_supports_kfunc_call()) {
2645 			verbose(env, "JIT does not support calling kernel function\n");
2646 			return -ENOTSUPP;
2647 		}
2648 
2649 		if (!env->prog->gpl_compatible) {
2650 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2651 			return -EINVAL;
2652 		}
2653 
2654 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2655 		if (!tab)
2656 			return -ENOMEM;
2657 		prog_aux->kfunc_tab = tab;
2658 	}
2659 
2660 	/* func_id == 0 is always invalid, but instead of returning an error, be
2661 	 * conservative and wait until the code elimination pass before returning
2662 	 * error, so that invalid calls that get pruned out can be in BPF programs
2663 	 * loaded from userspace.  It is also required that offset be untouched
2664 	 * for such calls.
2665 	 */
2666 	if (!func_id && !offset)
2667 		return 0;
2668 
2669 	if (!btf_tab && offset) {
2670 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2671 		if (!btf_tab)
2672 			return -ENOMEM;
2673 		prog_aux->kfunc_btf_tab = btf_tab;
2674 	}
2675 
2676 	desc_btf = find_kfunc_desc_btf(env, offset);
2677 	if (IS_ERR(desc_btf)) {
2678 		verbose(env, "failed to find BTF for kernel function\n");
2679 		return PTR_ERR(desc_btf);
2680 	}
2681 
2682 	if (find_kfunc_desc(env->prog, func_id, offset))
2683 		return 0;
2684 
2685 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2686 		verbose(env, "too many different kernel function calls\n");
2687 		return -E2BIG;
2688 	}
2689 
2690 	func = btf_type_by_id(desc_btf, func_id);
2691 	if (!func || !btf_type_is_func(func)) {
2692 		verbose(env, "kernel btf_id %u is not a function\n",
2693 			func_id);
2694 		return -EINVAL;
2695 	}
2696 	func_proto = btf_type_by_id(desc_btf, func->type);
2697 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2698 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2699 			func_id);
2700 		return -EINVAL;
2701 	}
2702 
2703 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2704 	addr = kallsyms_lookup_name(func_name);
2705 	if (!addr) {
2706 		verbose(env, "cannot find address for kernel function %s\n",
2707 			func_name);
2708 		return -EINVAL;
2709 	}
2710 	specialize_kfunc(env, func_id, offset, &addr);
2711 
2712 	if (bpf_jit_supports_far_kfunc_call()) {
2713 		call_imm = func_id;
2714 	} else {
2715 		call_imm = BPF_CALL_IMM(addr);
2716 		/* Check whether the relative offset overflows desc->imm */
2717 		if ((unsigned long)(s32)call_imm != call_imm) {
2718 			verbose(env, "address of kernel function %s is out of range\n",
2719 				func_name);
2720 			return -EINVAL;
2721 		}
2722 	}
2723 
2724 	if (bpf_dev_bound_kfunc_id(func_id)) {
2725 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2726 		if (err)
2727 			return err;
2728 	}
2729 
2730 	desc = &tab->descs[tab->nr_descs++];
2731 	desc->func_id = func_id;
2732 	desc->imm = call_imm;
2733 	desc->offset = offset;
2734 	desc->addr = addr;
2735 	err = btf_distill_func_proto(&env->log, desc_btf,
2736 				     func_proto, func_name,
2737 				     &desc->func_model);
2738 	if (!err)
2739 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2740 		     kfunc_desc_cmp_by_id_off, NULL);
2741 	return err;
2742 }
2743 
2744 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2745 {
2746 	const struct bpf_kfunc_desc *d0 = a;
2747 	const struct bpf_kfunc_desc *d1 = b;
2748 
2749 	if (d0->imm != d1->imm)
2750 		return d0->imm < d1->imm ? -1 : 1;
2751 	if (d0->offset != d1->offset)
2752 		return d0->offset < d1->offset ? -1 : 1;
2753 	return 0;
2754 }
2755 
2756 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2757 {
2758 	struct bpf_kfunc_desc_tab *tab;
2759 
2760 	tab = prog->aux->kfunc_tab;
2761 	if (!tab)
2762 		return;
2763 
2764 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2765 	     kfunc_desc_cmp_by_imm_off, NULL);
2766 }
2767 
2768 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2769 {
2770 	return !!prog->aux->kfunc_tab;
2771 }
2772 
2773 const struct btf_func_model *
2774 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2775 			 const struct bpf_insn *insn)
2776 {
2777 	const struct bpf_kfunc_desc desc = {
2778 		.imm = insn->imm,
2779 		.offset = insn->off,
2780 	};
2781 	const struct bpf_kfunc_desc *res;
2782 	struct bpf_kfunc_desc_tab *tab;
2783 
2784 	tab = prog->aux->kfunc_tab;
2785 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2786 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2787 
2788 	return res ? &res->func_model : NULL;
2789 }
2790 
2791 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2792 {
2793 	struct bpf_subprog_info *subprog = env->subprog_info;
2794 	struct bpf_insn *insn = env->prog->insnsi;
2795 	int i, ret, insn_cnt = env->prog->len;
2796 
2797 	/* Add entry function. */
2798 	ret = add_subprog(env, 0);
2799 	if (ret)
2800 		return ret;
2801 
2802 	for (i = 0; i < insn_cnt; i++, insn++) {
2803 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2804 		    !bpf_pseudo_kfunc_call(insn))
2805 			continue;
2806 
2807 		if (!env->bpf_capable) {
2808 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2809 			return -EPERM;
2810 		}
2811 
2812 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2813 			ret = add_subprog(env, i + insn->imm + 1);
2814 		else
2815 			ret = add_kfunc_call(env, insn->imm, insn->off);
2816 
2817 		if (ret < 0)
2818 			return ret;
2819 	}
2820 
2821 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2822 	 * logic. 'subprog_cnt' should not be increased.
2823 	 */
2824 	subprog[env->subprog_cnt].start = insn_cnt;
2825 
2826 	if (env->log.level & BPF_LOG_LEVEL2)
2827 		for (i = 0; i < env->subprog_cnt; i++)
2828 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2829 
2830 	return 0;
2831 }
2832 
2833 static int check_subprogs(struct bpf_verifier_env *env)
2834 {
2835 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2836 	struct bpf_subprog_info *subprog = env->subprog_info;
2837 	struct bpf_insn *insn = env->prog->insnsi;
2838 	int insn_cnt = env->prog->len;
2839 
2840 	/* now check that all jumps are within the same subprog */
2841 	subprog_start = subprog[cur_subprog].start;
2842 	subprog_end = subprog[cur_subprog + 1].start;
2843 	for (i = 0; i < insn_cnt; i++) {
2844 		u8 code = insn[i].code;
2845 
2846 		if (code == (BPF_JMP | BPF_CALL) &&
2847 		    insn[i].src_reg == 0 &&
2848 		    insn[i].imm == BPF_FUNC_tail_call)
2849 			subprog[cur_subprog].has_tail_call = true;
2850 		if (BPF_CLASS(code) == BPF_LD &&
2851 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2852 			subprog[cur_subprog].has_ld_abs = true;
2853 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2854 			goto next;
2855 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2856 			goto next;
2857 		off = i + insn[i].off + 1;
2858 		if (off < subprog_start || off >= subprog_end) {
2859 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2860 			return -EINVAL;
2861 		}
2862 next:
2863 		if (i == subprog_end - 1) {
2864 			/* to avoid fall-through from one subprog into another
2865 			 * the last insn of the subprog should be either exit
2866 			 * or unconditional jump back
2867 			 */
2868 			if (code != (BPF_JMP | BPF_EXIT) &&
2869 			    code != (BPF_JMP | BPF_JA)) {
2870 				verbose(env, "last insn is not an exit or jmp\n");
2871 				return -EINVAL;
2872 			}
2873 			subprog_start = subprog_end;
2874 			cur_subprog++;
2875 			if (cur_subprog < env->subprog_cnt)
2876 				subprog_end = subprog[cur_subprog + 1].start;
2877 		}
2878 	}
2879 	return 0;
2880 }
2881 
2882 /* Parentage chain of this register (or stack slot) should take care of all
2883  * issues like callee-saved registers, stack slot allocation time, etc.
2884  */
2885 static int mark_reg_read(struct bpf_verifier_env *env,
2886 			 const struct bpf_reg_state *state,
2887 			 struct bpf_reg_state *parent, u8 flag)
2888 {
2889 	bool writes = parent == state->parent; /* Observe write marks */
2890 	int cnt = 0;
2891 
2892 	while (parent) {
2893 		/* if read wasn't screened by an earlier write ... */
2894 		if (writes && state->live & REG_LIVE_WRITTEN)
2895 			break;
2896 		if (parent->live & REG_LIVE_DONE) {
2897 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2898 				reg_type_str(env, parent->type),
2899 				parent->var_off.value, parent->off);
2900 			return -EFAULT;
2901 		}
2902 		/* The first condition is more likely to be true than the
2903 		 * second, checked it first.
2904 		 */
2905 		if ((parent->live & REG_LIVE_READ) == flag ||
2906 		    parent->live & REG_LIVE_READ64)
2907 			/* The parentage chain never changes and
2908 			 * this parent was already marked as LIVE_READ.
2909 			 * There is no need to keep walking the chain again and
2910 			 * keep re-marking all parents as LIVE_READ.
2911 			 * This case happens when the same register is read
2912 			 * multiple times without writes into it in-between.
2913 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2914 			 * then no need to set the weak REG_LIVE_READ32.
2915 			 */
2916 			break;
2917 		/* ... then we depend on parent's value */
2918 		parent->live |= flag;
2919 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2920 		if (flag == REG_LIVE_READ64)
2921 			parent->live &= ~REG_LIVE_READ32;
2922 		state = parent;
2923 		parent = state->parent;
2924 		writes = true;
2925 		cnt++;
2926 	}
2927 
2928 	if (env->longest_mark_read_walk < cnt)
2929 		env->longest_mark_read_walk = cnt;
2930 	return 0;
2931 }
2932 
2933 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2934 {
2935 	struct bpf_func_state *state = func(env, reg);
2936 	int spi, ret;
2937 
2938 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2939 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2940 	 * check_kfunc_call.
2941 	 */
2942 	if (reg->type == CONST_PTR_TO_DYNPTR)
2943 		return 0;
2944 	spi = dynptr_get_spi(env, reg);
2945 	if (spi < 0)
2946 		return spi;
2947 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2948 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2949 	 * read.
2950 	 */
2951 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2952 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2953 	if (ret)
2954 		return ret;
2955 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2956 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2957 }
2958 
2959 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2960 			  int spi, int nr_slots)
2961 {
2962 	struct bpf_func_state *state = func(env, reg);
2963 	int err, i;
2964 
2965 	for (i = 0; i < nr_slots; i++) {
2966 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2967 
2968 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2969 		if (err)
2970 			return err;
2971 
2972 		mark_stack_slot_scratched(env, spi - i);
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 /* This function is supposed to be used by the following 32-bit optimization
2979  * code only. It returns TRUE if the source or destination register operates
2980  * on 64-bit, otherwise return FALSE.
2981  */
2982 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2983 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2984 {
2985 	u8 code, class, op;
2986 
2987 	code = insn->code;
2988 	class = BPF_CLASS(code);
2989 	op = BPF_OP(code);
2990 	if (class == BPF_JMP) {
2991 		/* BPF_EXIT for "main" will reach here. Return TRUE
2992 		 * conservatively.
2993 		 */
2994 		if (op == BPF_EXIT)
2995 			return true;
2996 		if (op == BPF_CALL) {
2997 			/* BPF to BPF call will reach here because of marking
2998 			 * caller saved clobber with DST_OP_NO_MARK for which we
2999 			 * don't care the register def because they are anyway
3000 			 * marked as NOT_INIT already.
3001 			 */
3002 			if (insn->src_reg == BPF_PSEUDO_CALL)
3003 				return false;
3004 			/* Helper call will reach here because of arg type
3005 			 * check, conservatively return TRUE.
3006 			 */
3007 			if (t == SRC_OP)
3008 				return true;
3009 
3010 			return false;
3011 		}
3012 	}
3013 
3014 	if (class == BPF_ALU64 || class == BPF_JMP ||
3015 	    /* BPF_END always use BPF_ALU class. */
3016 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3017 		return true;
3018 
3019 	if (class == BPF_ALU || class == BPF_JMP32)
3020 		return false;
3021 
3022 	if (class == BPF_LDX) {
3023 		if (t != SRC_OP)
3024 			return BPF_SIZE(code) == BPF_DW;
3025 		/* LDX source must be ptr. */
3026 		return true;
3027 	}
3028 
3029 	if (class == BPF_STX) {
3030 		/* BPF_STX (including atomic variants) has multiple source
3031 		 * operands, one of which is a ptr. Check whether the caller is
3032 		 * asking about it.
3033 		 */
3034 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3035 			return true;
3036 		return BPF_SIZE(code) == BPF_DW;
3037 	}
3038 
3039 	if (class == BPF_LD) {
3040 		u8 mode = BPF_MODE(code);
3041 
3042 		/* LD_IMM64 */
3043 		if (mode == BPF_IMM)
3044 			return true;
3045 
3046 		/* Both LD_IND and LD_ABS return 32-bit data. */
3047 		if (t != SRC_OP)
3048 			return  false;
3049 
3050 		/* Implicit ctx ptr. */
3051 		if (regno == BPF_REG_6)
3052 			return true;
3053 
3054 		/* Explicit source could be any width. */
3055 		return true;
3056 	}
3057 
3058 	if (class == BPF_ST)
3059 		/* The only source register for BPF_ST is a ptr. */
3060 		return true;
3061 
3062 	/* Conservatively return true at default. */
3063 	return true;
3064 }
3065 
3066 /* Return the regno defined by the insn, or -1. */
3067 static int insn_def_regno(const struct bpf_insn *insn)
3068 {
3069 	switch (BPF_CLASS(insn->code)) {
3070 	case BPF_JMP:
3071 	case BPF_JMP32:
3072 	case BPF_ST:
3073 		return -1;
3074 	case BPF_STX:
3075 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3076 		    (insn->imm & BPF_FETCH)) {
3077 			if (insn->imm == BPF_CMPXCHG)
3078 				return BPF_REG_0;
3079 			else
3080 				return insn->src_reg;
3081 		} else {
3082 			return -1;
3083 		}
3084 	default:
3085 		return insn->dst_reg;
3086 	}
3087 }
3088 
3089 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3090 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3091 {
3092 	int dst_reg = insn_def_regno(insn);
3093 
3094 	if (dst_reg == -1)
3095 		return false;
3096 
3097 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3098 }
3099 
3100 static void mark_insn_zext(struct bpf_verifier_env *env,
3101 			   struct bpf_reg_state *reg)
3102 {
3103 	s32 def_idx = reg->subreg_def;
3104 
3105 	if (def_idx == DEF_NOT_SUBREG)
3106 		return;
3107 
3108 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3109 	/* The dst will be zero extended, so won't be sub-register anymore. */
3110 	reg->subreg_def = DEF_NOT_SUBREG;
3111 }
3112 
3113 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3114 			 enum reg_arg_type t)
3115 {
3116 	struct bpf_verifier_state *vstate = env->cur_state;
3117 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3118 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3119 	struct bpf_reg_state *reg, *regs = state->regs;
3120 	bool rw64;
3121 
3122 	if (regno >= MAX_BPF_REG) {
3123 		verbose(env, "R%d is invalid\n", regno);
3124 		return -EINVAL;
3125 	}
3126 
3127 	mark_reg_scratched(env, regno);
3128 
3129 	reg = &regs[regno];
3130 	rw64 = is_reg64(env, insn, regno, reg, t);
3131 	if (t == SRC_OP) {
3132 		/* check whether register used as source operand can be read */
3133 		if (reg->type == NOT_INIT) {
3134 			verbose(env, "R%d !read_ok\n", regno);
3135 			return -EACCES;
3136 		}
3137 		/* We don't need to worry about FP liveness because it's read-only */
3138 		if (regno == BPF_REG_FP)
3139 			return 0;
3140 
3141 		if (rw64)
3142 			mark_insn_zext(env, reg);
3143 
3144 		return mark_reg_read(env, reg, reg->parent,
3145 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3146 	} else {
3147 		/* check whether register used as dest operand can be written to */
3148 		if (regno == BPF_REG_FP) {
3149 			verbose(env, "frame pointer is read only\n");
3150 			return -EACCES;
3151 		}
3152 		reg->live |= REG_LIVE_WRITTEN;
3153 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3154 		if (t == DST_OP)
3155 			mark_reg_unknown(env, regs, regno);
3156 	}
3157 	return 0;
3158 }
3159 
3160 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3161 {
3162 	env->insn_aux_data[idx].jmp_point = true;
3163 }
3164 
3165 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3166 {
3167 	return env->insn_aux_data[insn_idx].jmp_point;
3168 }
3169 
3170 /* for any branch, call, exit record the history of jmps in the given state */
3171 static int push_jmp_history(struct bpf_verifier_env *env,
3172 			    struct bpf_verifier_state *cur)
3173 {
3174 	u32 cnt = cur->jmp_history_cnt;
3175 	struct bpf_idx_pair *p;
3176 	size_t alloc_size;
3177 
3178 	if (!is_jmp_point(env, env->insn_idx))
3179 		return 0;
3180 
3181 	cnt++;
3182 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3183 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3184 	if (!p)
3185 		return -ENOMEM;
3186 	p[cnt - 1].idx = env->insn_idx;
3187 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3188 	cur->jmp_history = p;
3189 	cur->jmp_history_cnt = cnt;
3190 	return 0;
3191 }
3192 
3193 /* Backtrack one insn at a time. If idx is not at the top of recorded
3194  * history then previous instruction came from straight line execution.
3195  */
3196 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3197 			     u32 *history)
3198 {
3199 	u32 cnt = *history;
3200 
3201 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3202 		i = st->jmp_history[cnt - 1].prev_idx;
3203 		(*history)--;
3204 	} else {
3205 		i--;
3206 	}
3207 	return i;
3208 }
3209 
3210 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3211 {
3212 	const struct btf_type *func;
3213 	struct btf *desc_btf;
3214 
3215 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3216 		return NULL;
3217 
3218 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3219 	if (IS_ERR(desc_btf))
3220 		return "<error>";
3221 
3222 	func = btf_type_by_id(desc_btf, insn->imm);
3223 	return btf_name_by_offset(desc_btf, func->name_off);
3224 }
3225 
3226 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3227 {
3228 	bt->frame = frame;
3229 }
3230 
3231 static inline void bt_reset(struct backtrack_state *bt)
3232 {
3233 	struct bpf_verifier_env *env = bt->env;
3234 
3235 	memset(bt, 0, sizeof(*bt));
3236 	bt->env = env;
3237 }
3238 
3239 static inline u32 bt_empty(struct backtrack_state *bt)
3240 {
3241 	u64 mask = 0;
3242 	int i;
3243 
3244 	for (i = 0; i <= bt->frame; i++)
3245 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3246 
3247 	return mask == 0;
3248 }
3249 
3250 static inline int bt_subprog_enter(struct backtrack_state *bt)
3251 {
3252 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3253 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3254 		WARN_ONCE(1, "verifier backtracking bug");
3255 		return -EFAULT;
3256 	}
3257 	bt->frame++;
3258 	return 0;
3259 }
3260 
3261 static inline int bt_subprog_exit(struct backtrack_state *bt)
3262 {
3263 	if (bt->frame == 0) {
3264 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3265 		WARN_ONCE(1, "verifier backtracking bug");
3266 		return -EFAULT;
3267 	}
3268 	bt->frame--;
3269 	return 0;
3270 }
3271 
3272 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3273 {
3274 	bt->reg_masks[frame] |= 1 << reg;
3275 }
3276 
3277 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3278 {
3279 	bt->reg_masks[frame] &= ~(1 << reg);
3280 }
3281 
3282 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3283 {
3284 	bt_set_frame_reg(bt, bt->frame, reg);
3285 }
3286 
3287 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3288 {
3289 	bt_clear_frame_reg(bt, bt->frame, reg);
3290 }
3291 
3292 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3293 {
3294 	bt->stack_masks[frame] |= 1ull << slot;
3295 }
3296 
3297 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3298 {
3299 	bt->stack_masks[frame] &= ~(1ull << slot);
3300 }
3301 
3302 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3303 {
3304 	bt_set_frame_slot(bt, bt->frame, slot);
3305 }
3306 
3307 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3308 {
3309 	bt_clear_frame_slot(bt, bt->frame, slot);
3310 }
3311 
3312 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3313 {
3314 	return bt->reg_masks[frame];
3315 }
3316 
3317 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3318 {
3319 	return bt->reg_masks[bt->frame];
3320 }
3321 
3322 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3323 {
3324 	return bt->stack_masks[frame];
3325 }
3326 
3327 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3328 {
3329 	return bt->stack_masks[bt->frame];
3330 }
3331 
3332 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3333 {
3334 	return bt->reg_masks[bt->frame] & (1 << reg);
3335 }
3336 
3337 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3338 {
3339 	return bt->stack_masks[bt->frame] & (1ull << slot);
3340 }
3341 
3342 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3343 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3344 {
3345 	DECLARE_BITMAP(mask, 64);
3346 	bool first = true;
3347 	int i, n;
3348 
3349 	buf[0] = '\0';
3350 
3351 	bitmap_from_u64(mask, reg_mask);
3352 	for_each_set_bit(i, mask, 32) {
3353 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3354 		first = false;
3355 		buf += n;
3356 		buf_sz -= n;
3357 		if (buf_sz < 0)
3358 			break;
3359 	}
3360 }
3361 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3362 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3363 {
3364 	DECLARE_BITMAP(mask, 64);
3365 	bool first = true;
3366 	int i, n;
3367 
3368 	buf[0] = '\0';
3369 
3370 	bitmap_from_u64(mask, stack_mask);
3371 	for_each_set_bit(i, mask, 64) {
3372 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3373 		first = false;
3374 		buf += n;
3375 		buf_sz -= n;
3376 		if (buf_sz < 0)
3377 			break;
3378 	}
3379 }
3380 
3381 /* For given verifier state backtrack_insn() is called from the last insn to
3382  * the first insn. Its purpose is to compute a bitmask of registers and
3383  * stack slots that needs precision in the parent verifier state.
3384  *
3385  * @idx is an index of the instruction we are currently processing;
3386  * @subseq_idx is an index of the subsequent instruction that:
3387  *   - *would be* executed next, if jump history is viewed in forward order;
3388  *   - *was* processed previously during backtracking.
3389  */
3390 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3391 			  struct backtrack_state *bt)
3392 {
3393 	const struct bpf_insn_cbs cbs = {
3394 		.cb_call	= disasm_kfunc_name,
3395 		.cb_print	= verbose,
3396 		.private_data	= env,
3397 	};
3398 	struct bpf_insn *insn = env->prog->insnsi + idx;
3399 	u8 class = BPF_CLASS(insn->code);
3400 	u8 opcode = BPF_OP(insn->code);
3401 	u8 mode = BPF_MODE(insn->code);
3402 	u32 dreg = insn->dst_reg;
3403 	u32 sreg = insn->src_reg;
3404 	u32 spi, i;
3405 
3406 	if (insn->code == 0)
3407 		return 0;
3408 	if (env->log.level & BPF_LOG_LEVEL2) {
3409 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3410 		verbose(env, "mark_precise: frame%d: regs=%s ",
3411 			bt->frame, env->tmp_str_buf);
3412 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3413 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3414 		verbose(env, "%d: ", idx);
3415 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3416 	}
3417 
3418 	if (class == BPF_ALU || class == BPF_ALU64) {
3419 		if (!bt_is_reg_set(bt, dreg))
3420 			return 0;
3421 		if (opcode == BPF_MOV) {
3422 			if (BPF_SRC(insn->code) == BPF_X) {
3423 				/* dreg = sreg
3424 				 * dreg needs precision after this insn
3425 				 * sreg needs precision before this insn
3426 				 */
3427 				bt_clear_reg(bt, dreg);
3428 				bt_set_reg(bt, sreg);
3429 			} else {
3430 				/* dreg = K
3431 				 * dreg needs precision after this insn.
3432 				 * Corresponding register is already marked
3433 				 * as precise=true in this verifier state.
3434 				 * No further markings in parent are necessary
3435 				 */
3436 				bt_clear_reg(bt, dreg);
3437 			}
3438 		} else {
3439 			if (BPF_SRC(insn->code) == BPF_X) {
3440 				/* dreg += sreg
3441 				 * both dreg and sreg need precision
3442 				 * before this insn
3443 				 */
3444 				bt_set_reg(bt, sreg);
3445 			} /* else dreg += K
3446 			   * dreg still needs precision before this insn
3447 			   */
3448 		}
3449 	} else if (class == BPF_LDX) {
3450 		if (!bt_is_reg_set(bt, dreg))
3451 			return 0;
3452 		bt_clear_reg(bt, dreg);
3453 
3454 		/* scalars can only be spilled into stack w/o losing precision.
3455 		 * Load from any other memory can be zero extended.
3456 		 * The desire to keep that precision is already indicated
3457 		 * by 'precise' mark in corresponding register of this state.
3458 		 * No further tracking necessary.
3459 		 */
3460 		if (insn->src_reg != BPF_REG_FP)
3461 			return 0;
3462 
3463 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3464 		 * that [fp - off] slot contains scalar that needs to be
3465 		 * tracked with precision
3466 		 */
3467 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3468 		if (spi >= 64) {
3469 			verbose(env, "BUG spi %d\n", spi);
3470 			WARN_ONCE(1, "verifier backtracking bug");
3471 			return -EFAULT;
3472 		}
3473 		bt_set_slot(bt, spi);
3474 	} else if (class == BPF_STX || class == BPF_ST) {
3475 		if (bt_is_reg_set(bt, dreg))
3476 			/* stx & st shouldn't be using _scalar_ dst_reg
3477 			 * to access memory. It means backtracking
3478 			 * encountered a case of pointer subtraction.
3479 			 */
3480 			return -ENOTSUPP;
3481 		/* scalars can only be spilled into stack */
3482 		if (insn->dst_reg != BPF_REG_FP)
3483 			return 0;
3484 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3485 		if (spi >= 64) {
3486 			verbose(env, "BUG spi %d\n", spi);
3487 			WARN_ONCE(1, "verifier backtracking bug");
3488 			return -EFAULT;
3489 		}
3490 		if (!bt_is_slot_set(bt, spi))
3491 			return 0;
3492 		bt_clear_slot(bt, spi);
3493 		if (class == BPF_STX)
3494 			bt_set_reg(bt, sreg);
3495 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3496 		if (bpf_pseudo_call(insn)) {
3497 			int subprog_insn_idx, subprog;
3498 
3499 			subprog_insn_idx = idx + insn->imm + 1;
3500 			subprog = find_subprog(env, subprog_insn_idx);
3501 			if (subprog < 0)
3502 				return -EFAULT;
3503 
3504 			if (subprog_is_global(env, subprog)) {
3505 				/* check that jump history doesn't have any
3506 				 * extra instructions from subprog; the next
3507 				 * instruction after call to global subprog
3508 				 * should be literally next instruction in
3509 				 * caller program
3510 				 */
3511 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3512 				/* r1-r5 are invalidated after subprog call,
3513 				 * so for global func call it shouldn't be set
3514 				 * anymore
3515 				 */
3516 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3517 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3518 					WARN_ONCE(1, "verifier backtracking bug");
3519 					return -EFAULT;
3520 				}
3521 				/* global subprog always sets R0 */
3522 				bt_clear_reg(bt, BPF_REG_0);
3523 				return 0;
3524 			} else {
3525 				/* static subprog call instruction, which
3526 				 * means that we are exiting current subprog,
3527 				 * so only r1-r5 could be still requested as
3528 				 * precise, r0 and r6-r10 or any stack slot in
3529 				 * the current frame should be zero by now
3530 				 */
3531 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3532 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3533 					WARN_ONCE(1, "verifier backtracking bug");
3534 					return -EFAULT;
3535 				}
3536 				/* we don't track register spills perfectly,
3537 				 * so fallback to force-precise instead of failing */
3538 				if (bt_stack_mask(bt) != 0)
3539 					return -ENOTSUPP;
3540 				/* propagate r1-r5 to the caller */
3541 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3542 					if (bt_is_reg_set(bt, i)) {
3543 						bt_clear_reg(bt, i);
3544 						bt_set_frame_reg(bt, bt->frame - 1, i);
3545 					}
3546 				}
3547 				if (bt_subprog_exit(bt))
3548 					return -EFAULT;
3549 				return 0;
3550 			}
3551 		} else if ((bpf_helper_call(insn) &&
3552 			    is_callback_calling_function(insn->imm) &&
3553 			    !is_async_callback_calling_function(insn->imm)) ||
3554 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3555 			/* callback-calling helper or kfunc call, which means
3556 			 * we are exiting from subprog, but unlike the subprog
3557 			 * call handling above, we shouldn't propagate
3558 			 * precision of r1-r5 (if any requested), as they are
3559 			 * not actually arguments passed directly to callback
3560 			 * subprogs
3561 			 */
3562 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3563 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3564 				WARN_ONCE(1, "verifier backtracking bug");
3565 				return -EFAULT;
3566 			}
3567 			if (bt_stack_mask(bt) != 0)
3568 				return -ENOTSUPP;
3569 			/* clear r1-r5 in callback subprog's mask */
3570 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3571 				bt_clear_reg(bt, i);
3572 			if (bt_subprog_exit(bt))
3573 				return -EFAULT;
3574 			return 0;
3575 		} else if (opcode == BPF_CALL) {
3576 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3577 			 * catch this error later. Make backtracking conservative
3578 			 * with ENOTSUPP.
3579 			 */
3580 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3581 				return -ENOTSUPP;
3582 			/* regular helper call sets R0 */
3583 			bt_clear_reg(bt, BPF_REG_0);
3584 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3585 				/* if backtracing was looking for registers R1-R5
3586 				 * they should have been found already.
3587 				 */
3588 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3589 				WARN_ONCE(1, "verifier backtracking bug");
3590 				return -EFAULT;
3591 			}
3592 		} else if (opcode == BPF_EXIT) {
3593 			bool r0_precise;
3594 
3595 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3596 				/* if backtracing was looking for registers R1-R5
3597 				 * they should have been found already.
3598 				 */
3599 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3600 				WARN_ONCE(1, "verifier backtracking bug");
3601 				return -EFAULT;
3602 			}
3603 
3604 			/* BPF_EXIT in subprog or callback always returns
3605 			 * right after the call instruction, so by checking
3606 			 * whether the instruction at subseq_idx-1 is subprog
3607 			 * call or not we can distinguish actual exit from
3608 			 * *subprog* from exit from *callback*. In the former
3609 			 * case, we need to propagate r0 precision, if
3610 			 * necessary. In the former we never do that.
3611 			 */
3612 			r0_precise = subseq_idx - 1 >= 0 &&
3613 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3614 				     bt_is_reg_set(bt, BPF_REG_0);
3615 
3616 			bt_clear_reg(bt, BPF_REG_0);
3617 			if (bt_subprog_enter(bt))
3618 				return -EFAULT;
3619 
3620 			if (r0_precise)
3621 				bt_set_reg(bt, BPF_REG_0);
3622 			/* r6-r9 and stack slots will stay set in caller frame
3623 			 * bitmasks until we return back from callee(s)
3624 			 */
3625 			return 0;
3626 		} else if (BPF_SRC(insn->code) == BPF_X) {
3627 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3628 				return 0;
3629 			/* dreg <cond> sreg
3630 			 * Both dreg and sreg need precision before
3631 			 * this insn. If only sreg was marked precise
3632 			 * before it would be equally necessary to
3633 			 * propagate it to dreg.
3634 			 */
3635 			bt_set_reg(bt, dreg);
3636 			bt_set_reg(bt, sreg);
3637 			 /* else dreg <cond> K
3638 			  * Only dreg still needs precision before
3639 			  * this insn, so for the K-based conditional
3640 			  * there is nothing new to be marked.
3641 			  */
3642 		}
3643 	} else if (class == BPF_LD) {
3644 		if (!bt_is_reg_set(bt, dreg))
3645 			return 0;
3646 		bt_clear_reg(bt, dreg);
3647 		/* It's ld_imm64 or ld_abs or ld_ind.
3648 		 * For ld_imm64 no further tracking of precision
3649 		 * into parent is necessary
3650 		 */
3651 		if (mode == BPF_IND || mode == BPF_ABS)
3652 			/* to be analyzed */
3653 			return -ENOTSUPP;
3654 	}
3655 	return 0;
3656 }
3657 
3658 /* the scalar precision tracking algorithm:
3659  * . at the start all registers have precise=false.
3660  * . scalar ranges are tracked as normal through alu and jmp insns.
3661  * . once precise value of the scalar register is used in:
3662  *   .  ptr + scalar alu
3663  *   . if (scalar cond K|scalar)
3664  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3665  *   backtrack through the verifier states and mark all registers and
3666  *   stack slots with spilled constants that these scalar regisers
3667  *   should be precise.
3668  * . during state pruning two registers (or spilled stack slots)
3669  *   are equivalent if both are not precise.
3670  *
3671  * Note the verifier cannot simply walk register parentage chain,
3672  * since many different registers and stack slots could have been
3673  * used to compute single precise scalar.
3674  *
3675  * The approach of starting with precise=true for all registers and then
3676  * backtrack to mark a register as not precise when the verifier detects
3677  * that program doesn't care about specific value (e.g., when helper
3678  * takes register as ARG_ANYTHING parameter) is not safe.
3679  *
3680  * It's ok to walk single parentage chain of the verifier states.
3681  * It's possible that this backtracking will go all the way till 1st insn.
3682  * All other branches will be explored for needing precision later.
3683  *
3684  * The backtracking needs to deal with cases like:
3685  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3686  * r9 -= r8
3687  * r5 = r9
3688  * if r5 > 0x79f goto pc+7
3689  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3690  * r5 += 1
3691  * ...
3692  * call bpf_perf_event_output#25
3693  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3694  *
3695  * and this case:
3696  * r6 = 1
3697  * call foo // uses callee's r6 inside to compute r0
3698  * r0 += r6
3699  * if r0 == 0 goto
3700  *
3701  * to track above reg_mask/stack_mask needs to be independent for each frame.
3702  *
3703  * Also if parent's curframe > frame where backtracking started,
3704  * the verifier need to mark registers in both frames, otherwise callees
3705  * may incorrectly prune callers. This is similar to
3706  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3707  *
3708  * For now backtracking falls back into conservative marking.
3709  */
3710 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3711 				     struct bpf_verifier_state *st)
3712 {
3713 	struct bpf_func_state *func;
3714 	struct bpf_reg_state *reg;
3715 	int i, j;
3716 
3717 	if (env->log.level & BPF_LOG_LEVEL2) {
3718 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3719 			st->curframe);
3720 	}
3721 
3722 	/* big hammer: mark all scalars precise in this path.
3723 	 * pop_stack may still get !precise scalars.
3724 	 * We also skip current state and go straight to first parent state,
3725 	 * because precision markings in current non-checkpointed state are
3726 	 * not needed. See why in the comment in __mark_chain_precision below.
3727 	 */
3728 	for (st = st->parent; st; st = st->parent) {
3729 		for (i = 0; i <= st->curframe; i++) {
3730 			func = st->frame[i];
3731 			for (j = 0; j < BPF_REG_FP; j++) {
3732 				reg = &func->regs[j];
3733 				if (reg->type != SCALAR_VALUE || reg->precise)
3734 					continue;
3735 				reg->precise = true;
3736 				if (env->log.level & BPF_LOG_LEVEL2) {
3737 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3738 						i, j);
3739 				}
3740 			}
3741 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3742 				if (!is_spilled_reg(&func->stack[j]))
3743 					continue;
3744 				reg = &func->stack[j].spilled_ptr;
3745 				if (reg->type != SCALAR_VALUE || reg->precise)
3746 					continue;
3747 				reg->precise = true;
3748 				if (env->log.level & BPF_LOG_LEVEL2) {
3749 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3750 						i, -(j + 1) * 8);
3751 				}
3752 			}
3753 		}
3754 	}
3755 }
3756 
3757 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3758 {
3759 	struct bpf_func_state *func;
3760 	struct bpf_reg_state *reg;
3761 	int i, j;
3762 
3763 	for (i = 0; i <= st->curframe; i++) {
3764 		func = st->frame[i];
3765 		for (j = 0; j < BPF_REG_FP; j++) {
3766 			reg = &func->regs[j];
3767 			if (reg->type != SCALAR_VALUE)
3768 				continue;
3769 			reg->precise = false;
3770 		}
3771 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3772 			if (!is_spilled_reg(&func->stack[j]))
3773 				continue;
3774 			reg = &func->stack[j].spilled_ptr;
3775 			if (reg->type != SCALAR_VALUE)
3776 				continue;
3777 			reg->precise = false;
3778 		}
3779 	}
3780 }
3781 
3782 static bool idset_contains(struct bpf_idset *s, u32 id)
3783 {
3784 	u32 i;
3785 
3786 	for (i = 0; i < s->count; ++i)
3787 		if (s->ids[i] == id)
3788 			return true;
3789 
3790 	return false;
3791 }
3792 
3793 static int idset_push(struct bpf_idset *s, u32 id)
3794 {
3795 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3796 		return -EFAULT;
3797 	s->ids[s->count++] = id;
3798 	return 0;
3799 }
3800 
3801 static void idset_reset(struct bpf_idset *s)
3802 {
3803 	s->count = 0;
3804 }
3805 
3806 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3807  * Mark all registers with these IDs as precise.
3808  */
3809 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3810 {
3811 	struct bpf_idset *precise_ids = &env->idset_scratch;
3812 	struct backtrack_state *bt = &env->bt;
3813 	struct bpf_func_state *func;
3814 	struct bpf_reg_state *reg;
3815 	DECLARE_BITMAP(mask, 64);
3816 	int i, fr;
3817 
3818 	idset_reset(precise_ids);
3819 
3820 	for (fr = bt->frame; fr >= 0; fr--) {
3821 		func = st->frame[fr];
3822 
3823 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3824 		for_each_set_bit(i, mask, 32) {
3825 			reg = &func->regs[i];
3826 			if (!reg->id || reg->type != SCALAR_VALUE)
3827 				continue;
3828 			if (idset_push(precise_ids, reg->id))
3829 				return -EFAULT;
3830 		}
3831 
3832 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3833 		for_each_set_bit(i, mask, 64) {
3834 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3835 				break;
3836 			if (!is_spilled_scalar_reg(&func->stack[i]))
3837 				continue;
3838 			reg = &func->stack[i].spilled_ptr;
3839 			if (!reg->id)
3840 				continue;
3841 			if (idset_push(precise_ids, reg->id))
3842 				return -EFAULT;
3843 		}
3844 	}
3845 
3846 	for (fr = 0; fr <= st->curframe; ++fr) {
3847 		func = st->frame[fr];
3848 
3849 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3850 			reg = &func->regs[i];
3851 			if (!reg->id)
3852 				continue;
3853 			if (!idset_contains(precise_ids, reg->id))
3854 				continue;
3855 			bt_set_frame_reg(bt, fr, i);
3856 		}
3857 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3858 			if (!is_spilled_scalar_reg(&func->stack[i]))
3859 				continue;
3860 			reg = &func->stack[i].spilled_ptr;
3861 			if (!reg->id)
3862 				continue;
3863 			if (!idset_contains(precise_ids, reg->id))
3864 				continue;
3865 			bt_set_frame_slot(bt, fr, i);
3866 		}
3867 	}
3868 
3869 	return 0;
3870 }
3871 
3872 /*
3873  * __mark_chain_precision() backtracks BPF program instruction sequence and
3874  * chain of verifier states making sure that register *regno* (if regno >= 0)
3875  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3876  * SCALARS, as well as any other registers and slots that contribute to
3877  * a tracked state of given registers/stack slots, depending on specific BPF
3878  * assembly instructions (see backtrack_insns() for exact instruction handling
3879  * logic). This backtracking relies on recorded jmp_history and is able to
3880  * traverse entire chain of parent states. This process ends only when all the
3881  * necessary registers/slots and their transitive dependencies are marked as
3882  * precise.
3883  *
3884  * One important and subtle aspect is that precise marks *do not matter* in
3885  * the currently verified state (current state). It is important to understand
3886  * why this is the case.
3887  *
3888  * First, note that current state is the state that is not yet "checkpointed",
3889  * i.e., it is not yet put into env->explored_states, and it has no children
3890  * states as well. It's ephemeral, and can end up either a) being discarded if
3891  * compatible explored state is found at some point or BPF_EXIT instruction is
3892  * reached or b) checkpointed and put into env->explored_states, branching out
3893  * into one or more children states.
3894  *
3895  * In the former case, precise markings in current state are completely
3896  * ignored by state comparison code (see regsafe() for details). Only
3897  * checkpointed ("old") state precise markings are important, and if old
3898  * state's register/slot is precise, regsafe() assumes current state's
3899  * register/slot as precise and checks value ranges exactly and precisely. If
3900  * states turn out to be compatible, current state's necessary precise
3901  * markings and any required parent states' precise markings are enforced
3902  * after the fact with propagate_precision() logic, after the fact. But it's
3903  * important to realize that in this case, even after marking current state
3904  * registers/slots as precise, we immediately discard current state. So what
3905  * actually matters is any of the precise markings propagated into current
3906  * state's parent states, which are always checkpointed (due to b) case above).
3907  * As such, for scenario a) it doesn't matter if current state has precise
3908  * markings set or not.
3909  *
3910  * Now, for the scenario b), checkpointing and forking into child(ren)
3911  * state(s). Note that before current state gets to checkpointing step, any
3912  * processed instruction always assumes precise SCALAR register/slot
3913  * knowledge: if precise value or range is useful to prune jump branch, BPF
3914  * verifier takes this opportunity enthusiastically. Similarly, when
3915  * register's value is used to calculate offset or memory address, exact
3916  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3917  * what we mentioned above about state comparison ignoring precise markings
3918  * during state comparison, BPF verifier ignores and also assumes precise
3919  * markings *at will* during instruction verification process. But as verifier
3920  * assumes precision, it also propagates any precision dependencies across
3921  * parent states, which are not yet finalized, so can be further restricted
3922  * based on new knowledge gained from restrictions enforced by their children
3923  * states. This is so that once those parent states are finalized, i.e., when
3924  * they have no more active children state, state comparison logic in
3925  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3926  * required for correctness.
3927  *
3928  * To build a bit more intuition, note also that once a state is checkpointed,
3929  * the path we took to get to that state is not important. This is crucial
3930  * property for state pruning. When state is checkpointed and finalized at
3931  * some instruction index, it can be correctly and safely used to "short
3932  * circuit" any *compatible* state that reaches exactly the same instruction
3933  * index. I.e., if we jumped to that instruction from a completely different
3934  * code path than original finalized state was derived from, it doesn't
3935  * matter, current state can be discarded because from that instruction
3936  * forward having a compatible state will ensure we will safely reach the
3937  * exit. States describe preconditions for further exploration, but completely
3938  * forget the history of how we got here.
3939  *
3940  * This also means that even if we needed precise SCALAR range to get to
3941  * finalized state, but from that point forward *that same* SCALAR register is
3942  * never used in a precise context (i.e., it's precise value is not needed for
3943  * correctness), it's correct and safe to mark such register as "imprecise"
3944  * (i.e., precise marking set to false). This is what we rely on when we do
3945  * not set precise marking in current state. If no child state requires
3946  * precision for any given SCALAR register, it's safe to dictate that it can
3947  * be imprecise. If any child state does require this register to be precise,
3948  * we'll mark it precise later retroactively during precise markings
3949  * propagation from child state to parent states.
3950  *
3951  * Skipping precise marking setting in current state is a mild version of
3952  * relying on the above observation. But we can utilize this property even
3953  * more aggressively by proactively forgetting any precise marking in the
3954  * current state (which we inherited from the parent state), right before we
3955  * checkpoint it and branch off into new child state. This is done by
3956  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3957  * finalized states which help in short circuiting more future states.
3958  */
3959 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3960 {
3961 	struct backtrack_state *bt = &env->bt;
3962 	struct bpf_verifier_state *st = env->cur_state;
3963 	int first_idx = st->first_insn_idx;
3964 	int last_idx = env->insn_idx;
3965 	int subseq_idx = -1;
3966 	struct bpf_func_state *func;
3967 	struct bpf_reg_state *reg;
3968 	bool skip_first = true;
3969 	int i, fr, err;
3970 
3971 	if (!env->bpf_capable)
3972 		return 0;
3973 
3974 	/* set frame number from which we are starting to backtrack */
3975 	bt_init(bt, env->cur_state->curframe);
3976 
3977 	/* Do sanity checks against current state of register and/or stack
3978 	 * slot, but don't set precise flag in current state, as precision
3979 	 * tracking in the current state is unnecessary.
3980 	 */
3981 	func = st->frame[bt->frame];
3982 	if (regno >= 0) {
3983 		reg = &func->regs[regno];
3984 		if (reg->type != SCALAR_VALUE) {
3985 			WARN_ONCE(1, "backtracing misuse");
3986 			return -EFAULT;
3987 		}
3988 		bt_set_reg(bt, regno);
3989 	}
3990 
3991 	if (bt_empty(bt))
3992 		return 0;
3993 
3994 	for (;;) {
3995 		DECLARE_BITMAP(mask, 64);
3996 		u32 history = st->jmp_history_cnt;
3997 
3998 		if (env->log.level & BPF_LOG_LEVEL2) {
3999 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4000 				bt->frame, last_idx, first_idx, subseq_idx);
4001 		}
4002 
4003 		/* If some register with scalar ID is marked as precise,
4004 		 * make sure that all registers sharing this ID are also precise.
4005 		 * This is needed to estimate effect of find_equal_scalars().
4006 		 * Do this at the last instruction of each state,
4007 		 * bpf_reg_state::id fields are valid for these instructions.
4008 		 *
4009 		 * Allows to track precision in situation like below:
4010 		 *
4011 		 *     r2 = unknown value
4012 		 *     ...
4013 		 *   --- state #0 ---
4014 		 *     ...
4015 		 *     r1 = r2                 // r1 and r2 now share the same ID
4016 		 *     ...
4017 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4018 		 *     ...
4019 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4020 		 *     ...
4021 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4022 		 *     r3 = r10
4023 		 *     r3 += r1                // need to mark both r1 and r2
4024 		 */
4025 		if (mark_precise_scalar_ids(env, st))
4026 			return -EFAULT;
4027 
4028 		if (last_idx < 0) {
4029 			/* we are at the entry into subprog, which
4030 			 * is expected for global funcs, but only if
4031 			 * requested precise registers are R1-R5
4032 			 * (which are global func's input arguments)
4033 			 */
4034 			if (st->curframe == 0 &&
4035 			    st->frame[0]->subprogno > 0 &&
4036 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4037 			    bt_stack_mask(bt) == 0 &&
4038 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4039 				bitmap_from_u64(mask, bt_reg_mask(bt));
4040 				for_each_set_bit(i, mask, 32) {
4041 					reg = &st->frame[0]->regs[i];
4042 					if (reg->type != SCALAR_VALUE) {
4043 						bt_clear_reg(bt, i);
4044 						continue;
4045 					}
4046 					reg->precise = true;
4047 				}
4048 				return 0;
4049 			}
4050 
4051 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4052 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4053 			WARN_ONCE(1, "verifier backtracking bug");
4054 			return -EFAULT;
4055 		}
4056 
4057 		for (i = last_idx;;) {
4058 			if (skip_first) {
4059 				err = 0;
4060 				skip_first = false;
4061 			} else {
4062 				err = backtrack_insn(env, i, subseq_idx, bt);
4063 			}
4064 			if (err == -ENOTSUPP) {
4065 				mark_all_scalars_precise(env, env->cur_state);
4066 				bt_reset(bt);
4067 				return 0;
4068 			} else if (err) {
4069 				return err;
4070 			}
4071 			if (bt_empty(bt))
4072 				/* Found assignment(s) into tracked register in this state.
4073 				 * Since this state is already marked, just return.
4074 				 * Nothing to be tracked further in the parent state.
4075 				 */
4076 				return 0;
4077 			if (i == first_idx)
4078 				break;
4079 			subseq_idx = i;
4080 			i = get_prev_insn_idx(st, i, &history);
4081 			if (i >= env->prog->len) {
4082 				/* This can happen if backtracking reached insn 0
4083 				 * and there are still reg_mask or stack_mask
4084 				 * to backtrack.
4085 				 * It means the backtracking missed the spot where
4086 				 * particular register was initialized with a constant.
4087 				 */
4088 				verbose(env, "BUG backtracking idx %d\n", i);
4089 				WARN_ONCE(1, "verifier backtracking bug");
4090 				return -EFAULT;
4091 			}
4092 		}
4093 		st = st->parent;
4094 		if (!st)
4095 			break;
4096 
4097 		for (fr = bt->frame; fr >= 0; fr--) {
4098 			func = st->frame[fr];
4099 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4100 			for_each_set_bit(i, mask, 32) {
4101 				reg = &func->regs[i];
4102 				if (reg->type != SCALAR_VALUE) {
4103 					bt_clear_frame_reg(bt, fr, i);
4104 					continue;
4105 				}
4106 				if (reg->precise)
4107 					bt_clear_frame_reg(bt, fr, i);
4108 				else
4109 					reg->precise = true;
4110 			}
4111 
4112 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4113 			for_each_set_bit(i, mask, 64) {
4114 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4115 					/* the sequence of instructions:
4116 					 * 2: (bf) r3 = r10
4117 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4118 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4119 					 * doesn't contain jmps. It's backtracked
4120 					 * as a single block.
4121 					 * During backtracking insn 3 is not recognized as
4122 					 * stack access, so at the end of backtracking
4123 					 * stack slot fp-8 is still marked in stack_mask.
4124 					 * However the parent state may not have accessed
4125 					 * fp-8 and it's "unallocated" stack space.
4126 					 * In such case fallback to conservative.
4127 					 */
4128 					mark_all_scalars_precise(env, env->cur_state);
4129 					bt_reset(bt);
4130 					return 0;
4131 				}
4132 
4133 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4134 					bt_clear_frame_slot(bt, fr, i);
4135 					continue;
4136 				}
4137 				reg = &func->stack[i].spilled_ptr;
4138 				if (reg->precise)
4139 					bt_clear_frame_slot(bt, fr, i);
4140 				else
4141 					reg->precise = true;
4142 			}
4143 			if (env->log.level & BPF_LOG_LEVEL2) {
4144 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4145 					     bt_frame_reg_mask(bt, fr));
4146 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4147 					fr, env->tmp_str_buf);
4148 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4149 					       bt_frame_stack_mask(bt, fr));
4150 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4151 				print_verifier_state(env, func, true);
4152 			}
4153 		}
4154 
4155 		if (bt_empty(bt))
4156 			return 0;
4157 
4158 		subseq_idx = first_idx;
4159 		last_idx = st->last_insn_idx;
4160 		first_idx = st->first_insn_idx;
4161 	}
4162 
4163 	/* if we still have requested precise regs or slots, we missed
4164 	 * something (e.g., stack access through non-r10 register), so
4165 	 * fallback to marking all precise
4166 	 */
4167 	if (!bt_empty(bt)) {
4168 		mark_all_scalars_precise(env, env->cur_state);
4169 		bt_reset(bt);
4170 	}
4171 
4172 	return 0;
4173 }
4174 
4175 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4176 {
4177 	return __mark_chain_precision(env, regno);
4178 }
4179 
4180 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4181  * desired reg and stack masks across all relevant frames
4182  */
4183 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4184 {
4185 	return __mark_chain_precision(env, -1);
4186 }
4187 
4188 static bool is_spillable_regtype(enum bpf_reg_type type)
4189 {
4190 	switch (base_type(type)) {
4191 	case PTR_TO_MAP_VALUE:
4192 	case PTR_TO_STACK:
4193 	case PTR_TO_CTX:
4194 	case PTR_TO_PACKET:
4195 	case PTR_TO_PACKET_META:
4196 	case PTR_TO_PACKET_END:
4197 	case PTR_TO_FLOW_KEYS:
4198 	case CONST_PTR_TO_MAP:
4199 	case PTR_TO_SOCKET:
4200 	case PTR_TO_SOCK_COMMON:
4201 	case PTR_TO_TCP_SOCK:
4202 	case PTR_TO_XDP_SOCK:
4203 	case PTR_TO_BTF_ID:
4204 	case PTR_TO_BUF:
4205 	case PTR_TO_MEM:
4206 	case PTR_TO_FUNC:
4207 	case PTR_TO_MAP_KEY:
4208 		return true;
4209 	default:
4210 		return false;
4211 	}
4212 }
4213 
4214 /* Does this register contain a constant zero? */
4215 static bool register_is_null(struct bpf_reg_state *reg)
4216 {
4217 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4218 }
4219 
4220 static bool register_is_const(struct bpf_reg_state *reg)
4221 {
4222 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4223 }
4224 
4225 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4226 {
4227 	return tnum_is_unknown(reg->var_off) &&
4228 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4229 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4230 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4231 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4232 }
4233 
4234 static bool register_is_bounded(struct bpf_reg_state *reg)
4235 {
4236 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4237 }
4238 
4239 static bool __is_pointer_value(bool allow_ptr_leaks,
4240 			       const struct bpf_reg_state *reg)
4241 {
4242 	if (allow_ptr_leaks)
4243 		return false;
4244 
4245 	return reg->type != SCALAR_VALUE;
4246 }
4247 
4248 /* Copy src state preserving dst->parent and dst->live fields */
4249 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4250 {
4251 	struct bpf_reg_state *parent = dst->parent;
4252 	enum bpf_reg_liveness live = dst->live;
4253 
4254 	*dst = *src;
4255 	dst->parent = parent;
4256 	dst->live = live;
4257 }
4258 
4259 static void save_register_state(struct bpf_func_state *state,
4260 				int spi, struct bpf_reg_state *reg,
4261 				int size)
4262 {
4263 	int i;
4264 
4265 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4266 	if (size == BPF_REG_SIZE)
4267 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4268 
4269 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4270 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4271 
4272 	/* size < 8 bytes spill */
4273 	for (; i; i--)
4274 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4275 }
4276 
4277 static bool is_bpf_st_mem(struct bpf_insn *insn)
4278 {
4279 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4280 }
4281 
4282 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4283  * stack boundary and alignment are checked in check_mem_access()
4284  */
4285 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4286 				       /* stack frame we're writing to */
4287 				       struct bpf_func_state *state,
4288 				       int off, int size, int value_regno,
4289 				       int insn_idx)
4290 {
4291 	struct bpf_func_state *cur; /* state of the current function */
4292 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4293 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4294 	struct bpf_reg_state *reg = NULL;
4295 	u32 dst_reg = insn->dst_reg;
4296 
4297 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4298 	if (err)
4299 		return err;
4300 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4301 	 * so it's aligned access and [off, off + size) are within stack limits
4302 	 */
4303 	if (!env->allow_ptr_leaks &&
4304 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4305 	    size != BPF_REG_SIZE) {
4306 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4307 		return -EACCES;
4308 	}
4309 
4310 	cur = env->cur_state->frame[env->cur_state->curframe];
4311 	if (value_regno >= 0)
4312 		reg = &cur->regs[value_regno];
4313 	if (!env->bypass_spec_v4) {
4314 		bool sanitize = reg && is_spillable_regtype(reg->type);
4315 
4316 		for (i = 0; i < size; i++) {
4317 			u8 type = state->stack[spi].slot_type[i];
4318 
4319 			if (type != STACK_MISC && type != STACK_ZERO) {
4320 				sanitize = true;
4321 				break;
4322 			}
4323 		}
4324 
4325 		if (sanitize)
4326 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4327 	}
4328 
4329 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4330 	if (err)
4331 		return err;
4332 
4333 	mark_stack_slot_scratched(env, spi);
4334 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4335 	    !register_is_null(reg) && env->bpf_capable) {
4336 		if (dst_reg != BPF_REG_FP) {
4337 			/* The backtracking logic can only recognize explicit
4338 			 * stack slot address like [fp - 8]. Other spill of
4339 			 * scalar via different register has to be conservative.
4340 			 * Backtrack from here and mark all registers as precise
4341 			 * that contributed into 'reg' being a constant.
4342 			 */
4343 			err = mark_chain_precision(env, value_regno);
4344 			if (err)
4345 				return err;
4346 		}
4347 		save_register_state(state, spi, reg, size);
4348 		/* Break the relation on a narrowing spill. */
4349 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4350 			state->stack[spi].spilled_ptr.id = 0;
4351 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4352 		   insn->imm != 0 && env->bpf_capable) {
4353 		struct bpf_reg_state fake_reg = {};
4354 
4355 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4356 		fake_reg.type = SCALAR_VALUE;
4357 		save_register_state(state, spi, &fake_reg, size);
4358 	} else if (reg && is_spillable_regtype(reg->type)) {
4359 		/* register containing pointer is being spilled into stack */
4360 		if (size != BPF_REG_SIZE) {
4361 			verbose_linfo(env, insn_idx, "; ");
4362 			verbose(env, "invalid size of register spill\n");
4363 			return -EACCES;
4364 		}
4365 		if (state != cur && reg->type == PTR_TO_STACK) {
4366 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4367 			return -EINVAL;
4368 		}
4369 		save_register_state(state, spi, reg, size);
4370 	} else {
4371 		u8 type = STACK_MISC;
4372 
4373 		/* regular write of data into stack destroys any spilled ptr */
4374 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4375 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4376 		if (is_stack_slot_special(&state->stack[spi]))
4377 			for (i = 0; i < BPF_REG_SIZE; i++)
4378 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4379 
4380 		/* only mark the slot as written if all 8 bytes were written
4381 		 * otherwise read propagation may incorrectly stop too soon
4382 		 * when stack slots are partially written.
4383 		 * This heuristic means that read propagation will be
4384 		 * conservative, since it will add reg_live_read marks
4385 		 * to stack slots all the way to first state when programs
4386 		 * writes+reads less than 8 bytes
4387 		 */
4388 		if (size == BPF_REG_SIZE)
4389 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4390 
4391 		/* when we zero initialize stack slots mark them as such */
4392 		if ((reg && register_is_null(reg)) ||
4393 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4394 			/* backtracking doesn't work for STACK_ZERO yet. */
4395 			err = mark_chain_precision(env, value_regno);
4396 			if (err)
4397 				return err;
4398 			type = STACK_ZERO;
4399 		}
4400 
4401 		/* Mark slots affected by this stack write. */
4402 		for (i = 0; i < size; i++)
4403 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4404 				type;
4405 	}
4406 	return 0;
4407 }
4408 
4409 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4410  * known to contain a variable offset.
4411  * This function checks whether the write is permitted and conservatively
4412  * tracks the effects of the write, considering that each stack slot in the
4413  * dynamic range is potentially written to.
4414  *
4415  * 'off' includes 'regno->off'.
4416  * 'value_regno' can be -1, meaning that an unknown value is being written to
4417  * the stack.
4418  *
4419  * Spilled pointers in range are not marked as written because we don't know
4420  * what's going to be actually written. This means that read propagation for
4421  * future reads cannot be terminated by this write.
4422  *
4423  * For privileged programs, uninitialized stack slots are considered
4424  * initialized by this write (even though we don't know exactly what offsets
4425  * are going to be written to). The idea is that we don't want the verifier to
4426  * reject future reads that access slots written to through variable offsets.
4427  */
4428 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4429 				     /* func where register points to */
4430 				     struct bpf_func_state *state,
4431 				     int ptr_regno, int off, int size,
4432 				     int value_regno, int insn_idx)
4433 {
4434 	struct bpf_func_state *cur; /* state of the current function */
4435 	int min_off, max_off;
4436 	int i, err;
4437 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4438 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4439 	bool writing_zero = false;
4440 	/* set if the fact that we're writing a zero is used to let any
4441 	 * stack slots remain STACK_ZERO
4442 	 */
4443 	bool zero_used = false;
4444 
4445 	cur = env->cur_state->frame[env->cur_state->curframe];
4446 	ptr_reg = &cur->regs[ptr_regno];
4447 	min_off = ptr_reg->smin_value + off;
4448 	max_off = ptr_reg->smax_value + off + size;
4449 	if (value_regno >= 0)
4450 		value_reg = &cur->regs[value_regno];
4451 	if ((value_reg && register_is_null(value_reg)) ||
4452 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4453 		writing_zero = true;
4454 
4455 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4456 	if (err)
4457 		return err;
4458 
4459 	for (i = min_off; i < max_off; i++) {
4460 		int spi;
4461 
4462 		spi = __get_spi(i);
4463 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4464 		if (err)
4465 			return err;
4466 	}
4467 
4468 	/* Variable offset writes destroy any spilled pointers in range. */
4469 	for (i = min_off; i < max_off; i++) {
4470 		u8 new_type, *stype;
4471 		int slot, spi;
4472 
4473 		slot = -i - 1;
4474 		spi = slot / BPF_REG_SIZE;
4475 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4476 		mark_stack_slot_scratched(env, spi);
4477 
4478 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4479 			/* Reject the write if range we may write to has not
4480 			 * been initialized beforehand. If we didn't reject
4481 			 * here, the ptr status would be erased below (even
4482 			 * though not all slots are actually overwritten),
4483 			 * possibly opening the door to leaks.
4484 			 *
4485 			 * We do however catch STACK_INVALID case below, and
4486 			 * only allow reading possibly uninitialized memory
4487 			 * later for CAP_PERFMON, as the write may not happen to
4488 			 * that slot.
4489 			 */
4490 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4491 				insn_idx, i);
4492 			return -EINVAL;
4493 		}
4494 
4495 		/* Erase all spilled pointers. */
4496 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4497 
4498 		/* Update the slot type. */
4499 		new_type = STACK_MISC;
4500 		if (writing_zero && *stype == STACK_ZERO) {
4501 			new_type = STACK_ZERO;
4502 			zero_used = true;
4503 		}
4504 		/* If the slot is STACK_INVALID, we check whether it's OK to
4505 		 * pretend that it will be initialized by this write. The slot
4506 		 * might not actually be written to, and so if we mark it as
4507 		 * initialized future reads might leak uninitialized memory.
4508 		 * For privileged programs, we will accept such reads to slots
4509 		 * that may or may not be written because, if we're reject
4510 		 * them, the error would be too confusing.
4511 		 */
4512 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4513 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4514 					insn_idx, i);
4515 			return -EINVAL;
4516 		}
4517 		*stype = new_type;
4518 	}
4519 	if (zero_used) {
4520 		/* backtracking doesn't work for STACK_ZERO yet. */
4521 		err = mark_chain_precision(env, value_regno);
4522 		if (err)
4523 			return err;
4524 	}
4525 	return 0;
4526 }
4527 
4528 /* When register 'dst_regno' is assigned some values from stack[min_off,
4529  * max_off), we set the register's type according to the types of the
4530  * respective stack slots. If all the stack values are known to be zeros, then
4531  * so is the destination reg. Otherwise, the register is considered to be
4532  * SCALAR. This function does not deal with register filling; the caller must
4533  * ensure that all spilled registers in the stack range have been marked as
4534  * read.
4535  */
4536 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4537 				/* func where src register points to */
4538 				struct bpf_func_state *ptr_state,
4539 				int min_off, int max_off, int dst_regno)
4540 {
4541 	struct bpf_verifier_state *vstate = env->cur_state;
4542 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4543 	int i, slot, spi;
4544 	u8 *stype;
4545 	int zeros = 0;
4546 
4547 	for (i = min_off; i < max_off; i++) {
4548 		slot = -i - 1;
4549 		spi = slot / BPF_REG_SIZE;
4550 		mark_stack_slot_scratched(env, spi);
4551 		stype = ptr_state->stack[spi].slot_type;
4552 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4553 			break;
4554 		zeros++;
4555 	}
4556 	if (zeros == max_off - min_off) {
4557 		/* any access_size read into register is zero extended,
4558 		 * so the whole register == const_zero
4559 		 */
4560 		__mark_reg_const_zero(&state->regs[dst_regno]);
4561 		/* backtracking doesn't support STACK_ZERO yet,
4562 		 * so mark it precise here, so that later
4563 		 * backtracking can stop here.
4564 		 * Backtracking may not need this if this register
4565 		 * doesn't participate in pointer adjustment.
4566 		 * Forward propagation of precise flag is not
4567 		 * necessary either. This mark is only to stop
4568 		 * backtracking. Any register that contributed
4569 		 * to const 0 was marked precise before spill.
4570 		 */
4571 		state->regs[dst_regno].precise = true;
4572 	} else {
4573 		/* have read misc data from the stack */
4574 		mark_reg_unknown(env, state->regs, dst_regno);
4575 	}
4576 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4577 }
4578 
4579 /* Read the stack at 'off' and put the results into the register indicated by
4580  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4581  * spilled reg.
4582  *
4583  * 'dst_regno' can be -1, meaning that the read value is not going to a
4584  * register.
4585  *
4586  * The access is assumed to be within the current stack bounds.
4587  */
4588 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4589 				      /* func where src register points to */
4590 				      struct bpf_func_state *reg_state,
4591 				      int off, int size, int dst_regno)
4592 {
4593 	struct bpf_verifier_state *vstate = env->cur_state;
4594 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4595 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4596 	struct bpf_reg_state *reg;
4597 	u8 *stype, type;
4598 
4599 	stype = reg_state->stack[spi].slot_type;
4600 	reg = &reg_state->stack[spi].spilled_ptr;
4601 
4602 	mark_stack_slot_scratched(env, spi);
4603 
4604 	if (is_spilled_reg(&reg_state->stack[spi])) {
4605 		u8 spill_size = 1;
4606 
4607 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4608 			spill_size++;
4609 
4610 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4611 			if (reg->type != SCALAR_VALUE) {
4612 				verbose_linfo(env, env->insn_idx, "; ");
4613 				verbose(env, "invalid size of register fill\n");
4614 				return -EACCES;
4615 			}
4616 
4617 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4618 			if (dst_regno < 0)
4619 				return 0;
4620 
4621 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4622 				/* The earlier check_reg_arg() has decided the
4623 				 * subreg_def for this insn.  Save it first.
4624 				 */
4625 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4626 
4627 				copy_register_state(&state->regs[dst_regno], reg);
4628 				state->regs[dst_regno].subreg_def = subreg_def;
4629 			} else {
4630 				for (i = 0; i < size; i++) {
4631 					type = stype[(slot - i) % BPF_REG_SIZE];
4632 					if (type == STACK_SPILL)
4633 						continue;
4634 					if (type == STACK_MISC)
4635 						continue;
4636 					if (type == STACK_INVALID && env->allow_uninit_stack)
4637 						continue;
4638 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4639 						off, i, size);
4640 					return -EACCES;
4641 				}
4642 				mark_reg_unknown(env, state->regs, dst_regno);
4643 			}
4644 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4645 			return 0;
4646 		}
4647 
4648 		if (dst_regno >= 0) {
4649 			/* restore register state from stack */
4650 			copy_register_state(&state->regs[dst_regno], reg);
4651 			/* mark reg as written since spilled pointer state likely
4652 			 * has its liveness marks cleared by is_state_visited()
4653 			 * which resets stack/reg liveness for state transitions
4654 			 */
4655 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4656 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4657 			/* If dst_regno==-1, the caller is asking us whether
4658 			 * it is acceptable to use this value as a SCALAR_VALUE
4659 			 * (e.g. for XADD).
4660 			 * We must not allow unprivileged callers to do that
4661 			 * with spilled pointers.
4662 			 */
4663 			verbose(env, "leaking pointer from stack off %d\n",
4664 				off);
4665 			return -EACCES;
4666 		}
4667 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4668 	} else {
4669 		for (i = 0; i < size; i++) {
4670 			type = stype[(slot - i) % BPF_REG_SIZE];
4671 			if (type == STACK_MISC)
4672 				continue;
4673 			if (type == STACK_ZERO)
4674 				continue;
4675 			if (type == STACK_INVALID && env->allow_uninit_stack)
4676 				continue;
4677 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4678 				off, i, size);
4679 			return -EACCES;
4680 		}
4681 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4682 		if (dst_regno >= 0)
4683 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4684 	}
4685 	return 0;
4686 }
4687 
4688 enum bpf_access_src {
4689 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4690 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4691 };
4692 
4693 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4694 					 int regno, int off, int access_size,
4695 					 bool zero_size_allowed,
4696 					 enum bpf_access_src type,
4697 					 struct bpf_call_arg_meta *meta);
4698 
4699 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4700 {
4701 	return cur_regs(env) + regno;
4702 }
4703 
4704 /* Read the stack at 'ptr_regno + off' and put the result into the register
4705  * 'dst_regno'.
4706  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4707  * but not its variable offset.
4708  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4709  *
4710  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4711  * filling registers (i.e. reads of spilled register cannot be detected when
4712  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4713  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4714  * offset; for a fixed offset check_stack_read_fixed_off should be used
4715  * instead.
4716  */
4717 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4718 				    int ptr_regno, int off, int size, int dst_regno)
4719 {
4720 	/* The state of the source register. */
4721 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4722 	struct bpf_func_state *ptr_state = func(env, reg);
4723 	int err;
4724 	int min_off, max_off;
4725 
4726 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4727 	 */
4728 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4729 					    false, ACCESS_DIRECT, NULL);
4730 	if (err)
4731 		return err;
4732 
4733 	min_off = reg->smin_value + off;
4734 	max_off = reg->smax_value + off;
4735 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4736 	return 0;
4737 }
4738 
4739 /* check_stack_read dispatches to check_stack_read_fixed_off or
4740  * check_stack_read_var_off.
4741  *
4742  * The caller must ensure that the offset falls within the allocated stack
4743  * bounds.
4744  *
4745  * 'dst_regno' is a register which will receive the value from the stack. It
4746  * can be -1, meaning that the read value is not going to a register.
4747  */
4748 static int check_stack_read(struct bpf_verifier_env *env,
4749 			    int ptr_regno, int off, int size,
4750 			    int dst_regno)
4751 {
4752 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4753 	struct bpf_func_state *state = func(env, reg);
4754 	int err;
4755 	/* Some accesses are only permitted with a static offset. */
4756 	bool var_off = !tnum_is_const(reg->var_off);
4757 
4758 	/* The offset is required to be static when reads don't go to a
4759 	 * register, in order to not leak pointers (see
4760 	 * check_stack_read_fixed_off).
4761 	 */
4762 	if (dst_regno < 0 && var_off) {
4763 		char tn_buf[48];
4764 
4765 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4766 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4767 			tn_buf, off, size);
4768 		return -EACCES;
4769 	}
4770 	/* Variable offset is prohibited for unprivileged mode for simplicity
4771 	 * since it requires corresponding support in Spectre masking for stack
4772 	 * ALU. See also retrieve_ptr_limit(). The check in
4773 	 * check_stack_access_for_ptr_arithmetic() called by
4774 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4775 	 * with variable offsets, therefore no check is required here. Further,
4776 	 * just checking it here would be insufficient as speculative stack
4777 	 * writes could still lead to unsafe speculative behaviour.
4778 	 */
4779 	if (!var_off) {
4780 		off += reg->var_off.value;
4781 		err = check_stack_read_fixed_off(env, state, off, size,
4782 						 dst_regno);
4783 	} else {
4784 		/* Variable offset stack reads need more conservative handling
4785 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4786 		 * branch.
4787 		 */
4788 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4789 					       dst_regno);
4790 	}
4791 	return err;
4792 }
4793 
4794 
4795 /* check_stack_write dispatches to check_stack_write_fixed_off or
4796  * check_stack_write_var_off.
4797  *
4798  * 'ptr_regno' is the register used as a pointer into the stack.
4799  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4800  * 'value_regno' is the register whose value we're writing to the stack. It can
4801  * be -1, meaning that we're not writing from a register.
4802  *
4803  * The caller must ensure that the offset falls within the maximum stack size.
4804  */
4805 static int check_stack_write(struct bpf_verifier_env *env,
4806 			     int ptr_regno, int off, int size,
4807 			     int value_regno, int insn_idx)
4808 {
4809 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4810 	struct bpf_func_state *state = func(env, reg);
4811 	int err;
4812 
4813 	if (tnum_is_const(reg->var_off)) {
4814 		off += reg->var_off.value;
4815 		err = check_stack_write_fixed_off(env, state, off, size,
4816 						  value_regno, insn_idx);
4817 	} else {
4818 		/* Variable offset stack reads need more conservative handling
4819 		 * than fixed offset ones.
4820 		 */
4821 		err = check_stack_write_var_off(env, state,
4822 						ptr_regno, off, size,
4823 						value_regno, insn_idx);
4824 	}
4825 	return err;
4826 }
4827 
4828 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4829 				 int off, int size, enum bpf_access_type type)
4830 {
4831 	struct bpf_reg_state *regs = cur_regs(env);
4832 	struct bpf_map *map = regs[regno].map_ptr;
4833 	u32 cap = bpf_map_flags_to_cap(map);
4834 
4835 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4836 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4837 			map->value_size, off, size);
4838 		return -EACCES;
4839 	}
4840 
4841 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4842 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4843 			map->value_size, off, size);
4844 		return -EACCES;
4845 	}
4846 
4847 	return 0;
4848 }
4849 
4850 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4851 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4852 			      int off, int size, u32 mem_size,
4853 			      bool zero_size_allowed)
4854 {
4855 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4856 	struct bpf_reg_state *reg;
4857 
4858 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4859 		return 0;
4860 
4861 	reg = &cur_regs(env)[regno];
4862 	switch (reg->type) {
4863 	case PTR_TO_MAP_KEY:
4864 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4865 			mem_size, off, size);
4866 		break;
4867 	case PTR_TO_MAP_VALUE:
4868 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4869 			mem_size, off, size);
4870 		break;
4871 	case PTR_TO_PACKET:
4872 	case PTR_TO_PACKET_META:
4873 	case PTR_TO_PACKET_END:
4874 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4875 			off, size, regno, reg->id, off, mem_size);
4876 		break;
4877 	case PTR_TO_MEM:
4878 	default:
4879 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4880 			mem_size, off, size);
4881 	}
4882 
4883 	return -EACCES;
4884 }
4885 
4886 /* check read/write into a memory region with possible variable offset */
4887 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4888 				   int off, int size, u32 mem_size,
4889 				   bool zero_size_allowed)
4890 {
4891 	struct bpf_verifier_state *vstate = env->cur_state;
4892 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4893 	struct bpf_reg_state *reg = &state->regs[regno];
4894 	int err;
4895 
4896 	/* We may have adjusted the register pointing to memory region, so we
4897 	 * need to try adding each of min_value and max_value to off
4898 	 * to make sure our theoretical access will be safe.
4899 	 *
4900 	 * The minimum value is only important with signed
4901 	 * comparisons where we can't assume the floor of a
4902 	 * value is 0.  If we are using signed variables for our
4903 	 * index'es we need to make sure that whatever we use
4904 	 * will have a set floor within our range.
4905 	 */
4906 	if (reg->smin_value < 0 &&
4907 	    (reg->smin_value == S64_MIN ||
4908 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4909 	      reg->smin_value + off < 0)) {
4910 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4911 			regno);
4912 		return -EACCES;
4913 	}
4914 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4915 				 mem_size, zero_size_allowed);
4916 	if (err) {
4917 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4918 			regno);
4919 		return err;
4920 	}
4921 
4922 	/* If we haven't set a max value then we need to bail since we can't be
4923 	 * sure we won't do bad things.
4924 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4925 	 */
4926 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4927 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4928 			regno);
4929 		return -EACCES;
4930 	}
4931 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4932 				 mem_size, zero_size_allowed);
4933 	if (err) {
4934 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4935 			regno);
4936 		return err;
4937 	}
4938 
4939 	return 0;
4940 }
4941 
4942 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4943 			       const struct bpf_reg_state *reg, int regno,
4944 			       bool fixed_off_ok)
4945 {
4946 	/* Access to this pointer-typed register or passing it to a helper
4947 	 * is only allowed in its original, unmodified form.
4948 	 */
4949 
4950 	if (reg->off < 0) {
4951 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4952 			reg_type_str(env, reg->type), regno, reg->off);
4953 		return -EACCES;
4954 	}
4955 
4956 	if (!fixed_off_ok && reg->off) {
4957 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4958 			reg_type_str(env, reg->type), regno, reg->off);
4959 		return -EACCES;
4960 	}
4961 
4962 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4963 		char tn_buf[48];
4964 
4965 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4966 		verbose(env, "variable %s access var_off=%s disallowed\n",
4967 			reg_type_str(env, reg->type), tn_buf);
4968 		return -EACCES;
4969 	}
4970 
4971 	return 0;
4972 }
4973 
4974 int check_ptr_off_reg(struct bpf_verifier_env *env,
4975 		      const struct bpf_reg_state *reg, int regno)
4976 {
4977 	return __check_ptr_off_reg(env, reg, regno, false);
4978 }
4979 
4980 static int map_kptr_match_type(struct bpf_verifier_env *env,
4981 			       struct btf_field *kptr_field,
4982 			       struct bpf_reg_state *reg, u32 regno)
4983 {
4984 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4985 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4986 	const char *reg_name = "";
4987 
4988 	/* Only unreferenced case accepts untrusted pointers */
4989 	if (kptr_field->type == BPF_KPTR_UNREF)
4990 		perm_flags |= PTR_UNTRUSTED;
4991 
4992 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
4993 		goto bad_type;
4994 
4995 	if (!btf_is_kernel(reg->btf)) {
4996 		verbose(env, "R%d must point to kernel BTF\n", regno);
4997 		return -EINVAL;
4998 	}
4999 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5000 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5001 
5002 	/* For ref_ptr case, release function check should ensure we get one
5003 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5004 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5005 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5006 	 * reg->off and reg->ref_obj_id are not needed here.
5007 	 */
5008 	if (__check_ptr_off_reg(env, reg, regno, true))
5009 		return -EACCES;
5010 
5011 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
5012 	 * we also need to take into account the reg->off.
5013 	 *
5014 	 * We want to support cases like:
5015 	 *
5016 	 * struct foo {
5017 	 *         struct bar br;
5018 	 *         struct baz bz;
5019 	 * };
5020 	 *
5021 	 * struct foo *v;
5022 	 * v = func();	      // PTR_TO_BTF_ID
5023 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5024 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5025 	 *                    // first member type of struct after comparison fails
5026 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5027 	 *                    // to match type
5028 	 *
5029 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5030 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5031 	 * the struct to match type against first member of struct, i.e. reject
5032 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5033 	 * strict mode to true for type match.
5034 	 */
5035 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5036 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5037 				  kptr_field->type == BPF_KPTR_REF))
5038 		goto bad_type;
5039 	return 0;
5040 bad_type:
5041 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5042 		reg_type_str(env, reg->type), reg_name);
5043 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5044 	if (kptr_field->type == BPF_KPTR_UNREF)
5045 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5046 			targ_name);
5047 	else
5048 		verbose(env, "\n");
5049 	return -EINVAL;
5050 }
5051 
5052 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5053  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5054  */
5055 static bool in_rcu_cs(struct bpf_verifier_env *env)
5056 {
5057 	return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
5058 }
5059 
5060 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5061 BTF_SET_START(rcu_protected_types)
5062 BTF_ID(struct, prog_test_ref_kfunc)
5063 BTF_ID(struct, cgroup)
5064 BTF_ID(struct, bpf_cpumask)
5065 BTF_ID(struct, task_struct)
5066 BTF_SET_END(rcu_protected_types)
5067 
5068 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5069 {
5070 	if (!btf_is_kernel(btf))
5071 		return false;
5072 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5073 }
5074 
5075 static bool rcu_safe_kptr(const struct btf_field *field)
5076 {
5077 	const struct btf_field_kptr *kptr = &field->kptr;
5078 
5079 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5080 }
5081 
5082 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5083 				 int value_regno, int insn_idx,
5084 				 struct btf_field *kptr_field)
5085 {
5086 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5087 	int class = BPF_CLASS(insn->code);
5088 	struct bpf_reg_state *val_reg;
5089 
5090 	/* Things we already checked for in check_map_access and caller:
5091 	 *  - Reject cases where variable offset may touch kptr
5092 	 *  - size of access (must be BPF_DW)
5093 	 *  - tnum_is_const(reg->var_off)
5094 	 *  - kptr_field->offset == off + reg->var_off.value
5095 	 */
5096 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5097 	if (BPF_MODE(insn->code) != BPF_MEM) {
5098 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5099 		return -EACCES;
5100 	}
5101 
5102 	/* We only allow loading referenced kptr, since it will be marked as
5103 	 * untrusted, similar to unreferenced kptr.
5104 	 */
5105 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5106 		verbose(env, "store to referenced kptr disallowed\n");
5107 		return -EACCES;
5108 	}
5109 
5110 	if (class == BPF_LDX) {
5111 		val_reg = reg_state(env, value_regno);
5112 		/* We can simply mark the value_regno receiving the pointer
5113 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5114 		 */
5115 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5116 				kptr_field->kptr.btf_id,
5117 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5118 				PTR_MAYBE_NULL | MEM_RCU :
5119 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5120 		/* For mark_ptr_or_null_reg */
5121 		val_reg->id = ++env->id_gen;
5122 	} else if (class == BPF_STX) {
5123 		val_reg = reg_state(env, value_regno);
5124 		if (!register_is_null(val_reg) &&
5125 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5126 			return -EACCES;
5127 	} else if (class == BPF_ST) {
5128 		if (insn->imm) {
5129 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5130 				kptr_field->offset);
5131 			return -EACCES;
5132 		}
5133 	} else {
5134 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5135 		return -EACCES;
5136 	}
5137 	return 0;
5138 }
5139 
5140 /* check read/write into a map element with possible variable offset */
5141 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5142 			    int off, int size, bool zero_size_allowed,
5143 			    enum bpf_access_src src)
5144 {
5145 	struct bpf_verifier_state *vstate = env->cur_state;
5146 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5147 	struct bpf_reg_state *reg = &state->regs[regno];
5148 	struct bpf_map *map = reg->map_ptr;
5149 	struct btf_record *rec;
5150 	int err, i;
5151 
5152 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5153 				      zero_size_allowed);
5154 	if (err)
5155 		return err;
5156 
5157 	if (IS_ERR_OR_NULL(map->record))
5158 		return 0;
5159 	rec = map->record;
5160 	for (i = 0; i < rec->cnt; i++) {
5161 		struct btf_field *field = &rec->fields[i];
5162 		u32 p = field->offset;
5163 
5164 		/* If any part of a field  can be touched by load/store, reject
5165 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5166 		 * it is sufficient to check x1 < y2 && y1 < x2.
5167 		 */
5168 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5169 		    p < reg->umax_value + off + size) {
5170 			switch (field->type) {
5171 			case BPF_KPTR_UNREF:
5172 			case BPF_KPTR_REF:
5173 				if (src != ACCESS_DIRECT) {
5174 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5175 					return -EACCES;
5176 				}
5177 				if (!tnum_is_const(reg->var_off)) {
5178 					verbose(env, "kptr access cannot have variable offset\n");
5179 					return -EACCES;
5180 				}
5181 				if (p != off + reg->var_off.value) {
5182 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5183 						p, off + reg->var_off.value);
5184 					return -EACCES;
5185 				}
5186 				if (size != bpf_size_to_bytes(BPF_DW)) {
5187 					verbose(env, "kptr access size must be BPF_DW\n");
5188 					return -EACCES;
5189 				}
5190 				break;
5191 			default:
5192 				verbose(env, "%s cannot be accessed directly by load/store\n",
5193 					btf_field_type_name(field->type));
5194 				return -EACCES;
5195 			}
5196 		}
5197 	}
5198 	return 0;
5199 }
5200 
5201 #define MAX_PACKET_OFF 0xffff
5202 
5203 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5204 				       const struct bpf_call_arg_meta *meta,
5205 				       enum bpf_access_type t)
5206 {
5207 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5208 
5209 	switch (prog_type) {
5210 	/* Program types only with direct read access go here! */
5211 	case BPF_PROG_TYPE_LWT_IN:
5212 	case BPF_PROG_TYPE_LWT_OUT:
5213 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5214 	case BPF_PROG_TYPE_SK_REUSEPORT:
5215 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5216 	case BPF_PROG_TYPE_CGROUP_SKB:
5217 		if (t == BPF_WRITE)
5218 			return false;
5219 		fallthrough;
5220 
5221 	/* Program types with direct read + write access go here! */
5222 	case BPF_PROG_TYPE_SCHED_CLS:
5223 	case BPF_PROG_TYPE_SCHED_ACT:
5224 	case BPF_PROG_TYPE_XDP:
5225 	case BPF_PROG_TYPE_LWT_XMIT:
5226 	case BPF_PROG_TYPE_SK_SKB:
5227 	case BPF_PROG_TYPE_SK_MSG:
5228 		if (meta)
5229 			return meta->pkt_access;
5230 
5231 		env->seen_direct_write = true;
5232 		return true;
5233 
5234 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5235 		if (t == BPF_WRITE)
5236 			env->seen_direct_write = true;
5237 
5238 		return true;
5239 
5240 	default:
5241 		return false;
5242 	}
5243 }
5244 
5245 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5246 			       int size, bool zero_size_allowed)
5247 {
5248 	struct bpf_reg_state *regs = cur_regs(env);
5249 	struct bpf_reg_state *reg = &regs[regno];
5250 	int err;
5251 
5252 	/* We may have added a variable offset to the packet pointer; but any
5253 	 * reg->range we have comes after that.  We are only checking the fixed
5254 	 * offset.
5255 	 */
5256 
5257 	/* We don't allow negative numbers, because we aren't tracking enough
5258 	 * detail to prove they're safe.
5259 	 */
5260 	if (reg->smin_value < 0) {
5261 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5262 			regno);
5263 		return -EACCES;
5264 	}
5265 
5266 	err = reg->range < 0 ? -EINVAL :
5267 	      __check_mem_access(env, regno, off, size, reg->range,
5268 				 zero_size_allowed);
5269 	if (err) {
5270 		verbose(env, "R%d offset is outside of the packet\n", regno);
5271 		return err;
5272 	}
5273 
5274 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5275 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5276 	 * otherwise find_good_pkt_pointers would have refused to set range info
5277 	 * that __check_mem_access would have rejected this pkt access.
5278 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5279 	 */
5280 	env->prog->aux->max_pkt_offset =
5281 		max_t(u32, env->prog->aux->max_pkt_offset,
5282 		      off + reg->umax_value + size - 1);
5283 
5284 	return err;
5285 }
5286 
5287 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5288 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5289 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5290 			    struct btf **btf, u32 *btf_id)
5291 {
5292 	struct bpf_insn_access_aux info = {
5293 		.reg_type = *reg_type,
5294 		.log = &env->log,
5295 	};
5296 
5297 	if (env->ops->is_valid_access &&
5298 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5299 		/* A non zero info.ctx_field_size indicates that this field is a
5300 		 * candidate for later verifier transformation to load the whole
5301 		 * field and then apply a mask when accessed with a narrower
5302 		 * access than actual ctx access size. A zero info.ctx_field_size
5303 		 * will only allow for whole field access and rejects any other
5304 		 * type of narrower access.
5305 		 */
5306 		*reg_type = info.reg_type;
5307 
5308 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5309 			*btf = info.btf;
5310 			*btf_id = info.btf_id;
5311 		} else {
5312 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5313 		}
5314 		/* remember the offset of last byte accessed in ctx */
5315 		if (env->prog->aux->max_ctx_offset < off + size)
5316 			env->prog->aux->max_ctx_offset = off + size;
5317 		return 0;
5318 	}
5319 
5320 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5321 	return -EACCES;
5322 }
5323 
5324 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5325 				  int size)
5326 {
5327 	if (size < 0 || off < 0 ||
5328 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5329 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5330 			off, size);
5331 		return -EACCES;
5332 	}
5333 	return 0;
5334 }
5335 
5336 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5337 			     u32 regno, int off, int size,
5338 			     enum bpf_access_type t)
5339 {
5340 	struct bpf_reg_state *regs = cur_regs(env);
5341 	struct bpf_reg_state *reg = &regs[regno];
5342 	struct bpf_insn_access_aux info = {};
5343 	bool valid;
5344 
5345 	if (reg->smin_value < 0) {
5346 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5347 			regno);
5348 		return -EACCES;
5349 	}
5350 
5351 	switch (reg->type) {
5352 	case PTR_TO_SOCK_COMMON:
5353 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5354 		break;
5355 	case PTR_TO_SOCKET:
5356 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5357 		break;
5358 	case PTR_TO_TCP_SOCK:
5359 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5360 		break;
5361 	case PTR_TO_XDP_SOCK:
5362 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5363 		break;
5364 	default:
5365 		valid = false;
5366 	}
5367 
5368 
5369 	if (valid) {
5370 		env->insn_aux_data[insn_idx].ctx_field_size =
5371 			info.ctx_field_size;
5372 		return 0;
5373 	}
5374 
5375 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5376 		regno, reg_type_str(env, reg->type), off, size);
5377 
5378 	return -EACCES;
5379 }
5380 
5381 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5382 {
5383 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5384 }
5385 
5386 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5387 {
5388 	const struct bpf_reg_state *reg = reg_state(env, regno);
5389 
5390 	return reg->type == PTR_TO_CTX;
5391 }
5392 
5393 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5394 {
5395 	const struct bpf_reg_state *reg = reg_state(env, regno);
5396 
5397 	return type_is_sk_pointer(reg->type);
5398 }
5399 
5400 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5401 {
5402 	const struct bpf_reg_state *reg = reg_state(env, regno);
5403 
5404 	return type_is_pkt_pointer(reg->type);
5405 }
5406 
5407 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5408 {
5409 	const struct bpf_reg_state *reg = reg_state(env, regno);
5410 
5411 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5412 	return reg->type == PTR_TO_FLOW_KEYS;
5413 }
5414 
5415 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5416 {
5417 	/* A referenced register is always trusted. */
5418 	if (reg->ref_obj_id)
5419 		return true;
5420 
5421 	/* If a register is not referenced, it is trusted if it has the
5422 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5423 	 * other type modifiers may be safe, but we elect to take an opt-in
5424 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5425 	 * not.
5426 	 *
5427 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5428 	 * for whether a register is trusted.
5429 	 */
5430 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5431 	       !bpf_type_has_unsafe_modifiers(reg->type);
5432 }
5433 
5434 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5435 {
5436 	return reg->type & MEM_RCU;
5437 }
5438 
5439 static void clear_trusted_flags(enum bpf_type_flag *flag)
5440 {
5441 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5442 }
5443 
5444 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5445 				   const struct bpf_reg_state *reg,
5446 				   int off, int size, bool strict)
5447 {
5448 	struct tnum reg_off;
5449 	int ip_align;
5450 
5451 	/* Byte size accesses are always allowed. */
5452 	if (!strict || size == 1)
5453 		return 0;
5454 
5455 	/* For platforms that do not have a Kconfig enabling
5456 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5457 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5458 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5459 	 * to this code only in strict mode where we want to emulate
5460 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5461 	 * unconditional IP align value of '2'.
5462 	 */
5463 	ip_align = 2;
5464 
5465 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5466 	if (!tnum_is_aligned(reg_off, size)) {
5467 		char tn_buf[48];
5468 
5469 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5470 		verbose(env,
5471 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5472 			ip_align, tn_buf, reg->off, off, size);
5473 		return -EACCES;
5474 	}
5475 
5476 	return 0;
5477 }
5478 
5479 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5480 				       const struct bpf_reg_state *reg,
5481 				       const char *pointer_desc,
5482 				       int off, int size, bool strict)
5483 {
5484 	struct tnum reg_off;
5485 
5486 	/* Byte size accesses are always allowed. */
5487 	if (!strict || size == 1)
5488 		return 0;
5489 
5490 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5491 	if (!tnum_is_aligned(reg_off, size)) {
5492 		char tn_buf[48];
5493 
5494 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5495 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5496 			pointer_desc, tn_buf, reg->off, off, size);
5497 		return -EACCES;
5498 	}
5499 
5500 	return 0;
5501 }
5502 
5503 static int check_ptr_alignment(struct bpf_verifier_env *env,
5504 			       const struct bpf_reg_state *reg, int off,
5505 			       int size, bool strict_alignment_once)
5506 {
5507 	bool strict = env->strict_alignment || strict_alignment_once;
5508 	const char *pointer_desc = "";
5509 
5510 	switch (reg->type) {
5511 	case PTR_TO_PACKET:
5512 	case PTR_TO_PACKET_META:
5513 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5514 		 * right in front, treat it the very same way.
5515 		 */
5516 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5517 	case PTR_TO_FLOW_KEYS:
5518 		pointer_desc = "flow keys ";
5519 		break;
5520 	case PTR_TO_MAP_KEY:
5521 		pointer_desc = "key ";
5522 		break;
5523 	case PTR_TO_MAP_VALUE:
5524 		pointer_desc = "value ";
5525 		break;
5526 	case PTR_TO_CTX:
5527 		pointer_desc = "context ";
5528 		break;
5529 	case PTR_TO_STACK:
5530 		pointer_desc = "stack ";
5531 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5532 		 * and check_stack_read_fixed_off() relies on stack accesses being
5533 		 * aligned.
5534 		 */
5535 		strict = true;
5536 		break;
5537 	case PTR_TO_SOCKET:
5538 		pointer_desc = "sock ";
5539 		break;
5540 	case PTR_TO_SOCK_COMMON:
5541 		pointer_desc = "sock_common ";
5542 		break;
5543 	case PTR_TO_TCP_SOCK:
5544 		pointer_desc = "tcp_sock ";
5545 		break;
5546 	case PTR_TO_XDP_SOCK:
5547 		pointer_desc = "xdp_sock ";
5548 		break;
5549 	default:
5550 		break;
5551 	}
5552 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5553 					   strict);
5554 }
5555 
5556 static int update_stack_depth(struct bpf_verifier_env *env,
5557 			      const struct bpf_func_state *func,
5558 			      int off)
5559 {
5560 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5561 
5562 	if (stack >= -off)
5563 		return 0;
5564 
5565 	/* update known max for given subprogram */
5566 	env->subprog_info[func->subprogno].stack_depth = -off;
5567 	return 0;
5568 }
5569 
5570 /* starting from main bpf function walk all instructions of the function
5571  * and recursively walk all callees that given function can call.
5572  * Ignore jump and exit insns.
5573  * Since recursion is prevented by check_cfg() this algorithm
5574  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5575  */
5576 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5577 {
5578 	struct bpf_subprog_info *subprog = env->subprog_info;
5579 	struct bpf_insn *insn = env->prog->insnsi;
5580 	int depth = 0, frame = 0, i, subprog_end;
5581 	bool tail_call_reachable = false;
5582 	int ret_insn[MAX_CALL_FRAMES];
5583 	int ret_prog[MAX_CALL_FRAMES];
5584 	int j;
5585 
5586 	i = subprog[idx].start;
5587 process_func:
5588 	/* protect against potential stack overflow that might happen when
5589 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5590 	 * depth for such case down to 256 so that the worst case scenario
5591 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5592 	 * 8k).
5593 	 *
5594 	 * To get the idea what might happen, see an example:
5595 	 * func1 -> sub rsp, 128
5596 	 *  subfunc1 -> sub rsp, 256
5597 	 *  tailcall1 -> add rsp, 256
5598 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5599 	 *   subfunc2 -> sub rsp, 64
5600 	 *   subfunc22 -> sub rsp, 128
5601 	 *   tailcall2 -> add rsp, 128
5602 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5603 	 *
5604 	 * tailcall will unwind the current stack frame but it will not get rid
5605 	 * of caller's stack as shown on the example above.
5606 	 */
5607 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5608 		verbose(env,
5609 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5610 			depth);
5611 		return -EACCES;
5612 	}
5613 	/* round up to 32-bytes, since this is granularity
5614 	 * of interpreter stack size
5615 	 */
5616 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5617 	if (depth > MAX_BPF_STACK) {
5618 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5619 			frame + 1, depth);
5620 		return -EACCES;
5621 	}
5622 continue_func:
5623 	subprog_end = subprog[idx + 1].start;
5624 	for (; i < subprog_end; i++) {
5625 		int next_insn, sidx;
5626 
5627 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5628 			continue;
5629 		/* remember insn and function to return to */
5630 		ret_insn[frame] = i + 1;
5631 		ret_prog[frame] = idx;
5632 
5633 		/* find the callee */
5634 		next_insn = i + insn[i].imm + 1;
5635 		sidx = find_subprog(env, next_insn);
5636 		if (sidx < 0) {
5637 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5638 				  next_insn);
5639 			return -EFAULT;
5640 		}
5641 		if (subprog[sidx].is_async_cb) {
5642 			if (subprog[sidx].has_tail_call) {
5643 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5644 				return -EFAULT;
5645 			}
5646 			/* async callbacks don't increase bpf prog stack size unless called directly */
5647 			if (!bpf_pseudo_call(insn + i))
5648 				continue;
5649 		}
5650 		i = next_insn;
5651 		idx = sidx;
5652 
5653 		if (subprog[idx].has_tail_call)
5654 			tail_call_reachable = true;
5655 
5656 		frame++;
5657 		if (frame >= MAX_CALL_FRAMES) {
5658 			verbose(env, "the call stack of %d frames is too deep !\n",
5659 				frame);
5660 			return -E2BIG;
5661 		}
5662 		goto process_func;
5663 	}
5664 	/* if tail call got detected across bpf2bpf calls then mark each of the
5665 	 * currently present subprog frames as tail call reachable subprogs;
5666 	 * this info will be utilized by JIT so that we will be preserving the
5667 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5668 	 */
5669 	if (tail_call_reachable)
5670 		for (j = 0; j < frame; j++)
5671 			subprog[ret_prog[j]].tail_call_reachable = true;
5672 	if (subprog[0].tail_call_reachable)
5673 		env->prog->aux->tail_call_reachable = true;
5674 
5675 	/* end of for() loop means the last insn of the 'subprog'
5676 	 * was reached. Doesn't matter whether it was JA or EXIT
5677 	 */
5678 	if (frame == 0)
5679 		return 0;
5680 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5681 	frame--;
5682 	i = ret_insn[frame];
5683 	idx = ret_prog[frame];
5684 	goto continue_func;
5685 }
5686 
5687 static int check_max_stack_depth(struct bpf_verifier_env *env)
5688 {
5689 	struct bpf_subprog_info *si = env->subprog_info;
5690 	int ret;
5691 
5692 	for (int i = 0; i < env->subprog_cnt; i++) {
5693 		if (!i || si[i].is_async_cb) {
5694 			ret = check_max_stack_depth_subprog(env, i);
5695 			if (ret < 0)
5696 				return ret;
5697 		}
5698 		continue;
5699 	}
5700 	return 0;
5701 }
5702 
5703 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5704 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5705 				  const struct bpf_insn *insn, int idx)
5706 {
5707 	int start = idx + insn->imm + 1, subprog;
5708 
5709 	subprog = find_subprog(env, start);
5710 	if (subprog < 0) {
5711 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5712 			  start);
5713 		return -EFAULT;
5714 	}
5715 	return env->subprog_info[subprog].stack_depth;
5716 }
5717 #endif
5718 
5719 static int __check_buffer_access(struct bpf_verifier_env *env,
5720 				 const char *buf_info,
5721 				 const struct bpf_reg_state *reg,
5722 				 int regno, int off, int size)
5723 {
5724 	if (off < 0) {
5725 		verbose(env,
5726 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5727 			regno, buf_info, off, size);
5728 		return -EACCES;
5729 	}
5730 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5731 		char tn_buf[48];
5732 
5733 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5734 		verbose(env,
5735 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5736 			regno, off, tn_buf);
5737 		return -EACCES;
5738 	}
5739 
5740 	return 0;
5741 }
5742 
5743 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5744 				  const struct bpf_reg_state *reg,
5745 				  int regno, int off, int size)
5746 {
5747 	int err;
5748 
5749 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5750 	if (err)
5751 		return err;
5752 
5753 	if (off + size > env->prog->aux->max_tp_access)
5754 		env->prog->aux->max_tp_access = off + size;
5755 
5756 	return 0;
5757 }
5758 
5759 static int check_buffer_access(struct bpf_verifier_env *env,
5760 			       const struct bpf_reg_state *reg,
5761 			       int regno, int off, int size,
5762 			       bool zero_size_allowed,
5763 			       u32 *max_access)
5764 {
5765 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5766 	int err;
5767 
5768 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5769 	if (err)
5770 		return err;
5771 
5772 	if (off + size > *max_access)
5773 		*max_access = off + size;
5774 
5775 	return 0;
5776 }
5777 
5778 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5779 static void zext_32_to_64(struct bpf_reg_state *reg)
5780 {
5781 	reg->var_off = tnum_subreg(reg->var_off);
5782 	__reg_assign_32_into_64(reg);
5783 }
5784 
5785 /* truncate register to smaller size (in bytes)
5786  * must be called with size < BPF_REG_SIZE
5787  */
5788 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5789 {
5790 	u64 mask;
5791 
5792 	/* clear high bits in bit representation */
5793 	reg->var_off = tnum_cast(reg->var_off, size);
5794 
5795 	/* fix arithmetic bounds */
5796 	mask = ((u64)1 << (size * 8)) - 1;
5797 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5798 		reg->umin_value &= mask;
5799 		reg->umax_value &= mask;
5800 	} else {
5801 		reg->umin_value = 0;
5802 		reg->umax_value = mask;
5803 	}
5804 	reg->smin_value = reg->umin_value;
5805 	reg->smax_value = reg->umax_value;
5806 
5807 	/* If size is smaller than 32bit register the 32bit register
5808 	 * values are also truncated so we push 64-bit bounds into
5809 	 * 32-bit bounds. Above were truncated < 32-bits already.
5810 	 */
5811 	if (size >= 4)
5812 		return;
5813 	__reg_combine_64_into_32(reg);
5814 }
5815 
5816 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5817 {
5818 	/* A map is considered read-only if the following condition are true:
5819 	 *
5820 	 * 1) BPF program side cannot change any of the map content. The
5821 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5822 	 *    and was set at map creation time.
5823 	 * 2) The map value(s) have been initialized from user space by a
5824 	 *    loader and then "frozen", such that no new map update/delete
5825 	 *    operations from syscall side are possible for the rest of
5826 	 *    the map's lifetime from that point onwards.
5827 	 * 3) Any parallel/pending map update/delete operations from syscall
5828 	 *    side have been completed. Only after that point, it's safe to
5829 	 *    assume that map value(s) are immutable.
5830 	 */
5831 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
5832 	       READ_ONCE(map->frozen) &&
5833 	       !bpf_map_write_active(map);
5834 }
5835 
5836 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
5837 {
5838 	void *ptr;
5839 	u64 addr;
5840 	int err;
5841 
5842 	err = map->ops->map_direct_value_addr(map, &addr, off);
5843 	if (err)
5844 		return err;
5845 	ptr = (void *)(long)addr + off;
5846 
5847 	switch (size) {
5848 	case sizeof(u8):
5849 		*val = (u64)*(u8 *)ptr;
5850 		break;
5851 	case sizeof(u16):
5852 		*val = (u64)*(u16 *)ptr;
5853 		break;
5854 	case sizeof(u32):
5855 		*val = (u64)*(u32 *)ptr;
5856 		break;
5857 	case sizeof(u64):
5858 		*val = *(u64 *)ptr;
5859 		break;
5860 	default:
5861 		return -EINVAL;
5862 	}
5863 	return 0;
5864 }
5865 
5866 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
5867 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
5868 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
5869 
5870 /*
5871  * Allow list few fields as RCU trusted or full trusted.
5872  * This logic doesn't allow mix tagging and will be removed once GCC supports
5873  * btf_type_tag.
5874  */
5875 
5876 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
5877 BTF_TYPE_SAFE_RCU(struct task_struct) {
5878 	const cpumask_t *cpus_ptr;
5879 	struct css_set __rcu *cgroups;
5880 	struct task_struct __rcu *real_parent;
5881 	struct task_struct *group_leader;
5882 };
5883 
5884 BTF_TYPE_SAFE_RCU(struct cgroup) {
5885 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
5886 	struct kernfs_node *kn;
5887 };
5888 
5889 BTF_TYPE_SAFE_RCU(struct css_set) {
5890 	struct cgroup *dfl_cgrp;
5891 };
5892 
5893 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
5894 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
5895 	struct file __rcu *exe_file;
5896 };
5897 
5898 /* skb->sk, req->sk are not RCU protected, but we mark them as such
5899  * because bpf prog accessible sockets are SOCK_RCU_FREE.
5900  */
5901 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
5902 	struct sock *sk;
5903 };
5904 
5905 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
5906 	struct sock *sk;
5907 };
5908 
5909 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
5910 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
5911 	struct seq_file *seq;
5912 };
5913 
5914 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
5915 	struct bpf_iter_meta *meta;
5916 	struct task_struct *task;
5917 };
5918 
5919 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
5920 	struct file *file;
5921 };
5922 
5923 BTF_TYPE_SAFE_TRUSTED(struct file) {
5924 	struct inode *f_inode;
5925 };
5926 
5927 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
5928 	/* no negative dentry-s in places where bpf can see it */
5929 	struct inode *d_inode;
5930 };
5931 
5932 BTF_TYPE_SAFE_TRUSTED(struct socket) {
5933 	struct sock *sk;
5934 };
5935 
5936 static bool type_is_rcu(struct bpf_verifier_env *env,
5937 			struct bpf_reg_state *reg,
5938 			const char *field_name, u32 btf_id)
5939 {
5940 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
5941 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
5942 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
5943 
5944 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
5945 }
5946 
5947 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
5948 				struct bpf_reg_state *reg,
5949 				const char *field_name, u32 btf_id)
5950 {
5951 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
5952 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
5953 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
5954 
5955 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
5956 }
5957 
5958 static bool type_is_trusted(struct bpf_verifier_env *env,
5959 			    struct bpf_reg_state *reg,
5960 			    const char *field_name, u32 btf_id)
5961 {
5962 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
5963 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
5964 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
5965 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
5966 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
5967 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
5968 
5969 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
5970 }
5971 
5972 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
5973 				   struct bpf_reg_state *regs,
5974 				   int regno, int off, int size,
5975 				   enum bpf_access_type atype,
5976 				   int value_regno)
5977 {
5978 	struct bpf_reg_state *reg = regs + regno;
5979 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
5980 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
5981 	const char *field_name = NULL;
5982 	enum bpf_type_flag flag = 0;
5983 	u32 btf_id = 0;
5984 	int ret;
5985 
5986 	if (!env->allow_ptr_leaks) {
5987 		verbose(env,
5988 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5989 			tname);
5990 		return -EPERM;
5991 	}
5992 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
5993 		verbose(env,
5994 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
5995 			tname);
5996 		return -EINVAL;
5997 	}
5998 	if (off < 0) {
5999 		verbose(env,
6000 			"R%d is ptr_%s invalid negative access: off=%d\n",
6001 			regno, tname, off);
6002 		return -EACCES;
6003 	}
6004 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6005 		char tn_buf[48];
6006 
6007 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6008 		verbose(env,
6009 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6010 			regno, tname, off, tn_buf);
6011 		return -EACCES;
6012 	}
6013 
6014 	if (reg->type & MEM_USER) {
6015 		verbose(env,
6016 			"R%d is ptr_%s access user memory: off=%d\n",
6017 			regno, tname, off);
6018 		return -EACCES;
6019 	}
6020 
6021 	if (reg->type & MEM_PERCPU) {
6022 		verbose(env,
6023 			"R%d is ptr_%s access percpu memory: off=%d\n",
6024 			regno, tname, off);
6025 		return -EACCES;
6026 	}
6027 
6028 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6029 		if (!btf_is_kernel(reg->btf)) {
6030 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6031 			return -EFAULT;
6032 		}
6033 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6034 	} else {
6035 		/* Writes are permitted with default btf_struct_access for
6036 		 * program allocated objects (which always have ref_obj_id > 0),
6037 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6038 		 */
6039 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6040 			verbose(env, "only read is supported\n");
6041 			return -EACCES;
6042 		}
6043 
6044 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6045 		    !reg->ref_obj_id) {
6046 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6047 			return -EFAULT;
6048 		}
6049 
6050 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6051 	}
6052 
6053 	if (ret < 0)
6054 		return ret;
6055 
6056 	if (ret != PTR_TO_BTF_ID) {
6057 		/* just mark; */
6058 
6059 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6060 		/* If this is an untrusted pointer, all pointers formed by walking it
6061 		 * also inherit the untrusted flag.
6062 		 */
6063 		flag = PTR_UNTRUSTED;
6064 
6065 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6066 		/* By default any pointer obtained from walking a trusted pointer is no
6067 		 * longer trusted, unless the field being accessed has explicitly been
6068 		 * marked as inheriting its parent's state of trust (either full or RCU).
6069 		 * For example:
6070 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6071 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6072 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6073 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6074 		 *
6075 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6076 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6077 		 */
6078 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6079 			flag |= PTR_TRUSTED;
6080 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6081 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6082 				/* ignore __rcu tag and mark it MEM_RCU */
6083 				flag |= MEM_RCU;
6084 			} else if (flag & MEM_RCU ||
6085 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6086 				/* __rcu tagged pointers can be NULL */
6087 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6088 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6089 				/* keep as-is */
6090 			} else {
6091 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6092 				clear_trusted_flags(&flag);
6093 			}
6094 		} else {
6095 			/*
6096 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6097 			 * aggressively mark as untrusted otherwise such
6098 			 * pointers will be plain PTR_TO_BTF_ID without flags
6099 			 * and will be allowed to be passed into helpers for
6100 			 * compat reasons.
6101 			 */
6102 			flag = PTR_UNTRUSTED;
6103 		}
6104 	} else {
6105 		/* Old compat. Deprecated */
6106 		clear_trusted_flags(&flag);
6107 	}
6108 
6109 	if (atype == BPF_READ && value_regno >= 0)
6110 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6111 
6112 	return 0;
6113 }
6114 
6115 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6116 				   struct bpf_reg_state *regs,
6117 				   int regno, int off, int size,
6118 				   enum bpf_access_type atype,
6119 				   int value_regno)
6120 {
6121 	struct bpf_reg_state *reg = regs + regno;
6122 	struct bpf_map *map = reg->map_ptr;
6123 	struct bpf_reg_state map_reg;
6124 	enum bpf_type_flag flag = 0;
6125 	const struct btf_type *t;
6126 	const char *tname;
6127 	u32 btf_id;
6128 	int ret;
6129 
6130 	if (!btf_vmlinux) {
6131 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6132 		return -ENOTSUPP;
6133 	}
6134 
6135 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6136 		verbose(env, "map_ptr access not supported for map type %d\n",
6137 			map->map_type);
6138 		return -ENOTSUPP;
6139 	}
6140 
6141 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6142 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6143 
6144 	if (!env->allow_ptr_leaks) {
6145 		verbose(env,
6146 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6147 			tname);
6148 		return -EPERM;
6149 	}
6150 
6151 	if (off < 0) {
6152 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6153 			regno, tname, off);
6154 		return -EACCES;
6155 	}
6156 
6157 	if (atype != BPF_READ) {
6158 		verbose(env, "only read from %s is supported\n", tname);
6159 		return -EACCES;
6160 	}
6161 
6162 	/* Simulate access to a PTR_TO_BTF_ID */
6163 	memset(&map_reg, 0, sizeof(map_reg));
6164 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6165 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6166 	if (ret < 0)
6167 		return ret;
6168 
6169 	if (value_regno >= 0)
6170 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6171 
6172 	return 0;
6173 }
6174 
6175 /* Check that the stack access at the given offset is within bounds. The
6176  * maximum valid offset is -1.
6177  *
6178  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6179  * -state->allocated_stack for reads.
6180  */
6181 static int check_stack_slot_within_bounds(int off,
6182 					  struct bpf_func_state *state,
6183 					  enum bpf_access_type t)
6184 {
6185 	int min_valid_off;
6186 
6187 	if (t == BPF_WRITE)
6188 		min_valid_off = -MAX_BPF_STACK;
6189 	else
6190 		min_valid_off = -state->allocated_stack;
6191 
6192 	if (off < min_valid_off || off > -1)
6193 		return -EACCES;
6194 	return 0;
6195 }
6196 
6197 /* Check that the stack access at 'regno + off' falls within the maximum stack
6198  * bounds.
6199  *
6200  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6201  */
6202 static int check_stack_access_within_bounds(
6203 		struct bpf_verifier_env *env,
6204 		int regno, int off, int access_size,
6205 		enum bpf_access_src src, enum bpf_access_type type)
6206 {
6207 	struct bpf_reg_state *regs = cur_regs(env);
6208 	struct bpf_reg_state *reg = regs + regno;
6209 	struct bpf_func_state *state = func(env, reg);
6210 	int min_off, max_off;
6211 	int err;
6212 	char *err_extra;
6213 
6214 	if (src == ACCESS_HELPER)
6215 		/* We don't know if helpers are reading or writing (or both). */
6216 		err_extra = " indirect access to";
6217 	else if (type == BPF_READ)
6218 		err_extra = " read from";
6219 	else
6220 		err_extra = " write to";
6221 
6222 	if (tnum_is_const(reg->var_off)) {
6223 		min_off = reg->var_off.value + off;
6224 		if (access_size > 0)
6225 			max_off = min_off + access_size - 1;
6226 		else
6227 			max_off = min_off;
6228 	} else {
6229 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6230 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6231 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6232 				err_extra, regno);
6233 			return -EACCES;
6234 		}
6235 		min_off = reg->smin_value + off;
6236 		if (access_size > 0)
6237 			max_off = reg->smax_value + off + access_size - 1;
6238 		else
6239 			max_off = min_off;
6240 	}
6241 
6242 	err = check_stack_slot_within_bounds(min_off, state, type);
6243 	if (!err)
6244 		err = check_stack_slot_within_bounds(max_off, state, type);
6245 
6246 	if (err) {
6247 		if (tnum_is_const(reg->var_off)) {
6248 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6249 				err_extra, regno, off, access_size);
6250 		} else {
6251 			char tn_buf[48];
6252 
6253 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6254 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6255 				err_extra, regno, tn_buf, access_size);
6256 		}
6257 	}
6258 	return err;
6259 }
6260 
6261 /* check whether memory at (regno + off) is accessible for t = (read | write)
6262  * if t==write, value_regno is a register which value is stored into memory
6263  * if t==read, value_regno is a register which will receive the value from memory
6264  * if t==write && value_regno==-1, some unknown value is stored into memory
6265  * if t==read && value_regno==-1, don't care what we read from memory
6266  */
6267 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6268 			    int off, int bpf_size, enum bpf_access_type t,
6269 			    int value_regno, bool strict_alignment_once)
6270 {
6271 	struct bpf_reg_state *regs = cur_regs(env);
6272 	struct bpf_reg_state *reg = regs + regno;
6273 	struct bpf_func_state *state;
6274 	int size, err = 0;
6275 
6276 	size = bpf_size_to_bytes(bpf_size);
6277 	if (size < 0)
6278 		return size;
6279 
6280 	/* alignment checks will add in reg->off themselves */
6281 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6282 	if (err)
6283 		return err;
6284 
6285 	/* for access checks, reg->off is just part of off */
6286 	off += reg->off;
6287 
6288 	if (reg->type == PTR_TO_MAP_KEY) {
6289 		if (t == BPF_WRITE) {
6290 			verbose(env, "write to change key R%d not allowed\n", regno);
6291 			return -EACCES;
6292 		}
6293 
6294 		err = check_mem_region_access(env, regno, off, size,
6295 					      reg->map_ptr->key_size, false);
6296 		if (err)
6297 			return err;
6298 		if (value_regno >= 0)
6299 			mark_reg_unknown(env, regs, value_regno);
6300 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6301 		struct btf_field *kptr_field = NULL;
6302 
6303 		if (t == BPF_WRITE && value_regno >= 0 &&
6304 		    is_pointer_value(env, value_regno)) {
6305 			verbose(env, "R%d leaks addr into map\n", value_regno);
6306 			return -EACCES;
6307 		}
6308 		err = check_map_access_type(env, regno, off, size, t);
6309 		if (err)
6310 			return err;
6311 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6312 		if (err)
6313 			return err;
6314 		if (tnum_is_const(reg->var_off))
6315 			kptr_field = btf_record_find(reg->map_ptr->record,
6316 						     off + reg->var_off.value, BPF_KPTR);
6317 		if (kptr_field) {
6318 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6319 		} else if (t == BPF_READ && value_regno >= 0) {
6320 			struct bpf_map *map = reg->map_ptr;
6321 
6322 			/* if map is read-only, track its contents as scalars */
6323 			if (tnum_is_const(reg->var_off) &&
6324 			    bpf_map_is_rdonly(map) &&
6325 			    map->ops->map_direct_value_addr) {
6326 				int map_off = off + reg->var_off.value;
6327 				u64 val = 0;
6328 
6329 				err = bpf_map_direct_read(map, map_off, size,
6330 							  &val);
6331 				if (err)
6332 					return err;
6333 
6334 				regs[value_regno].type = SCALAR_VALUE;
6335 				__mark_reg_known(&regs[value_regno], val);
6336 			} else {
6337 				mark_reg_unknown(env, regs, value_regno);
6338 			}
6339 		}
6340 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6341 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6342 
6343 		if (type_may_be_null(reg->type)) {
6344 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6345 				reg_type_str(env, reg->type));
6346 			return -EACCES;
6347 		}
6348 
6349 		if (t == BPF_WRITE && rdonly_mem) {
6350 			verbose(env, "R%d cannot write into %s\n",
6351 				regno, reg_type_str(env, reg->type));
6352 			return -EACCES;
6353 		}
6354 
6355 		if (t == BPF_WRITE && value_regno >= 0 &&
6356 		    is_pointer_value(env, value_regno)) {
6357 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6358 			return -EACCES;
6359 		}
6360 
6361 		err = check_mem_region_access(env, regno, off, size,
6362 					      reg->mem_size, false);
6363 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6364 			mark_reg_unknown(env, regs, value_regno);
6365 	} else if (reg->type == PTR_TO_CTX) {
6366 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6367 		struct btf *btf = NULL;
6368 		u32 btf_id = 0;
6369 
6370 		if (t == BPF_WRITE && value_regno >= 0 &&
6371 		    is_pointer_value(env, value_regno)) {
6372 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6373 			return -EACCES;
6374 		}
6375 
6376 		err = check_ptr_off_reg(env, reg, regno);
6377 		if (err < 0)
6378 			return err;
6379 
6380 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6381 				       &btf_id);
6382 		if (err)
6383 			verbose_linfo(env, insn_idx, "; ");
6384 		if (!err && t == BPF_READ && value_regno >= 0) {
6385 			/* ctx access returns either a scalar, or a
6386 			 * PTR_TO_PACKET[_META,_END]. In the latter
6387 			 * case, we know the offset is zero.
6388 			 */
6389 			if (reg_type == SCALAR_VALUE) {
6390 				mark_reg_unknown(env, regs, value_regno);
6391 			} else {
6392 				mark_reg_known_zero(env, regs,
6393 						    value_regno);
6394 				if (type_may_be_null(reg_type))
6395 					regs[value_regno].id = ++env->id_gen;
6396 				/* A load of ctx field could have different
6397 				 * actual load size with the one encoded in the
6398 				 * insn. When the dst is PTR, it is for sure not
6399 				 * a sub-register.
6400 				 */
6401 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6402 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6403 					regs[value_regno].btf = btf;
6404 					regs[value_regno].btf_id = btf_id;
6405 				}
6406 			}
6407 			regs[value_regno].type = reg_type;
6408 		}
6409 
6410 	} else if (reg->type == PTR_TO_STACK) {
6411 		/* Basic bounds checks. */
6412 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6413 		if (err)
6414 			return err;
6415 
6416 		state = func(env, reg);
6417 		err = update_stack_depth(env, state, off);
6418 		if (err)
6419 			return err;
6420 
6421 		if (t == BPF_READ)
6422 			err = check_stack_read(env, regno, off, size,
6423 					       value_regno);
6424 		else
6425 			err = check_stack_write(env, regno, off, size,
6426 						value_regno, insn_idx);
6427 	} else if (reg_is_pkt_pointer(reg)) {
6428 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6429 			verbose(env, "cannot write into packet\n");
6430 			return -EACCES;
6431 		}
6432 		if (t == BPF_WRITE && value_regno >= 0 &&
6433 		    is_pointer_value(env, value_regno)) {
6434 			verbose(env, "R%d leaks addr into packet\n",
6435 				value_regno);
6436 			return -EACCES;
6437 		}
6438 		err = check_packet_access(env, regno, off, size, false);
6439 		if (!err && t == BPF_READ && value_regno >= 0)
6440 			mark_reg_unknown(env, regs, value_regno);
6441 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6442 		if (t == BPF_WRITE && value_regno >= 0 &&
6443 		    is_pointer_value(env, value_regno)) {
6444 			verbose(env, "R%d leaks addr into flow keys\n",
6445 				value_regno);
6446 			return -EACCES;
6447 		}
6448 
6449 		err = check_flow_keys_access(env, off, size);
6450 		if (!err && t == BPF_READ && value_regno >= 0)
6451 			mark_reg_unknown(env, regs, value_regno);
6452 	} else if (type_is_sk_pointer(reg->type)) {
6453 		if (t == BPF_WRITE) {
6454 			verbose(env, "R%d cannot write into %s\n",
6455 				regno, reg_type_str(env, reg->type));
6456 			return -EACCES;
6457 		}
6458 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6459 		if (!err && value_regno >= 0)
6460 			mark_reg_unknown(env, regs, value_regno);
6461 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6462 		err = check_tp_buffer_access(env, reg, regno, off, size);
6463 		if (!err && t == BPF_READ && value_regno >= 0)
6464 			mark_reg_unknown(env, regs, value_regno);
6465 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6466 		   !type_may_be_null(reg->type)) {
6467 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6468 					      value_regno);
6469 	} else if (reg->type == CONST_PTR_TO_MAP) {
6470 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6471 					      value_regno);
6472 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6473 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6474 		u32 *max_access;
6475 
6476 		if (rdonly_mem) {
6477 			if (t == BPF_WRITE) {
6478 				verbose(env, "R%d cannot write into %s\n",
6479 					regno, reg_type_str(env, reg->type));
6480 				return -EACCES;
6481 			}
6482 			max_access = &env->prog->aux->max_rdonly_access;
6483 		} else {
6484 			max_access = &env->prog->aux->max_rdwr_access;
6485 		}
6486 
6487 		err = check_buffer_access(env, reg, regno, off, size, false,
6488 					  max_access);
6489 
6490 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6491 			mark_reg_unknown(env, regs, value_regno);
6492 	} else {
6493 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6494 			reg_type_str(env, reg->type));
6495 		return -EACCES;
6496 	}
6497 
6498 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6499 	    regs[value_regno].type == SCALAR_VALUE) {
6500 		/* b/h/w load zero-extends, mark upper bits as known 0 */
6501 		coerce_reg_to_size(&regs[value_regno], size);
6502 	}
6503 	return err;
6504 }
6505 
6506 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6507 {
6508 	int load_reg;
6509 	int err;
6510 
6511 	switch (insn->imm) {
6512 	case BPF_ADD:
6513 	case BPF_ADD | BPF_FETCH:
6514 	case BPF_AND:
6515 	case BPF_AND | BPF_FETCH:
6516 	case BPF_OR:
6517 	case BPF_OR | BPF_FETCH:
6518 	case BPF_XOR:
6519 	case BPF_XOR | BPF_FETCH:
6520 	case BPF_XCHG:
6521 	case BPF_CMPXCHG:
6522 		break;
6523 	default:
6524 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6525 		return -EINVAL;
6526 	}
6527 
6528 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6529 		verbose(env, "invalid atomic operand size\n");
6530 		return -EINVAL;
6531 	}
6532 
6533 	/* check src1 operand */
6534 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6535 	if (err)
6536 		return err;
6537 
6538 	/* check src2 operand */
6539 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6540 	if (err)
6541 		return err;
6542 
6543 	if (insn->imm == BPF_CMPXCHG) {
6544 		/* Check comparison of R0 with memory location */
6545 		const u32 aux_reg = BPF_REG_0;
6546 
6547 		err = check_reg_arg(env, aux_reg, SRC_OP);
6548 		if (err)
6549 			return err;
6550 
6551 		if (is_pointer_value(env, aux_reg)) {
6552 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6553 			return -EACCES;
6554 		}
6555 	}
6556 
6557 	if (is_pointer_value(env, insn->src_reg)) {
6558 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6559 		return -EACCES;
6560 	}
6561 
6562 	if (is_ctx_reg(env, insn->dst_reg) ||
6563 	    is_pkt_reg(env, insn->dst_reg) ||
6564 	    is_flow_key_reg(env, insn->dst_reg) ||
6565 	    is_sk_reg(env, insn->dst_reg)) {
6566 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6567 			insn->dst_reg,
6568 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6569 		return -EACCES;
6570 	}
6571 
6572 	if (insn->imm & BPF_FETCH) {
6573 		if (insn->imm == BPF_CMPXCHG)
6574 			load_reg = BPF_REG_0;
6575 		else
6576 			load_reg = insn->src_reg;
6577 
6578 		/* check and record load of old value */
6579 		err = check_reg_arg(env, load_reg, DST_OP);
6580 		if (err)
6581 			return err;
6582 	} else {
6583 		/* This instruction accesses a memory location but doesn't
6584 		 * actually load it into a register.
6585 		 */
6586 		load_reg = -1;
6587 	}
6588 
6589 	/* Check whether we can read the memory, with second call for fetch
6590 	 * case to simulate the register fill.
6591 	 */
6592 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6593 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
6594 	if (!err && load_reg >= 0)
6595 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6596 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6597 				       true);
6598 	if (err)
6599 		return err;
6600 
6601 	/* Check whether we can write into the same memory. */
6602 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6603 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
6604 	if (err)
6605 		return err;
6606 
6607 	return 0;
6608 }
6609 
6610 /* When register 'regno' is used to read the stack (either directly or through
6611  * a helper function) make sure that it's within stack boundary and, depending
6612  * on the access type, that all elements of the stack are initialized.
6613  *
6614  * 'off' includes 'regno->off', but not its dynamic part (if any).
6615  *
6616  * All registers that have been spilled on the stack in the slots within the
6617  * read offsets are marked as read.
6618  */
6619 static int check_stack_range_initialized(
6620 		struct bpf_verifier_env *env, int regno, int off,
6621 		int access_size, bool zero_size_allowed,
6622 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6623 {
6624 	struct bpf_reg_state *reg = reg_state(env, regno);
6625 	struct bpf_func_state *state = func(env, reg);
6626 	int err, min_off, max_off, i, j, slot, spi;
6627 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6628 	enum bpf_access_type bounds_check_type;
6629 	/* Some accesses can write anything into the stack, others are
6630 	 * read-only.
6631 	 */
6632 	bool clobber = false;
6633 
6634 	if (access_size == 0 && !zero_size_allowed) {
6635 		verbose(env, "invalid zero-sized read\n");
6636 		return -EACCES;
6637 	}
6638 
6639 	if (type == ACCESS_HELPER) {
6640 		/* The bounds checks for writes are more permissive than for
6641 		 * reads. However, if raw_mode is not set, we'll do extra
6642 		 * checks below.
6643 		 */
6644 		bounds_check_type = BPF_WRITE;
6645 		clobber = true;
6646 	} else {
6647 		bounds_check_type = BPF_READ;
6648 	}
6649 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6650 					       type, bounds_check_type);
6651 	if (err)
6652 		return err;
6653 
6654 
6655 	if (tnum_is_const(reg->var_off)) {
6656 		min_off = max_off = reg->var_off.value + off;
6657 	} else {
6658 		/* Variable offset is prohibited for unprivileged mode for
6659 		 * simplicity since it requires corresponding support in
6660 		 * Spectre masking for stack ALU.
6661 		 * See also retrieve_ptr_limit().
6662 		 */
6663 		if (!env->bypass_spec_v1) {
6664 			char tn_buf[48];
6665 
6666 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6667 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6668 				regno, err_extra, tn_buf);
6669 			return -EACCES;
6670 		}
6671 		/* Only initialized buffer on stack is allowed to be accessed
6672 		 * with variable offset. With uninitialized buffer it's hard to
6673 		 * guarantee that whole memory is marked as initialized on
6674 		 * helper return since specific bounds are unknown what may
6675 		 * cause uninitialized stack leaking.
6676 		 */
6677 		if (meta && meta->raw_mode)
6678 			meta = NULL;
6679 
6680 		min_off = reg->smin_value + off;
6681 		max_off = reg->smax_value + off;
6682 	}
6683 
6684 	if (meta && meta->raw_mode) {
6685 		/* Ensure we won't be overwriting dynptrs when simulating byte
6686 		 * by byte access in check_helper_call using meta.access_size.
6687 		 * This would be a problem if we have a helper in the future
6688 		 * which takes:
6689 		 *
6690 		 *	helper(uninit_mem, len, dynptr)
6691 		 *
6692 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6693 		 * may end up writing to dynptr itself when touching memory from
6694 		 * arg 1. This can be relaxed on a case by case basis for known
6695 		 * safe cases, but reject due to the possibilitiy of aliasing by
6696 		 * default.
6697 		 */
6698 		for (i = min_off; i < max_off + access_size; i++) {
6699 			int stack_off = -i - 1;
6700 
6701 			spi = __get_spi(i);
6702 			/* raw_mode may write past allocated_stack */
6703 			if (state->allocated_stack <= stack_off)
6704 				continue;
6705 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6706 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6707 				return -EACCES;
6708 			}
6709 		}
6710 		meta->access_size = access_size;
6711 		meta->regno = regno;
6712 		return 0;
6713 	}
6714 
6715 	for (i = min_off; i < max_off + access_size; i++) {
6716 		u8 *stype;
6717 
6718 		slot = -i - 1;
6719 		spi = slot / BPF_REG_SIZE;
6720 		if (state->allocated_stack <= slot)
6721 			goto err;
6722 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6723 		if (*stype == STACK_MISC)
6724 			goto mark;
6725 		if ((*stype == STACK_ZERO) ||
6726 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6727 			if (clobber) {
6728 				/* helper can write anything into the stack */
6729 				*stype = STACK_MISC;
6730 			}
6731 			goto mark;
6732 		}
6733 
6734 		if (is_spilled_reg(&state->stack[spi]) &&
6735 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6736 		     env->allow_ptr_leaks)) {
6737 			if (clobber) {
6738 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6739 				for (j = 0; j < BPF_REG_SIZE; j++)
6740 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6741 			}
6742 			goto mark;
6743 		}
6744 
6745 err:
6746 		if (tnum_is_const(reg->var_off)) {
6747 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6748 				err_extra, regno, min_off, i - min_off, access_size);
6749 		} else {
6750 			char tn_buf[48];
6751 
6752 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6753 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6754 				err_extra, regno, tn_buf, i - min_off, access_size);
6755 		}
6756 		return -EACCES;
6757 mark:
6758 		/* reading any byte out of 8-byte 'spill_slot' will cause
6759 		 * the whole slot to be marked as 'read'
6760 		 */
6761 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6762 			      state->stack[spi].spilled_ptr.parent,
6763 			      REG_LIVE_READ64);
6764 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6765 		 * be sure that whether stack slot is written to or not. Hence,
6766 		 * we must still conservatively propagate reads upwards even if
6767 		 * helper may write to the entire memory range.
6768 		 */
6769 	}
6770 	return update_stack_depth(env, state, min_off);
6771 }
6772 
6773 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6774 				   int access_size, bool zero_size_allowed,
6775 				   struct bpf_call_arg_meta *meta)
6776 {
6777 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6778 	u32 *max_access;
6779 
6780 	switch (base_type(reg->type)) {
6781 	case PTR_TO_PACKET:
6782 	case PTR_TO_PACKET_META:
6783 		return check_packet_access(env, regno, reg->off, access_size,
6784 					   zero_size_allowed);
6785 	case PTR_TO_MAP_KEY:
6786 		if (meta && meta->raw_mode) {
6787 			verbose(env, "R%d cannot write into %s\n", regno,
6788 				reg_type_str(env, reg->type));
6789 			return -EACCES;
6790 		}
6791 		return check_mem_region_access(env, regno, reg->off, access_size,
6792 					       reg->map_ptr->key_size, false);
6793 	case PTR_TO_MAP_VALUE:
6794 		if (check_map_access_type(env, regno, reg->off, access_size,
6795 					  meta && meta->raw_mode ? BPF_WRITE :
6796 					  BPF_READ))
6797 			return -EACCES;
6798 		return check_map_access(env, regno, reg->off, access_size,
6799 					zero_size_allowed, ACCESS_HELPER);
6800 	case PTR_TO_MEM:
6801 		if (type_is_rdonly_mem(reg->type)) {
6802 			if (meta && meta->raw_mode) {
6803 				verbose(env, "R%d cannot write into %s\n", regno,
6804 					reg_type_str(env, reg->type));
6805 				return -EACCES;
6806 			}
6807 		}
6808 		return check_mem_region_access(env, regno, reg->off,
6809 					       access_size, reg->mem_size,
6810 					       zero_size_allowed);
6811 	case PTR_TO_BUF:
6812 		if (type_is_rdonly_mem(reg->type)) {
6813 			if (meta && meta->raw_mode) {
6814 				verbose(env, "R%d cannot write into %s\n", regno,
6815 					reg_type_str(env, reg->type));
6816 				return -EACCES;
6817 			}
6818 
6819 			max_access = &env->prog->aux->max_rdonly_access;
6820 		} else {
6821 			max_access = &env->prog->aux->max_rdwr_access;
6822 		}
6823 		return check_buffer_access(env, reg, regno, reg->off,
6824 					   access_size, zero_size_allowed,
6825 					   max_access);
6826 	case PTR_TO_STACK:
6827 		return check_stack_range_initialized(
6828 				env,
6829 				regno, reg->off, access_size,
6830 				zero_size_allowed, ACCESS_HELPER, meta);
6831 	case PTR_TO_BTF_ID:
6832 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
6833 					       access_size, BPF_READ, -1);
6834 	case PTR_TO_CTX:
6835 		/* in case the function doesn't know how to access the context,
6836 		 * (because we are in a program of type SYSCALL for example), we
6837 		 * can not statically check its size.
6838 		 * Dynamically check it now.
6839 		 */
6840 		if (!env->ops->convert_ctx_access) {
6841 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
6842 			int offset = access_size - 1;
6843 
6844 			/* Allow zero-byte read from PTR_TO_CTX */
6845 			if (access_size == 0)
6846 				return zero_size_allowed ? 0 : -EACCES;
6847 
6848 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
6849 						atype, -1, false);
6850 		}
6851 
6852 		fallthrough;
6853 	default: /* scalar_value or invalid ptr */
6854 		/* Allow zero-byte read from NULL, regardless of pointer type */
6855 		if (zero_size_allowed && access_size == 0 &&
6856 		    register_is_null(reg))
6857 			return 0;
6858 
6859 		verbose(env, "R%d type=%s ", regno,
6860 			reg_type_str(env, reg->type));
6861 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
6862 		return -EACCES;
6863 	}
6864 }
6865 
6866 static int check_mem_size_reg(struct bpf_verifier_env *env,
6867 			      struct bpf_reg_state *reg, u32 regno,
6868 			      bool zero_size_allowed,
6869 			      struct bpf_call_arg_meta *meta)
6870 {
6871 	int err;
6872 
6873 	/* This is used to refine r0 return value bounds for helpers
6874 	 * that enforce this value as an upper bound on return values.
6875 	 * See do_refine_retval_range() for helpers that can refine
6876 	 * the return value. C type of helper is u32 so we pull register
6877 	 * bound from umax_value however, if negative verifier errors
6878 	 * out. Only upper bounds can be learned because retval is an
6879 	 * int type and negative retvals are allowed.
6880 	 */
6881 	meta->msize_max_value = reg->umax_value;
6882 
6883 	/* The register is SCALAR_VALUE; the access check
6884 	 * happens using its boundaries.
6885 	 */
6886 	if (!tnum_is_const(reg->var_off))
6887 		/* For unprivileged variable accesses, disable raw
6888 		 * mode so that the program is required to
6889 		 * initialize all the memory that the helper could
6890 		 * just partially fill up.
6891 		 */
6892 		meta = NULL;
6893 
6894 	if (reg->smin_value < 0) {
6895 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
6896 			regno);
6897 		return -EACCES;
6898 	}
6899 
6900 	if (reg->umin_value == 0) {
6901 		err = check_helper_mem_access(env, regno - 1, 0,
6902 					      zero_size_allowed,
6903 					      meta);
6904 		if (err)
6905 			return err;
6906 	}
6907 
6908 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
6909 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
6910 			regno);
6911 		return -EACCES;
6912 	}
6913 	err = check_helper_mem_access(env, regno - 1,
6914 				      reg->umax_value,
6915 				      zero_size_allowed, meta);
6916 	if (!err)
6917 		err = mark_chain_precision(env, regno);
6918 	return err;
6919 }
6920 
6921 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6922 		   u32 regno, u32 mem_size)
6923 {
6924 	bool may_be_null = type_may_be_null(reg->type);
6925 	struct bpf_reg_state saved_reg;
6926 	struct bpf_call_arg_meta meta;
6927 	int err;
6928 
6929 	if (register_is_null(reg))
6930 		return 0;
6931 
6932 	memset(&meta, 0, sizeof(meta));
6933 	/* Assuming that the register contains a value check if the memory
6934 	 * access is safe. Temporarily save and restore the register's state as
6935 	 * the conversion shouldn't be visible to a caller.
6936 	 */
6937 	if (may_be_null) {
6938 		saved_reg = *reg;
6939 		mark_ptr_not_null_reg(reg);
6940 	}
6941 
6942 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
6943 	/* Check access for BPF_WRITE */
6944 	meta.raw_mode = true;
6945 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
6946 
6947 	if (may_be_null)
6948 		*reg = saved_reg;
6949 
6950 	return err;
6951 }
6952 
6953 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6954 				    u32 regno)
6955 {
6956 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
6957 	bool may_be_null = type_may_be_null(mem_reg->type);
6958 	struct bpf_reg_state saved_reg;
6959 	struct bpf_call_arg_meta meta;
6960 	int err;
6961 
6962 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
6963 
6964 	memset(&meta, 0, sizeof(meta));
6965 
6966 	if (may_be_null) {
6967 		saved_reg = *mem_reg;
6968 		mark_ptr_not_null_reg(mem_reg);
6969 	}
6970 
6971 	err = check_mem_size_reg(env, reg, regno, true, &meta);
6972 	/* Check access for BPF_WRITE */
6973 	meta.raw_mode = true;
6974 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
6975 
6976 	if (may_be_null)
6977 		*mem_reg = saved_reg;
6978 	return err;
6979 }
6980 
6981 /* Implementation details:
6982  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
6983  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
6984  * Two bpf_map_lookups (even with the same key) will have different reg->id.
6985  * Two separate bpf_obj_new will also have different reg->id.
6986  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
6987  * clears reg->id after value_or_null->value transition, since the verifier only
6988  * cares about the range of access to valid map value pointer and doesn't care
6989  * about actual address of the map element.
6990  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
6991  * reg->id > 0 after value_or_null->value transition. By doing so
6992  * two bpf_map_lookups will be considered two different pointers that
6993  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
6994  * returned from bpf_obj_new.
6995  * The verifier allows taking only one bpf_spin_lock at a time to avoid
6996  * dead-locks.
6997  * Since only one bpf_spin_lock is allowed the checks are simpler than
6998  * reg_is_refcounted() logic. The verifier needs to remember only
6999  * one spin_lock instead of array of acquired_refs.
7000  * cur_state->active_lock remembers which map value element or allocated
7001  * object got locked and clears it after bpf_spin_unlock.
7002  */
7003 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7004 			     bool is_lock)
7005 {
7006 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7007 	struct bpf_verifier_state *cur = env->cur_state;
7008 	bool is_const = tnum_is_const(reg->var_off);
7009 	u64 val = reg->var_off.value;
7010 	struct bpf_map *map = NULL;
7011 	struct btf *btf = NULL;
7012 	struct btf_record *rec;
7013 
7014 	if (!is_const) {
7015 		verbose(env,
7016 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7017 			regno);
7018 		return -EINVAL;
7019 	}
7020 	if (reg->type == PTR_TO_MAP_VALUE) {
7021 		map = reg->map_ptr;
7022 		if (!map->btf) {
7023 			verbose(env,
7024 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7025 				map->name);
7026 			return -EINVAL;
7027 		}
7028 	} else {
7029 		btf = reg->btf;
7030 	}
7031 
7032 	rec = reg_btf_record(reg);
7033 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7034 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7035 			map ? map->name : "kptr");
7036 		return -EINVAL;
7037 	}
7038 	if (rec->spin_lock_off != val + reg->off) {
7039 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7040 			val + reg->off, rec->spin_lock_off);
7041 		return -EINVAL;
7042 	}
7043 	if (is_lock) {
7044 		if (cur->active_lock.ptr) {
7045 			verbose(env,
7046 				"Locking two bpf_spin_locks are not allowed\n");
7047 			return -EINVAL;
7048 		}
7049 		if (map)
7050 			cur->active_lock.ptr = map;
7051 		else
7052 			cur->active_lock.ptr = btf;
7053 		cur->active_lock.id = reg->id;
7054 	} else {
7055 		void *ptr;
7056 
7057 		if (map)
7058 			ptr = map;
7059 		else
7060 			ptr = btf;
7061 
7062 		if (!cur->active_lock.ptr) {
7063 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7064 			return -EINVAL;
7065 		}
7066 		if (cur->active_lock.ptr != ptr ||
7067 		    cur->active_lock.id != reg->id) {
7068 			verbose(env, "bpf_spin_unlock of different lock\n");
7069 			return -EINVAL;
7070 		}
7071 
7072 		invalidate_non_owning_refs(env);
7073 
7074 		cur->active_lock.ptr = NULL;
7075 		cur->active_lock.id = 0;
7076 	}
7077 	return 0;
7078 }
7079 
7080 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7081 			      struct bpf_call_arg_meta *meta)
7082 {
7083 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7084 	bool is_const = tnum_is_const(reg->var_off);
7085 	struct bpf_map *map = reg->map_ptr;
7086 	u64 val = reg->var_off.value;
7087 
7088 	if (!is_const) {
7089 		verbose(env,
7090 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7091 			regno);
7092 		return -EINVAL;
7093 	}
7094 	if (!map->btf) {
7095 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7096 			map->name);
7097 		return -EINVAL;
7098 	}
7099 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7100 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7101 		return -EINVAL;
7102 	}
7103 	if (map->record->timer_off != val + reg->off) {
7104 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7105 			val + reg->off, map->record->timer_off);
7106 		return -EINVAL;
7107 	}
7108 	if (meta->map_ptr) {
7109 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7110 		return -EFAULT;
7111 	}
7112 	meta->map_uid = reg->map_uid;
7113 	meta->map_ptr = map;
7114 	return 0;
7115 }
7116 
7117 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7118 			     struct bpf_call_arg_meta *meta)
7119 {
7120 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7121 	struct bpf_map *map_ptr = reg->map_ptr;
7122 	struct btf_field *kptr_field;
7123 	u32 kptr_off;
7124 
7125 	if (!tnum_is_const(reg->var_off)) {
7126 		verbose(env,
7127 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7128 			regno);
7129 		return -EINVAL;
7130 	}
7131 	if (!map_ptr->btf) {
7132 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7133 			map_ptr->name);
7134 		return -EINVAL;
7135 	}
7136 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7137 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7138 		return -EINVAL;
7139 	}
7140 
7141 	meta->map_ptr = map_ptr;
7142 	kptr_off = reg->off + reg->var_off.value;
7143 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7144 	if (!kptr_field) {
7145 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7146 		return -EACCES;
7147 	}
7148 	if (kptr_field->type != BPF_KPTR_REF) {
7149 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7150 		return -EACCES;
7151 	}
7152 	meta->kptr_field = kptr_field;
7153 	return 0;
7154 }
7155 
7156 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7157  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7158  *
7159  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7160  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7161  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7162  *
7163  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7164  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7165  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7166  * mutate the view of the dynptr and also possibly destroy it. In the latter
7167  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7168  * memory that dynptr points to.
7169  *
7170  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7171  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7172  * readonly dynptr view yet, hence only the first case is tracked and checked.
7173  *
7174  * This is consistent with how C applies the const modifier to a struct object,
7175  * where the pointer itself inside bpf_dynptr becomes const but not what it
7176  * points to.
7177  *
7178  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7179  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7180  */
7181 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7182 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7183 {
7184 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7185 	int err;
7186 
7187 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7188 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7189 	 */
7190 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7191 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7192 		return -EFAULT;
7193 	}
7194 
7195 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7196 	 *		 constructing a mutable bpf_dynptr object.
7197 	 *
7198 	 *		 Currently, this is only possible with PTR_TO_STACK
7199 	 *		 pointing to a region of at least 16 bytes which doesn't
7200 	 *		 contain an existing bpf_dynptr.
7201 	 *
7202 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7203 	 *		 mutated or destroyed. However, the memory it points to
7204 	 *		 may be mutated.
7205 	 *
7206 	 *  None       - Points to a initialized dynptr that can be mutated and
7207 	 *		 destroyed, including mutation of the memory it points
7208 	 *		 to.
7209 	 */
7210 	if (arg_type & MEM_UNINIT) {
7211 		int i;
7212 
7213 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7214 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7215 			return -EINVAL;
7216 		}
7217 
7218 		/* we write BPF_DW bits (8 bytes) at a time */
7219 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7220 			err = check_mem_access(env, insn_idx, regno,
7221 					       i, BPF_DW, BPF_WRITE, -1, false);
7222 			if (err)
7223 				return err;
7224 		}
7225 
7226 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7227 	} else /* MEM_RDONLY and None case from above */ {
7228 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7229 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7230 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7231 			return -EINVAL;
7232 		}
7233 
7234 		if (!is_dynptr_reg_valid_init(env, reg)) {
7235 			verbose(env,
7236 				"Expected an initialized dynptr as arg #%d\n",
7237 				regno);
7238 			return -EINVAL;
7239 		}
7240 
7241 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7242 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7243 			verbose(env,
7244 				"Expected a dynptr of type %s as arg #%d\n",
7245 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7246 			return -EINVAL;
7247 		}
7248 
7249 		err = mark_dynptr_read(env, reg);
7250 	}
7251 	return err;
7252 }
7253 
7254 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7255 {
7256 	struct bpf_func_state *state = func(env, reg);
7257 
7258 	return state->stack[spi].spilled_ptr.ref_obj_id;
7259 }
7260 
7261 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7262 {
7263 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7264 }
7265 
7266 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7267 {
7268 	return meta->kfunc_flags & KF_ITER_NEW;
7269 }
7270 
7271 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7272 {
7273 	return meta->kfunc_flags & KF_ITER_NEXT;
7274 }
7275 
7276 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7277 {
7278 	return meta->kfunc_flags & KF_ITER_DESTROY;
7279 }
7280 
7281 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7282 {
7283 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7284 	 * kfunc is iter state pointer
7285 	 */
7286 	return arg == 0 && is_iter_kfunc(meta);
7287 }
7288 
7289 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7290 			    struct bpf_kfunc_call_arg_meta *meta)
7291 {
7292 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7293 	const struct btf_type *t;
7294 	const struct btf_param *arg;
7295 	int spi, err, i, nr_slots;
7296 	u32 btf_id;
7297 
7298 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7299 	arg = &btf_params(meta->func_proto)[0];
7300 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7301 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7302 	nr_slots = t->size / BPF_REG_SIZE;
7303 
7304 	if (is_iter_new_kfunc(meta)) {
7305 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7306 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7307 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7308 				iter_type_str(meta->btf, btf_id), regno);
7309 			return -EINVAL;
7310 		}
7311 
7312 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7313 			err = check_mem_access(env, insn_idx, regno,
7314 					       i, BPF_DW, BPF_WRITE, -1, false);
7315 			if (err)
7316 				return err;
7317 		}
7318 
7319 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7320 		if (err)
7321 			return err;
7322 	} else {
7323 		/* iter_next() or iter_destroy() expect initialized iter state*/
7324 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7325 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7326 				iter_type_str(meta->btf, btf_id), regno);
7327 			return -EINVAL;
7328 		}
7329 
7330 		spi = iter_get_spi(env, reg, nr_slots);
7331 		if (spi < 0)
7332 			return spi;
7333 
7334 		err = mark_iter_read(env, reg, spi, nr_slots);
7335 		if (err)
7336 			return err;
7337 
7338 		/* remember meta->iter info for process_iter_next_call() */
7339 		meta->iter.spi = spi;
7340 		meta->iter.frameno = reg->frameno;
7341 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7342 
7343 		if (is_iter_destroy_kfunc(meta)) {
7344 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7345 			if (err)
7346 				return err;
7347 		}
7348 	}
7349 
7350 	return 0;
7351 }
7352 
7353 /* process_iter_next_call() is called when verifier gets to iterator's next
7354  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7355  * to it as just "iter_next()" in comments below.
7356  *
7357  * BPF verifier relies on a crucial contract for any iter_next()
7358  * implementation: it should *eventually* return NULL, and once that happens
7359  * it should keep returning NULL. That is, once iterator exhausts elements to
7360  * iterate, it should never reset or spuriously return new elements.
7361  *
7362  * With the assumption of such contract, process_iter_next_call() simulates
7363  * a fork in the verifier state to validate loop logic correctness and safety
7364  * without having to simulate infinite amount of iterations.
7365  *
7366  * In current state, we first assume that iter_next() returned NULL and
7367  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7368  * conditions we should not form an infinite loop and should eventually reach
7369  * exit.
7370  *
7371  * Besides that, we also fork current state and enqueue it for later
7372  * verification. In a forked state we keep iterator state as ACTIVE
7373  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7374  * also bump iteration depth to prevent erroneous infinite loop detection
7375  * later on (see iter_active_depths_differ() comment for details). In this
7376  * state we assume that we'll eventually loop back to another iter_next()
7377  * calls (it could be in exactly same location or in some other instruction,
7378  * it doesn't matter, we don't make any unnecessary assumptions about this,
7379  * everything revolves around iterator state in a stack slot, not which
7380  * instruction is calling iter_next()). When that happens, we either will come
7381  * to iter_next() with equivalent state and can conclude that next iteration
7382  * will proceed in exactly the same way as we just verified, so it's safe to
7383  * assume that loop converges. If not, we'll go on another iteration
7384  * simulation with a different input state, until all possible starting states
7385  * are validated or we reach maximum number of instructions limit.
7386  *
7387  * This way, we will either exhaustively discover all possible input states
7388  * that iterator loop can start with and eventually will converge, or we'll
7389  * effectively regress into bounded loop simulation logic and either reach
7390  * maximum number of instructions if loop is not provably convergent, or there
7391  * is some statically known limit on number of iterations (e.g., if there is
7392  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7393  *
7394  * One very subtle but very important aspect is that we *always* simulate NULL
7395  * condition first (as the current state) before we simulate non-NULL case.
7396  * This has to do with intricacies of scalar precision tracking. By simulating
7397  * "exit condition" of iter_next() returning NULL first, we make sure all the
7398  * relevant precision marks *that will be set **after** we exit iterator loop*
7399  * are propagated backwards to common parent state of NULL and non-NULL
7400  * branches. Thanks to that, state equivalence checks done later in forked
7401  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7402  * precision marks are finalized and won't change. Because simulating another
7403  * ACTIVE iterator iteration won't change them (because given same input
7404  * states we'll end up with exactly same output states which we are currently
7405  * comparing; and verification after the loop already propagated back what
7406  * needs to be **additionally** tracked as precise). It's subtle, grok
7407  * precision tracking for more intuitive understanding.
7408  */
7409 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7410 				  struct bpf_kfunc_call_arg_meta *meta)
7411 {
7412 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7413 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7414 	struct bpf_reg_state *cur_iter, *queued_iter;
7415 	int iter_frameno = meta->iter.frameno;
7416 	int iter_spi = meta->iter.spi;
7417 
7418 	BTF_TYPE_EMIT(struct bpf_iter);
7419 
7420 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7421 
7422 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7423 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7424 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7425 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7426 		return -EFAULT;
7427 	}
7428 
7429 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7430 		/* branch out active iter state */
7431 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7432 		if (!queued_st)
7433 			return -ENOMEM;
7434 
7435 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7436 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7437 		queued_iter->iter.depth++;
7438 
7439 		queued_fr = queued_st->frame[queued_st->curframe];
7440 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7441 	}
7442 
7443 	/* switch to DRAINED state, but keep the depth unchanged */
7444 	/* mark current iter state as drained and assume returned NULL */
7445 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7446 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7447 
7448 	return 0;
7449 }
7450 
7451 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7452 {
7453 	return type == ARG_CONST_SIZE ||
7454 	       type == ARG_CONST_SIZE_OR_ZERO;
7455 }
7456 
7457 static bool arg_type_is_release(enum bpf_arg_type type)
7458 {
7459 	return type & OBJ_RELEASE;
7460 }
7461 
7462 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7463 {
7464 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7465 }
7466 
7467 static int int_ptr_type_to_size(enum bpf_arg_type type)
7468 {
7469 	if (type == ARG_PTR_TO_INT)
7470 		return sizeof(u32);
7471 	else if (type == ARG_PTR_TO_LONG)
7472 		return sizeof(u64);
7473 
7474 	return -EINVAL;
7475 }
7476 
7477 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7478 				 const struct bpf_call_arg_meta *meta,
7479 				 enum bpf_arg_type *arg_type)
7480 {
7481 	if (!meta->map_ptr) {
7482 		/* kernel subsystem misconfigured verifier */
7483 		verbose(env, "invalid map_ptr to access map->type\n");
7484 		return -EACCES;
7485 	}
7486 
7487 	switch (meta->map_ptr->map_type) {
7488 	case BPF_MAP_TYPE_SOCKMAP:
7489 	case BPF_MAP_TYPE_SOCKHASH:
7490 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7491 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7492 		} else {
7493 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7494 			return -EINVAL;
7495 		}
7496 		break;
7497 	case BPF_MAP_TYPE_BLOOM_FILTER:
7498 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7499 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7500 		break;
7501 	default:
7502 		break;
7503 	}
7504 	return 0;
7505 }
7506 
7507 struct bpf_reg_types {
7508 	const enum bpf_reg_type types[10];
7509 	u32 *btf_id;
7510 };
7511 
7512 static const struct bpf_reg_types sock_types = {
7513 	.types = {
7514 		PTR_TO_SOCK_COMMON,
7515 		PTR_TO_SOCKET,
7516 		PTR_TO_TCP_SOCK,
7517 		PTR_TO_XDP_SOCK,
7518 	},
7519 };
7520 
7521 #ifdef CONFIG_NET
7522 static const struct bpf_reg_types btf_id_sock_common_types = {
7523 	.types = {
7524 		PTR_TO_SOCK_COMMON,
7525 		PTR_TO_SOCKET,
7526 		PTR_TO_TCP_SOCK,
7527 		PTR_TO_XDP_SOCK,
7528 		PTR_TO_BTF_ID,
7529 		PTR_TO_BTF_ID | PTR_TRUSTED,
7530 	},
7531 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7532 };
7533 #endif
7534 
7535 static const struct bpf_reg_types mem_types = {
7536 	.types = {
7537 		PTR_TO_STACK,
7538 		PTR_TO_PACKET,
7539 		PTR_TO_PACKET_META,
7540 		PTR_TO_MAP_KEY,
7541 		PTR_TO_MAP_VALUE,
7542 		PTR_TO_MEM,
7543 		PTR_TO_MEM | MEM_RINGBUF,
7544 		PTR_TO_BUF,
7545 		PTR_TO_BTF_ID | PTR_TRUSTED,
7546 	},
7547 };
7548 
7549 static const struct bpf_reg_types int_ptr_types = {
7550 	.types = {
7551 		PTR_TO_STACK,
7552 		PTR_TO_PACKET,
7553 		PTR_TO_PACKET_META,
7554 		PTR_TO_MAP_KEY,
7555 		PTR_TO_MAP_VALUE,
7556 	},
7557 };
7558 
7559 static const struct bpf_reg_types spin_lock_types = {
7560 	.types = {
7561 		PTR_TO_MAP_VALUE,
7562 		PTR_TO_BTF_ID | MEM_ALLOC,
7563 	}
7564 };
7565 
7566 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7567 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7568 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7569 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7570 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7571 static const struct bpf_reg_types btf_ptr_types = {
7572 	.types = {
7573 		PTR_TO_BTF_ID,
7574 		PTR_TO_BTF_ID | PTR_TRUSTED,
7575 		PTR_TO_BTF_ID | MEM_RCU,
7576 	},
7577 };
7578 static const struct bpf_reg_types percpu_btf_ptr_types = {
7579 	.types = {
7580 		PTR_TO_BTF_ID | MEM_PERCPU,
7581 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7582 	}
7583 };
7584 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7585 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7586 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7587 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7588 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7589 static const struct bpf_reg_types dynptr_types = {
7590 	.types = {
7591 		PTR_TO_STACK,
7592 		CONST_PTR_TO_DYNPTR,
7593 	}
7594 };
7595 
7596 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7597 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7598 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7599 	[ARG_CONST_SIZE]		= &scalar_types,
7600 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7601 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7602 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7603 	[ARG_PTR_TO_CTX]		= &context_types,
7604 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7605 #ifdef CONFIG_NET
7606 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7607 #endif
7608 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7609 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7610 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7611 	[ARG_PTR_TO_MEM]		= &mem_types,
7612 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7613 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7614 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7615 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7616 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7617 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7618 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7619 	[ARG_PTR_TO_TIMER]		= &timer_types,
7620 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7621 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7622 };
7623 
7624 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7625 			  enum bpf_arg_type arg_type,
7626 			  const u32 *arg_btf_id,
7627 			  struct bpf_call_arg_meta *meta)
7628 {
7629 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7630 	enum bpf_reg_type expected, type = reg->type;
7631 	const struct bpf_reg_types *compatible;
7632 	int i, j;
7633 
7634 	compatible = compatible_reg_types[base_type(arg_type)];
7635 	if (!compatible) {
7636 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7637 		return -EFAULT;
7638 	}
7639 
7640 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7641 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7642 	 *
7643 	 * Same for MAYBE_NULL:
7644 	 *
7645 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7646 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7647 	 *
7648 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7649 	 *
7650 	 * Therefore we fold these flags depending on the arg_type before comparison.
7651 	 */
7652 	if (arg_type & MEM_RDONLY)
7653 		type &= ~MEM_RDONLY;
7654 	if (arg_type & PTR_MAYBE_NULL)
7655 		type &= ~PTR_MAYBE_NULL;
7656 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7657 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7658 
7659 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7660 		type &= ~MEM_ALLOC;
7661 
7662 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7663 		expected = compatible->types[i];
7664 		if (expected == NOT_INIT)
7665 			break;
7666 
7667 		if (type == expected)
7668 			goto found;
7669 	}
7670 
7671 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7672 	for (j = 0; j + 1 < i; j++)
7673 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7674 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7675 	return -EACCES;
7676 
7677 found:
7678 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7679 		return 0;
7680 
7681 	if (compatible == &mem_types) {
7682 		if (!(arg_type & MEM_RDONLY)) {
7683 			verbose(env,
7684 				"%s() may write into memory pointed by R%d type=%s\n",
7685 				func_id_name(meta->func_id),
7686 				regno, reg_type_str(env, reg->type));
7687 			return -EACCES;
7688 		}
7689 		return 0;
7690 	}
7691 
7692 	switch ((int)reg->type) {
7693 	case PTR_TO_BTF_ID:
7694 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7695 	case PTR_TO_BTF_ID | MEM_RCU:
7696 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7697 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7698 	{
7699 		/* For bpf_sk_release, it needs to match against first member
7700 		 * 'struct sock_common', hence make an exception for it. This
7701 		 * allows bpf_sk_release to work for multiple socket types.
7702 		 */
7703 		bool strict_type_match = arg_type_is_release(arg_type) &&
7704 					 meta->func_id != BPF_FUNC_sk_release;
7705 
7706 		if (type_may_be_null(reg->type) &&
7707 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7708 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7709 			return -EACCES;
7710 		}
7711 
7712 		if (!arg_btf_id) {
7713 			if (!compatible->btf_id) {
7714 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7715 				return -EFAULT;
7716 			}
7717 			arg_btf_id = compatible->btf_id;
7718 		}
7719 
7720 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7721 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7722 				return -EACCES;
7723 		} else {
7724 			if (arg_btf_id == BPF_PTR_POISON) {
7725 				verbose(env, "verifier internal error:");
7726 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7727 					regno);
7728 				return -EACCES;
7729 			}
7730 
7731 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7732 						  btf_vmlinux, *arg_btf_id,
7733 						  strict_type_match)) {
7734 				verbose(env, "R%d is of type %s but %s is expected\n",
7735 					regno, btf_type_name(reg->btf, reg->btf_id),
7736 					btf_type_name(btf_vmlinux, *arg_btf_id));
7737 				return -EACCES;
7738 			}
7739 		}
7740 		break;
7741 	}
7742 	case PTR_TO_BTF_ID | MEM_ALLOC:
7743 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7744 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7745 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7746 			return -EFAULT;
7747 		}
7748 		/* Handled by helper specific checks */
7749 		break;
7750 	case PTR_TO_BTF_ID | MEM_PERCPU:
7751 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7752 		/* Handled by helper specific checks */
7753 		break;
7754 	default:
7755 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7756 		return -EFAULT;
7757 	}
7758 	return 0;
7759 }
7760 
7761 static struct btf_field *
7762 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7763 {
7764 	struct btf_field *field;
7765 	struct btf_record *rec;
7766 
7767 	rec = reg_btf_record(reg);
7768 	if (!rec)
7769 		return NULL;
7770 
7771 	field = btf_record_find(rec, off, fields);
7772 	if (!field)
7773 		return NULL;
7774 
7775 	return field;
7776 }
7777 
7778 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7779 			   const struct bpf_reg_state *reg, int regno,
7780 			   enum bpf_arg_type arg_type)
7781 {
7782 	u32 type = reg->type;
7783 
7784 	/* When referenced register is passed to release function, its fixed
7785 	 * offset must be 0.
7786 	 *
7787 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7788 	 * meta->release_regno.
7789 	 */
7790 	if (arg_type_is_release(arg_type)) {
7791 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7792 		 * may not directly point to the object being released, but to
7793 		 * dynptr pointing to such object, which might be at some offset
7794 		 * on the stack. In that case, we simply to fallback to the
7795 		 * default handling.
7796 		 */
7797 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7798 			return 0;
7799 
7800 		if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7801 			if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7802 				return __check_ptr_off_reg(env, reg, regno, true);
7803 
7804 			verbose(env, "R%d must have zero offset when passed to release func\n",
7805 				regno);
7806 			verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
7807 				btf_type_name(reg->btf, reg->btf_id), reg->off);
7808 			return -EINVAL;
7809 		}
7810 
7811 		/* Doing check_ptr_off_reg check for the offset will catch this
7812 		 * because fixed_off_ok is false, but checking here allows us
7813 		 * to give the user a better error message.
7814 		 */
7815 		if (reg->off) {
7816 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7817 				regno);
7818 			return -EINVAL;
7819 		}
7820 		return __check_ptr_off_reg(env, reg, regno, false);
7821 	}
7822 
7823 	switch (type) {
7824 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
7825 	case PTR_TO_STACK:
7826 	case PTR_TO_PACKET:
7827 	case PTR_TO_PACKET_META:
7828 	case PTR_TO_MAP_KEY:
7829 	case PTR_TO_MAP_VALUE:
7830 	case PTR_TO_MEM:
7831 	case PTR_TO_MEM | MEM_RDONLY:
7832 	case PTR_TO_MEM | MEM_RINGBUF:
7833 	case PTR_TO_BUF:
7834 	case PTR_TO_BUF | MEM_RDONLY:
7835 	case SCALAR_VALUE:
7836 		return 0;
7837 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
7838 	 * fixed offset.
7839 	 */
7840 	case PTR_TO_BTF_ID:
7841 	case PTR_TO_BTF_ID | MEM_ALLOC:
7842 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7843 	case PTR_TO_BTF_ID | MEM_RCU:
7844 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
7845 		/* When referenced PTR_TO_BTF_ID is passed to release function,
7846 		 * its fixed offset must be 0. In the other cases, fixed offset
7847 		 * can be non-zero. This was already checked above. So pass
7848 		 * fixed_off_ok as true to allow fixed offset for all other
7849 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
7850 		 * still need to do checks instead of returning.
7851 		 */
7852 		return __check_ptr_off_reg(env, reg, regno, true);
7853 	default:
7854 		return __check_ptr_off_reg(env, reg, regno, false);
7855 	}
7856 }
7857 
7858 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
7859 						const struct bpf_func_proto *fn,
7860 						struct bpf_reg_state *regs)
7861 {
7862 	struct bpf_reg_state *state = NULL;
7863 	int i;
7864 
7865 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
7866 		if (arg_type_is_dynptr(fn->arg_type[i])) {
7867 			if (state) {
7868 				verbose(env, "verifier internal error: multiple dynptr args\n");
7869 				return NULL;
7870 			}
7871 			state = &regs[BPF_REG_1 + i];
7872 		}
7873 
7874 	if (!state)
7875 		verbose(env, "verifier internal error: no dynptr arg found\n");
7876 
7877 	return state;
7878 }
7879 
7880 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7881 {
7882 	struct bpf_func_state *state = func(env, reg);
7883 	int spi;
7884 
7885 	if (reg->type == CONST_PTR_TO_DYNPTR)
7886 		return reg->id;
7887 	spi = dynptr_get_spi(env, reg);
7888 	if (spi < 0)
7889 		return spi;
7890 	return state->stack[spi].spilled_ptr.id;
7891 }
7892 
7893 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7894 {
7895 	struct bpf_func_state *state = func(env, reg);
7896 	int spi;
7897 
7898 	if (reg->type == CONST_PTR_TO_DYNPTR)
7899 		return reg->ref_obj_id;
7900 	spi = dynptr_get_spi(env, reg);
7901 	if (spi < 0)
7902 		return spi;
7903 	return state->stack[spi].spilled_ptr.ref_obj_id;
7904 }
7905 
7906 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
7907 					    struct bpf_reg_state *reg)
7908 {
7909 	struct bpf_func_state *state = func(env, reg);
7910 	int spi;
7911 
7912 	if (reg->type == CONST_PTR_TO_DYNPTR)
7913 		return reg->dynptr.type;
7914 
7915 	spi = __get_spi(reg->off);
7916 	if (spi < 0) {
7917 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
7918 		return BPF_DYNPTR_TYPE_INVALID;
7919 	}
7920 
7921 	return state->stack[spi].spilled_ptr.dynptr.type;
7922 }
7923 
7924 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
7925 			  struct bpf_call_arg_meta *meta,
7926 			  const struct bpf_func_proto *fn,
7927 			  int insn_idx)
7928 {
7929 	u32 regno = BPF_REG_1 + arg;
7930 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7931 	enum bpf_arg_type arg_type = fn->arg_type[arg];
7932 	enum bpf_reg_type type = reg->type;
7933 	u32 *arg_btf_id = NULL;
7934 	int err = 0;
7935 
7936 	if (arg_type == ARG_DONTCARE)
7937 		return 0;
7938 
7939 	err = check_reg_arg(env, regno, SRC_OP);
7940 	if (err)
7941 		return err;
7942 
7943 	if (arg_type == ARG_ANYTHING) {
7944 		if (is_pointer_value(env, regno)) {
7945 			verbose(env, "R%d leaks addr into helper function\n",
7946 				regno);
7947 			return -EACCES;
7948 		}
7949 		return 0;
7950 	}
7951 
7952 	if (type_is_pkt_pointer(type) &&
7953 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
7954 		verbose(env, "helper access to the packet is not allowed\n");
7955 		return -EACCES;
7956 	}
7957 
7958 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
7959 		err = resolve_map_arg_type(env, meta, &arg_type);
7960 		if (err)
7961 			return err;
7962 	}
7963 
7964 	if (register_is_null(reg) && type_may_be_null(arg_type))
7965 		/* A NULL register has a SCALAR_VALUE type, so skip
7966 		 * type checking.
7967 		 */
7968 		goto skip_type_check;
7969 
7970 	/* arg_btf_id and arg_size are in a union. */
7971 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
7972 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
7973 		arg_btf_id = fn->arg_btf_id[arg];
7974 
7975 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
7976 	if (err)
7977 		return err;
7978 
7979 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
7980 	if (err)
7981 		return err;
7982 
7983 skip_type_check:
7984 	if (arg_type_is_release(arg_type)) {
7985 		if (arg_type_is_dynptr(arg_type)) {
7986 			struct bpf_func_state *state = func(env, reg);
7987 			int spi;
7988 
7989 			/* Only dynptr created on stack can be released, thus
7990 			 * the get_spi and stack state checks for spilled_ptr
7991 			 * should only be done before process_dynptr_func for
7992 			 * PTR_TO_STACK.
7993 			 */
7994 			if (reg->type == PTR_TO_STACK) {
7995 				spi = dynptr_get_spi(env, reg);
7996 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
7997 					verbose(env, "arg %d is an unacquired reference\n", regno);
7998 					return -EINVAL;
7999 				}
8000 			} else {
8001 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8002 				return -EINVAL;
8003 			}
8004 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8005 			verbose(env, "R%d must be referenced when passed to release function\n",
8006 				regno);
8007 			return -EINVAL;
8008 		}
8009 		if (meta->release_regno) {
8010 			verbose(env, "verifier internal error: more than one release argument\n");
8011 			return -EFAULT;
8012 		}
8013 		meta->release_regno = regno;
8014 	}
8015 
8016 	if (reg->ref_obj_id) {
8017 		if (meta->ref_obj_id) {
8018 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8019 				regno, reg->ref_obj_id,
8020 				meta->ref_obj_id);
8021 			return -EFAULT;
8022 		}
8023 		meta->ref_obj_id = reg->ref_obj_id;
8024 	}
8025 
8026 	switch (base_type(arg_type)) {
8027 	case ARG_CONST_MAP_PTR:
8028 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8029 		if (meta->map_ptr) {
8030 			/* Use map_uid (which is unique id of inner map) to reject:
8031 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8032 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8033 			 * if (inner_map1 && inner_map2) {
8034 			 *     timer = bpf_map_lookup_elem(inner_map1);
8035 			 *     if (timer)
8036 			 *         // mismatch would have been allowed
8037 			 *         bpf_timer_init(timer, inner_map2);
8038 			 * }
8039 			 *
8040 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8041 			 */
8042 			if (meta->map_ptr != reg->map_ptr ||
8043 			    meta->map_uid != reg->map_uid) {
8044 				verbose(env,
8045 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8046 					meta->map_uid, reg->map_uid);
8047 				return -EINVAL;
8048 			}
8049 		}
8050 		meta->map_ptr = reg->map_ptr;
8051 		meta->map_uid = reg->map_uid;
8052 		break;
8053 	case ARG_PTR_TO_MAP_KEY:
8054 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8055 		 * check that [key, key + map->key_size) are within
8056 		 * stack limits and initialized
8057 		 */
8058 		if (!meta->map_ptr) {
8059 			/* in function declaration map_ptr must come before
8060 			 * map_key, so that it's verified and known before
8061 			 * we have to check map_key here. Otherwise it means
8062 			 * that kernel subsystem misconfigured verifier
8063 			 */
8064 			verbose(env, "invalid map_ptr to access map->key\n");
8065 			return -EACCES;
8066 		}
8067 		err = check_helper_mem_access(env, regno,
8068 					      meta->map_ptr->key_size, false,
8069 					      NULL);
8070 		break;
8071 	case ARG_PTR_TO_MAP_VALUE:
8072 		if (type_may_be_null(arg_type) && register_is_null(reg))
8073 			return 0;
8074 
8075 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8076 		 * check [value, value + map->value_size) validity
8077 		 */
8078 		if (!meta->map_ptr) {
8079 			/* kernel subsystem misconfigured verifier */
8080 			verbose(env, "invalid map_ptr to access map->value\n");
8081 			return -EACCES;
8082 		}
8083 		meta->raw_mode = arg_type & MEM_UNINIT;
8084 		err = check_helper_mem_access(env, regno,
8085 					      meta->map_ptr->value_size, false,
8086 					      meta);
8087 		break;
8088 	case ARG_PTR_TO_PERCPU_BTF_ID:
8089 		if (!reg->btf_id) {
8090 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8091 			return -EACCES;
8092 		}
8093 		meta->ret_btf = reg->btf;
8094 		meta->ret_btf_id = reg->btf_id;
8095 		break;
8096 	case ARG_PTR_TO_SPIN_LOCK:
8097 		if (in_rbtree_lock_required_cb(env)) {
8098 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8099 			return -EACCES;
8100 		}
8101 		if (meta->func_id == BPF_FUNC_spin_lock) {
8102 			err = process_spin_lock(env, regno, true);
8103 			if (err)
8104 				return err;
8105 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8106 			err = process_spin_lock(env, regno, false);
8107 			if (err)
8108 				return err;
8109 		} else {
8110 			verbose(env, "verifier internal error\n");
8111 			return -EFAULT;
8112 		}
8113 		break;
8114 	case ARG_PTR_TO_TIMER:
8115 		err = process_timer_func(env, regno, meta);
8116 		if (err)
8117 			return err;
8118 		break;
8119 	case ARG_PTR_TO_FUNC:
8120 		meta->subprogno = reg->subprogno;
8121 		break;
8122 	case ARG_PTR_TO_MEM:
8123 		/* The access to this pointer is only checked when we hit the
8124 		 * next is_mem_size argument below.
8125 		 */
8126 		meta->raw_mode = arg_type & MEM_UNINIT;
8127 		if (arg_type & MEM_FIXED_SIZE) {
8128 			err = check_helper_mem_access(env, regno,
8129 						      fn->arg_size[arg], false,
8130 						      meta);
8131 		}
8132 		break;
8133 	case ARG_CONST_SIZE:
8134 		err = check_mem_size_reg(env, reg, regno, false, meta);
8135 		break;
8136 	case ARG_CONST_SIZE_OR_ZERO:
8137 		err = check_mem_size_reg(env, reg, regno, true, meta);
8138 		break;
8139 	case ARG_PTR_TO_DYNPTR:
8140 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8141 		if (err)
8142 			return err;
8143 		break;
8144 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8145 		if (!tnum_is_const(reg->var_off)) {
8146 			verbose(env, "R%d is not a known constant'\n",
8147 				regno);
8148 			return -EACCES;
8149 		}
8150 		meta->mem_size = reg->var_off.value;
8151 		err = mark_chain_precision(env, regno);
8152 		if (err)
8153 			return err;
8154 		break;
8155 	case ARG_PTR_TO_INT:
8156 	case ARG_PTR_TO_LONG:
8157 	{
8158 		int size = int_ptr_type_to_size(arg_type);
8159 
8160 		err = check_helper_mem_access(env, regno, size, false, meta);
8161 		if (err)
8162 			return err;
8163 		err = check_ptr_alignment(env, reg, 0, size, true);
8164 		break;
8165 	}
8166 	case ARG_PTR_TO_CONST_STR:
8167 	{
8168 		struct bpf_map *map = reg->map_ptr;
8169 		int map_off;
8170 		u64 map_addr;
8171 		char *str_ptr;
8172 
8173 		if (!bpf_map_is_rdonly(map)) {
8174 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8175 			return -EACCES;
8176 		}
8177 
8178 		if (!tnum_is_const(reg->var_off)) {
8179 			verbose(env, "R%d is not a constant address'\n", regno);
8180 			return -EACCES;
8181 		}
8182 
8183 		if (!map->ops->map_direct_value_addr) {
8184 			verbose(env, "no direct value access support for this map type\n");
8185 			return -EACCES;
8186 		}
8187 
8188 		err = check_map_access(env, regno, reg->off,
8189 				       map->value_size - reg->off, false,
8190 				       ACCESS_HELPER);
8191 		if (err)
8192 			return err;
8193 
8194 		map_off = reg->off + reg->var_off.value;
8195 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8196 		if (err) {
8197 			verbose(env, "direct value access on string failed\n");
8198 			return err;
8199 		}
8200 
8201 		str_ptr = (char *)(long)(map_addr);
8202 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8203 			verbose(env, "string is not zero-terminated\n");
8204 			return -EINVAL;
8205 		}
8206 		break;
8207 	}
8208 	case ARG_PTR_TO_KPTR:
8209 		err = process_kptr_func(env, regno, meta);
8210 		if (err)
8211 			return err;
8212 		break;
8213 	}
8214 
8215 	return err;
8216 }
8217 
8218 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8219 {
8220 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8221 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8222 
8223 	if (func_id != BPF_FUNC_map_update_elem)
8224 		return false;
8225 
8226 	/* It's not possible to get access to a locked struct sock in these
8227 	 * contexts, so updating is safe.
8228 	 */
8229 	switch (type) {
8230 	case BPF_PROG_TYPE_TRACING:
8231 		if (eatype == BPF_TRACE_ITER)
8232 			return true;
8233 		break;
8234 	case BPF_PROG_TYPE_SOCKET_FILTER:
8235 	case BPF_PROG_TYPE_SCHED_CLS:
8236 	case BPF_PROG_TYPE_SCHED_ACT:
8237 	case BPF_PROG_TYPE_XDP:
8238 	case BPF_PROG_TYPE_SK_REUSEPORT:
8239 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8240 	case BPF_PROG_TYPE_SK_LOOKUP:
8241 		return true;
8242 	default:
8243 		break;
8244 	}
8245 
8246 	verbose(env, "cannot update sockmap in this context\n");
8247 	return false;
8248 }
8249 
8250 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8251 {
8252 	return env->prog->jit_requested &&
8253 	       bpf_jit_supports_subprog_tailcalls();
8254 }
8255 
8256 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8257 					struct bpf_map *map, int func_id)
8258 {
8259 	if (!map)
8260 		return 0;
8261 
8262 	/* We need a two way check, first is from map perspective ... */
8263 	switch (map->map_type) {
8264 	case BPF_MAP_TYPE_PROG_ARRAY:
8265 		if (func_id != BPF_FUNC_tail_call)
8266 			goto error;
8267 		break;
8268 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8269 		if (func_id != BPF_FUNC_perf_event_read &&
8270 		    func_id != BPF_FUNC_perf_event_output &&
8271 		    func_id != BPF_FUNC_skb_output &&
8272 		    func_id != BPF_FUNC_perf_event_read_value &&
8273 		    func_id != BPF_FUNC_xdp_output)
8274 			goto error;
8275 		break;
8276 	case BPF_MAP_TYPE_RINGBUF:
8277 		if (func_id != BPF_FUNC_ringbuf_output &&
8278 		    func_id != BPF_FUNC_ringbuf_reserve &&
8279 		    func_id != BPF_FUNC_ringbuf_query &&
8280 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8281 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8282 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8283 			goto error;
8284 		break;
8285 	case BPF_MAP_TYPE_USER_RINGBUF:
8286 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8287 			goto error;
8288 		break;
8289 	case BPF_MAP_TYPE_STACK_TRACE:
8290 		if (func_id != BPF_FUNC_get_stackid)
8291 			goto error;
8292 		break;
8293 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8294 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8295 		    func_id != BPF_FUNC_current_task_under_cgroup)
8296 			goto error;
8297 		break;
8298 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8299 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8300 		if (func_id != BPF_FUNC_get_local_storage)
8301 			goto error;
8302 		break;
8303 	case BPF_MAP_TYPE_DEVMAP:
8304 	case BPF_MAP_TYPE_DEVMAP_HASH:
8305 		if (func_id != BPF_FUNC_redirect_map &&
8306 		    func_id != BPF_FUNC_map_lookup_elem)
8307 			goto error;
8308 		break;
8309 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8310 	 * appear.
8311 	 */
8312 	case BPF_MAP_TYPE_CPUMAP:
8313 		if (func_id != BPF_FUNC_redirect_map)
8314 			goto error;
8315 		break;
8316 	case BPF_MAP_TYPE_XSKMAP:
8317 		if (func_id != BPF_FUNC_redirect_map &&
8318 		    func_id != BPF_FUNC_map_lookup_elem)
8319 			goto error;
8320 		break;
8321 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8322 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8323 		if (func_id != BPF_FUNC_map_lookup_elem)
8324 			goto error;
8325 		break;
8326 	case BPF_MAP_TYPE_SOCKMAP:
8327 		if (func_id != BPF_FUNC_sk_redirect_map &&
8328 		    func_id != BPF_FUNC_sock_map_update &&
8329 		    func_id != BPF_FUNC_map_delete_elem &&
8330 		    func_id != BPF_FUNC_msg_redirect_map &&
8331 		    func_id != BPF_FUNC_sk_select_reuseport &&
8332 		    func_id != BPF_FUNC_map_lookup_elem &&
8333 		    !may_update_sockmap(env, func_id))
8334 			goto error;
8335 		break;
8336 	case BPF_MAP_TYPE_SOCKHASH:
8337 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8338 		    func_id != BPF_FUNC_sock_hash_update &&
8339 		    func_id != BPF_FUNC_map_delete_elem &&
8340 		    func_id != BPF_FUNC_msg_redirect_hash &&
8341 		    func_id != BPF_FUNC_sk_select_reuseport &&
8342 		    func_id != BPF_FUNC_map_lookup_elem &&
8343 		    !may_update_sockmap(env, func_id))
8344 			goto error;
8345 		break;
8346 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8347 		if (func_id != BPF_FUNC_sk_select_reuseport)
8348 			goto error;
8349 		break;
8350 	case BPF_MAP_TYPE_QUEUE:
8351 	case BPF_MAP_TYPE_STACK:
8352 		if (func_id != BPF_FUNC_map_peek_elem &&
8353 		    func_id != BPF_FUNC_map_pop_elem &&
8354 		    func_id != BPF_FUNC_map_push_elem)
8355 			goto error;
8356 		break;
8357 	case BPF_MAP_TYPE_SK_STORAGE:
8358 		if (func_id != BPF_FUNC_sk_storage_get &&
8359 		    func_id != BPF_FUNC_sk_storage_delete &&
8360 		    func_id != BPF_FUNC_kptr_xchg)
8361 			goto error;
8362 		break;
8363 	case BPF_MAP_TYPE_INODE_STORAGE:
8364 		if (func_id != BPF_FUNC_inode_storage_get &&
8365 		    func_id != BPF_FUNC_inode_storage_delete &&
8366 		    func_id != BPF_FUNC_kptr_xchg)
8367 			goto error;
8368 		break;
8369 	case BPF_MAP_TYPE_TASK_STORAGE:
8370 		if (func_id != BPF_FUNC_task_storage_get &&
8371 		    func_id != BPF_FUNC_task_storage_delete &&
8372 		    func_id != BPF_FUNC_kptr_xchg)
8373 			goto error;
8374 		break;
8375 	case BPF_MAP_TYPE_CGRP_STORAGE:
8376 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8377 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8378 		    func_id != BPF_FUNC_kptr_xchg)
8379 			goto error;
8380 		break;
8381 	case BPF_MAP_TYPE_BLOOM_FILTER:
8382 		if (func_id != BPF_FUNC_map_peek_elem &&
8383 		    func_id != BPF_FUNC_map_push_elem)
8384 			goto error;
8385 		break;
8386 	default:
8387 		break;
8388 	}
8389 
8390 	/* ... and second from the function itself. */
8391 	switch (func_id) {
8392 	case BPF_FUNC_tail_call:
8393 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8394 			goto error;
8395 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8396 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8397 			return -EINVAL;
8398 		}
8399 		break;
8400 	case BPF_FUNC_perf_event_read:
8401 	case BPF_FUNC_perf_event_output:
8402 	case BPF_FUNC_perf_event_read_value:
8403 	case BPF_FUNC_skb_output:
8404 	case BPF_FUNC_xdp_output:
8405 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8406 			goto error;
8407 		break;
8408 	case BPF_FUNC_ringbuf_output:
8409 	case BPF_FUNC_ringbuf_reserve:
8410 	case BPF_FUNC_ringbuf_query:
8411 	case BPF_FUNC_ringbuf_reserve_dynptr:
8412 	case BPF_FUNC_ringbuf_submit_dynptr:
8413 	case BPF_FUNC_ringbuf_discard_dynptr:
8414 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8415 			goto error;
8416 		break;
8417 	case BPF_FUNC_user_ringbuf_drain:
8418 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8419 			goto error;
8420 		break;
8421 	case BPF_FUNC_get_stackid:
8422 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8423 			goto error;
8424 		break;
8425 	case BPF_FUNC_current_task_under_cgroup:
8426 	case BPF_FUNC_skb_under_cgroup:
8427 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8428 			goto error;
8429 		break;
8430 	case BPF_FUNC_redirect_map:
8431 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8432 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8433 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8434 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8435 			goto error;
8436 		break;
8437 	case BPF_FUNC_sk_redirect_map:
8438 	case BPF_FUNC_msg_redirect_map:
8439 	case BPF_FUNC_sock_map_update:
8440 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8441 			goto error;
8442 		break;
8443 	case BPF_FUNC_sk_redirect_hash:
8444 	case BPF_FUNC_msg_redirect_hash:
8445 	case BPF_FUNC_sock_hash_update:
8446 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8447 			goto error;
8448 		break;
8449 	case BPF_FUNC_get_local_storage:
8450 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8451 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8452 			goto error;
8453 		break;
8454 	case BPF_FUNC_sk_select_reuseport:
8455 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8456 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8457 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8458 			goto error;
8459 		break;
8460 	case BPF_FUNC_map_pop_elem:
8461 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8462 		    map->map_type != BPF_MAP_TYPE_STACK)
8463 			goto error;
8464 		break;
8465 	case BPF_FUNC_map_peek_elem:
8466 	case BPF_FUNC_map_push_elem:
8467 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8468 		    map->map_type != BPF_MAP_TYPE_STACK &&
8469 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8470 			goto error;
8471 		break;
8472 	case BPF_FUNC_map_lookup_percpu_elem:
8473 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8474 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8475 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8476 			goto error;
8477 		break;
8478 	case BPF_FUNC_sk_storage_get:
8479 	case BPF_FUNC_sk_storage_delete:
8480 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8481 			goto error;
8482 		break;
8483 	case BPF_FUNC_inode_storage_get:
8484 	case BPF_FUNC_inode_storage_delete:
8485 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8486 			goto error;
8487 		break;
8488 	case BPF_FUNC_task_storage_get:
8489 	case BPF_FUNC_task_storage_delete:
8490 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8491 			goto error;
8492 		break;
8493 	case BPF_FUNC_cgrp_storage_get:
8494 	case BPF_FUNC_cgrp_storage_delete:
8495 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8496 			goto error;
8497 		break;
8498 	default:
8499 		break;
8500 	}
8501 
8502 	return 0;
8503 error:
8504 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8505 		map->map_type, func_id_name(func_id), func_id);
8506 	return -EINVAL;
8507 }
8508 
8509 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8510 {
8511 	int count = 0;
8512 
8513 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8514 		count++;
8515 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8516 		count++;
8517 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8518 		count++;
8519 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8520 		count++;
8521 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8522 		count++;
8523 
8524 	/* We only support one arg being in raw mode at the moment,
8525 	 * which is sufficient for the helper functions we have
8526 	 * right now.
8527 	 */
8528 	return count <= 1;
8529 }
8530 
8531 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8532 {
8533 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8534 	bool has_size = fn->arg_size[arg] != 0;
8535 	bool is_next_size = false;
8536 
8537 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8538 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8539 
8540 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8541 		return is_next_size;
8542 
8543 	return has_size == is_next_size || is_next_size == is_fixed;
8544 }
8545 
8546 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8547 {
8548 	/* bpf_xxx(..., buf, len) call will access 'len'
8549 	 * bytes from memory 'buf'. Both arg types need
8550 	 * to be paired, so make sure there's no buggy
8551 	 * helper function specification.
8552 	 */
8553 	if (arg_type_is_mem_size(fn->arg1_type) ||
8554 	    check_args_pair_invalid(fn, 0) ||
8555 	    check_args_pair_invalid(fn, 1) ||
8556 	    check_args_pair_invalid(fn, 2) ||
8557 	    check_args_pair_invalid(fn, 3) ||
8558 	    check_args_pair_invalid(fn, 4))
8559 		return false;
8560 
8561 	return true;
8562 }
8563 
8564 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8565 {
8566 	int i;
8567 
8568 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8569 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8570 			return !!fn->arg_btf_id[i];
8571 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8572 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8573 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8574 		    /* arg_btf_id and arg_size are in a union. */
8575 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8576 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8577 			return false;
8578 	}
8579 
8580 	return true;
8581 }
8582 
8583 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8584 {
8585 	return check_raw_mode_ok(fn) &&
8586 	       check_arg_pair_ok(fn) &&
8587 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8588 }
8589 
8590 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8591  * are now invalid, so turn them into unknown SCALAR_VALUE.
8592  *
8593  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8594  * since these slices point to packet data.
8595  */
8596 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8597 {
8598 	struct bpf_func_state *state;
8599 	struct bpf_reg_state *reg;
8600 
8601 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8602 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8603 			mark_reg_invalid(env, reg);
8604 	}));
8605 }
8606 
8607 enum {
8608 	AT_PKT_END = -1,
8609 	BEYOND_PKT_END = -2,
8610 };
8611 
8612 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8613 {
8614 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8615 	struct bpf_reg_state *reg = &state->regs[regn];
8616 
8617 	if (reg->type != PTR_TO_PACKET)
8618 		/* PTR_TO_PACKET_META is not supported yet */
8619 		return;
8620 
8621 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8622 	 * How far beyond pkt_end it goes is unknown.
8623 	 * if (!range_open) it's the case of pkt >= pkt_end
8624 	 * if (range_open) it's the case of pkt > pkt_end
8625 	 * hence this pointer is at least 1 byte bigger than pkt_end
8626 	 */
8627 	if (range_open)
8628 		reg->range = BEYOND_PKT_END;
8629 	else
8630 		reg->range = AT_PKT_END;
8631 }
8632 
8633 /* The pointer with the specified id has released its reference to kernel
8634  * resources. Identify all copies of the same pointer and clear the reference.
8635  */
8636 static int release_reference(struct bpf_verifier_env *env,
8637 			     int ref_obj_id)
8638 {
8639 	struct bpf_func_state *state;
8640 	struct bpf_reg_state *reg;
8641 	int err;
8642 
8643 	err = release_reference_state(cur_func(env), ref_obj_id);
8644 	if (err)
8645 		return err;
8646 
8647 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8648 		if (reg->ref_obj_id == ref_obj_id)
8649 			mark_reg_invalid(env, reg);
8650 	}));
8651 
8652 	return 0;
8653 }
8654 
8655 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8656 {
8657 	struct bpf_func_state *unused;
8658 	struct bpf_reg_state *reg;
8659 
8660 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8661 		if (type_is_non_owning_ref(reg->type))
8662 			mark_reg_invalid(env, reg);
8663 	}));
8664 }
8665 
8666 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8667 				    struct bpf_reg_state *regs)
8668 {
8669 	int i;
8670 
8671 	/* after the call registers r0 - r5 were scratched */
8672 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8673 		mark_reg_not_init(env, regs, caller_saved[i]);
8674 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8675 	}
8676 }
8677 
8678 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8679 				   struct bpf_func_state *caller,
8680 				   struct bpf_func_state *callee,
8681 				   int insn_idx);
8682 
8683 static int set_callee_state(struct bpf_verifier_env *env,
8684 			    struct bpf_func_state *caller,
8685 			    struct bpf_func_state *callee, int insn_idx);
8686 
8687 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8688 			     int *insn_idx, int subprog,
8689 			     set_callee_state_fn set_callee_state_cb)
8690 {
8691 	struct bpf_verifier_state *state = env->cur_state;
8692 	struct bpf_func_state *caller, *callee;
8693 	int err;
8694 
8695 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8696 		verbose(env, "the call stack of %d frames is too deep\n",
8697 			state->curframe + 2);
8698 		return -E2BIG;
8699 	}
8700 
8701 	caller = state->frame[state->curframe];
8702 	if (state->frame[state->curframe + 1]) {
8703 		verbose(env, "verifier bug. Frame %d already allocated\n",
8704 			state->curframe + 1);
8705 		return -EFAULT;
8706 	}
8707 
8708 	err = btf_check_subprog_call(env, subprog, caller->regs);
8709 	if (err == -EFAULT)
8710 		return err;
8711 	if (subprog_is_global(env, subprog)) {
8712 		if (err) {
8713 			verbose(env, "Caller passes invalid args into func#%d\n",
8714 				subprog);
8715 			return err;
8716 		} else {
8717 			if (env->log.level & BPF_LOG_LEVEL)
8718 				verbose(env,
8719 					"Func#%d is global and valid. Skipping.\n",
8720 					subprog);
8721 			clear_caller_saved_regs(env, caller->regs);
8722 
8723 			/* All global functions return a 64-bit SCALAR_VALUE */
8724 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8725 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8726 
8727 			/* continue with next insn after call */
8728 			return 0;
8729 		}
8730 	}
8731 
8732 	/* set_callee_state is used for direct subprog calls, but we are
8733 	 * interested in validating only BPF helpers that can call subprogs as
8734 	 * callbacks
8735 	 */
8736 	if (set_callee_state_cb != set_callee_state) {
8737 		if (bpf_pseudo_kfunc_call(insn) &&
8738 		    !is_callback_calling_kfunc(insn->imm)) {
8739 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8740 				func_id_name(insn->imm), insn->imm);
8741 			return -EFAULT;
8742 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8743 			   !is_callback_calling_function(insn->imm)) { /* helper */
8744 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8745 				func_id_name(insn->imm), insn->imm);
8746 			return -EFAULT;
8747 		}
8748 	}
8749 
8750 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8751 	    insn->src_reg == 0 &&
8752 	    insn->imm == BPF_FUNC_timer_set_callback) {
8753 		struct bpf_verifier_state *async_cb;
8754 
8755 		/* there is no real recursion here. timer callbacks are async */
8756 		env->subprog_info[subprog].is_async_cb = true;
8757 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8758 					 *insn_idx, subprog);
8759 		if (!async_cb)
8760 			return -EFAULT;
8761 		callee = async_cb->frame[0];
8762 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8763 
8764 		/* Convert bpf_timer_set_callback() args into timer callback args */
8765 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8766 		if (err)
8767 			return err;
8768 
8769 		clear_caller_saved_regs(env, caller->regs);
8770 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8771 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8772 		/* continue with next insn after call */
8773 		return 0;
8774 	}
8775 
8776 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8777 	if (!callee)
8778 		return -ENOMEM;
8779 	state->frame[state->curframe + 1] = callee;
8780 
8781 	/* callee cannot access r0, r6 - r9 for reading and has to write
8782 	 * into its own stack before reading from it.
8783 	 * callee can read/write into caller's stack
8784 	 */
8785 	init_func_state(env, callee,
8786 			/* remember the callsite, it will be used by bpf_exit */
8787 			*insn_idx /* callsite */,
8788 			state->curframe + 1 /* frameno within this callchain */,
8789 			subprog /* subprog number within this prog */);
8790 
8791 	/* Transfer references to the callee */
8792 	err = copy_reference_state(callee, caller);
8793 	if (err)
8794 		goto err_out;
8795 
8796 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8797 	if (err)
8798 		goto err_out;
8799 
8800 	clear_caller_saved_regs(env, caller->regs);
8801 
8802 	/* only increment it after check_reg_arg() finished */
8803 	state->curframe++;
8804 
8805 	/* and go analyze first insn of the callee */
8806 	*insn_idx = env->subprog_info[subprog].start - 1;
8807 
8808 	if (env->log.level & BPF_LOG_LEVEL) {
8809 		verbose(env, "caller:\n");
8810 		print_verifier_state(env, caller, true);
8811 		verbose(env, "callee:\n");
8812 		print_verifier_state(env, callee, true);
8813 	}
8814 	return 0;
8815 
8816 err_out:
8817 	free_func_state(callee);
8818 	state->frame[state->curframe + 1] = NULL;
8819 	return err;
8820 }
8821 
8822 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8823 				   struct bpf_func_state *caller,
8824 				   struct bpf_func_state *callee)
8825 {
8826 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8827 	 *      void *callback_ctx, u64 flags);
8828 	 * callback_fn(struct bpf_map *map, void *key, void *value,
8829 	 *      void *callback_ctx);
8830 	 */
8831 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8832 
8833 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8834 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8835 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8836 
8837 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8838 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8839 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8840 
8841 	/* pointer to stack or null */
8842 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
8843 
8844 	/* unused */
8845 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8846 	return 0;
8847 }
8848 
8849 static int set_callee_state(struct bpf_verifier_env *env,
8850 			    struct bpf_func_state *caller,
8851 			    struct bpf_func_state *callee, int insn_idx)
8852 {
8853 	int i;
8854 
8855 	/* copy r1 - r5 args that callee can access.  The copy includes parent
8856 	 * pointers, which connects us up to the liveness chain
8857 	 */
8858 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
8859 		callee->regs[i] = caller->regs[i];
8860 	return 0;
8861 }
8862 
8863 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8864 			   int *insn_idx)
8865 {
8866 	int subprog, target_insn;
8867 
8868 	target_insn = *insn_idx + insn->imm + 1;
8869 	subprog = find_subprog(env, target_insn);
8870 	if (subprog < 0) {
8871 		verbose(env, "verifier bug. No program starts at insn %d\n",
8872 			target_insn);
8873 		return -EFAULT;
8874 	}
8875 
8876 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
8877 }
8878 
8879 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
8880 				       struct bpf_func_state *caller,
8881 				       struct bpf_func_state *callee,
8882 				       int insn_idx)
8883 {
8884 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
8885 	struct bpf_map *map;
8886 	int err;
8887 
8888 	if (bpf_map_ptr_poisoned(insn_aux)) {
8889 		verbose(env, "tail_call abusing map_ptr\n");
8890 		return -EINVAL;
8891 	}
8892 
8893 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
8894 	if (!map->ops->map_set_for_each_callback_args ||
8895 	    !map->ops->map_for_each_callback) {
8896 		verbose(env, "callback function not allowed for map\n");
8897 		return -ENOTSUPP;
8898 	}
8899 
8900 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
8901 	if (err)
8902 		return err;
8903 
8904 	callee->in_callback_fn = true;
8905 	callee->callback_ret_range = tnum_range(0, 1);
8906 	return 0;
8907 }
8908 
8909 static int set_loop_callback_state(struct bpf_verifier_env *env,
8910 				   struct bpf_func_state *caller,
8911 				   struct bpf_func_state *callee,
8912 				   int insn_idx)
8913 {
8914 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
8915 	 *	    u64 flags);
8916 	 * callback_fn(u32 index, void *callback_ctx);
8917 	 */
8918 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
8919 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8920 
8921 	/* unused */
8922 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8923 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8924 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8925 
8926 	callee->in_callback_fn = true;
8927 	callee->callback_ret_range = tnum_range(0, 1);
8928 	return 0;
8929 }
8930 
8931 static int set_timer_callback_state(struct bpf_verifier_env *env,
8932 				    struct bpf_func_state *caller,
8933 				    struct bpf_func_state *callee,
8934 				    int insn_idx)
8935 {
8936 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
8937 
8938 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
8939 	 * callback_fn(struct bpf_map *map, void *key, void *value);
8940 	 */
8941 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
8942 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
8943 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
8944 
8945 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8946 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8947 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
8948 
8949 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8950 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8951 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
8952 
8953 	/* unused */
8954 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8955 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8956 	callee->in_async_callback_fn = true;
8957 	callee->callback_ret_range = tnum_range(0, 1);
8958 	return 0;
8959 }
8960 
8961 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
8962 				       struct bpf_func_state *caller,
8963 				       struct bpf_func_state *callee,
8964 				       int insn_idx)
8965 {
8966 	/* bpf_find_vma(struct task_struct *task, u64 addr,
8967 	 *               void *callback_fn, void *callback_ctx, u64 flags)
8968 	 * (callback_fn)(struct task_struct *task,
8969 	 *               struct vm_area_struct *vma, void *callback_ctx);
8970 	 */
8971 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8972 
8973 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
8974 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8975 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
8976 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
8977 
8978 	/* pointer to stack or null */
8979 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
8980 
8981 	/* unused */
8982 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8983 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8984 	callee->in_callback_fn = true;
8985 	callee->callback_ret_range = tnum_range(0, 1);
8986 	return 0;
8987 }
8988 
8989 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
8990 					   struct bpf_func_state *caller,
8991 					   struct bpf_func_state *callee,
8992 					   int insn_idx)
8993 {
8994 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
8995 	 *			  callback_ctx, u64 flags);
8996 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
8997 	 */
8998 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
8999 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9000 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9001 
9002 	/* unused */
9003 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9004 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9005 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9006 
9007 	callee->in_callback_fn = true;
9008 	callee->callback_ret_range = tnum_range(0, 1);
9009 	return 0;
9010 }
9011 
9012 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9013 					 struct bpf_func_state *caller,
9014 					 struct bpf_func_state *callee,
9015 					 int insn_idx)
9016 {
9017 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9018 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9019 	 *
9020 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9021 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9022 	 * by this point, so look at 'root'
9023 	 */
9024 	struct btf_field *field;
9025 
9026 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9027 				      BPF_RB_ROOT);
9028 	if (!field || !field->graph_root.value_btf_id)
9029 		return -EFAULT;
9030 
9031 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9032 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9033 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9034 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9035 
9036 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9037 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9038 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9039 	callee->in_callback_fn = true;
9040 	callee->callback_ret_range = tnum_range(0, 1);
9041 	return 0;
9042 }
9043 
9044 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9045 
9046 /* Are we currently verifying the callback for a rbtree helper that must
9047  * be called with lock held? If so, no need to complain about unreleased
9048  * lock
9049  */
9050 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9051 {
9052 	struct bpf_verifier_state *state = env->cur_state;
9053 	struct bpf_insn *insn = env->prog->insnsi;
9054 	struct bpf_func_state *callee;
9055 	int kfunc_btf_id;
9056 
9057 	if (!state->curframe)
9058 		return false;
9059 
9060 	callee = state->frame[state->curframe];
9061 
9062 	if (!callee->in_callback_fn)
9063 		return false;
9064 
9065 	kfunc_btf_id = insn[callee->callsite].imm;
9066 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9067 }
9068 
9069 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9070 {
9071 	struct bpf_verifier_state *state = env->cur_state;
9072 	struct bpf_func_state *caller, *callee;
9073 	struct bpf_reg_state *r0;
9074 	int err;
9075 
9076 	callee = state->frame[state->curframe];
9077 	r0 = &callee->regs[BPF_REG_0];
9078 	if (r0->type == PTR_TO_STACK) {
9079 		/* technically it's ok to return caller's stack pointer
9080 		 * (or caller's caller's pointer) back to the caller,
9081 		 * since these pointers are valid. Only current stack
9082 		 * pointer will be invalid as soon as function exits,
9083 		 * but let's be conservative
9084 		 */
9085 		verbose(env, "cannot return stack pointer to the caller\n");
9086 		return -EINVAL;
9087 	}
9088 
9089 	caller = state->frame[state->curframe - 1];
9090 	if (callee->in_callback_fn) {
9091 		/* enforce R0 return value range [0, 1]. */
9092 		struct tnum range = callee->callback_ret_range;
9093 
9094 		if (r0->type != SCALAR_VALUE) {
9095 			verbose(env, "R0 not a scalar value\n");
9096 			return -EACCES;
9097 		}
9098 		if (!tnum_in(range, r0->var_off)) {
9099 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9100 			return -EINVAL;
9101 		}
9102 	} else {
9103 		/* return to the caller whatever r0 had in the callee */
9104 		caller->regs[BPF_REG_0] = *r0;
9105 	}
9106 
9107 	/* callback_fn frame should have released its own additions to parent's
9108 	 * reference state at this point, or check_reference_leak would
9109 	 * complain, hence it must be the same as the caller. There is no need
9110 	 * to copy it back.
9111 	 */
9112 	if (!callee->in_callback_fn) {
9113 		/* Transfer references to the caller */
9114 		err = copy_reference_state(caller, callee);
9115 		if (err)
9116 			return err;
9117 	}
9118 
9119 	*insn_idx = callee->callsite + 1;
9120 	if (env->log.level & BPF_LOG_LEVEL) {
9121 		verbose(env, "returning from callee:\n");
9122 		print_verifier_state(env, callee, true);
9123 		verbose(env, "to caller at %d:\n", *insn_idx);
9124 		print_verifier_state(env, caller, true);
9125 	}
9126 	/* clear everything in the callee */
9127 	free_func_state(callee);
9128 	state->frame[state->curframe--] = NULL;
9129 	return 0;
9130 }
9131 
9132 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9133 				   int func_id,
9134 				   struct bpf_call_arg_meta *meta)
9135 {
9136 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9137 
9138 	if (ret_type != RET_INTEGER ||
9139 	    (func_id != BPF_FUNC_get_stack &&
9140 	     func_id != BPF_FUNC_get_task_stack &&
9141 	     func_id != BPF_FUNC_probe_read_str &&
9142 	     func_id != BPF_FUNC_probe_read_kernel_str &&
9143 	     func_id != BPF_FUNC_probe_read_user_str))
9144 		return;
9145 
9146 	ret_reg->smax_value = meta->msize_max_value;
9147 	ret_reg->s32_max_value = meta->msize_max_value;
9148 	ret_reg->smin_value = -MAX_ERRNO;
9149 	ret_reg->s32_min_value = -MAX_ERRNO;
9150 	reg_bounds_sync(ret_reg);
9151 }
9152 
9153 static int
9154 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9155 		int func_id, int insn_idx)
9156 {
9157 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9158 	struct bpf_map *map = meta->map_ptr;
9159 
9160 	if (func_id != BPF_FUNC_tail_call &&
9161 	    func_id != BPF_FUNC_map_lookup_elem &&
9162 	    func_id != BPF_FUNC_map_update_elem &&
9163 	    func_id != BPF_FUNC_map_delete_elem &&
9164 	    func_id != BPF_FUNC_map_push_elem &&
9165 	    func_id != BPF_FUNC_map_pop_elem &&
9166 	    func_id != BPF_FUNC_map_peek_elem &&
9167 	    func_id != BPF_FUNC_for_each_map_elem &&
9168 	    func_id != BPF_FUNC_redirect_map &&
9169 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9170 		return 0;
9171 
9172 	if (map == NULL) {
9173 		verbose(env, "kernel subsystem misconfigured verifier\n");
9174 		return -EINVAL;
9175 	}
9176 
9177 	/* In case of read-only, some additional restrictions
9178 	 * need to be applied in order to prevent altering the
9179 	 * state of the map from program side.
9180 	 */
9181 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9182 	    (func_id == BPF_FUNC_map_delete_elem ||
9183 	     func_id == BPF_FUNC_map_update_elem ||
9184 	     func_id == BPF_FUNC_map_push_elem ||
9185 	     func_id == BPF_FUNC_map_pop_elem)) {
9186 		verbose(env, "write into map forbidden\n");
9187 		return -EACCES;
9188 	}
9189 
9190 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9191 		bpf_map_ptr_store(aux, meta->map_ptr,
9192 				  !meta->map_ptr->bypass_spec_v1);
9193 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9194 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9195 				  !meta->map_ptr->bypass_spec_v1);
9196 	return 0;
9197 }
9198 
9199 static int
9200 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9201 		int func_id, int insn_idx)
9202 {
9203 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9204 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9205 	struct bpf_map *map = meta->map_ptr;
9206 	u64 val, max;
9207 	int err;
9208 
9209 	if (func_id != BPF_FUNC_tail_call)
9210 		return 0;
9211 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9212 		verbose(env, "kernel subsystem misconfigured verifier\n");
9213 		return -EINVAL;
9214 	}
9215 
9216 	reg = &regs[BPF_REG_3];
9217 	val = reg->var_off.value;
9218 	max = map->max_entries;
9219 
9220 	if (!(register_is_const(reg) && val < max)) {
9221 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9222 		return 0;
9223 	}
9224 
9225 	err = mark_chain_precision(env, BPF_REG_3);
9226 	if (err)
9227 		return err;
9228 	if (bpf_map_key_unseen(aux))
9229 		bpf_map_key_store(aux, val);
9230 	else if (!bpf_map_key_poisoned(aux) &&
9231 		  bpf_map_key_immediate(aux) != val)
9232 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9233 	return 0;
9234 }
9235 
9236 static int check_reference_leak(struct bpf_verifier_env *env)
9237 {
9238 	struct bpf_func_state *state = cur_func(env);
9239 	bool refs_lingering = false;
9240 	int i;
9241 
9242 	if (state->frameno && !state->in_callback_fn)
9243 		return 0;
9244 
9245 	for (i = 0; i < state->acquired_refs; i++) {
9246 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9247 			continue;
9248 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9249 			state->refs[i].id, state->refs[i].insn_idx);
9250 		refs_lingering = true;
9251 	}
9252 	return refs_lingering ? -EINVAL : 0;
9253 }
9254 
9255 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9256 				   struct bpf_reg_state *regs)
9257 {
9258 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9259 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9260 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9261 	struct bpf_bprintf_data data = {};
9262 	int err, fmt_map_off, num_args;
9263 	u64 fmt_addr;
9264 	char *fmt;
9265 
9266 	/* data must be an array of u64 */
9267 	if (data_len_reg->var_off.value % 8)
9268 		return -EINVAL;
9269 	num_args = data_len_reg->var_off.value / 8;
9270 
9271 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9272 	 * and map_direct_value_addr is set.
9273 	 */
9274 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9275 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9276 						  fmt_map_off);
9277 	if (err) {
9278 		verbose(env, "verifier bug\n");
9279 		return -EFAULT;
9280 	}
9281 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9282 
9283 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9284 	 * can focus on validating the format specifiers.
9285 	 */
9286 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9287 	if (err < 0)
9288 		verbose(env, "Invalid format string\n");
9289 
9290 	return err;
9291 }
9292 
9293 static int check_get_func_ip(struct bpf_verifier_env *env)
9294 {
9295 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9296 	int func_id = BPF_FUNC_get_func_ip;
9297 
9298 	if (type == BPF_PROG_TYPE_TRACING) {
9299 		if (!bpf_prog_has_trampoline(env->prog)) {
9300 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9301 				func_id_name(func_id), func_id);
9302 			return -ENOTSUPP;
9303 		}
9304 		return 0;
9305 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9306 		return 0;
9307 	}
9308 
9309 	verbose(env, "func %s#%d not supported for program type %d\n",
9310 		func_id_name(func_id), func_id, type);
9311 	return -ENOTSUPP;
9312 }
9313 
9314 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9315 {
9316 	return &env->insn_aux_data[env->insn_idx];
9317 }
9318 
9319 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9320 {
9321 	struct bpf_reg_state *regs = cur_regs(env);
9322 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9323 	bool reg_is_null = register_is_null(reg);
9324 
9325 	if (reg_is_null)
9326 		mark_chain_precision(env, BPF_REG_4);
9327 
9328 	return reg_is_null;
9329 }
9330 
9331 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9332 {
9333 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9334 
9335 	if (!state->initialized) {
9336 		state->initialized = 1;
9337 		state->fit_for_inline = loop_flag_is_zero(env);
9338 		state->callback_subprogno = subprogno;
9339 		return;
9340 	}
9341 
9342 	if (!state->fit_for_inline)
9343 		return;
9344 
9345 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9346 				 state->callback_subprogno == subprogno);
9347 }
9348 
9349 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9350 			     int *insn_idx_p)
9351 {
9352 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9353 	const struct bpf_func_proto *fn = NULL;
9354 	enum bpf_return_type ret_type;
9355 	enum bpf_type_flag ret_flag;
9356 	struct bpf_reg_state *regs;
9357 	struct bpf_call_arg_meta meta;
9358 	int insn_idx = *insn_idx_p;
9359 	bool changes_data;
9360 	int i, err, func_id;
9361 
9362 	/* find function prototype */
9363 	func_id = insn->imm;
9364 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9365 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9366 			func_id);
9367 		return -EINVAL;
9368 	}
9369 
9370 	if (env->ops->get_func_proto)
9371 		fn = env->ops->get_func_proto(func_id, env->prog);
9372 	if (!fn) {
9373 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9374 			func_id);
9375 		return -EINVAL;
9376 	}
9377 
9378 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9379 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9380 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9381 		return -EINVAL;
9382 	}
9383 
9384 	if (fn->allowed && !fn->allowed(env->prog)) {
9385 		verbose(env, "helper call is not allowed in probe\n");
9386 		return -EINVAL;
9387 	}
9388 
9389 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9390 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9391 		return -EINVAL;
9392 	}
9393 
9394 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9395 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9396 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9397 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9398 			func_id_name(func_id), func_id);
9399 		return -EINVAL;
9400 	}
9401 
9402 	memset(&meta, 0, sizeof(meta));
9403 	meta.pkt_access = fn->pkt_access;
9404 
9405 	err = check_func_proto(fn, func_id);
9406 	if (err) {
9407 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9408 			func_id_name(func_id), func_id);
9409 		return err;
9410 	}
9411 
9412 	if (env->cur_state->active_rcu_lock) {
9413 		if (fn->might_sleep) {
9414 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9415 				func_id_name(func_id), func_id);
9416 			return -EINVAL;
9417 		}
9418 
9419 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9420 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9421 	}
9422 
9423 	meta.func_id = func_id;
9424 	/* check args */
9425 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9426 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9427 		if (err)
9428 			return err;
9429 	}
9430 
9431 	err = record_func_map(env, &meta, func_id, insn_idx);
9432 	if (err)
9433 		return err;
9434 
9435 	err = record_func_key(env, &meta, func_id, insn_idx);
9436 	if (err)
9437 		return err;
9438 
9439 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9440 	 * is inferred from register state.
9441 	 */
9442 	for (i = 0; i < meta.access_size; i++) {
9443 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9444 				       BPF_WRITE, -1, false);
9445 		if (err)
9446 			return err;
9447 	}
9448 
9449 	regs = cur_regs(env);
9450 
9451 	if (meta.release_regno) {
9452 		err = -EINVAL;
9453 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9454 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9455 		 * is safe to do directly.
9456 		 */
9457 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9458 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9459 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9460 				return -EFAULT;
9461 			}
9462 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9463 		} else if (meta.ref_obj_id) {
9464 			err = release_reference(env, meta.ref_obj_id);
9465 		} else if (register_is_null(&regs[meta.release_regno])) {
9466 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9467 			 * released is NULL, which must be > R0.
9468 			 */
9469 			err = 0;
9470 		}
9471 		if (err) {
9472 			verbose(env, "func %s#%d reference has not been acquired before\n",
9473 				func_id_name(func_id), func_id);
9474 			return err;
9475 		}
9476 	}
9477 
9478 	switch (func_id) {
9479 	case BPF_FUNC_tail_call:
9480 		err = check_reference_leak(env);
9481 		if (err) {
9482 			verbose(env, "tail_call would lead to reference leak\n");
9483 			return err;
9484 		}
9485 		break;
9486 	case BPF_FUNC_get_local_storage:
9487 		/* check that flags argument in get_local_storage(map, flags) is 0,
9488 		 * this is required because get_local_storage() can't return an error.
9489 		 */
9490 		if (!register_is_null(&regs[BPF_REG_2])) {
9491 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9492 			return -EINVAL;
9493 		}
9494 		break;
9495 	case BPF_FUNC_for_each_map_elem:
9496 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9497 					set_map_elem_callback_state);
9498 		break;
9499 	case BPF_FUNC_timer_set_callback:
9500 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9501 					set_timer_callback_state);
9502 		break;
9503 	case BPF_FUNC_find_vma:
9504 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9505 					set_find_vma_callback_state);
9506 		break;
9507 	case BPF_FUNC_snprintf:
9508 		err = check_bpf_snprintf_call(env, regs);
9509 		break;
9510 	case BPF_FUNC_loop:
9511 		update_loop_inline_state(env, meta.subprogno);
9512 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9513 					set_loop_callback_state);
9514 		break;
9515 	case BPF_FUNC_dynptr_from_mem:
9516 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9517 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9518 				reg_type_str(env, regs[BPF_REG_1].type));
9519 			return -EACCES;
9520 		}
9521 		break;
9522 	case BPF_FUNC_set_retval:
9523 		if (prog_type == BPF_PROG_TYPE_LSM &&
9524 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9525 			if (!env->prog->aux->attach_func_proto->type) {
9526 				/* Make sure programs that attach to void
9527 				 * hooks don't try to modify return value.
9528 				 */
9529 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9530 				return -EINVAL;
9531 			}
9532 		}
9533 		break;
9534 	case BPF_FUNC_dynptr_data:
9535 	{
9536 		struct bpf_reg_state *reg;
9537 		int id, ref_obj_id;
9538 
9539 		reg = get_dynptr_arg_reg(env, fn, regs);
9540 		if (!reg)
9541 			return -EFAULT;
9542 
9543 
9544 		if (meta.dynptr_id) {
9545 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9546 			return -EFAULT;
9547 		}
9548 		if (meta.ref_obj_id) {
9549 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9550 			return -EFAULT;
9551 		}
9552 
9553 		id = dynptr_id(env, reg);
9554 		if (id < 0) {
9555 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9556 			return id;
9557 		}
9558 
9559 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9560 		if (ref_obj_id < 0) {
9561 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9562 			return ref_obj_id;
9563 		}
9564 
9565 		meta.dynptr_id = id;
9566 		meta.ref_obj_id = ref_obj_id;
9567 
9568 		break;
9569 	}
9570 	case BPF_FUNC_dynptr_write:
9571 	{
9572 		enum bpf_dynptr_type dynptr_type;
9573 		struct bpf_reg_state *reg;
9574 
9575 		reg = get_dynptr_arg_reg(env, fn, regs);
9576 		if (!reg)
9577 			return -EFAULT;
9578 
9579 		dynptr_type = dynptr_get_type(env, reg);
9580 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9581 			return -EFAULT;
9582 
9583 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9584 			/* this will trigger clear_all_pkt_pointers(), which will
9585 			 * invalidate all dynptr slices associated with the skb
9586 			 */
9587 			changes_data = true;
9588 
9589 		break;
9590 	}
9591 	case BPF_FUNC_user_ringbuf_drain:
9592 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9593 					set_user_ringbuf_callback_state);
9594 		break;
9595 	}
9596 
9597 	if (err)
9598 		return err;
9599 
9600 	/* reset caller saved regs */
9601 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9602 		mark_reg_not_init(env, regs, caller_saved[i]);
9603 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9604 	}
9605 
9606 	/* helper call returns 64-bit value. */
9607 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9608 
9609 	/* update return register (already marked as written above) */
9610 	ret_type = fn->ret_type;
9611 	ret_flag = type_flag(ret_type);
9612 
9613 	switch (base_type(ret_type)) {
9614 	case RET_INTEGER:
9615 		/* sets type to SCALAR_VALUE */
9616 		mark_reg_unknown(env, regs, BPF_REG_0);
9617 		break;
9618 	case RET_VOID:
9619 		regs[BPF_REG_0].type = NOT_INIT;
9620 		break;
9621 	case RET_PTR_TO_MAP_VALUE:
9622 		/* There is no offset yet applied, variable or fixed */
9623 		mark_reg_known_zero(env, regs, BPF_REG_0);
9624 		/* remember map_ptr, so that check_map_access()
9625 		 * can check 'value_size' boundary of memory access
9626 		 * to map element returned from bpf_map_lookup_elem()
9627 		 */
9628 		if (meta.map_ptr == NULL) {
9629 			verbose(env,
9630 				"kernel subsystem misconfigured verifier\n");
9631 			return -EINVAL;
9632 		}
9633 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9634 		regs[BPF_REG_0].map_uid = meta.map_uid;
9635 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9636 		if (!type_may_be_null(ret_type) &&
9637 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9638 			regs[BPF_REG_0].id = ++env->id_gen;
9639 		}
9640 		break;
9641 	case RET_PTR_TO_SOCKET:
9642 		mark_reg_known_zero(env, regs, BPF_REG_0);
9643 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9644 		break;
9645 	case RET_PTR_TO_SOCK_COMMON:
9646 		mark_reg_known_zero(env, regs, BPF_REG_0);
9647 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9648 		break;
9649 	case RET_PTR_TO_TCP_SOCK:
9650 		mark_reg_known_zero(env, regs, BPF_REG_0);
9651 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9652 		break;
9653 	case RET_PTR_TO_MEM:
9654 		mark_reg_known_zero(env, regs, BPF_REG_0);
9655 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9656 		regs[BPF_REG_0].mem_size = meta.mem_size;
9657 		break;
9658 	case RET_PTR_TO_MEM_OR_BTF_ID:
9659 	{
9660 		const struct btf_type *t;
9661 
9662 		mark_reg_known_zero(env, regs, BPF_REG_0);
9663 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9664 		if (!btf_type_is_struct(t)) {
9665 			u32 tsize;
9666 			const struct btf_type *ret;
9667 			const char *tname;
9668 
9669 			/* resolve the type size of ksym. */
9670 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9671 			if (IS_ERR(ret)) {
9672 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9673 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9674 					tname, PTR_ERR(ret));
9675 				return -EINVAL;
9676 			}
9677 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9678 			regs[BPF_REG_0].mem_size = tsize;
9679 		} else {
9680 			/* MEM_RDONLY may be carried from ret_flag, but it
9681 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9682 			 * it will confuse the check of PTR_TO_BTF_ID in
9683 			 * check_mem_access().
9684 			 */
9685 			ret_flag &= ~MEM_RDONLY;
9686 
9687 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9688 			regs[BPF_REG_0].btf = meta.ret_btf;
9689 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9690 		}
9691 		break;
9692 	}
9693 	case RET_PTR_TO_BTF_ID:
9694 	{
9695 		struct btf *ret_btf;
9696 		int ret_btf_id;
9697 
9698 		mark_reg_known_zero(env, regs, BPF_REG_0);
9699 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9700 		if (func_id == BPF_FUNC_kptr_xchg) {
9701 			ret_btf = meta.kptr_field->kptr.btf;
9702 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9703 			if (!btf_is_kernel(ret_btf))
9704 				regs[BPF_REG_0].type |= MEM_ALLOC;
9705 		} else {
9706 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9707 				verbose(env, "verifier internal error:");
9708 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9709 					func_id_name(func_id));
9710 				return -EINVAL;
9711 			}
9712 			ret_btf = btf_vmlinux;
9713 			ret_btf_id = *fn->ret_btf_id;
9714 		}
9715 		if (ret_btf_id == 0) {
9716 			verbose(env, "invalid return type %u of func %s#%d\n",
9717 				base_type(ret_type), func_id_name(func_id),
9718 				func_id);
9719 			return -EINVAL;
9720 		}
9721 		regs[BPF_REG_0].btf = ret_btf;
9722 		regs[BPF_REG_0].btf_id = ret_btf_id;
9723 		break;
9724 	}
9725 	default:
9726 		verbose(env, "unknown return type %u of func %s#%d\n",
9727 			base_type(ret_type), func_id_name(func_id), func_id);
9728 		return -EINVAL;
9729 	}
9730 
9731 	if (type_may_be_null(regs[BPF_REG_0].type))
9732 		regs[BPF_REG_0].id = ++env->id_gen;
9733 
9734 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9735 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9736 			func_id_name(func_id), func_id);
9737 		return -EFAULT;
9738 	}
9739 
9740 	if (is_dynptr_ref_function(func_id))
9741 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9742 
9743 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9744 		/* For release_reference() */
9745 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9746 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9747 		int id = acquire_reference_state(env, insn_idx);
9748 
9749 		if (id < 0)
9750 			return id;
9751 		/* For mark_ptr_or_null_reg() */
9752 		regs[BPF_REG_0].id = id;
9753 		/* For release_reference() */
9754 		regs[BPF_REG_0].ref_obj_id = id;
9755 	}
9756 
9757 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9758 
9759 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9760 	if (err)
9761 		return err;
9762 
9763 	if ((func_id == BPF_FUNC_get_stack ||
9764 	     func_id == BPF_FUNC_get_task_stack) &&
9765 	    !env->prog->has_callchain_buf) {
9766 		const char *err_str;
9767 
9768 #ifdef CONFIG_PERF_EVENTS
9769 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9770 		err_str = "cannot get callchain buffer for func %s#%d\n";
9771 #else
9772 		err = -ENOTSUPP;
9773 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9774 #endif
9775 		if (err) {
9776 			verbose(env, err_str, func_id_name(func_id), func_id);
9777 			return err;
9778 		}
9779 
9780 		env->prog->has_callchain_buf = true;
9781 	}
9782 
9783 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9784 		env->prog->call_get_stack = true;
9785 
9786 	if (func_id == BPF_FUNC_get_func_ip) {
9787 		if (check_get_func_ip(env))
9788 			return -ENOTSUPP;
9789 		env->prog->call_get_func_ip = true;
9790 	}
9791 
9792 	if (changes_data)
9793 		clear_all_pkt_pointers(env);
9794 	return 0;
9795 }
9796 
9797 /* mark_btf_func_reg_size() is used when the reg size is determined by
9798  * the BTF func_proto's return value size and argument.
9799  */
9800 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9801 				   size_t reg_size)
9802 {
9803 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
9804 
9805 	if (regno == BPF_REG_0) {
9806 		/* Function return value */
9807 		reg->live |= REG_LIVE_WRITTEN;
9808 		reg->subreg_def = reg_size == sizeof(u64) ?
9809 			DEF_NOT_SUBREG : env->insn_idx + 1;
9810 	} else {
9811 		/* Function argument */
9812 		if (reg_size == sizeof(u64)) {
9813 			mark_insn_zext(env, reg);
9814 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9815 		} else {
9816 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9817 		}
9818 	}
9819 }
9820 
9821 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
9822 {
9823 	return meta->kfunc_flags & KF_ACQUIRE;
9824 }
9825 
9826 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
9827 {
9828 	return meta->kfunc_flags & KF_RELEASE;
9829 }
9830 
9831 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
9832 {
9833 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
9834 }
9835 
9836 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
9837 {
9838 	return meta->kfunc_flags & KF_SLEEPABLE;
9839 }
9840 
9841 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
9842 {
9843 	return meta->kfunc_flags & KF_DESTRUCTIVE;
9844 }
9845 
9846 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
9847 {
9848 	return meta->kfunc_flags & KF_RCU;
9849 }
9850 
9851 static bool __kfunc_param_match_suffix(const struct btf *btf,
9852 				       const struct btf_param *arg,
9853 				       const char *suffix)
9854 {
9855 	int suffix_len = strlen(suffix), len;
9856 	const char *param_name;
9857 
9858 	/* In the future, this can be ported to use BTF tagging */
9859 	param_name = btf_name_by_offset(btf, arg->name_off);
9860 	if (str_is_empty(param_name))
9861 		return false;
9862 	len = strlen(param_name);
9863 	if (len < suffix_len)
9864 		return false;
9865 	param_name += len - suffix_len;
9866 	return !strncmp(param_name, suffix, suffix_len);
9867 }
9868 
9869 static bool is_kfunc_arg_mem_size(const struct btf *btf,
9870 				  const struct btf_param *arg,
9871 				  const struct bpf_reg_state *reg)
9872 {
9873 	const struct btf_type *t;
9874 
9875 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9876 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9877 		return false;
9878 
9879 	return __kfunc_param_match_suffix(btf, arg, "__sz");
9880 }
9881 
9882 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
9883 					const struct btf_param *arg,
9884 					const struct bpf_reg_state *reg)
9885 {
9886 	const struct btf_type *t;
9887 
9888 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9889 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9890 		return false;
9891 
9892 	return __kfunc_param_match_suffix(btf, arg, "__szk");
9893 }
9894 
9895 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
9896 {
9897 	return __kfunc_param_match_suffix(btf, arg, "__opt");
9898 }
9899 
9900 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
9901 {
9902 	return __kfunc_param_match_suffix(btf, arg, "__k");
9903 }
9904 
9905 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
9906 {
9907 	return __kfunc_param_match_suffix(btf, arg, "__ign");
9908 }
9909 
9910 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
9911 {
9912 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
9913 }
9914 
9915 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
9916 {
9917 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
9918 }
9919 
9920 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
9921 {
9922 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
9923 }
9924 
9925 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
9926 					  const struct btf_param *arg,
9927 					  const char *name)
9928 {
9929 	int len, target_len = strlen(name);
9930 	const char *param_name;
9931 
9932 	param_name = btf_name_by_offset(btf, arg->name_off);
9933 	if (str_is_empty(param_name))
9934 		return false;
9935 	len = strlen(param_name);
9936 	if (len != target_len)
9937 		return false;
9938 	if (strcmp(param_name, name))
9939 		return false;
9940 
9941 	return true;
9942 }
9943 
9944 enum {
9945 	KF_ARG_DYNPTR_ID,
9946 	KF_ARG_LIST_HEAD_ID,
9947 	KF_ARG_LIST_NODE_ID,
9948 	KF_ARG_RB_ROOT_ID,
9949 	KF_ARG_RB_NODE_ID,
9950 };
9951 
9952 BTF_ID_LIST(kf_arg_btf_ids)
9953 BTF_ID(struct, bpf_dynptr_kern)
9954 BTF_ID(struct, bpf_list_head)
9955 BTF_ID(struct, bpf_list_node)
9956 BTF_ID(struct, bpf_rb_root)
9957 BTF_ID(struct, bpf_rb_node)
9958 
9959 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
9960 				    const struct btf_param *arg, int type)
9961 {
9962 	const struct btf_type *t;
9963 	u32 res_id;
9964 
9965 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9966 	if (!t)
9967 		return false;
9968 	if (!btf_type_is_ptr(t))
9969 		return false;
9970 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
9971 	if (!t)
9972 		return false;
9973 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
9974 }
9975 
9976 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
9977 {
9978 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
9979 }
9980 
9981 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
9982 {
9983 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
9984 }
9985 
9986 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
9987 {
9988 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
9989 }
9990 
9991 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
9992 {
9993 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
9994 }
9995 
9996 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
9997 {
9998 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
9999 }
10000 
10001 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10002 				  const struct btf_param *arg)
10003 {
10004 	const struct btf_type *t;
10005 
10006 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10007 	if (!t)
10008 		return false;
10009 
10010 	return true;
10011 }
10012 
10013 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10014 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10015 					const struct btf *btf,
10016 					const struct btf_type *t, int rec)
10017 {
10018 	const struct btf_type *member_type;
10019 	const struct btf_member *member;
10020 	u32 i;
10021 
10022 	if (!btf_type_is_struct(t))
10023 		return false;
10024 
10025 	for_each_member(i, t, member) {
10026 		const struct btf_array *array;
10027 
10028 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10029 		if (btf_type_is_struct(member_type)) {
10030 			if (rec >= 3) {
10031 				verbose(env, "max struct nesting depth exceeded\n");
10032 				return false;
10033 			}
10034 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10035 				return false;
10036 			continue;
10037 		}
10038 		if (btf_type_is_array(member_type)) {
10039 			array = btf_array(member_type);
10040 			if (!array->nelems)
10041 				return false;
10042 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10043 			if (!btf_type_is_scalar(member_type))
10044 				return false;
10045 			continue;
10046 		}
10047 		if (!btf_type_is_scalar(member_type))
10048 			return false;
10049 	}
10050 	return true;
10051 }
10052 
10053 
10054 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
10055 #ifdef CONFIG_NET
10056 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
10057 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
10058 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10059 #endif
10060 };
10061 
10062 enum kfunc_ptr_arg_type {
10063 	KF_ARG_PTR_TO_CTX,
10064 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10065 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10066 	KF_ARG_PTR_TO_DYNPTR,
10067 	KF_ARG_PTR_TO_ITER,
10068 	KF_ARG_PTR_TO_LIST_HEAD,
10069 	KF_ARG_PTR_TO_LIST_NODE,
10070 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10071 	KF_ARG_PTR_TO_MEM,
10072 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10073 	KF_ARG_PTR_TO_CALLBACK,
10074 	KF_ARG_PTR_TO_RB_ROOT,
10075 	KF_ARG_PTR_TO_RB_NODE,
10076 };
10077 
10078 enum special_kfunc_type {
10079 	KF_bpf_obj_new_impl,
10080 	KF_bpf_obj_drop_impl,
10081 	KF_bpf_refcount_acquire_impl,
10082 	KF_bpf_list_push_front_impl,
10083 	KF_bpf_list_push_back_impl,
10084 	KF_bpf_list_pop_front,
10085 	KF_bpf_list_pop_back,
10086 	KF_bpf_cast_to_kern_ctx,
10087 	KF_bpf_rdonly_cast,
10088 	KF_bpf_rcu_read_lock,
10089 	KF_bpf_rcu_read_unlock,
10090 	KF_bpf_rbtree_remove,
10091 	KF_bpf_rbtree_add_impl,
10092 	KF_bpf_rbtree_first,
10093 	KF_bpf_dynptr_from_skb,
10094 	KF_bpf_dynptr_from_xdp,
10095 	KF_bpf_dynptr_slice,
10096 	KF_bpf_dynptr_slice_rdwr,
10097 	KF_bpf_dynptr_clone,
10098 };
10099 
10100 BTF_SET_START(special_kfunc_set)
10101 BTF_ID(func, bpf_obj_new_impl)
10102 BTF_ID(func, bpf_obj_drop_impl)
10103 BTF_ID(func, bpf_refcount_acquire_impl)
10104 BTF_ID(func, bpf_list_push_front_impl)
10105 BTF_ID(func, bpf_list_push_back_impl)
10106 BTF_ID(func, bpf_list_pop_front)
10107 BTF_ID(func, bpf_list_pop_back)
10108 BTF_ID(func, bpf_cast_to_kern_ctx)
10109 BTF_ID(func, bpf_rdonly_cast)
10110 BTF_ID(func, bpf_rbtree_remove)
10111 BTF_ID(func, bpf_rbtree_add_impl)
10112 BTF_ID(func, bpf_rbtree_first)
10113 BTF_ID(func, bpf_dynptr_from_skb)
10114 BTF_ID(func, bpf_dynptr_from_xdp)
10115 BTF_ID(func, bpf_dynptr_slice)
10116 BTF_ID(func, bpf_dynptr_slice_rdwr)
10117 BTF_ID(func, bpf_dynptr_clone)
10118 BTF_SET_END(special_kfunc_set)
10119 
10120 BTF_ID_LIST(special_kfunc_list)
10121 BTF_ID(func, bpf_obj_new_impl)
10122 BTF_ID(func, bpf_obj_drop_impl)
10123 BTF_ID(func, bpf_refcount_acquire_impl)
10124 BTF_ID(func, bpf_list_push_front_impl)
10125 BTF_ID(func, bpf_list_push_back_impl)
10126 BTF_ID(func, bpf_list_pop_front)
10127 BTF_ID(func, bpf_list_pop_back)
10128 BTF_ID(func, bpf_cast_to_kern_ctx)
10129 BTF_ID(func, bpf_rdonly_cast)
10130 BTF_ID(func, bpf_rcu_read_lock)
10131 BTF_ID(func, bpf_rcu_read_unlock)
10132 BTF_ID(func, bpf_rbtree_remove)
10133 BTF_ID(func, bpf_rbtree_add_impl)
10134 BTF_ID(func, bpf_rbtree_first)
10135 BTF_ID(func, bpf_dynptr_from_skb)
10136 BTF_ID(func, bpf_dynptr_from_xdp)
10137 BTF_ID(func, bpf_dynptr_slice)
10138 BTF_ID(func, bpf_dynptr_slice_rdwr)
10139 BTF_ID(func, bpf_dynptr_clone)
10140 
10141 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10142 {
10143 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10144 	    meta->arg_owning_ref) {
10145 		return false;
10146 	}
10147 
10148 	return meta->kfunc_flags & KF_RET_NULL;
10149 }
10150 
10151 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10152 {
10153 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10154 }
10155 
10156 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10157 {
10158 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10159 }
10160 
10161 static enum kfunc_ptr_arg_type
10162 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10163 		       struct bpf_kfunc_call_arg_meta *meta,
10164 		       const struct btf_type *t, const struct btf_type *ref_t,
10165 		       const char *ref_tname, const struct btf_param *args,
10166 		       int argno, int nargs)
10167 {
10168 	u32 regno = argno + 1;
10169 	struct bpf_reg_state *regs = cur_regs(env);
10170 	struct bpf_reg_state *reg = &regs[regno];
10171 	bool arg_mem_size = false;
10172 
10173 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10174 		return KF_ARG_PTR_TO_CTX;
10175 
10176 	/* In this function, we verify the kfunc's BTF as per the argument type,
10177 	 * leaving the rest of the verification with respect to the register
10178 	 * type to our caller. When a set of conditions hold in the BTF type of
10179 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10180 	 */
10181 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10182 		return KF_ARG_PTR_TO_CTX;
10183 
10184 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10185 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10186 
10187 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10188 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10189 
10190 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10191 		return KF_ARG_PTR_TO_DYNPTR;
10192 
10193 	if (is_kfunc_arg_iter(meta, argno))
10194 		return KF_ARG_PTR_TO_ITER;
10195 
10196 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10197 		return KF_ARG_PTR_TO_LIST_HEAD;
10198 
10199 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10200 		return KF_ARG_PTR_TO_LIST_NODE;
10201 
10202 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10203 		return KF_ARG_PTR_TO_RB_ROOT;
10204 
10205 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10206 		return KF_ARG_PTR_TO_RB_NODE;
10207 
10208 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10209 		if (!btf_type_is_struct(ref_t)) {
10210 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10211 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10212 			return -EINVAL;
10213 		}
10214 		return KF_ARG_PTR_TO_BTF_ID;
10215 	}
10216 
10217 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10218 		return KF_ARG_PTR_TO_CALLBACK;
10219 
10220 
10221 	if (argno + 1 < nargs &&
10222 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10223 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10224 		arg_mem_size = true;
10225 
10226 	/* This is the catch all argument type of register types supported by
10227 	 * check_helper_mem_access. However, we only allow when argument type is
10228 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10229 	 * arg_mem_size is true, the pointer can be void *.
10230 	 */
10231 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10232 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10233 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10234 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10235 		return -EINVAL;
10236 	}
10237 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10238 }
10239 
10240 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10241 					struct bpf_reg_state *reg,
10242 					const struct btf_type *ref_t,
10243 					const char *ref_tname, u32 ref_id,
10244 					struct bpf_kfunc_call_arg_meta *meta,
10245 					int argno)
10246 {
10247 	const struct btf_type *reg_ref_t;
10248 	bool strict_type_match = false;
10249 	const struct btf *reg_btf;
10250 	const char *reg_ref_tname;
10251 	u32 reg_ref_id;
10252 
10253 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10254 		reg_btf = reg->btf;
10255 		reg_ref_id = reg->btf_id;
10256 	} else {
10257 		reg_btf = btf_vmlinux;
10258 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10259 	}
10260 
10261 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10262 	 * or releasing a reference, or are no-cast aliases. We do _not_
10263 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10264 	 * as we want to enable BPF programs to pass types that are bitwise
10265 	 * equivalent without forcing them to explicitly cast with something
10266 	 * like bpf_cast_to_kern_ctx().
10267 	 *
10268 	 * For example, say we had a type like the following:
10269 	 *
10270 	 * struct bpf_cpumask {
10271 	 *	cpumask_t cpumask;
10272 	 *	refcount_t usage;
10273 	 * };
10274 	 *
10275 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10276 	 * to a struct cpumask, so it would be safe to pass a struct
10277 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10278 	 *
10279 	 * The philosophy here is similar to how we allow scalars of different
10280 	 * types to be passed to kfuncs as long as the size is the same. The
10281 	 * only difference here is that we're simply allowing
10282 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10283 	 * resolve types.
10284 	 */
10285 	if (is_kfunc_acquire(meta) ||
10286 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10287 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10288 		strict_type_match = true;
10289 
10290 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10291 
10292 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10293 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10294 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10295 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10296 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10297 			btf_type_str(reg_ref_t), reg_ref_tname);
10298 		return -EINVAL;
10299 	}
10300 	return 0;
10301 }
10302 
10303 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10304 {
10305 	struct bpf_verifier_state *state = env->cur_state;
10306 
10307 	if (!state->active_lock.ptr) {
10308 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10309 		return -EFAULT;
10310 	}
10311 
10312 	if (type_flag(reg->type) & NON_OWN_REF) {
10313 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10314 		return -EFAULT;
10315 	}
10316 
10317 	reg->type |= NON_OWN_REF;
10318 	return 0;
10319 }
10320 
10321 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10322 {
10323 	struct bpf_func_state *state, *unused;
10324 	struct bpf_reg_state *reg;
10325 	int i;
10326 
10327 	state = cur_func(env);
10328 
10329 	if (!ref_obj_id) {
10330 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10331 			     "owning -> non-owning conversion\n");
10332 		return -EFAULT;
10333 	}
10334 
10335 	for (i = 0; i < state->acquired_refs; i++) {
10336 		if (state->refs[i].id != ref_obj_id)
10337 			continue;
10338 
10339 		/* Clear ref_obj_id here so release_reference doesn't clobber
10340 		 * the whole reg
10341 		 */
10342 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10343 			if (reg->ref_obj_id == ref_obj_id) {
10344 				reg->ref_obj_id = 0;
10345 				ref_set_non_owning(env, reg);
10346 			}
10347 		}));
10348 		return 0;
10349 	}
10350 
10351 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10352 	return -EFAULT;
10353 }
10354 
10355 /* Implementation details:
10356  *
10357  * Each register points to some region of memory, which we define as an
10358  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10359  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10360  * allocation. The lock and the data it protects are colocated in the same
10361  * memory region.
10362  *
10363  * Hence, everytime a register holds a pointer value pointing to such
10364  * allocation, the verifier preserves a unique reg->id for it.
10365  *
10366  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10367  * bpf_spin_lock is called.
10368  *
10369  * To enable this, lock state in the verifier captures two values:
10370  *	active_lock.ptr = Register's type specific pointer
10371  *	active_lock.id  = A unique ID for each register pointer value
10372  *
10373  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10374  * supported register types.
10375  *
10376  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10377  * allocated objects is the reg->btf pointer.
10378  *
10379  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10380  * can establish the provenance of the map value statically for each distinct
10381  * lookup into such maps. They always contain a single map value hence unique
10382  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10383  *
10384  * So, in case of global variables, they use array maps with max_entries = 1,
10385  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10386  * into the same map value as max_entries is 1, as described above).
10387  *
10388  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10389  * outer map pointer (in verifier context), but each lookup into an inner map
10390  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10391  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10392  * will get different reg->id assigned to each lookup, hence different
10393  * active_lock.id.
10394  *
10395  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10396  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10397  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10398  */
10399 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10400 {
10401 	void *ptr;
10402 	u32 id;
10403 
10404 	switch ((int)reg->type) {
10405 	case PTR_TO_MAP_VALUE:
10406 		ptr = reg->map_ptr;
10407 		break;
10408 	case PTR_TO_BTF_ID | MEM_ALLOC:
10409 		ptr = reg->btf;
10410 		break;
10411 	default:
10412 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10413 		return -EFAULT;
10414 	}
10415 	id = reg->id;
10416 
10417 	if (!env->cur_state->active_lock.ptr)
10418 		return -EINVAL;
10419 	if (env->cur_state->active_lock.ptr != ptr ||
10420 	    env->cur_state->active_lock.id != id) {
10421 		verbose(env, "held lock and object are not in the same allocation\n");
10422 		return -EINVAL;
10423 	}
10424 	return 0;
10425 }
10426 
10427 static bool is_bpf_list_api_kfunc(u32 btf_id)
10428 {
10429 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10430 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10431 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10432 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10433 }
10434 
10435 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10436 {
10437 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10438 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10439 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10440 }
10441 
10442 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10443 {
10444 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10445 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10446 }
10447 
10448 static bool is_callback_calling_kfunc(u32 btf_id)
10449 {
10450 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10451 }
10452 
10453 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10454 {
10455 	return is_bpf_rbtree_api_kfunc(btf_id);
10456 }
10457 
10458 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10459 					  enum btf_field_type head_field_type,
10460 					  u32 kfunc_btf_id)
10461 {
10462 	bool ret;
10463 
10464 	switch (head_field_type) {
10465 	case BPF_LIST_HEAD:
10466 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10467 		break;
10468 	case BPF_RB_ROOT:
10469 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10470 		break;
10471 	default:
10472 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10473 			btf_field_type_name(head_field_type));
10474 		return false;
10475 	}
10476 
10477 	if (!ret)
10478 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10479 			btf_field_type_name(head_field_type));
10480 	return ret;
10481 }
10482 
10483 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10484 					  enum btf_field_type node_field_type,
10485 					  u32 kfunc_btf_id)
10486 {
10487 	bool ret;
10488 
10489 	switch (node_field_type) {
10490 	case BPF_LIST_NODE:
10491 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10492 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10493 		break;
10494 	case BPF_RB_NODE:
10495 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10496 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10497 		break;
10498 	default:
10499 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10500 			btf_field_type_name(node_field_type));
10501 		return false;
10502 	}
10503 
10504 	if (!ret)
10505 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10506 			btf_field_type_name(node_field_type));
10507 	return ret;
10508 }
10509 
10510 static int
10511 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10512 				   struct bpf_reg_state *reg, u32 regno,
10513 				   struct bpf_kfunc_call_arg_meta *meta,
10514 				   enum btf_field_type head_field_type,
10515 				   struct btf_field **head_field)
10516 {
10517 	const char *head_type_name;
10518 	struct btf_field *field;
10519 	struct btf_record *rec;
10520 	u32 head_off;
10521 
10522 	if (meta->btf != btf_vmlinux) {
10523 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10524 		return -EFAULT;
10525 	}
10526 
10527 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10528 		return -EFAULT;
10529 
10530 	head_type_name = btf_field_type_name(head_field_type);
10531 	if (!tnum_is_const(reg->var_off)) {
10532 		verbose(env,
10533 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10534 			regno, head_type_name);
10535 		return -EINVAL;
10536 	}
10537 
10538 	rec = reg_btf_record(reg);
10539 	head_off = reg->off + reg->var_off.value;
10540 	field = btf_record_find(rec, head_off, head_field_type);
10541 	if (!field) {
10542 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10543 		return -EINVAL;
10544 	}
10545 
10546 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10547 	if (check_reg_allocation_locked(env, reg)) {
10548 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10549 			rec->spin_lock_off, head_type_name);
10550 		return -EINVAL;
10551 	}
10552 
10553 	if (*head_field) {
10554 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10555 		return -EFAULT;
10556 	}
10557 	*head_field = field;
10558 	return 0;
10559 }
10560 
10561 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10562 					   struct bpf_reg_state *reg, u32 regno,
10563 					   struct bpf_kfunc_call_arg_meta *meta)
10564 {
10565 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10566 							  &meta->arg_list_head.field);
10567 }
10568 
10569 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10570 					     struct bpf_reg_state *reg, u32 regno,
10571 					     struct bpf_kfunc_call_arg_meta *meta)
10572 {
10573 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10574 							  &meta->arg_rbtree_root.field);
10575 }
10576 
10577 static int
10578 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10579 				   struct bpf_reg_state *reg, u32 regno,
10580 				   struct bpf_kfunc_call_arg_meta *meta,
10581 				   enum btf_field_type head_field_type,
10582 				   enum btf_field_type node_field_type,
10583 				   struct btf_field **node_field)
10584 {
10585 	const char *node_type_name;
10586 	const struct btf_type *et, *t;
10587 	struct btf_field *field;
10588 	u32 node_off;
10589 
10590 	if (meta->btf != btf_vmlinux) {
10591 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10592 		return -EFAULT;
10593 	}
10594 
10595 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10596 		return -EFAULT;
10597 
10598 	node_type_name = btf_field_type_name(node_field_type);
10599 	if (!tnum_is_const(reg->var_off)) {
10600 		verbose(env,
10601 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10602 			regno, node_type_name);
10603 		return -EINVAL;
10604 	}
10605 
10606 	node_off = reg->off + reg->var_off.value;
10607 	field = reg_find_field_offset(reg, node_off, node_field_type);
10608 	if (!field || field->offset != node_off) {
10609 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10610 		return -EINVAL;
10611 	}
10612 
10613 	field = *node_field;
10614 
10615 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10616 	t = btf_type_by_id(reg->btf, reg->btf_id);
10617 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10618 				  field->graph_root.value_btf_id, true)) {
10619 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10620 			"in struct %s, but arg is at offset=%d in struct %s\n",
10621 			btf_field_type_name(head_field_type),
10622 			btf_field_type_name(node_field_type),
10623 			field->graph_root.node_offset,
10624 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10625 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10626 		return -EINVAL;
10627 	}
10628 	meta->arg_btf = reg->btf;
10629 	meta->arg_btf_id = reg->btf_id;
10630 
10631 	if (node_off != field->graph_root.node_offset) {
10632 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10633 			node_off, btf_field_type_name(node_field_type),
10634 			field->graph_root.node_offset,
10635 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10636 		return -EINVAL;
10637 	}
10638 
10639 	return 0;
10640 }
10641 
10642 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10643 					   struct bpf_reg_state *reg, u32 regno,
10644 					   struct bpf_kfunc_call_arg_meta *meta)
10645 {
10646 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10647 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10648 						  &meta->arg_list_head.field);
10649 }
10650 
10651 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10652 					     struct bpf_reg_state *reg, u32 regno,
10653 					     struct bpf_kfunc_call_arg_meta *meta)
10654 {
10655 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10656 						  BPF_RB_ROOT, BPF_RB_NODE,
10657 						  &meta->arg_rbtree_root.field);
10658 }
10659 
10660 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10661 			    int insn_idx)
10662 {
10663 	const char *func_name = meta->func_name, *ref_tname;
10664 	const struct btf *btf = meta->btf;
10665 	const struct btf_param *args;
10666 	struct btf_record *rec;
10667 	u32 i, nargs;
10668 	int ret;
10669 
10670 	args = (const struct btf_param *)(meta->func_proto + 1);
10671 	nargs = btf_type_vlen(meta->func_proto);
10672 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10673 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10674 			MAX_BPF_FUNC_REG_ARGS);
10675 		return -EINVAL;
10676 	}
10677 
10678 	/* Check that BTF function arguments match actual types that the
10679 	 * verifier sees.
10680 	 */
10681 	for (i = 0; i < nargs; i++) {
10682 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10683 		const struct btf_type *t, *ref_t, *resolve_ret;
10684 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10685 		u32 regno = i + 1, ref_id, type_size;
10686 		bool is_ret_buf_sz = false;
10687 		int kf_arg_type;
10688 
10689 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10690 
10691 		if (is_kfunc_arg_ignore(btf, &args[i]))
10692 			continue;
10693 
10694 		if (btf_type_is_scalar(t)) {
10695 			if (reg->type != SCALAR_VALUE) {
10696 				verbose(env, "R%d is not a scalar\n", regno);
10697 				return -EINVAL;
10698 			}
10699 
10700 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10701 				if (meta->arg_constant.found) {
10702 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10703 					return -EFAULT;
10704 				}
10705 				if (!tnum_is_const(reg->var_off)) {
10706 					verbose(env, "R%d must be a known constant\n", regno);
10707 					return -EINVAL;
10708 				}
10709 				ret = mark_chain_precision(env, regno);
10710 				if (ret < 0)
10711 					return ret;
10712 				meta->arg_constant.found = true;
10713 				meta->arg_constant.value = reg->var_off.value;
10714 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10715 				meta->r0_rdonly = true;
10716 				is_ret_buf_sz = true;
10717 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10718 				is_ret_buf_sz = true;
10719 			}
10720 
10721 			if (is_ret_buf_sz) {
10722 				if (meta->r0_size) {
10723 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10724 					return -EINVAL;
10725 				}
10726 
10727 				if (!tnum_is_const(reg->var_off)) {
10728 					verbose(env, "R%d is not a const\n", regno);
10729 					return -EINVAL;
10730 				}
10731 
10732 				meta->r0_size = reg->var_off.value;
10733 				ret = mark_chain_precision(env, regno);
10734 				if (ret)
10735 					return ret;
10736 			}
10737 			continue;
10738 		}
10739 
10740 		if (!btf_type_is_ptr(t)) {
10741 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10742 			return -EINVAL;
10743 		}
10744 
10745 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10746 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10747 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10748 			return -EACCES;
10749 		}
10750 
10751 		if (reg->ref_obj_id) {
10752 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10753 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10754 					regno, reg->ref_obj_id,
10755 					meta->ref_obj_id);
10756 				return -EFAULT;
10757 			}
10758 			meta->ref_obj_id = reg->ref_obj_id;
10759 			if (is_kfunc_release(meta))
10760 				meta->release_regno = regno;
10761 		}
10762 
10763 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10764 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10765 
10766 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10767 		if (kf_arg_type < 0)
10768 			return kf_arg_type;
10769 
10770 		switch (kf_arg_type) {
10771 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10772 		case KF_ARG_PTR_TO_BTF_ID:
10773 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10774 				break;
10775 
10776 			if (!is_trusted_reg(reg)) {
10777 				if (!is_kfunc_rcu(meta)) {
10778 					verbose(env, "R%d must be referenced or trusted\n", regno);
10779 					return -EINVAL;
10780 				}
10781 				if (!is_rcu_reg(reg)) {
10782 					verbose(env, "R%d must be a rcu pointer\n", regno);
10783 					return -EINVAL;
10784 				}
10785 			}
10786 
10787 			fallthrough;
10788 		case KF_ARG_PTR_TO_CTX:
10789 			/* Trusted arguments have the same offset checks as release arguments */
10790 			arg_type |= OBJ_RELEASE;
10791 			break;
10792 		case KF_ARG_PTR_TO_DYNPTR:
10793 		case KF_ARG_PTR_TO_ITER:
10794 		case KF_ARG_PTR_TO_LIST_HEAD:
10795 		case KF_ARG_PTR_TO_LIST_NODE:
10796 		case KF_ARG_PTR_TO_RB_ROOT:
10797 		case KF_ARG_PTR_TO_RB_NODE:
10798 		case KF_ARG_PTR_TO_MEM:
10799 		case KF_ARG_PTR_TO_MEM_SIZE:
10800 		case KF_ARG_PTR_TO_CALLBACK:
10801 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10802 			/* Trusted by default */
10803 			break;
10804 		default:
10805 			WARN_ON_ONCE(1);
10806 			return -EFAULT;
10807 		}
10808 
10809 		if (is_kfunc_release(meta) && reg->ref_obj_id)
10810 			arg_type |= OBJ_RELEASE;
10811 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10812 		if (ret < 0)
10813 			return ret;
10814 
10815 		switch (kf_arg_type) {
10816 		case KF_ARG_PTR_TO_CTX:
10817 			if (reg->type != PTR_TO_CTX) {
10818 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10819 				return -EINVAL;
10820 			}
10821 
10822 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10823 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10824 				if (ret < 0)
10825 					return -EINVAL;
10826 				meta->ret_btf_id  = ret;
10827 			}
10828 			break;
10829 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10830 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10831 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10832 				return -EINVAL;
10833 			}
10834 			if (!reg->ref_obj_id) {
10835 				verbose(env, "allocated object must be referenced\n");
10836 				return -EINVAL;
10837 			}
10838 			if (meta->btf == btf_vmlinux &&
10839 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10840 				meta->arg_btf = reg->btf;
10841 				meta->arg_btf_id = reg->btf_id;
10842 			}
10843 			break;
10844 		case KF_ARG_PTR_TO_DYNPTR:
10845 		{
10846 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
10847 			int clone_ref_obj_id = 0;
10848 
10849 			if (reg->type != PTR_TO_STACK &&
10850 			    reg->type != CONST_PTR_TO_DYNPTR) {
10851 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
10852 				return -EINVAL;
10853 			}
10854 
10855 			if (reg->type == CONST_PTR_TO_DYNPTR)
10856 				dynptr_arg_type |= MEM_RDONLY;
10857 
10858 			if (is_kfunc_arg_uninit(btf, &args[i]))
10859 				dynptr_arg_type |= MEM_UNINIT;
10860 
10861 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
10862 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
10863 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
10864 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
10865 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
10866 				   (dynptr_arg_type & MEM_UNINIT)) {
10867 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
10868 
10869 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
10870 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
10871 					return -EFAULT;
10872 				}
10873 
10874 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
10875 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
10876 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
10877 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
10878 					return -EFAULT;
10879 				}
10880 			}
10881 
10882 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
10883 			if (ret < 0)
10884 				return ret;
10885 
10886 			if (!(dynptr_arg_type & MEM_UNINIT)) {
10887 				int id = dynptr_id(env, reg);
10888 
10889 				if (id < 0) {
10890 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10891 					return id;
10892 				}
10893 				meta->initialized_dynptr.id = id;
10894 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
10895 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
10896 			}
10897 
10898 			break;
10899 		}
10900 		case KF_ARG_PTR_TO_ITER:
10901 			ret = process_iter_arg(env, regno, insn_idx, meta);
10902 			if (ret < 0)
10903 				return ret;
10904 			break;
10905 		case KF_ARG_PTR_TO_LIST_HEAD:
10906 			if (reg->type != PTR_TO_MAP_VALUE &&
10907 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10908 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10909 				return -EINVAL;
10910 			}
10911 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10912 				verbose(env, "allocated object must be referenced\n");
10913 				return -EINVAL;
10914 			}
10915 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
10916 			if (ret < 0)
10917 				return ret;
10918 			break;
10919 		case KF_ARG_PTR_TO_RB_ROOT:
10920 			if (reg->type != PTR_TO_MAP_VALUE &&
10921 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10922 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10923 				return -EINVAL;
10924 			}
10925 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10926 				verbose(env, "allocated object must be referenced\n");
10927 				return -EINVAL;
10928 			}
10929 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
10930 			if (ret < 0)
10931 				return ret;
10932 			break;
10933 		case KF_ARG_PTR_TO_LIST_NODE:
10934 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10935 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10936 				return -EINVAL;
10937 			}
10938 			if (!reg->ref_obj_id) {
10939 				verbose(env, "allocated object must be referenced\n");
10940 				return -EINVAL;
10941 			}
10942 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
10943 			if (ret < 0)
10944 				return ret;
10945 			break;
10946 		case KF_ARG_PTR_TO_RB_NODE:
10947 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
10948 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
10949 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
10950 					return -EINVAL;
10951 				}
10952 				if (in_rbtree_lock_required_cb(env)) {
10953 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
10954 					return -EINVAL;
10955 				}
10956 			} else {
10957 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10958 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
10959 					return -EINVAL;
10960 				}
10961 				if (!reg->ref_obj_id) {
10962 					verbose(env, "allocated object must be referenced\n");
10963 					return -EINVAL;
10964 				}
10965 			}
10966 
10967 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
10968 			if (ret < 0)
10969 				return ret;
10970 			break;
10971 		case KF_ARG_PTR_TO_BTF_ID:
10972 			/* Only base_type is checked, further checks are done here */
10973 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
10974 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
10975 			    !reg2btf_ids[base_type(reg->type)]) {
10976 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
10977 				verbose(env, "expected %s or socket\n",
10978 					reg_type_str(env, base_type(reg->type) |
10979 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
10980 				return -EINVAL;
10981 			}
10982 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
10983 			if (ret < 0)
10984 				return ret;
10985 			break;
10986 		case KF_ARG_PTR_TO_MEM:
10987 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
10988 			if (IS_ERR(resolve_ret)) {
10989 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
10990 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
10991 				return -EINVAL;
10992 			}
10993 			ret = check_mem_reg(env, reg, regno, type_size);
10994 			if (ret < 0)
10995 				return ret;
10996 			break;
10997 		case KF_ARG_PTR_TO_MEM_SIZE:
10998 		{
10999 			struct bpf_reg_state *buff_reg = &regs[regno];
11000 			const struct btf_param *buff_arg = &args[i];
11001 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11002 			const struct btf_param *size_arg = &args[i + 1];
11003 
11004 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11005 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11006 				if (ret < 0) {
11007 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11008 					return ret;
11009 				}
11010 			}
11011 
11012 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11013 				if (meta->arg_constant.found) {
11014 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11015 					return -EFAULT;
11016 				}
11017 				if (!tnum_is_const(size_reg->var_off)) {
11018 					verbose(env, "R%d must be a known constant\n", regno + 1);
11019 					return -EINVAL;
11020 				}
11021 				meta->arg_constant.found = true;
11022 				meta->arg_constant.value = size_reg->var_off.value;
11023 			}
11024 
11025 			/* Skip next '__sz' or '__szk' argument */
11026 			i++;
11027 			break;
11028 		}
11029 		case KF_ARG_PTR_TO_CALLBACK:
11030 			meta->subprogno = reg->subprogno;
11031 			break;
11032 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11033 			if (!type_is_ptr_alloc_obj(reg->type)) {
11034 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11035 				return -EINVAL;
11036 			}
11037 			if (!type_is_non_owning_ref(reg->type))
11038 				meta->arg_owning_ref = true;
11039 
11040 			rec = reg_btf_record(reg);
11041 			if (!rec) {
11042 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11043 				return -EFAULT;
11044 			}
11045 
11046 			if (rec->refcount_off < 0) {
11047 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11048 				return -EINVAL;
11049 			}
11050 			if (rec->refcount_off >= 0) {
11051 				verbose(env, "bpf_refcount_acquire calls are disabled for now\n");
11052 				return -EINVAL;
11053 			}
11054 			meta->arg_btf = reg->btf;
11055 			meta->arg_btf_id = reg->btf_id;
11056 			break;
11057 		}
11058 	}
11059 
11060 	if (is_kfunc_release(meta) && !meta->release_regno) {
11061 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11062 			func_name);
11063 		return -EINVAL;
11064 	}
11065 
11066 	return 0;
11067 }
11068 
11069 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11070 			    struct bpf_insn *insn,
11071 			    struct bpf_kfunc_call_arg_meta *meta,
11072 			    const char **kfunc_name)
11073 {
11074 	const struct btf_type *func, *func_proto;
11075 	u32 func_id, *kfunc_flags;
11076 	const char *func_name;
11077 	struct btf *desc_btf;
11078 
11079 	if (kfunc_name)
11080 		*kfunc_name = NULL;
11081 
11082 	if (!insn->imm)
11083 		return -EINVAL;
11084 
11085 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11086 	if (IS_ERR(desc_btf))
11087 		return PTR_ERR(desc_btf);
11088 
11089 	func_id = insn->imm;
11090 	func = btf_type_by_id(desc_btf, func_id);
11091 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11092 	if (kfunc_name)
11093 		*kfunc_name = func_name;
11094 	func_proto = btf_type_by_id(desc_btf, func->type);
11095 
11096 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11097 	if (!kfunc_flags) {
11098 		return -EACCES;
11099 	}
11100 
11101 	memset(meta, 0, sizeof(*meta));
11102 	meta->btf = desc_btf;
11103 	meta->func_id = func_id;
11104 	meta->kfunc_flags = *kfunc_flags;
11105 	meta->func_proto = func_proto;
11106 	meta->func_name = func_name;
11107 
11108 	return 0;
11109 }
11110 
11111 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11112 			    int *insn_idx_p)
11113 {
11114 	const struct btf_type *t, *ptr_type;
11115 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11116 	struct bpf_reg_state *regs = cur_regs(env);
11117 	const char *func_name, *ptr_type_name;
11118 	bool sleepable, rcu_lock, rcu_unlock;
11119 	struct bpf_kfunc_call_arg_meta meta;
11120 	struct bpf_insn_aux_data *insn_aux;
11121 	int err, insn_idx = *insn_idx_p;
11122 	const struct btf_param *args;
11123 	const struct btf_type *ret_t;
11124 	struct btf *desc_btf;
11125 
11126 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11127 	if (!insn->imm)
11128 		return 0;
11129 
11130 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11131 	if (err == -EACCES && func_name)
11132 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11133 	if (err)
11134 		return err;
11135 	desc_btf = meta.btf;
11136 	insn_aux = &env->insn_aux_data[insn_idx];
11137 
11138 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11139 
11140 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11141 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11142 		return -EACCES;
11143 	}
11144 
11145 	sleepable = is_kfunc_sleepable(&meta);
11146 	if (sleepable && !env->prog->aux->sleepable) {
11147 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11148 		return -EACCES;
11149 	}
11150 
11151 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11152 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11153 
11154 	if (env->cur_state->active_rcu_lock) {
11155 		struct bpf_func_state *state;
11156 		struct bpf_reg_state *reg;
11157 
11158 		if (rcu_lock) {
11159 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11160 			return -EINVAL;
11161 		} else if (rcu_unlock) {
11162 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11163 				if (reg->type & MEM_RCU) {
11164 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11165 					reg->type |= PTR_UNTRUSTED;
11166 				}
11167 			}));
11168 			env->cur_state->active_rcu_lock = false;
11169 		} else if (sleepable) {
11170 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11171 			return -EACCES;
11172 		}
11173 	} else if (rcu_lock) {
11174 		env->cur_state->active_rcu_lock = true;
11175 	} else if (rcu_unlock) {
11176 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11177 		return -EINVAL;
11178 	}
11179 
11180 	/* Check the arguments */
11181 	err = check_kfunc_args(env, &meta, insn_idx);
11182 	if (err < 0)
11183 		return err;
11184 	/* In case of release function, we get register number of refcounted
11185 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11186 	 */
11187 	if (meta.release_regno) {
11188 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11189 		if (err) {
11190 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11191 				func_name, meta.func_id);
11192 			return err;
11193 		}
11194 	}
11195 
11196 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11197 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11198 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11199 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11200 		insn_aux->insert_off = regs[BPF_REG_2].off;
11201 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11202 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11203 		if (err) {
11204 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11205 				func_name, meta.func_id);
11206 			return err;
11207 		}
11208 
11209 		err = release_reference(env, release_ref_obj_id);
11210 		if (err) {
11211 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11212 				func_name, meta.func_id);
11213 			return err;
11214 		}
11215 	}
11216 
11217 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11218 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11219 					set_rbtree_add_callback_state);
11220 		if (err) {
11221 			verbose(env, "kfunc %s#%d failed callback verification\n",
11222 				func_name, meta.func_id);
11223 			return err;
11224 		}
11225 	}
11226 
11227 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11228 		mark_reg_not_init(env, regs, caller_saved[i]);
11229 
11230 	/* Check return type */
11231 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11232 
11233 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11234 		/* Only exception is bpf_obj_new_impl */
11235 		if (meta.btf != btf_vmlinux ||
11236 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11237 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11238 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11239 			return -EINVAL;
11240 		}
11241 	}
11242 
11243 	if (btf_type_is_scalar(t)) {
11244 		mark_reg_unknown(env, regs, BPF_REG_0);
11245 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11246 	} else if (btf_type_is_ptr(t)) {
11247 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11248 
11249 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11250 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11251 				struct btf *ret_btf;
11252 				u32 ret_btf_id;
11253 
11254 				if (unlikely(!bpf_global_ma_set))
11255 					return -ENOMEM;
11256 
11257 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11258 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11259 					return -EINVAL;
11260 				}
11261 
11262 				ret_btf = env->prog->aux->btf;
11263 				ret_btf_id = meta.arg_constant.value;
11264 
11265 				/* This may be NULL due to user not supplying a BTF */
11266 				if (!ret_btf) {
11267 					verbose(env, "bpf_obj_new requires prog BTF\n");
11268 					return -EINVAL;
11269 				}
11270 
11271 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11272 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11273 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11274 					return -EINVAL;
11275 				}
11276 
11277 				mark_reg_known_zero(env, regs, BPF_REG_0);
11278 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11279 				regs[BPF_REG_0].btf = ret_btf;
11280 				regs[BPF_REG_0].btf_id = ret_btf_id;
11281 
11282 				insn_aux->obj_new_size = ret_t->size;
11283 				insn_aux->kptr_struct_meta =
11284 					btf_find_struct_meta(ret_btf, ret_btf_id);
11285 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11286 				mark_reg_known_zero(env, regs, BPF_REG_0);
11287 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11288 				regs[BPF_REG_0].btf = meta.arg_btf;
11289 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11290 
11291 				insn_aux->kptr_struct_meta =
11292 					btf_find_struct_meta(meta.arg_btf,
11293 							     meta.arg_btf_id);
11294 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11295 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11296 				struct btf_field *field = meta.arg_list_head.field;
11297 
11298 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11299 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11300 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11301 				struct btf_field *field = meta.arg_rbtree_root.field;
11302 
11303 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11304 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11305 				mark_reg_known_zero(env, regs, BPF_REG_0);
11306 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11307 				regs[BPF_REG_0].btf = desc_btf;
11308 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11309 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11310 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11311 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11312 					verbose(env,
11313 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11314 					return -EINVAL;
11315 				}
11316 
11317 				mark_reg_known_zero(env, regs, BPF_REG_0);
11318 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11319 				regs[BPF_REG_0].btf = desc_btf;
11320 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11321 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11322 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11323 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11324 
11325 				mark_reg_known_zero(env, regs, BPF_REG_0);
11326 
11327 				if (!meta.arg_constant.found) {
11328 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11329 					return -EFAULT;
11330 				}
11331 
11332 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11333 
11334 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11335 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11336 
11337 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11338 					regs[BPF_REG_0].type |= MEM_RDONLY;
11339 				} else {
11340 					/* this will set env->seen_direct_write to true */
11341 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11342 						verbose(env, "the prog does not allow writes to packet data\n");
11343 						return -EINVAL;
11344 					}
11345 				}
11346 
11347 				if (!meta.initialized_dynptr.id) {
11348 					verbose(env, "verifier internal error: no dynptr id\n");
11349 					return -EFAULT;
11350 				}
11351 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11352 
11353 				/* we don't need to set BPF_REG_0's ref obj id
11354 				 * because packet slices are not refcounted (see
11355 				 * dynptr_type_refcounted)
11356 				 */
11357 			} else {
11358 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11359 					meta.func_name);
11360 				return -EFAULT;
11361 			}
11362 		} else if (!__btf_type_is_struct(ptr_type)) {
11363 			if (!meta.r0_size) {
11364 				__u32 sz;
11365 
11366 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11367 					meta.r0_size = sz;
11368 					meta.r0_rdonly = true;
11369 				}
11370 			}
11371 			if (!meta.r0_size) {
11372 				ptr_type_name = btf_name_by_offset(desc_btf,
11373 								   ptr_type->name_off);
11374 				verbose(env,
11375 					"kernel function %s returns pointer type %s %s is not supported\n",
11376 					func_name,
11377 					btf_type_str(ptr_type),
11378 					ptr_type_name);
11379 				return -EINVAL;
11380 			}
11381 
11382 			mark_reg_known_zero(env, regs, BPF_REG_0);
11383 			regs[BPF_REG_0].type = PTR_TO_MEM;
11384 			regs[BPF_REG_0].mem_size = meta.r0_size;
11385 
11386 			if (meta.r0_rdonly)
11387 				regs[BPF_REG_0].type |= MEM_RDONLY;
11388 
11389 			/* Ensures we don't access the memory after a release_reference() */
11390 			if (meta.ref_obj_id)
11391 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11392 		} else {
11393 			mark_reg_known_zero(env, regs, BPF_REG_0);
11394 			regs[BPF_REG_0].btf = desc_btf;
11395 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11396 			regs[BPF_REG_0].btf_id = ptr_type_id;
11397 		}
11398 
11399 		if (is_kfunc_ret_null(&meta)) {
11400 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11401 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11402 			regs[BPF_REG_0].id = ++env->id_gen;
11403 		}
11404 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11405 		if (is_kfunc_acquire(&meta)) {
11406 			int id = acquire_reference_state(env, insn_idx);
11407 
11408 			if (id < 0)
11409 				return id;
11410 			if (is_kfunc_ret_null(&meta))
11411 				regs[BPF_REG_0].id = id;
11412 			regs[BPF_REG_0].ref_obj_id = id;
11413 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11414 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11415 		}
11416 
11417 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11418 			regs[BPF_REG_0].id = ++env->id_gen;
11419 	} else if (btf_type_is_void(t)) {
11420 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11421 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11422 				insn_aux->kptr_struct_meta =
11423 					btf_find_struct_meta(meta.arg_btf,
11424 							     meta.arg_btf_id);
11425 			}
11426 		}
11427 	}
11428 
11429 	nargs = btf_type_vlen(meta.func_proto);
11430 	args = (const struct btf_param *)(meta.func_proto + 1);
11431 	for (i = 0; i < nargs; i++) {
11432 		u32 regno = i + 1;
11433 
11434 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11435 		if (btf_type_is_ptr(t))
11436 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11437 		else
11438 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11439 			mark_btf_func_reg_size(env, regno, t->size);
11440 	}
11441 
11442 	if (is_iter_next_kfunc(&meta)) {
11443 		err = process_iter_next_call(env, insn_idx, &meta);
11444 		if (err)
11445 			return err;
11446 	}
11447 
11448 	return 0;
11449 }
11450 
11451 static bool signed_add_overflows(s64 a, s64 b)
11452 {
11453 	/* Do the add in u64, where overflow is well-defined */
11454 	s64 res = (s64)((u64)a + (u64)b);
11455 
11456 	if (b < 0)
11457 		return res > a;
11458 	return res < a;
11459 }
11460 
11461 static bool signed_add32_overflows(s32 a, s32 b)
11462 {
11463 	/* Do the add in u32, where overflow is well-defined */
11464 	s32 res = (s32)((u32)a + (u32)b);
11465 
11466 	if (b < 0)
11467 		return res > a;
11468 	return res < a;
11469 }
11470 
11471 static bool signed_sub_overflows(s64 a, s64 b)
11472 {
11473 	/* Do the sub in u64, where overflow is well-defined */
11474 	s64 res = (s64)((u64)a - (u64)b);
11475 
11476 	if (b < 0)
11477 		return res < a;
11478 	return res > a;
11479 }
11480 
11481 static bool signed_sub32_overflows(s32 a, s32 b)
11482 {
11483 	/* Do the sub in u32, where overflow is well-defined */
11484 	s32 res = (s32)((u32)a - (u32)b);
11485 
11486 	if (b < 0)
11487 		return res < a;
11488 	return res > a;
11489 }
11490 
11491 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11492 				  const struct bpf_reg_state *reg,
11493 				  enum bpf_reg_type type)
11494 {
11495 	bool known = tnum_is_const(reg->var_off);
11496 	s64 val = reg->var_off.value;
11497 	s64 smin = reg->smin_value;
11498 
11499 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11500 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11501 			reg_type_str(env, type), val);
11502 		return false;
11503 	}
11504 
11505 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11506 		verbose(env, "%s pointer offset %d is not allowed\n",
11507 			reg_type_str(env, type), reg->off);
11508 		return false;
11509 	}
11510 
11511 	if (smin == S64_MIN) {
11512 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11513 			reg_type_str(env, type));
11514 		return false;
11515 	}
11516 
11517 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11518 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11519 			smin, reg_type_str(env, type));
11520 		return false;
11521 	}
11522 
11523 	return true;
11524 }
11525 
11526 enum {
11527 	REASON_BOUNDS	= -1,
11528 	REASON_TYPE	= -2,
11529 	REASON_PATHS	= -3,
11530 	REASON_LIMIT	= -4,
11531 	REASON_STACK	= -5,
11532 };
11533 
11534 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11535 			      u32 *alu_limit, bool mask_to_left)
11536 {
11537 	u32 max = 0, ptr_limit = 0;
11538 
11539 	switch (ptr_reg->type) {
11540 	case PTR_TO_STACK:
11541 		/* Offset 0 is out-of-bounds, but acceptable start for the
11542 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11543 		 * offset where we would need to deal with min/max bounds is
11544 		 * currently prohibited for unprivileged.
11545 		 */
11546 		max = MAX_BPF_STACK + mask_to_left;
11547 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11548 		break;
11549 	case PTR_TO_MAP_VALUE:
11550 		max = ptr_reg->map_ptr->value_size;
11551 		ptr_limit = (mask_to_left ?
11552 			     ptr_reg->smin_value :
11553 			     ptr_reg->umax_value) + ptr_reg->off;
11554 		break;
11555 	default:
11556 		return REASON_TYPE;
11557 	}
11558 
11559 	if (ptr_limit >= max)
11560 		return REASON_LIMIT;
11561 	*alu_limit = ptr_limit;
11562 	return 0;
11563 }
11564 
11565 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11566 				    const struct bpf_insn *insn)
11567 {
11568 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11569 }
11570 
11571 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11572 				       u32 alu_state, u32 alu_limit)
11573 {
11574 	/* If we arrived here from different branches with different
11575 	 * state or limits to sanitize, then this won't work.
11576 	 */
11577 	if (aux->alu_state &&
11578 	    (aux->alu_state != alu_state ||
11579 	     aux->alu_limit != alu_limit))
11580 		return REASON_PATHS;
11581 
11582 	/* Corresponding fixup done in do_misc_fixups(). */
11583 	aux->alu_state = alu_state;
11584 	aux->alu_limit = alu_limit;
11585 	return 0;
11586 }
11587 
11588 static int sanitize_val_alu(struct bpf_verifier_env *env,
11589 			    struct bpf_insn *insn)
11590 {
11591 	struct bpf_insn_aux_data *aux = cur_aux(env);
11592 
11593 	if (can_skip_alu_sanitation(env, insn))
11594 		return 0;
11595 
11596 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11597 }
11598 
11599 static bool sanitize_needed(u8 opcode)
11600 {
11601 	return opcode == BPF_ADD || opcode == BPF_SUB;
11602 }
11603 
11604 struct bpf_sanitize_info {
11605 	struct bpf_insn_aux_data aux;
11606 	bool mask_to_left;
11607 };
11608 
11609 static struct bpf_verifier_state *
11610 sanitize_speculative_path(struct bpf_verifier_env *env,
11611 			  const struct bpf_insn *insn,
11612 			  u32 next_idx, u32 curr_idx)
11613 {
11614 	struct bpf_verifier_state *branch;
11615 	struct bpf_reg_state *regs;
11616 
11617 	branch = push_stack(env, next_idx, curr_idx, true);
11618 	if (branch && insn) {
11619 		regs = branch->frame[branch->curframe]->regs;
11620 		if (BPF_SRC(insn->code) == BPF_K) {
11621 			mark_reg_unknown(env, regs, insn->dst_reg);
11622 		} else if (BPF_SRC(insn->code) == BPF_X) {
11623 			mark_reg_unknown(env, regs, insn->dst_reg);
11624 			mark_reg_unknown(env, regs, insn->src_reg);
11625 		}
11626 	}
11627 	return branch;
11628 }
11629 
11630 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11631 			    struct bpf_insn *insn,
11632 			    const struct bpf_reg_state *ptr_reg,
11633 			    const struct bpf_reg_state *off_reg,
11634 			    struct bpf_reg_state *dst_reg,
11635 			    struct bpf_sanitize_info *info,
11636 			    const bool commit_window)
11637 {
11638 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11639 	struct bpf_verifier_state *vstate = env->cur_state;
11640 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11641 	bool off_is_neg = off_reg->smin_value < 0;
11642 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11643 	u8 opcode = BPF_OP(insn->code);
11644 	u32 alu_state, alu_limit;
11645 	struct bpf_reg_state tmp;
11646 	bool ret;
11647 	int err;
11648 
11649 	if (can_skip_alu_sanitation(env, insn))
11650 		return 0;
11651 
11652 	/* We already marked aux for masking from non-speculative
11653 	 * paths, thus we got here in the first place. We only care
11654 	 * to explore bad access from here.
11655 	 */
11656 	if (vstate->speculative)
11657 		goto do_sim;
11658 
11659 	if (!commit_window) {
11660 		if (!tnum_is_const(off_reg->var_off) &&
11661 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11662 			return REASON_BOUNDS;
11663 
11664 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11665 				     (opcode == BPF_SUB && !off_is_neg);
11666 	}
11667 
11668 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11669 	if (err < 0)
11670 		return err;
11671 
11672 	if (commit_window) {
11673 		/* In commit phase we narrow the masking window based on
11674 		 * the observed pointer move after the simulated operation.
11675 		 */
11676 		alu_state = info->aux.alu_state;
11677 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11678 	} else {
11679 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11680 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11681 		alu_state |= ptr_is_dst_reg ?
11682 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11683 
11684 		/* Limit pruning on unknown scalars to enable deep search for
11685 		 * potential masking differences from other program paths.
11686 		 */
11687 		if (!off_is_imm)
11688 			env->explore_alu_limits = true;
11689 	}
11690 
11691 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11692 	if (err < 0)
11693 		return err;
11694 do_sim:
11695 	/* If we're in commit phase, we're done here given we already
11696 	 * pushed the truncated dst_reg into the speculative verification
11697 	 * stack.
11698 	 *
11699 	 * Also, when register is a known constant, we rewrite register-based
11700 	 * operation to immediate-based, and thus do not need masking (and as
11701 	 * a consequence, do not need to simulate the zero-truncation either).
11702 	 */
11703 	if (commit_window || off_is_imm)
11704 		return 0;
11705 
11706 	/* Simulate and find potential out-of-bounds access under
11707 	 * speculative execution from truncation as a result of
11708 	 * masking when off was not within expected range. If off
11709 	 * sits in dst, then we temporarily need to move ptr there
11710 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11711 	 * for cases where we use K-based arithmetic in one direction
11712 	 * and truncated reg-based in the other in order to explore
11713 	 * bad access.
11714 	 */
11715 	if (!ptr_is_dst_reg) {
11716 		tmp = *dst_reg;
11717 		copy_register_state(dst_reg, ptr_reg);
11718 	}
11719 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11720 					env->insn_idx);
11721 	if (!ptr_is_dst_reg && ret)
11722 		*dst_reg = tmp;
11723 	return !ret ? REASON_STACK : 0;
11724 }
11725 
11726 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11727 {
11728 	struct bpf_verifier_state *vstate = env->cur_state;
11729 
11730 	/* If we simulate paths under speculation, we don't update the
11731 	 * insn as 'seen' such that when we verify unreachable paths in
11732 	 * the non-speculative domain, sanitize_dead_code() can still
11733 	 * rewrite/sanitize them.
11734 	 */
11735 	if (!vstate->speculative)
11736 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11737 }
11738 
11739 static int sanitize_err(struct bpf_verifier_env *env,
11740 			const struct bpf_insn *insn, int reason,
11741 			const struct bpf_reg_state *off_reg,
11742 			const struct bpf_reg_state *dst_reg)
11743 {
11744 	static const char *err = "pointer arithmetic with it prohibited for !root";
11745 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11746 	u32 dst = insn->dst_reg, src = insn->src_reg;
11747 
11748 	switch (reason) {
11749 	case REASON_BOUNDS:
11750 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11751 			off_reg == dst_reg ? dst : src, err);
11752 		break;
11753 	case REASON_TYPE:
11754 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11755 			off_reg == dst_reg ? src : dst, err);
11756 		break;
11757 	case REASON_PATHS:
11758 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11759 			dst, op, err);
11760 		break;
11761 	case REASON_LIMIT:
11762 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11763 			dst, op, err);
11764 		break;
11765 	case REASON_STACK:
11766 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11767 			dst, err);
11768 		break;
11769 	default:
11770 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11771 			reason);
11772 		break;
11773 	}
11774 
11775 	return -EACCES;
11776 }
11777 
11778 /* check that stack access falls within stack limits and that 'reg' doesn't
11779  * have a variable offset.
11780  *
11781  * Variable offset is prohibited for unprivileged mode for simplicity since it
11782  * requires corresponding support in Spectre masking for stack ALU.  See also
11783  * retrieve_ptr_limit().
11784  *
11785  *
11786  * 'off' includes 'reg->off'.
11787  */
11788 static int check_stack_access_for_ptr_arithmetic(
11789 				struct bpf_verifier_env *env,
11790 				int regno,
11791 				const struct bpf_reg_state *reg,
11792 				int off)
11793 {
11794 	if (!tnum_is_const(reg->var_off)) {
11795 		char tn_buf[48];
11796 
11797 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11798 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11799 			regno, tn_buf, off);
11800 		return -EACCES;
11801 	}
11802 
11803 	if (off >= 0 || off < -MAX_BPF_STACK) {
11804 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
11805 			"prohibited for !root; off=%d\n", regno, off);
11806 		return -EACCES;
11807 	}
11808 
11809 	return 0;
11810 }
11811 
11812 static int sanitize_check_bounds(struct bpf_verifier_env *env,
11813 				 const struct bpf_insn *insn,
11814 				 const struct bpf_reg_state *dst_reg)
11815 {
11816 	u32 dst = insn->dst_reg;
11817 
11818 	/* For unprivileged we require that resulting offset must be in bounds
11819 	 * in order to be able to sanitize access later on.
11820 	 */
11821 	if (env->bypass_spec_v1)
11822 		return 0;
11823 
11824 	switch (dst_reg->type) {
11825 	case PTR_TO_STACK:
11826 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
11827 					dst_reg->off + dst_reg->var_off.value))
11828 			return -EACCES;
11829 		break;
11830 	case PTR_TO_MAP_VALUE:
11831 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
11832 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
11833 				"prohibited for !root\n", dst);
11834 			return -EACCES;
11835 		}
11836 		break;
11837 	default:
11838 		break;
11839 	}
11840 
11841 	return 0;
11842 }
11843 
11844 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
11845  * Caller should also handle BPF_MOV case separately.
11846  * If we return -EACCES, caller may want to try again treating pointer as a
11847  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
11848  */
11849 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
11850 				   struct bpf_insn *insn,
11851 				   const struct bpf_reg_state *ptr_reg,
11852 				   const struct bpf_reg_state *off_reg)
11853 {
11854 	struct bpf_verifier_state *vstate = env->cur_state;
11855 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11856 	struct bpf_reg_state *regs = state->regs, *dst_reg;
11857 	bool known = tnum_is_const(off_reg->var_off);
11858 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
11859 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
11860 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
11861 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
11862 	struct bpf_sanitize_info info = {};
11863 	u8 opcode = BPF_OP(insn->code);
11864 	u32 dst = insn->dst_reg;
11865 	int ret;
11866 
11867 	dst_reg = &regs[dst];
11868 
11869 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
11870 	    smin_val > smax_val || umin_val > umax_val) {
11871 		/* Taint dst register if offset had invalid bounds derived from
11872 		 * e.g. dead branches.
11873 		 */
11874 		__mark_reg_unknown(env, dst_reg);
11875 		return 0;
11876 	}
11877 
11878 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
11879 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
11880 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11881 			__mark_reg_unknown(env, dst_reg);
11882 			return 0;
11883 		}
11884 
11885 		verbose(env,
11886 			"R%d 32-bit pointer arithmetic prohibited\n",
11887 			dst);
11888 		return -EACCES;
11889 	}
11890 
11891 	if (ptr_reg->type & PTR_MAYBE_NULL) {
11892 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
11893 			dst, reg_type_str(env, ptr_reg->type));
11894 		return -EACCES;
11895 	}
11896 
11897 	switch (base_type(ptr_reg->type)) {
11898 	case CONST_PTR_TO_MAP:
11899 		/* smin_val represents the known value */
11900 		if (known && smin_val == 0 && opcode == BPF_ADD)
11901 			break;
11902 		fallthrough;
11903 	case PTR_TO_PACKET_END:
11904 	case PTR_TO_SOCKET:
11905 	case PTR_TO_SOCK_COMMON:
11906 	case PTR_TO_TCP_SOCK:
11907 	case PTR_TO_XDP_SOCK:
11908 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
11909 			dst, reg_type_str(env, ptr_reg->type));
11910 		return -EACCES;
11911 	default:
11912 		break;
11913 	}
11914 
11915 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
11916 	 * The id may be overwritten later if we create a new variable offset.
11917 	 */
11918 	dst_reg->type = ptr_reg->type;
11919 	dst_reg->id = ptr_reg->id;
11920 
11921 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
11922 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
11923 		return -EINVAL;
11924 
11925 	/* pointer types do not carry 32-bit bounds at the moment. */
11926 	__mark_reg32_unbounded(dst_reg);
11927 
11928 	if (sanitize_needed(opcode)) {
11929 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
11930 				       &info, false);
11931 		if (ret < 0)
11932 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
11933 	}
11934 
11935 	switch (opcode) {
11936 	case BPF_ADD:
11937 		/* We can take a fixed offset as long as it doesn't overflow
11938 		 * the s32 'off' field
11939 		 */
11940 		if (known && (ptr_reg->off + smin_val ==
11941 			      (s64)(s32)(ptr_reg->off + smin_val))) {
11942 			/* pointer += K.  Accumulate it into fixed offset */
11943 			dst_reg->smin_value = smin_ptr;
11944 			dst_reg->smax_value = smax_ptr;
11945 			dst_reg->umin_value = umin_ptr;
11946 			dst_reg->umax_value = umax_ptr;
11947 			dst_reg->var_off = ptr_reg->var_off;
11948 			dst_reg->off = ptr_reg->off + smin_val;
11949 			dst_reg->raw = ptr_reg->raw;
11950 			break;
11951 		}
11952 		/* A new variable offset is created.  Note that off_reg->off
11953 		 * == 0, since it's a scalar.
11954 		 * dst_reg gets the pointer type and since some positive
11955 		 * integer value was added to the pointer, give it a new 'id'
11956 		 * if it's a PTR_TO_PACKET.
11957 		 * this creates a new 'base' pointer, off_reg (variable) gets
11958 		 * added into the variable offset, and we copy the fixed offset
11959 		 * from ptr_reg.
11960 		 */
11961 		if (signed_add_overflows(smin_ptr, smin_val) ||
11962 		    signed_add_overflows(smax_ptr, smax_val)) {
11963 			dst_reg->smin_value = S64_MIN;
11964 			dst_reg->smax_value = S64_MAX;
11965 		} else {
11966 			dst_reg->smin_value = smin_ptr + smin_val;
11967 			dst_reg->smax_value = smax_ptr + smax_val;
11968 		}
11969 		if (umin_ptr + umin_val < umin_ptr ||
11970 		    umax_ptr + umax_val < umax_ptr) {
11971 			dst_reg->umin_value = 0;
11972 			dst_reg->umax_value = U64_MAX;
11973 		} else {
11974 			dst_reg->umin_value = umin_ptr + umin_val;
11975 			dst_reg->umax_value = umax_ptr + umax_val;
11976 		}
11977 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
11978 		dst_reg->off = ptr_reg->off;
11979 		dst_reg->raw = ptr_reg->raw;
11980 		if (reg_is_pkt_pointer(ptr_reg)) {
11981 			dst_reg->id = ++env->id_gen;
11982 			/* something was added to pkt_ptr, set range to zero */
11983 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
11984 		}
11985 		break;
11986 	case BPF_SUB:
11987 		if (dst_reg == off_reg) {
11988 			/* scalar -= pointer.  Creates an unknown scalar */
11989 			verbose(env, "R%d tried to subtract pointer from scalar\n",
11990 				dst);
11991 			return -EACCES;
11992 		}
11993 		/* We don't allow subtraction from FP, because (according to
11994 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
11995 		 * be able to deal with it.
11996 		 */
11997 		if (ptr_reg->type == PTR_TO_STACK) {
11998 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
11999 				dst);
12000 			return -EACCES;
12001 		}
12002 		if (known && (ptr_reg->off - smin_val ==
12003 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12004 			/* pointer -= K.  Subtract it from fixed offset */
12005 			dst_reg->smin_value = smin_ptr;
12006 			dst_reg->smax_value = smax_ptr;
12007 			dst_reg->umin_value = umin_ptr;
12008 			dst_reg->umax_value = umax_ptr;
12009 			dst_reg->var_off = ptr_reg->var_off;
12010 			dst_reg->id = ptr_reg->id;
12011 			dst_reg->off = ptr_reg->off - smin_val;
12012 			dst_reg->raw = ptr_reg->raw;
12013 			break;
12014 		}
12015 		/* A new variable offset is created.  If the subtrahend is known
12016 		 * nonnegative, then any reg->range we had before is still good.
12017 		 */
12018 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12019 		    signed_sub_overflows(smax_ptr, smin_val)) {
12020 			/* Overflow possible, we know nothing */
12021 			dst_reg->smin_value = S64_MIN;
12022 			dst_reg->smax_value = S64_MAX;
12023 		} else {
12024 			dst_reg->smin_value = smin_ptr - smax_val;
12025 			dst_reg->smax_value = smax_ptr - smin_val;
12026 		}
12027 		if (umin_ptr < umax_val) {
12028 			/* Overflow possible, we know nothing */
12029 			dst_reg->umin_value = 0;
12030 			dst_reg->umax_value = U64_MAX;
12031 		} else {
12032 			/* Cannot overflow (as long as bounds are consistent) */
12033 			dst_reg->umin_value = umin_ptr - umax_val;
12034 			dst_reg->umax_value = umax_ptr - umin_val;
12035 		}
12036 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12037 		dst_reg->off = ptr_reg->off;
12038 		dst_reg->raw = ptr_reg->raw;
12039 		if (reg_is_pkt_pointer(ptr_reg)) {
12040 			dst_reg->id = ++env->id_gen;
12041 			/* something was added to pkt_ptr, set range to zero */
12042 			if (smin_val < 0)
12043 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12044 		}
12045 		break;
12046 	case BPF_AND:
12047 	case BPF_OR:
12048 	case BPF_XOR:
12049 		/* bitwise ops on pointers are troublesome, prohibit. */
12050 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12051 			dst, bpf_alu_string[opcode >> 4]);
12052 		return -EACCES;
12053 	default:
12054 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12055 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12056 			dst, bpf_alu_string[opcode >> 4]);
12057 		return -EACCES;
12058 	}
12059 
12060 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12061 		return -EINVAL;
12062 	reg_bounds_sync(dst_reg);
12063 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12064 		return -EACCES;
12065 	if (sanitize_needed(opcode)) {
12066 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12067 				       &info, true);
12068 		if (ret < 0)
12069 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12070 	}
12071 
12072 	return 0;
12073 }
12074 
12075 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12076 				 struct bpf_reg_state *src_reg)
12077 {
12078 	s32 smin_val = src_reg->s32_min_value;
12079 	s32 smax_val = src_reg->s32_max_value;
12080 	u32 umin_val = src_reg->u32_min_value;
12081 	u32 umax_val = src_reg->u32_max_value;
12082 
12083 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12084 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12085 		dst_reg->s32_min_value = S32_MIN;
12086 		dst_reg->s32_max_value = S32_MAX;
12087 	} else {
12088 		dst_reg->s32_min_value += smin_val;
12089 		dst_reg->s32_max_value += smax_val;
12090 	}
12091 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12092 	    dst_reg->u32_max_value + umax_val < umax_val) {
12093 		dst_reg->u32_min_value = 0;
12094 		dst_reg->u32_max_value = U32_MAX;
12095 	} else {
12096 		dst_reg->u32_min_value += umin_val;
12097 		dst_reg->u32_max_value += umax_val;
12098 	}
12099 }
12100 
12101 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12102 			       struct bpf_reg_state *src_reg)
12103 {
12104 	s64 smin_val = src_reg->smin_value;
12105 	s64 smax_val = src_reg->smax_value;
12106 	u64 umin_val = src_reg->umin_value;
12107 	u64 umax_val = src_reg->umax_value;
12108 
12109 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12110 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12111 		dst_reg->smin_value = S64_MIN;
12112 		dst_reg->smax_value = S64_MAX;
12113 	} else {
12114 		dst_reg->smin_value += smin_val;
12115 		dst_reg->smax_value += smax_val;
12116 	}
12117 	if (dst_reg->umin_value + umin_val < umin_val ||
12118 	    dst_reg->umax_value + umax_val < umax_val) {
12119 		dst_reg->umin_value = 0;
12120 		dst_reg->umax_value = U64_MAX;
12121 	} else {
12122 		dst_reg->umin_value += umin_val;
12123 		dst_reg->umax_value += umax_val;
12124 	}
12125 }
12126 
12127 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12128 				 struct bpf_reg_state *src_reg)
12129 {
12130 	s32 smin_val = src_reg->s32_min_value;
12131 	s32 smax_val = src_reg->s32_max_value;
12132 	u32 umin_val = src_reg->u32_min_value;
12133 	u32 umax_val = src_reg->u32_max_value;
12134 
12135 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12136 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12137 		/* Overflow possible, we know nothing */
12138 		dst_reg->s32_min_value = S32_MIN;
12139 		dst_reg->s32_max_value = S32_MAX;
12140 	} else {
12141 		dst_reg->s32_min_value -= smax_val;
12142 		dst_reg->s32_max_value -= smin_val;
12143 	}
12144 	if (dst_reg->u32_min_value < umax_val) {
12145 		/* Overflow possible, we know nothing */
12146 		dst_reg->u32_min_value = 0;
12147 		dst_reg->u32_max_value = U32_MAX;
12148 	} else {
12149 		/* Cannot overflow (as long as bounds are consistent) */
12150 		dst_reg->u32_min_value -= umax_val;
12151 		dst_reg->u32_max_value -= umin_val;
12152 	}
12153 }
12154 
12155 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12156 			       struct bpf_reg_state *src_reg)
12157 {
12158 	s64 smin_val = src_reg->smin_value;
12159 	s64 smax_val = src_reg->smax_value;
12160 	u64 umin_val = src_reg->umin_value;
12161 	u64 umax_val = src_reg->umax_value;
12162 
12163 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12164 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12165 		/* Overflow possible, we know nothing */
12166 		dst_reg->smin_value = S64_MIN;
12167 		dst_reg->smax_value = S64_MAX;
12168 	} else {
12169 		dst_reg->smin_value -= smax_val;
12170 		dst_reg->smax_value -= smin_val;
12171 	}
12172 	if (dst_reg->umin_value < umax_val) {
12173 		/* Overflow possible, we know nothing */
12174 		dst_reg->umin_value = 0;
12175 		dst_reg->umax_value = U64_MAX;
12176 	} else {
12177 		/* Cannot overflow (as long as bounds are consistent) */
12178 		dst_reg->umin_value -= umax_val;
12179 		dst_reg->umax_value -= umin_val;
12180 	}
12181 }
12182 
12183 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12184 				 struct bpf_reg_state *src_reg)
12185 {
12186 	s32 smin_val = src_reg->s32_min_value;
12187 	u32 umin_val = src_reg->u32_min_value;
12188 	u32 umax_val = src_reg->u32_max_value;
12189 
12190 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12191 		/* Ain't nobody got time to multiply that sign */
12192 		__mark_reg32_unbounded(dst_reg);
12193 		return;
12194 	}
12195 	/* Both values are positive, so we can work with unsigned and
12196 	 * copy the result to signed (unless it exceeds S32_MAX).
12197 	 */
12198 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12199 		/* Potential overflow, we know nothing */
12200 		__mark_reg32_unbounded(dst_reg);
12201 		return;
12202 	}
12203 	dst_reg->u32_min_value *= umin_val;
12204 	dst_reg->u32_max_value *= umax_val;
12205 	if (dst_reg->u32_max_value > S32_MAX) {
12206 		/* Overflow possible, we know nothing */
12207 		dst_reg->s32_min_value = S32_MIN;
12208 		dst_reg->s32_max_value = S32_MAX;
12209 	} else {
12210 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12211 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12212 	}
12213 }
12214 
12215 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12216 			       struct bpf_reg_state *src_reg)
12217 {
12218 	s64 smin_val = src_reg->smin_value;
12219 	u64 umin_val = src_reg->umin_value;
12220 	u64 umax_val = src_reg->umax_value;
12221 
12222 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12223 		/* Ain't nobody got time to multiply that sign */
12224 		__mark_reg64_unbounded(dst_reg);
12225 		return;
12226 	}
12227 	/* Both values are positive, so we can work with unsigned and
12228 	 * copy the result to signed (unless it exceeds S64_MAX).
12229 	 */
12230 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12231 		/* Potential overflow, we know nothing */
12232 		__mark_reg64_unbounded(dst_reg);
12233 		return;
12234 	}
12235 	dst_reg->umin_value *= umin_val;
12236 	dst_reg->umax_value *= umax_val;
12237 	if (dst_reg->umax_value > S64_MAX) {
12238 		/* Overflow possible, we know nothing */
12239 		dst_reg->smin_value = S64_MIN;
12240 		dst_reg->smax_value = S64_MAX;
12241 	} else {
12242 		dst_reg->smin_value = dst_reg->umin_value;
12243 		dst_reg->smax_value = dst_reg->umax_value;
12244 	}
12245 }
12246 
12247 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12248 				 struct bpf_reg_state *src_reg)
12249 {
12250 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12251 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12252 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12253 	s32 smin_val = src_reg->s32_min_value;
12254 	u32 umax_val = src_reg->u32_max_value;
12255 
12256 	if (src_known && dst_known) {
12257 		__mark_reg32_known(dst_reg, var32_off.value);
12258 		return;
12259 	}
12260 
12261 	/* We get our minimum from the var_off, since that's inherently
12262 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12263 	 */
12264 	dst_reg->u32_min_value = var32_off.value;
12265 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12266 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12267 		/* Lose signed bounds when ANDing negative numbers,
12268 		 * ain't nobody got time for that.
12269 		 */
12270 		dst_reg->s32_min_value = S32_MIN;
12271 		dst_reg->s32_max_value = S32_MAX;
12272 	} else {
12273 		/* ANDing two positives gives a positive, so safe to
12274 		 * cast result into s64.
12275 		 */
12276 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12277 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12278 	}
12279 }
12280 
12281 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12282 			       struct bpf_reg_state *src_reg)
12283 {
12284 	bool src_known = tnum_is_const(src_reg->var_off);
12285 	bool dst_known = tnum_is_const(dst_reg->var_off);
12286 	s64 smin_val = src_reg->smin_value;
12287 	u64 umax_val = src_reg->umax_value;
12288 
12289 	if (src_known && dst_known) {
12290 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12291 		return;
12292 	}
12293 
12294 	/* We get our minimum from the var_off, since that's inherently
12295 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12296 	 */
12297 	dst_reg->umin_value = dst_reg->var_off.value;
12298 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12299 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12300 		/* Lose signed bounds when ANDing negative numbers,
12301 		 * ain't nobody got time for that.
12302 		 */
12303 		dst_reg->smin_value = S64_MIN;
12304 		dst_reg->smax_value = S64_MAX;
12305 	} else {
12306 		/* ANDing two positives gives a positive, so safe to
12307 		 * cast result into s64.
12308 		 */
12309 		dst_reg->smin_value = dst_reg->umin_value;
12310 		dst_reg->smax_value = dst_reg->umax_value;
12311 	}
12312 	/* We may learn something more from the var_off */
12313 	__update_reg_bounds(dst_reg);
12314 }
12315 
12316 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12317 				struct bpf_reg_state *src_reg)
12318 {
12319 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12320 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12321 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12322 	s32 smin_val = src_reg->s32_min_value;
12323 	u32 umin_val = src_reg->u32_min_value;
12324 
12325 	if (src_known && dst_known) {
12326 		__mark_reg32_known(dst_reg, var32_off.value);
12327 		return;
12328 	}
12329 
12330 	/* We get our maximum from the var_off, and our minimum is the
12331 	 * maximum of the operands' minima
12332 	 */
12333 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12334 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12335 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12336 		/* Lose signed bounds when ORing negative numbers,
12337 		 * ain't nobody got time for that.
12338 		 */
12339 		dst_reg->s32_min_value = S32_MIN;
12340 		dst_reg->s32_max_value = S32_MAX;
12341 	} else {
12342 		/* ORing two positives gives a positive, so safe to
12343 		 * cast result into s64.
12344 		 */
12345 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12346 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12347 	}
12348 }
12349 
12350 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12351 			      struct bpf_reg_state *src_reg)
12352 {
12353 	bool src_known = tnum_is_const(src_reg->var_off);
12354 	bool dst_known = tnum_is_const(dst_reg->var_off);
12355 	s64 smin_val = src_reg->smin_value;
12356 	u64 umin_val = src_reg->umin_value;
12357 
12358 	if (src_known && dst_known) {
12359 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12360 		return;
12361 	}
12362 
12363 	/* We get our maximum from the var_off, and our minimum is the
12364 	 * maximum of the operands' minima
12365 	 */
12366 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12367 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12368 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12369 		/* Lose signed bounds when ORing negative numbers,
12370 		 * ain't nobody got time for that.
12371 		 */
12372 		dst_reg->smin_value = S64_MIN;
12373 		dst_reg->smax_value = S64_MAX;
12374 	} else {
12375 		/* ORing two positives gives a positive, so safe to
12376 		 * cast result into s64.
12377 		 */
12378 		dst_reg->smin_value = dst_reg->umin_value;
12379 		dst_reg->smax_value = dst_reg->umax_value;
12380 	}
12381 	/* We may learn something more from the var_off */
12382 	__update_reg_bounds(dst_reg);
12383 }
12384 
12385 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12386 				 struct bpf_reg_state *src_reg)
12387 {
12388 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12389 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12390 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12391 	s32 smin_val = src_reg->s32_min_value;
12392 
12393 	if (src_known && dst_known) {
12394 		__mark_reg32_known(dst_reg, var32_off.value);
12395 		return;
12396 	}
12397 
12398 	/* We get both minimum and maximum from the var32_off. */
12399 	dst_reg->u32_min_value = var32_off.value;
12400 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12401 
12402 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12403 		/* XORing two positive sign numbers gives a positive,
12404 		 * so safe to cast u32 result into s32.
12405 		 */
12406 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12407 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12408 	} else {
12409 		dst_reg->s32_min_value = S32_MIN;
12410 		dst_reg->s32_max_value = S32_MAX;
12411 	}
12412 }
12413 
12414 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12415 			       struct bpf_reg_state *src_reg)
12416 {
12417 	bool src_known = tnum_is_const(src_reg->var_off);
12418 	bool dst_known = tnum_is_const(dst_reg->var_off);
12419 	s64 smin_val = src_reg->smin_value;
12420 
12421 	if (src_known && dst_known) {
12422 		/* dst_reg->var_off.value has been updated earlier */
12423 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12424 		return;
12425 	}
12426 
12427 	/* We get both minimum and maximum from the var_off. */
12428 	dst_reg->umin_value = dst_reg->var_off.value;
12429 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12430 
12431 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12432 		/* XORing two positive sign numbers gives a positive,
12433 		 * so safe to cast u64 result into s64.
12434 		 */
12435 		dst_reg->smin_value = dst_reg->umin_value;
12436 		dst_reg->smax_value = dst_reg->umax_value;
12437 	} else {
12438 		dst_reg->smin_value = S64_MIN;
12439 		dst_reg->smax_value = S64_MAX;
12440 	}
12441 
12442 	__update_reg_bounds(dst_reg);
12443 }
12444 
12445 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12446 				   u64 umin_val, u64 umax_val)
12447 {
12448 	/* We lose all sign bit information (except what we can pick
12449 	 * up from var_off)
12450 	 */
12451 	dst_reg->s32_min_value = S32_MIN;
12452 	dst_reg->s32_max_value = S32_MAX;
12453 	/* If we might shift our top bit out, then we know nothing */
12454 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12455 		dst_reg->u32_min_value = 0;
12456 		dst_reg->u32_max_value = U32_MAX;
12457 	} else {
12458 		dst_reg->u32_min_value <<= umin_val;
12459 		dst_reg->u32_max_value <<= umax_val;
12460 	}
12461 }
12462 
12463 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12464 				 struct bpf_reg_state *src_reg)
12465 {
12466 	u32 umax_val = src_reg->u32_max_value;
12467 	u32 umin_val = src_reg->u32_min_value;
12468 	/* u32 alu operation will zext upper bits */
12469 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12470 
12471 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12472 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12473 	/* Not required but being careful mark reg64 bounds as unknown so
12474 	 * that we are forced to pick them up from tnum and zext later and
12475 	 * if some path skips this step we are still safe.
12476 	 */
12477 	__mark_reg64_unbounded(dst_reg);
12478 	__update_reg32_bounds(dst_reg);
12479 }
12480 
12481 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12482 				   u64 umin_val, u64 umax_val)
12483 {
12484 	/* Special case <<32 because it is a common compiler pattern to sign
12485 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12486 	 * positive we know this shift will also be positive so we can track
12487 	 * bounds correctly. Otherwise we lose all sign bit information except
12488 	 * what we can pick up from var_off. Perhaps we can generalize this
12489 	 * later to shifts of any length.
12490 	 */
12491 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12492 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12493 	else
12494 		dst_reg->smax_value = S64_MAX;
12495 
12496 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12497 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12498 	else
12499 		dst_reg->smin_value = S64_MIN;
12500 
12501 	/* If we might shift our top bit out, then we know nothing */
12502 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12503 		dst_reg->umin_value = 0;
12504 		dst_reg->umax_value = U64_MAX;
12505 	} else {
12506 		dst_reg->umin_value <<= umin_val;
12507 		dst_reg->umax_value <<= umax_val;
12508 	}
12509 }
12510 
12511 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12512 			       struct bpf_reg_state *src_reg)
12513 {
12514 	u64 umax_val = src_reg->umax_value;
12515 	u64 umin_val = src_reg->umin_value;
12516 
12517 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12518 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12519 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12520 
12521 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12522 	/* We may learn something more from the var_off */
12523 	__update_reg_bounds(dst_reg);
12524 }
12525 
12526 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12527 				 struct bpf_reg_state *src_reg)
12528 {
12529 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12530 	u32 umax_val = src_reg->u32_max_value;
12531 	u32 umin_val = src_reg->u32_min_value;
12532 
12533 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12534 	 * be negative, then either:
12535 	 * 1) src_reg might be zero, so the sign bit of the result is
12536 	 *    unknown, so we lose our signed bounds
12537 	 * 2) it's known negative, thus the unsigned bounds capture the
12538 	 *    signed bounds
12539 	 * 3) the signed bounds cross zero, so they tell us nothing
12540 	 *    about the result
12541 	 * If the value in dst_reg is known nonnegative, then again the
12542 	 * unsigned bounds capture the signed bounds.
12543 	 * Thus, in all cases it suffices to blow away our signed bounds
12544 	 * and rely on inferring new ones from the unsigned bounds and
12545 	 * var_off of the result.
12546 	 */
12547 	dst_reg->s32_min_value = S32_MIN;
12548 	dst_reg->s32_max_value = S32_MAX;
12549 
12550 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12551 	dst_reg->u32_min_value >>= umax_val;
12552 	dst_reg->u32_max_value >>= umin_val;
12553 
12554 	__mark_reg64_unbounded(dst_reg);
12555 	__update_reg32_bounds(dst_reg);
12556 }
12557 
12558 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12559 			       struct bpf_reg_state *src_reg)
12560 {
12561 	u64 umax_val = src_reg->umax_value;
12562 	u64 umin_val = src_reg->umin_value;
12563 
12564 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12565 	 * be negative, then either:
12566 	 * 1) src_reg might be zero, so the sign bit of the result is
12567 	 *    unknown, so we lose our signed bounds
12568 	 * 2) it's known negative, thus the unsigned bounds capture the
12569 	 *    signed bounds
12570 	 * 3) the signed bounds cross zero, so they tell us nothing
12571 	 *    about the result
12572 	 * If the value in dst_reg is known nonnegative, then again the
12573 	 * unsigned bounds capture the signed bounds.
12574 	 * Thus, in all cases it suffices to blow away our signed bounds
12575 	 * and rely on inferring new ones from the unsigned bounds and
12576 	 * var_off of the result.
12577 	 */
12578 	dst_reg->smin_value = S64_MIN;
12579 	dst_reg->smax_value = S64_MAX;
12580 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12581 	dst_reg->umin_value >>= umax_val;
12582 	dst_reg->umax_value >>= umin_val;
12583 
12584 	/* Its not easy to operate on alu32 bounds here because it depends
12585 	 * on bits being shifted in. Take easy way out and mark unbounded
12586 	 * so we can recalculate later from tnum.
12587 	 */
12588 	__mark_reg32_unbounded(dst_reg);
12589 	__update_reg_bounds(dst_reg);
12590 }
12591 
12592 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12593 				  struct bpf_reg_state *src_reg)
12594 {
12595 	u64 umin_val = src_reg->u32_min_value;
12596 
12597 	/* Upon reaching here, src_known is true and
12598 	 * umax_val is equal to umin_val.
12599 	 */
12600 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12601 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12602 
12603 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12604 
12605 	/* blow away the dst_reg umin_value/umax_value and rely on
12606 	 * dst_reg var_off to refine the result.
12607 	 */
12608 	dst_reg->u32_min_value = 0;
12609 	dst_reg->u32_max_value = U32_MAX;
12610 
12611 	__mark_reg64_unbounded(dst_reg);
12612 	__update_reg32_bounds(dst_reg);
12613 }
12614 
12615 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12616 				struct bpf_reg_state *src_reg)
12617 {
12618 	u64 umin_val = src_reg->umin_value;
12619 
12620 	/* Upon reaching here, src_known is true and umax_val is equal
12621 	 * to umin_val.
12622 	 */
12623 	dst_reg->smin_value >>= umin_val;
12624 	dst_reg->smax_value >>= umin_val;
12625 
12626 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12627 
12628 	/* blow away the dst_reg umin_value/umax_value and rely on
12629 	 * dst_reg var_off to refine the result.
12630 	 */
12631 	dst_reg->umin_value = 0;
12632 	dst_reg->umax_value = U64_MAX;
12633 
12634 	/* Its not easy to operate on alu32 bounds here because it depends
12635 	 * on bits being shifted in from upper 32-bits. Take easy way out
12636 	 * and mark unbounded so we can recalculate later from tnum.
12637 	 */
12638 	__mark_reg32_unbounded(dst_reg);
12639 	__update_reg_bounds(dst_reg);
12640 }
12641 
12642 /* WARNING: This function does calculations on 64-bit values, but the actual
12643  * execution may occur on 32-bit values. Therefore, things like bitshifts
12644  * need extra checks in the 32-bit case.
12645  */
12646 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12647 				      struct bpf_insn *insn,
12648 				      struct bpf_reg_state *dst_reg,
12649 				      struct bpf_reg_state src_reg)
12650 {
12651 	struct bpf_reg_state *regs = cur_regs(env);
12652 	u8 opcode = BPF_OP(insn->code);
12653 	bool src_known;
12654 	s64 smin_val, smax_val;
12655 	u64 umin_val, umax_val;
12656 	s32 s32_min_val, s32_max_val;
12657 	u32 u32_min_val, u32_max_val;
12658 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12659 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12660 	int ret;
12661 
12662 	smin_val = src_reg.smin_value;
12663 	smax_val = src_reg.smax_value;
12664 	umin_val = src_reg.umin_value;
12665 	umax_val = src_reg.umax_value;
12666 
12667 	s32_min_val = src_reg.s32_min_value;
12668 	s32_max_val = src_reg.s32_max_value;
12669 	u32_min_val = src_reg.u32_min_value;
12670 	u32_max_val = src_reg.u32_max_value;
12671 
12672 	if (alu32) {
12673 		src_known = tnum_subreg_is_const(src_reg.var_off);
12674 		if ((src_known &&
12675 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12676 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12677 			/* Taint dst register if offset had invalid bounds
12678 			 * derived from e.g. dead branches.
12679 			 */
12680 			__mark_reg_unknown(env, dst_reg);
12681 			return 0;
12682 		}
12683 	} else {
12684 		src_known = tnum_is_const(src_reg.var_off);
12685 		if ((src_known &&
12686 		     (smin_val != smax_val || umin_val != umax_val)) ||
12687 		    smin_val > smax_val || umin_val > umax_val) {
12688 			/* Taint dst register if offset had invalid bounds
12689 			 * derived from e.g. dead branches.
12690 			 */
12691 			__mark_reg_unknown(env, dst_reg);
12692 			return 0;
12693 		}
12694 	}
12695 
12696 	if (!src_known &&
12697 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12698 		__mark_reg_unknown(env, dst_reg);
12699 		return 0;
12700 	}
12701 
12702 	if (sanitize_needed(opcode)) {
12703 		ret = sanitize_val_alu(env, insn);
12704 		if (ret < 0)
12705 			return sanitize_err(env, insn, ret, NULL, NULL);
12706 	}
12707 
12708 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12709 	 * There are two classes of instructions: The first class we track both
12710 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12711 	 * greatest amount of precision when alu operations are mixed with jmp32
12712 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12713 	 * and BPF_OR. This is possible because these ops have fairly easy to
12714 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12715 	 * See alu32 verifier tests for examples. The second class of
12716 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12717 	 * with regards to tracking sign/unsigned bounds because the bits may
12718 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12719 	 * the reg unbounded in the subreg bound space and use the resulting
12720 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12721 	 */
12722 	switch (opcode) {
12723 	case BPF_ADD:
12724 		scalar32_min_max_add(dst_reg, &src_reg);
12725 		scalar_min_max_add(dst_reg, &src_reg);
12726 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12727 		break;
12728 	case BPF_SUB:
12729 		scalar32_min_max_sub(dst_reg, &src_reg);
12730 		scalar_min_max_sub(dst_reg, &src_reg);
12731 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12732 		break;
12733 	case BPF_MUL:
12734 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12735 		scalar32_min_max_mul(dst_reg, &src_reg);
12736 		scalar_min_max_mul(dst_reg, &src_reg);
12737 		break;
12738 	case BPF_AND:
12739 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12740 		scalar32_min_max_and(dst_reg, &src_reg);
12741 		scalar_min_max_and(dst_reg, &src_reg);
12742 		break;
12743 	case BPF_OR:
12744 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12745 		scalar32_min_max_or(dst_reg, &src_reg);
12746 		scalar_min_max_or(dst_reg, &src_reg);
12747 		break;
12748 	case BPF_XOR:
12749 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12750 		scalar32_min_max_xor(dst_reg, &src_reg);
12751 		scalar_min_max_xor(dst_reg, &src_reg);
12752 		break;
12753 	case BPF_LSH:
12754 		if (umax_val >= insn_bitness) {
12755 			/* Shifts greater than 31 or 63 are undefined.
12756 			 * This includes shifts by a negative number.
12757 			 */
12758 			mark_reg_unknown(env, regs, insn->dst_reg);
12759 			break;
12760 		}
12761 		if (alu32)
12762 			scalar32_min_max_lsh(dst_reg, &src_reg);
12763 		else
12764 			scalar_min_max_lsh(dst_reg, &src_reg);
12765 		break;
12766 	case BPF_RSH:
12767 		if (umax_val >= insn_bitness) {
12768 			/* Shifts greater than 31 or 63 are undefined.
12769 			 * This includes shifts by a negative number.
12770 			 */
12771 			mark_reg_unknown(env, regs, insn->dst_reg);
12772 			break;
12773 		}
12774 		if (alu32)
12775 			scalar32_min_max_rsh(dst_reg, &src_reg);
12776 		else
12777 			scalar_min_max_rsh(dst_reg, &src_reg);
12778 		break;
12779 	case BPF_ARSH:
12780 		if (umax_val >= insn_bitness) {
12781 			/* Shifts greater than 31 or 63 are undefined.
12782 			 * This includes shifts by a negative number.
12783 			 */
12784 			mark_reg_unknown(env, regs, insn->dst_reg);
12785 			break;
12786 		}
12787 		if (alu32)
12788 			scalar32_min_max_arsh(dst_reg, &src_reg);
12789 		else
12790 			scalar_min_max_arsh(dst_reg, &src_reg);
12791 		break;
12792 	default:
12793 		mark_reg_unknown(env, regs, insn->dst_reg);
12794 		break;
12795 	}
12796 
12797 	/* ALU32 ops are zero extended into 64bit register */
12798 	if (alu32)
12799 		zext_32_to_64(dst_reg);
12800 	reg_bounds_sync(dst_reg);
12801 	return 0;
12802 }
12803 
12804 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12805  * and var_off.
12806  */
12807 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12808 				   struct bpf_insn *insn)
12809 {
12810 	struct bpf_verifier_state *vstate = env->cur_state;
12811 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12812 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
12813 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12814 	u8 opcode = BPF_OP(insn->code);
12815 	int err;
12816 
12817 	dst_reg = &regs[insn->dst_reg];
12818 	src_reg = NULL;
12819 	if (dst_reg->type != SCALAR_VALUE)
12820 		ptr_reg = dst_reg;
12821 	else
12822 		/* Make sure ID is cleared otherwise dst_reg min/max could be
12823 		 * incorrectly propagated into other registers by find_equal_scalars()
12824 		 */
12825 		dst_reg->id = 0;
12826 	if (BPF_SRC(insn->code) == BPF_X) {
12827 		src_reg = &regs[insn->src_reg];
12828 		if (src_reg->type != SCALAR_VALUE) {
12829 			if (dst_reg->type != SCALAR_VALUE) {
12830 				/* Combining two pointers by any ALU op yields
12831 				 * an arbitrary scalar. Disallow all math except
12832 				 * pointer subtraction
12833 				 */
12834 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12835 					mark_reg_unknown(env, regs, insn->dst_reg);
12836 					return 0;
12837 				}
12838 				verbose(env, "R%d pointer %s pointer prohibited\n",
12839 					insn->dst_reg,
12840 					bpf_alu_string[opcode >> 4]);
12841 				return -EACCES;
12842 			} else {
12843 				/* scalar += pointer
12844 				 * This is legal, but we have to reverse our
12845 				 * src/dest handling in computing the range
12846 				 */
12847 				err = mark_chain_precision(env, insn->dst_reg);
12848 				if (err)
12849 					return err;
12850 				return adjust_ptr_min_max_vals(env, insn,
12851 							       src_reg, dst_reg);
12852 			}
12853 		} else if (ptr_reg) {
12854 			/* pointer += scalar */
12855 			err = mark_chain_precision(env, insn->src_reg);
12856 			if (err)
12857 				return err;
12858 			return adjust_ptr_min_max_vals(env, insn,
12859 						       dst_reg, src_reg);
12860 		} else if (dst_reg->precise) {
12861 			/* if dst_reg is precise, src_reg should be precise as well */
12862 			err = mark_chain_precision(env, insn->src_reg);
12863 			if (err)
12864 				return err;
12865 		}
12866 	} else {
12867 		/* Pretend the src is a reg with a known value, since we only
12868 		 * need to be able to read from this state.
12869 		 */
12870 		off_reg.type = SCALAR_VALUE;
12871 		__mark_reg_known(&off_reg, insn->imm);
12872 		src_reg = &off_reg;
12873 		if (ptr_reg) /* pointer += K */
12874 			return adjust_ptr_min_max_vals(env, insn,
12875 						       ptr_reg, src_reg);
12876 	}
12877 
12878 	/* Got here implies adding two SCALAR_VALUEs */
12879 	if (WARN_ON_ONCE(ptr_reg)) {
12880 		print_verifier_state(env, state, true);
12881 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
12882 		return -EINVAL;
12883 	}
12884 	if (WARN_ON(!src_reg)) {
12885 		print_verifier_state(env, state, true);
12886 		verbose(env, "verifier internal error: no src_reg\n");
12887 		return -EINVAL;
12888 	}
12889 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
12890 }
12891 
12892 /* check validity of 32-bit and 64-bit arithmetic operations */
12893 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
12894 {
12895 	struct bpf_reg_state *regs = cur_regs(env);
12896 	u8 opcode = BPF_OP(insn->code);
12897 	int err;
12898 
12899 	if (opcode == BPF_END || opcode == BPF_NEG) {
12900 		if (opcode == BPF_NEG) {
12901 			if (BPF_SRC(insn->code) != BPF_K ||
12902 			    insn->src_reg != BPF_REG_0 ||
12903 			    insn->off != 0 || insn->imm != 0) {
12904 				verbose(env, "BPF_NEG uses reserved fields\n");
12905 				return -EINVAL;
12906 			}
12907 		} else {
12908 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
12909 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
12910 			    BPF_CLASS(insn->code) == BPF_ALU64) {
12911 				verbose(env, "BPF_END uses reserved fields\n");
12912 				return -EINVAL;
12913 			}
12914 		}
12915 
12916 		/* check src operand */
12917 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12918 		if (err)
12919 			return err;
12920 
12921 		if (is_pointer_value(env, insn->dst_reg)) {
12922 			verbose(env, "R%d pointer arithmetic prohibited\n",
12923 				insn->dst_reg);
12924 			return -EACCES;
12925 		}
12926 
12927 		/* check dest operand */
12928 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
12929 		if (err)
12930 			return err;
12931 
12932 	} else if (opcode == BPF_MOV) {
12933 
12934 		if (BPF_SRC(insn->code) == BPF_X) {
12935 			if (insn->imm != 0 || insn->off != 0) {
12936 				verbose(env, "BPF_MOV uses reserved fields\n");
12937 				return -EINVAL;
12938 			}
12939 
12940 			/* check src operand */
12941 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12942 			if (err)
12943 				return err;
12944 		} else {
12945 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
12946 				verbose(env, "BPF_MOV uses reserved fields\n");
12947 				return -EINVAL;
12948 			}
12949 		}
12950 
12951 		/* check dest operand, mark as required later */
12952 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12953 		if (err)
12954 			return err;
12955 
12956 		if (BPF_SRC(insn->code) == BPF_X) {
12957 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
12958 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
12959 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
12960 				       !tnum_is_const(src_reg->var_off);
12961 
12962 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
12963 				/* case: R1 = R2
12964 				 * copy register state to dest reg
12965 				 */
12966 				if (need_id)
12967 					/* Assign src and dst registers the same ID
12968 					 * that will be used by find_equal_scalars()
12969 					 * to propagate min/max range.
12970 					 */
12971 					src_reg->id = ++env->id_gen;
12972 				copy_register_state(dst_reg, src_reg);
12973 				dst_reg->live |= REG_LIVE_WRITTEN;
12974 				dst_reg->subreg_def = DEF_NOT_SUBREG;
12975 			} else {
12976 				/* R1 = (u32) R2 */
12977 				if (is_pointer_value(env, insn->src_reg)) {
12978 					verbose(env,
12979 						"R%d partial copy of pointer\n",
12980 						insn->src_reg);
12981 					return -EACCES;
12982 				} else if (src_reg->type == SCALAR_VALUE) {
12983 					bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
12984 
12985 					if (is_src_reg_u32 && need_id)
12986 						src_reg->id = ++env->id_gen;
12987 					copy_register_state(dst_reg, src_reg);
12988 					/* Make sure ID is cleared if src_reg is not in u32 range otherwise
12989 					 * dst_reg min/max could be incorrectly
12990 					 * propagated into src_reg by find_equal_scalars()
12991 					 */
12992 					if (!is_src_reg_u32)
12993 						dst_reg->id = 0;
12994 					dst_reg->live |= REG_LIVE_WRITTEN;
12995 					dst_reg->subreg_def = env->insn_idx + 1;
12996 				} else {
12997 					mark_reg_unknown(env, regs,
12998 							 insn->dst_reg);
12999 				}
13000 				zext_32_to_64(dst_reg);
13001 				reg_bounds_sync(dst_reg);
13002 			}
13003 		} else {
13004 			/* case: R = imm
13005 			 * remember the value we stored into this reg
13006 			 */
13007 			/* clear any state __mark_reg_known doesn't set */
13008 			mark_reg_unknown(env, regs, insn->dst_reg);
13009 			regs[insn->dst_reg].type = SCALAR_VALUE;
13010 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13011 				__mark_reg_known(regs + insn->dst_reg,
13012 						 insn->imm);
13013 			} else {
13014 				__mark_reg_known(regs + insn->dst_reg,
13015 						 (u32)insn->imm);
13016 			}
13017 		}
13018 
13019 	} else if (opcode > BPF_END) {
13020 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13021 		return -EINVAL;
13022 
13023 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13024 
13025 		if (BPF_SRC(insn->code) == BPF_X) {
13026 			if (insn->imm != 0 || insn->off != 0) {
13027 				verbose(env, "BPF_ALU uses reserved fields\n");
13028 				return -EINVAL;
13029 			}
13030 			/* check src1 operand */
13031 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13032 			if (err)
13033 				return err;
13034 		} else {
13035 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13036 				verbose(env, "BPF_ALU uses reserved fields\n");
13037 				return -EINVAL;
13038 			}
13039 		}
13040 
13041 		/* check src2 operand */
13042 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13043 		if (err)
13044 			return err;
13045 
13046 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13047 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13048 			verbose(env, "div by zero\n");
13049 			return -EINVAL;
13050 		}
13051 
13052 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13053 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13054 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13055 
13056 			if (insn->imm < 0 || insn->imm >= size) {
13057 				verbose(env, "invalid shift %d\n", insn->imm);
13058 				return -EINVAL;
13059 			}
13060 		}
13061 
13062 		/* check dest operand */
13063 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13064 		if (err)
13065 			return err;
13066 
13067 		return adjust_reg_min_max_vals(env, insn);
13068 	}
13069 
13070 	return 0;
13071 }
13072 
13073 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13074 				   struct bpf_reg_state *dst_reg,
13075 				   enum bpf_reg_type type,
13076 				   bool range_right_open)
13077 {
13078 	struct bpf_func_state *state;
13079 	struct bpf_reg_state *reg;
13080 	int new_range;
13081 
13082 	if (dst_reg->off < 0 ||
13083 	    (dst_reg->off == 0 && range_right_open))
13084 		/* This doesn't give us any range */
13085 		return;
13086 
13087 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13088 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13089 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13090 		 * than pkt_end, but that's because it's also less than pkt.
13091 		 */
13092 		return;
13093 
13094 	new_range = dst_reg->off;
13095 	if (range_right_open)
13096 		new_range++;
13097 
13098 	/* Examples for register markings:
13099 	 *
13100 	 * pkt_data in dst register:
13101 	 *
13102 	 *   r2 = r3;
13103 	 *   r2 += 8;
13104 	 *   if (r2 > pkt_end) goto <handle exception>
13105 	 *   <access okay>
13106 	 *
13107 	 *   r2 = r3;
13108 	 *   r2 += 8;
13109 	 *   if (r2 < pkt_end) goto <access okay>
13110 	 *   <handle exception>
13111 	 *
13112 	 *   Where:
13113 	 *     r2 == dst_reg, pkt_end == src_reg
13114 	 *     r2=pkt(id=n,off=8,r=0)
13115 	 *     r3=pkt(id=n,off=0,r=0)
13116 	 *
13117 	 * pkt_data in src register:
13118 	 *
13119 	 *   r2 = r3;
13120 	 *   r2 += 8;
13121 	 *   if (pkt_end >= r2) goto <access okay>
13122 	 *   <handle exception>
13123 	 *
13124 	 *   r2 = r3;
13125 	 *   r2 += 8;
13126 	 *   if (pkt_end <= r2) goto <handle exception>
13127 	 *   <access okay>
13128 	 *
13129 	 *   Where:
13130 	 *     pkt_end == dst_reg, r2 == src_reg
13131 	 *     r2=pkt(id=n,off=8,r=0)
13132 	 *     r3=pkt(id=n,off=0,r=0)
13133 	 *
13134 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13135 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13136 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13137 	 * the check.
13138 	 */
13139 
13140 	/* If our ids match, then we must have the same max_value.  And we
13141 	 * don't care about the other reg's fixed offset, since if it's too big
13142 	 * the range won't allow anything.
13143 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13144 	 */
13145 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13146 		if (reg->type == type && reg->id == dst_reg->id)
13147 			/* keep the maximum range already checked */
13148 			reg->range = max(reg->range, new_range);
13149 	}));
13150 }
13151 
13152 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13153 {
13154 	struct tnum subreg = tnum_subreg(reg->var_off);
13155 	s32 sval = (s32)val;
13156 
13157 	switch (opcode) {
13158 	case BPF_JEQ:
13159 		if (tnum_is_const(subreg))
13160 			return !!tnum_equals_const(subreg, val);
13161 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13162 			return 0;
13163 		break;
13164 	case BPF_JNE:
13165 		if (tnum_is_const(subreg))
13166 			return !tnum_equals_const(subreg, val);
13167 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13168 			return 1;
13169 		break;
13170 	case BPF_JSET:
13171 		if ((~subreg.mask & subreg.value) & val)
13172 			return 1;
13173 		if (!((subreg.mask | subreg.value) & val))
13174 			return 0;
13175 		break;
13176 	case BPF_JGT:
13177 		if (reg->u32_min_value > val)
13178 			return 1;
13179 		else if (reg->u32_max_value <= val)
13180 			return 0;
13181 		break;
13182 	case BPF_JSGT:
13183 		if (reg->s32_min_value > sval)
13184 			return 1;
13185 		else if (reg->s32_max_value <= sval)
13186 			return 0;
13187 		break;
13188 	case BPF_JLT:
13189 		if (reg->u32_max_value < val)
13190 			return 1;
13191 		else if (reg->u32_min_value >= val)
13192 			return 0;
13193 		break;
13194 	case BPF_JSLT:
13195 		if (reg->s32_max_value < sval)
13196 			return 1;
13197 		else if (reg->s32_min_value >= sval)
13198 			return 0;
13199 		break;
13200 	case BPF_JGE:
13201 		if (reg->u32_min_value >= val)
13202 			return 1;
13203 		else if (reg->u32_max_value < val)
13204 			return 0;
13205 		break;
13206 	case BPF_JSGE:
13207 		if (reg->s32_min_value >= sval)
13208 			return 1;
13209 		else if (reg->s32_max_value < sval)
13210 			return 0;
13211 		break;
13212 	case BPF_JLE:
13213 		if (reg->u32_max_value <= val)
13214 			return 1;
13215 		else if (reg->u32_min_value > val)
13216 			return 0;
13217 		break;
13218 	case BPF_JSLE:
13219 		if (reg->s32_max_value <= sval)
13220 			return 1;
13221 		else if (reg->s32_min_value > sval)
13222 			return 0;
13223 		break;
13224 	}
13225 
13226 	return -1;
13227 }
13228 
13229 
13230 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13231 {
13232 	s64 sval = (s64)val;
13233 
13234 	switch (opcode) {
13235 	case BPF_JEQ:
13236 		if (tnum_is_const(reg->var_off))
13237 			return !!tnum_equals_const(reg->var_off, val);
13238 		else if (val < reg->umin_value || val > reg->umax_value)
13239 			return 0;
13240 		break;
13241 	case BPF_JNE:
13242 		if (tnum_is_const(reg->var_off))
13243 			return !tnum_equals_const(reg->var_off, val);
13244 		else if (val < reg->umin_value || val > reg->umax_value)
13245 			return 1;
13246 		break;
13247 	case BPF_JSET:
13248 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13249 			return 1;
13250 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13251 			return 0;
13252 		break;
13253 	case BPF_JGT:
13254 		if (reg->umin_value > val)
13255 			return 1;
13256 		else if (reg->umax_value <= val)
13257 			return 0;
13258 		break;
13259 	case BPF_JSGT:
13260 		if (reg->smin_value > sval)
13261 			return 1;
13262 		else if (reg->smax_value <= sval)
13263 			return 0;
13264 		break;
13265 	case BPF_JLT:
13266 		if (reg->umax_value < val)
13267 			return 1;
13268 		else if (reg->umin_value >= val)
13269 			return 0;
13270 		break;
13271 	case BPF_JSLT:
13272 		if (reg->smax_value < sval)
13273 			return 1;
13274 		else if (reg->smin_value >= sval)
13275 			return 0;
13276 		break;
13277 	case BPF_JGE:
13278 		if (reg->umin_value >= val)
13279 			return 1;
13280 		else if (reg->umax_value < val)
13281 			return 0;
13282 		break;
13283 	case BPF_JSGE:
13284 		if (reg->smin_value >= sval)
13285 			return 1;
13286 		else if (reg->smax_value < sval)
13287 			return 0;
13288 		break;
13289 	case BPF_JLE:
13290 		if (reg->umax_value <= val)
13291 			return 1;
13292 		else if (reg->umin_value > val)
13293 			return 0;
13294 		break;
13295 	case BPF_JSLE:
13296 		if (reg->smax_value <= sval)
13297 			return 1;
13298 		else if (reg->smin_value > sval)
13299 			return 0;
13300 		break;
13301 	}
13302 
13303 	return -1;
13304 }
13305 
13306 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13307  * and return:
13308  *  1 - branch will be taken and "goto target" will be executed
13309  *  0 - branch will not be taken and fall-through to next insn
13310  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13311  *      range [0,10]
13312  */
13313 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13314 			   bool is_jmp32)
13315 {
13316 	if (__is_pointer_value(false, reg)) {
13317 		if (!reg_not_null(reg))
13318 			return -1;
13319 
13320 		/* If pointer is valid tests against zero will fail so we can
13321 		 * use this to direct branch taken.
13322 		 */
13323 		if (val != 0)
13324 			return -1;
13325 
13326 		switch (opcode) {
13327 		case BPF_JEQ:
13328 			return 0;
13329 		case BPF_JNE:
13330 			return 1;
13331 		default:
13332 			return -1;
13333 		}
13334 	}
13335 
13336 	if (is_jmp32)
13337 		return is_branch32_taken(reg, val, opcode);
13338 	return is_branch64_taken(reg, val, opcode);
13339 }
13340 
13341 static int flip_opcode(u32 opcode)
13342 {
13343 	/* How can we transform "a <op> b" into "b <op> a"? */
13344 	static const u8 opcode_flip[16] = {
13345 		/* these stay the same */
13346 		[BPF_JEQ  >> 4] = BPF_JEQ,
13347 		[BPF_JNE  >> 4] = BPF_JNE,
13348 		[BPF_JSET >> 4] = BPF_JSET,
13349 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13350 		[BPF_JGE  >> 4] = BPF_JLE,
13351 		[BPF_JGT  >> 4] = BPF_JLT,
13352 		[BPF_JLE  >> 4] = BPF_JGE,
13353 		[BPF_JLT  >> 4] = BPF_JGT,
13354 		[BPF_JSGE >> 4] = BPF_JSLE,
13355 		[BPF_JSGT >> 4] = BPF_JSLT,
13356 		[BPF_JSLE >> 4] = BPF_JSGE,
13357 		[BPF_JSLT >> 4] = BPF_JSGT
13358 	};
13359 	return opcode_flip[opcode >> 4];
13360 }
13361 
13362 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13363 				   struct bpf_reg_state *src_reg,
13364 				   u8 opcode)
13365 {
13366 	struct bpf_reg_state *pkt;
13367 
13368 	if (src_reg->type == PTR_TO_PACKET_END) {
13369 		pkt = dst_reg;
13370 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13371 		pkt = src_reg;
13372 		opcode = flip_opcode(opcode);
13373 	} else {
13374 		return -1;
13375 	}
13376 
13377 	if (pkt->range >= 0)
13378 		return -1;
13379 
13380 	switch (opcode) {
13381 	case BPF_JLE:
13382 		/* pkt <= pkt_end */
13383 		fallthrough;
13384 	case BPF_JGT:
13385 		/* pkt > pkt_end */
13386 		if (pkt->range == BEYOND_PKT_END)
13387 			/* pkt has at last one extra byte beyond pkt_end */
13388 			return opcode == BPF_JGT;
13389 		break;
13390 	case BPF_JLT:
13391 		/* pkt < pkt_end */
13392 		fallthrough;
13393 	case BPF_JGE:
13394 		/* pkt >= pkt_end */
13395 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13396 			return opcode == BPF_JGE;
13397 		break;
13398 	}
13399 	return -1;
13400 }
13401 
13402 /* Adjusts the register min/max values in the case that the dst_reg is the
13403  * variable register that we are working on, and src_reg is a constant or we're
13404  * simply doing a BPF_K check.
13405  * In JEQ/JNE cases we also adjust the var_off values.
13406  */
13407 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13408 			    struct bpf_reg_state *false_reg,
13409 			    u64 val, u32 val32,
13410 			    u8 opcode, bool is_jmp32)
13411 {
13412 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13413 	struct tnum false_64off = false_reg->var_off;
13414 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13415 	struct tnum true_64off = true_reg->var_off;
13416 	s64 sval = (s64)val;
13417 	s32 sval32 = (s32)val32;
13418 
13419 	/* If the dst_reg is a pointer, we can't learn anything about its
13420 	 * variable offset from the compare (unless src_reg were a pointer into
13421 	 * the same object, but we don't bother with that.
13422 	 * Since false_reg and true_reg have the same type by construction, we
13423 	 * only need to check one of them for pointerness.
13424 	 */
13425 	if (__is_pointer_value(false, false_reg))
13426 		return;
13427 
13428 	switch (opcode) {
13429 	/* JEQ/JNE comparison doesn't change the register equivalence.
13430 	 *
13431 	 * r1 = r2;
13432 	 * if (r1 == 42) goto label;
13433 	 * ...
13434 	 * label: // here both r1 and r2 are known to be 42.
13435 	 *
13436 	 * Hence when marking register as known preserve it's ID.
13437 	 */
13438 	case BPF_JEQ:
13439 		if (is_jmp32) {
13440 			__mark_reg32_known(true_reg, val32);
13441 			true_32off = tnum_subreg(true_reg->var_off);
13442 		} else {
13443 			___mark_reg_known(true_reg, val);
13444 			true_64off = true_reg->var_off;
13445 		}
13446 		break;
13447 	case BPF_JNE:
13448 		if (is_jmp32) {
13449 			__mark_reg32_known(false_reg, val32);
13450 			false_32off = tnum_subreg(false_reg->var_off);
13451 		} else {
13452 			___mark_reg_known(false_reg, val);
13453 			false_64off = false_reg->var_off;
13454 		}
13455 		break;
13456 	case BPF_JSET:
13457 		if (is_jmp32) {
13458 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13459 			if (is_power_of_2(val32))
13460 				true_32off = tnum_or(true_32off,
13461 						     tnum_const(val32));
13462 		} else {
13463 			false_64off = tnum_and(false_64off, tnum_const(~val));
13464 			if (is_power_of_2(val))
13465 				true_64off = tnum_or(true_64off,
13466 						     tnum_const(val));
13467 		}
13468 		break;
13469 	case BPF_JGE:
13470 	case BPF_JGT:
13471 	{
13472 		if (is_jmp32) {
13473 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13474 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13475 
13476 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13477 						       false_umax);
13478 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13479 						      true_umin);
13480 		} else {
13481 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13482 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13483 
13484 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13485 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13486 		}
13487 		break;
13488 	}
13489 	case BPF_JSGE:
13490 	case BPF_JSGT:
13491 	{
13492 		if (is_jmp32) {
13493 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13494 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13495 
13496 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13497 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13498 		} else {
13499 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13500 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13501 
13502 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13503 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13504 		}
13505 		break;
13506 	}
13507 	case BPF_JLE:
13508 	case BPF_JLT:
13509 	{
13510 		if (is_jmp32) {
13511 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13512 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13513 
13514 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13515 						       false_umin);
13516 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13517 						      true_umax);
13518 		} else {
13519 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13520 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13521 
13522 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13523 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13524 		}
13525 		break;
13526 	}
13527 	case BPF_JSLE:
13528 	case BPF_JSLT:
13529 	{
13530 		if (is_jmp32) {
13531 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13532 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13533 
13534 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13535 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13536 		} else {
13537 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13538 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13539 
13540 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13541 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13542 		}
13543 		break;
13544 	}
13545 	default:
13546 		return;
13547 	}
13548 
13549 	if (is_jmp32) {
13550 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13551 					     tnum_subreg(false_32off));
13552 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13553 					    tnum_subreg(true_32off));
13554 		__reg_combine_32_into_64(false_reg);
13555 		__reg_combine_32_into_64(true_reg);
13556 	} else {
13557 		false_reg->var_off = false_64off;
13558 		true_reg->var_off = true_64off;
13559 		__reg_combine_64_into_32(false_reg);
13560 		__reg_combine_64_into_32(true_reg);
13561 	}
13562 }
13563 
13564 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13565  * the variable reg.
13566  */
13567 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13568 				struct bpf_reg_state *false_reg,
13569 				u64 val, u32 val32,
13570 				u8 opcode, bool is_jmp32)
13571 {
13572 	opcode = flip_opcode(opcode);
13573 	/* This uses zero as "not present in table"; luckily the zero opcode,
13574 	 * BPF_JA, can't get here.
13575 	 */
13576 	if (opcode)
13577 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13578 }
13579 
13580 /* Regs are known to be equal, so intersect their min/max/var_off */
13581 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13582 				  struct bpf_reg_state *dst_reg)
13583 {
13584 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13585 							dst_reg->umin_value);
13586 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13587 							dst_reg->umax_value);
13588 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13589 							dst_reg->smin_value);
13590 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13591 							dst_reg->smax_value);
13592 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13593 							     dst_reg->var_off);
13594 	reg_bounds_sync(src_reg);
13595 	reg_bounds_sync(dst_reg);
13596 }
13597 
13598 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13599 				struct bpf_reg_state *true_dst,
13600 				struct bpf_reg_state *false_src,
13601 				struct bpf_reg_state *false_dst,
13602 				u8 opcode)
13603 {
13604 	switch (opcode) {
13605 	case BPF_JEQ:
13606 		__reg_combine_min_max(true_src, true_dst);
13607 		break;
13608 	case BPF_JNE:
13609 		__reg_combine_min_max(false_src, false_dst);
13610 		break;
13611 	}
13612 }
13613 
13614 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13615 				 struct bpf_reg_state *reg, u32 id,
13616 				 bool is_null)
13617 {
13618 	if (type_may_be_null(reg->type) && reg->id == id &&
13619 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13620 		/* Old offset (both fixed and variable parts) should have been
13621 		 * known-zero, because we don't allow pointer arithmetic on
13622 		 * pointers that might be NULL. If we see this happening, don't
13623 		 * convert the register.
13624 		 *
13625 		 * But in some cases, some helpers that return local kptrs
13626 		 * advance offset for the returned pointer. In those cases, it
13627 		 * is fine to expect to see reg->off.
13628 		 */
13629 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13630 			return;
13631 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13632 		    WARN_ON_ONCE(reg->off))
13633 			return;
13634 
13635 		if (is_null) {
13636 			reg->type = SCALAR_VALUE;
13637 			/* We don't need id and ref_obj_id from this point
13638 			 * onwards anymore, thus we should better reset it,
13639 			 * so that state pruning has chances to take effect.
13640 			 */
13641 			reg->id = 0;
13642 			reg->ref_obj_id = 0;
13643 
13644 			return;
13645 		}
13646 
13647 		mark_ptr_not_null_reg(reg);
13648 
13649 		if (!reg_may_point_to_spin_lock(reg)) {
13650 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13651 			 * in release_reference().
13652 			 *
13653 			 * reg->id is still used by spin_lock ptr. Other
13654 			 * than spin_lock ptr type, reg->id can be reset.
13655 			 */
13656 			reg->id = 0;
13657 		}
13658 	}
13659 }
13660 
13661 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13662  * be folded together at some point.
13663  */
13664 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13665 				  bool is_null)
13666 {
13667 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13668 	struct bpf_reg_state *regs = state->regs, *reg;
13669 	u32 ref_obj_id = regs[regno].ref_obj_id;
13670 	u32 id = regs[regno].id;
13671 
13672 	if (ref_obj_id && ref_obj_id == id && is_null)
13673 		/* regs[regno] is in the " == NULL" branch.
13674 		 * No one could have freed the reference state before
13675 		 * doing the NULL check.
13676 		 */
13677 		WARN_ON_ONCE(release_reference_state(state, id));
13678 
13679 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13680 		mark_ptr_or_null_reg(state, reg, id, is_null);
13681 	}));
13682 }
13683 
13684 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13685 				   struct bpf_reg_state *dst_reg,
13686 				   struct bpf_reg_state *src_reg,
13687 				   struct bpf_verifier_state *this_branch,
13688 				   struct bpf_verifier_state *other_branch)
13689 {
13690 	if (BPF_SRC(insn->code) != BPF_X)
13691 		return false;
13692 
13693 	/* Pointers are always 64-bit. */
13694 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13695 		return false;
13696 
13697 	switch (BPF_OP(insn->code)) {
13698 	case BPF_JGT:
13699 		if ((dst_reg->type == PTR_TO_PACKET &&
13700 		     src_reg->type == PTR_TO_PACKET_END) ||
13701 		    (dst_reg->type == PTR_TO_PACKET_META &&
13702 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13703 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13704 			find_good_pkt_pointers(this_branch, dst_reg,
13705 					       dst_reg->type, false);
13706 			mark_pkt_end(other_branch, insn->dst_reg, true);
13707 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13708 			    src_reg->type == PTR_TO_PACKET) ||
13709 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13710 			    src_reg->type == PTR_TO_PACKET_META)) {
13711 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13712 			find_good_pkt_pointers(other_branch, src_reg,
13713 					       src_reg->type, true);
13714 			mark_pkt_end(this_branch, insn->src_reg, false);
13715 		} else {
13716 			return false;
13717 		}
13718 		break;
13719 	case BPF_JLT:
13720 		if ((dst_reg->type == PTR_TO_PACKET &&
13721 		     src_reg->type == PTR_TO_PACKET_END) ||
13722 		    (dst_reg->type == PTR_TO_PACKET_META &&
13723 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13724 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13725 			find_good_pkt_pointers(other_branch, dst_reg,
13726 					       dst_reg->type, true);
13727 			mark_pkt_end(this_branch, insn->dst_reg, false);
13728 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13729 			    src_reg->type == PTR_TO_PACKET) ||
13730 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13731 			    src_reg->type == PTR_TO_PACKET_META)) {
13732 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13733 			find_good_pkt_pointers(this_branch, src_reg,
13734 					       src_reg->type, false);
13735 			mark_pkt_end(other_branch, insn->src_reg, true);
13736 		} else {
13737 			return false;
13738 		}
13739 		break;
13740 	case BPF_JGE:
13741 		if ((dst_reg->type == PTR_TO_PACKET &&
13742 		     src_reg->type == PTR_TO_PACKET_END) ||
13743 		    (dst_reg->type == PTR_TO_PACKET_META &&
13744 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13745 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13746 			find_good_pkt_pointers(this_branch, dst_reg,
13747 					       dst_reg->type, true);
13748 			mark_pkt_end(other_branch, insn->dst_reg, false);
13749 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13750 			    src_reg->type == PTR_TO_PACKET) ||
13751 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13752 			    src_reg->type == PTR_TO_PACKET_META)) {
13753 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13754 			find_good_pkt_pointers(other_branch, src_reg,
13755 					       src_reg->type, false);
13756 			mark_pkt_end(this_branch, insn->src_reg, true);
13757 		} else {
13758 			return false;
13759 		}
13760 		break;
13761 	case BPF_JLE:
13762 		if ((dst_reg->type == PTR_TO_PACKET &&
13763 		     src_reg->type == PTR_TO_PACKET_END) ||
13764 		    (dst_reg->type == PTR_TO_PACKET_META &&
13765 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13766 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13767 			find_good_pkt_pointers(other_branch, dst_reg,
13768 					       dst_reg->type, false);
13769 			mark_pkt_end(this_branch, insn->dst_reg, true);
13770 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13771 			    src_reg->type == PTR_TO_PACKET) ||
13772 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13773 			    src_reg->type == PTR_TO_PACKET_META)) {
13774 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13775 			find_good_pkt_pointers(this_branch, src_reg,
13776 					       src_reg->type, true);
13777 			mark_pkt_end(other_branch, insn->src_reg, false);
13778 		} else {
13779 			return false;
13780 		}
13781 		break;
13782 	default:
13783 		return false;
13784 	}
13785 
13786 	return true;
13787 }
13788 
13789 static void find_equal_scalars(struct bpf_verifier_state *vstate,
13790 			       struct bpf_reg_state *known_reg)
13791 {
13792 	struct bpf_func_state *state;
13793 	struct bpf_reg_state *reg;
13794 
13795 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13796 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
13797 			copy_register_state(reg, known_reg);
13798 	}));
13799 }
13800 
13801 static int check_cond_jmp_op(struct bpf_verifier_env *env,
13802 			     struct bpf_insn *insn, int *insn_idx)
13803 {
13804 	struct bpf_verifier_state *this_branch = env->cur_state;
13805 	struct bpf_verifier_state *other_branch;
13806 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
13807 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
13808 	struct bpf_reg_state *eq_branch_regs;
13809 	u8 opcode = BPF_OP(insn->code);
13810 	bool is_jmp32;
13811 	int pred = -1;
13812 	int err;
13813 
13814 	/* Only conditional jumps are expected to reach here. */
13815 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
13816 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
13817 		return -EINVAL;
13818 	}
13819 
13820 	if (BPF_SRC(insn->code) == BPF_X) {
13821 		if (insn->imm != 0) {
13822 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13823 			return -EINVAL;
13824 		}
13825 
13826 		/* check src1 operand */
13827 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
13828 		if (err)
13829 			return err;
13830 
13831 		if (is_pointer_value(env, insn->src_reg)) {
13832 			verbose(env, "R%d pointer comparison prohibited\n",
13833 				insn->src_reg);
13834 			return -EACCES;
13835 		}
13836 		src_reg = &regs[insn->src_reg];
13837 	} else {
13838 		if (insn->src_reg != BPF_REG_0) {
13839 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13840 			return -EINVAL;
13841 		}
13842 	}
13843 
13844 	/* check src2 operand */
13845 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13846 	if (err)
13847 		return err;
13848 
13849 	dst_reg = &regs[insn->dst_reg];
13850 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
13851 
13852 	if (BPF_SRC(insn->code) == BPF_K) {
13853 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
13854 	} else if (src_reg->type == SCALAR_VALUE &&
13855 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
13856 		pred = is_branch_taken(dst_reg,
13857 				       tnum_subreg(src_reg->var_off).value,
13858 				       opcode,
13859 				       is_jmp32);
13860 	} else if (src_reg->type == SCALAR_VALUE &&
13861 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
13862 		pred = is_branch_taken(dst_reg,
13863 				       src_reg->var_off.value,
13864 				       opcode,
13865 				       is_jmp32);
13866 	} else if (dst_reg->type == SCALAR_VALUE &&
13867 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
13868 		pred = is_branch_taken(src_reg,
13869 				       tnum_subreg(dst_reg->var_off).value,
13870 				       flip_opcode(opcode),
13871 				       is_jmp32);
13872 	} else if (dst_reg->type == SCALAR_VALUE &&
13873 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
13874 		pred = is_branch_taken(src_reg,
13875 				       dst_reg->var_off.value,
13876 				       flip_opcode(opcode),
13877 				       is_jmp32);
13878 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
13879 		   reg_is_pkt_pointer_any(src_reg) &&
13880 		   !is_jmp32) {
13881 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
13882 	}
13883 
13884 	if (pred >= 0) {
13885 		/* If we get here with a dst_reg pointer type it is because
13886 		 * above is_branch_taken() special cased the 0 comparison.
13887 		 */
13888 		if (!__is_pointer_value(false, dst_reg))
13889 			err = mark_chain_precision(env, insn->dst_reg);
13890 		if (BPF_SRC(insn->code) == BPF_X && !err &&
13891 		    !__is_pointer_value(false, src_reg))
13892 			err = mark_chain_precision(env, insn->src_reg);
13893 		if (err)
13894 			return err;
13895 	}
13896 
13897 	if (pred == 1) {
13898 		/* Only follow the goto, ignore fall-through. If needed, push
13899 		 * the fall-through branch for simulation under speculative
13900 		 * execution.
13901 		 */
13902 		if (!env->bypass_spec_v1 &&
13903 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
13904 					       *insn_idx))
13905 			return -EFAULT;
13906 		*insn_idx += insn->off;
13907 		return 0;
13908 	} else if (pred == 0) {
13909 		/* Only follow the fall-through branch, since that's where the
13910 		 * program will go. If needed, push the goto branch for
13911 		 * simulation under speculative execution.
13912 		 */
13913 		if (!env->bypass_spec_v1 &&
13914 		    !sanitize_speculative_path(env, insn,
13915 					       *insn_idx + insn->off + 1,
13916 					       *insn_idx))
13917 			return -EFAULT;
13918 		return 0;
13919 	}
13920 
13921 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
13922 				  false);
13923 	if (!other_branch)
13924 		return -EFAULT;
13925 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
13926 
13927 	/* detect if we are comparing against a constant value so we can adjust
13928 	 * our min/max values for our dst register.
13929 	 * this is only legit if both are scalars (or pointers to the same
13930 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
13931 	 * because otherwise the different base pointers mean the offsets aren't
13932 	 * comparable.
13933 	 */
13934 	if (BPF_SRC(insn->code) == BPF_X) {
13935 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
13936 
13937 		if (dst_reg->type == SCALAR_VALUE &&
13938 		    src_reg->type == SCALAR_VALUE) {
13939 			if (tnum_is_const(src_reg->var_off) ||
13940 			    (is_jmp32 &&
13941 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
13942 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
13943 						dst_reg,
13944 						src_reg->var_off.value,
13945 						tnum_subreg(src_reg->var_off).value,
13946 						opcode, is_jmp32);
13947 			else if (tnum_is_const(dst_reg->var_off) ||
13948 				 (is_jmp32 &&
13949 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
13950 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
13951 						    src_reg,
13952 						    dst_reg->var_off.value,
13953 						    tnum_subreg(dst_reg->var_off).value,
13954 						    opcode, is_jmp32);
13955 			else if (!is_jmp32 &&
13956 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
13957 				/* Comparing for equality, we can combine knowledge */
13958 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
13959 						    &other_branch_regs[insn->dst_reg],
13960 						    src_reg, dst_reg, opcode);
13961 			if (src_reg->id &&
13962 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
13963 				find_equal_scalars(this_branch, src_reg);
13964 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
13965 			}
13966 
13967 		}
13968 	} else if (dst_reg->type == SCALAR_VALUE) {
13969 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
13970 					dst_reg, insn->imm, (u32)insn->imm,
13971 					opcode, is_jmp32);
13972 	}
13973 
13974 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
13975 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
13976 		find_equal_scalars(this_branch, dst_reg);
13977 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
13978 	}
13979 
13980 	/* if one pointer register is compared to another pointer
13981 	 * register check if PTR_MAYBE_NULL could be lifted.
13982 	 * E.g. register A - maybe null
13983 	 *      register B - not null
13984 	 * for JNE A, B, ... - A is not null in the false branch;
13985 	 * for JEQ A, B, ... - A is not null in the true branch.
13986 	 *
13987 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
13988 	 * not need to be null checked by the BPF program, i.e.,
13989 	 * could be null even without PTR_MAYBE_NULL marking, so
13990 	 * only propagate nullness when neither reg is that type.
13991 	 */
13992 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
13993 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
13994 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
13995 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
13996 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
13997 		eq_branch_regs = NULL;
13998 		switch (opcode) {
13999 		case BPF_JEQ:
14000 			eq_branch_regs = other_branch_regs;
14001 			break;
14002 		case BPF_JNE:
14003 			eq_branch_regs = regs;
14004 			break;
14005 		default:
14006 			/* do nothing */
14007 			break;
14008 		}
14009 		if (eq_branch_regs) {
14010 			if (type_may_be_null(src_reg->type))
14011 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14012 			else
14013 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14014 		}
14015 	}
14016 
14017 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14018 	 * NOTE: these optimizations below are related with pointer comparison
14019 	 *       which will never be JMP32.
14020 	 */
14021 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14022 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14023 	    type_may_be_null(dst_reg->type)) {
14024 		/* Mark all identical registers in each branch as either
14025 		 * safe or unknown depending R == 0 or R != 0 conditional.
14026 		 */
14027 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14028 				      opcode == BPF_JNE);
14029 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14030 				      opcode == BPF_JEQ);
14031 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14032 					   this_branch, other_branch) &&
14033 		   is_pointer_value(env, insn->dst_reg)) {
14034 		verbose(env, "R%d pointer comparison prohibited\n",
14035 			insn->dst_reg);
14036 		return -EACCES;
14037 	}
14038 	if (env->log.level & BPF_LOG_LEVEL)
14039 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14040 	return 0;
14041 }
14042 
14043 /* verify BPF_LD_IMM64 instruction */
14044 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14045 {
14046 	struct bpf_insn_aux_data *aux = cur_aux(env);
14047 	struct bpf_reg_state *regs = cur_regs(env);
14048 	struct bpf_reg_state *dst_reg;
14049 	struct bpf_map *map;
14050 	int err;
14051 
14052 	if (BPF_SIZE(insn->code) != BPF_DW) {
14053 		verbose(env, "invalid BPF_LD_IMM insn\n");
14054 		return -EINVAL;
14055 	}
14056 	if (insn->off != 0) {
14057 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14058 		return -EINVAL;
14059 	}
14060 
14061 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14062 	if (err)
14063 		return err;
14064 
14065 	dst_reg = &regs[insn->dst_reg];
14066 	if (insn->src_reg == 0) {
14067 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14068 
14069 		dst_reg->type = SCALAR_VALUE;
14070 		__mark_reg_known(&regs[insn->dst_reg], imm);
14071 		return 0;
14072 	}
14073 
14074 	/* All special src_reg cases are listed below. From this point onwards
14075 	 * we either succeed and assign a corresponding dst_reg->type after
14076 	 * zeroing the offset, or fail and reject the program.
14077 	 */
14078 	mark_reg_known_zero(env, regs, insn->dst_reg);
14079 
14080 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14081 		dst_reg->type = aux->btf_var.reg_type;
14082 		switch (base_type(dst_reg->type)) {
14083 		case PTR_TO_MEM:
14084 			dst_reg->mem_size = aux->btf_var.mem_size;
14085 			break;
14086 		case PTR_TO_BTF_ID:
14087 			dst_reg->btf = aux->btf_var.btf;
14088 			dst_reg->btf_id = aux->btf_var.btf_id;
14089 			break;
14090 		default:
14091 			verbose(env, "bpf verifier is misconfigured\n");
14092 			return -EFAULT;
14093 		}
14094 		return 0;
14095 	}
14096 
14097 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14098 		struct bpf_prog_aux *aux = env->prog->aux;
14099 		u32 subprogno = find_subprog(env,
14100 					     env->insn_idx + insn->imm + 1);
14101 
14102 		if (!aux->func_info) {
14103 			verbose(env, "missing btf func_info\n");
14104 			return -EINVAL;
14105 		}
14106 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14107 			verbose(env, "callback function not static\n");
14108 			return -EINVAL;
14109 		}
14110 
14111 		dst_reg->type = PTR_TO_FUNC;
14112 		dst_reg->subprogno = subprogno;
14113 		return 0;
14114 	}
14115 
14116 	map = env->used_maps[aux->map_index];
14117 	dst_reg->map_ptr = map;
14118 
14119 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14120 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14121 		dst_reg->type = PTR_TO_MAP_VALUE;
14122 		dst_reg->off = aux->map_off;
14123 		WARN_ON_ONCE(map->max_entries != 1);
14124 		/* We want reg->id to be same (0) as map_value is not distinct */
14125 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14126 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14127 		dst_reg->type = CONST_PTR_TO_MAP;
14128 	} else {
14129 		verbose(env, "bpf verifier is misconfigured\n");
14130 		return -EINVAL;
14131 	}
14132 
14133 	return 0;
14134 }
14135 
14136 static bool may_access_skb(enum bpf_prog_type type)
14137 {
14138 	switch (type) {
14139 	case BPF_PROG_TYPE_SOCKET_FILTER:
14140 	case BPF_PROG_TYPE_SCHED_CLS:
14141 	case BPF_PROG_TYPE_SCHED_ACT:
14142 		return true;
14143 	default:
14144 		return false;
14145 	}
14146 }
14147 
14148 /* verify safety of LD_ABS|LD_IND instructions:
14149  * - they can only appear in the programs where ctx == skb
14150  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14151  *   preserve R6-R9, and store return value into R0
14152  *
14153  * Implicit input:
14154  *   ctx == skb == R6 == CTX
14155  *
14156  * Explicit input:
14157  *   SRC == any register
14158  *   IMM == 32-bit immediate
14159  *
14160  * Output:
14161  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14162  */
14163 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14164 {
14165 	struct bpf_reg_state *regs = cur_regs(env);
14166 	static const int ctx_reg = BPF_REG_6;
14167 	u8 mode = BPF_MODE(insn->code);
14168 	int i, err;
14169 
14170 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14171 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14172 		return -EINVAL;
14173 	}
14174 
14175 	if (!env->ops->gen_ld_abs) {
14176 		verbose(env, "bpf verifier is misconfigured\n");
14177 		return -EINVAL;
14178 	}
14179 
14180 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14181 	    BPF_SIZE(insn->code) == BPF_DW ||
14182 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14183 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14184 		return -EINVAL;
14185 	}
14186 
14187 	/* check whether implicit source operand (register R6) is readable */
14188 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14189 	if (err)
14190 		return err;
14191 
14192 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14193 	 * gen_ld_abs() may terminate the program at runtime, leading to
14194 	 * reference leak.
14195 	 */
14196 	err = check_reference_leak(env);
14197 	if (err) {
14198 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14199 		return err;
14200 	}
14201 
14202 	if (env->cur_state->active_lock.ptr) {
14203 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14204 		return -EINVAL;
14205 	}
14206 
14207 	if (env->cur_state->active_rcu_lock) {
14208 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14209 		return -EINVAL;
14210 	}
14211 
14212 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14213 		verbose(env,
14214 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14215 		return -EINVAL;
14216 	}
14217 
14218 	if (mode == BPF_IND) {
14219 		/* check explicit source operand */
14220 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14221 		if (err)
14222 			return err;
14223 	}
14224 
14225 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14226 	if (err < 0)
14227 		return err;
14228 
14229 	/* reset caller saved regs to unreadable */
14230 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14231 		mark_reg_not_init(env, regs, caller_saved[i]);
14232 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14233 	}
14234 
14235 	/* mark destination R0 register as readable, since it contains
14236 	 * the value fetched from the packet.
14237 	 * Already marked as written above.
14238 	 */
14239 	mark_reg_unknown(env, regs, BPF_REG_0);
14240 	/* ld_abs load up to 32-bit skb data. */
14241 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14242 	return 0;
14243 }
14244 
14245 static int check_return_code(struct bpf_verifier_env *env)
14246 {
14247 	struct tnum enforce_attach_type_range = tnum_unknown;
14248 	const struct bpf_prog *prog = env->prog;
14249 	struct bpf_reg_state *reg;
14250 	struct tnum range = tnum_range(0, 1);
14251 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14252 	int err;
14253 	struct bpf_func_state *frame = env->cur_state->frame[0];
14254 	const bool is_subprog = frame->subprogno;
14255 
14256 	/* LSM and struct_ops func-ptr's return type could be "void" */
14257 	if (!is_subprog) {
14258 		switch (prog_type) {
14259 		case BPF_PROG_TYPE_LSM:
14260 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14261 				/* See below, can be 0 or 0-1 depending on hook. */
14262 				break;
14263 			fallthrough;
14264 		case BPF_PROG_TYPE_STRUCT_OPS:
14265 			if (!prog->aux->attach_func_proto->type)
14266 				return 0;
14267 			break;
14268 		default:
14269 			break;
14270 		}
14271 	}
14272 
14273 	/* eBPF calling convention is such that R0 is used
14274 	 * to return the value from eBPF program.
14275 	 * Make sure that it's readable at this time
14276 	 * of bpf_exit, which means that program wrote
14277 	 * something into it earlier
14278 	 */
14279 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14280 	if (err)
14281 		return err;
14282 
14283 	if (is_pointer_value(env, BPF_REG_0)) {
14284 		verbose(env, "R0 leaks addr as return value\n");
14285 		return -EACCES;
14286 	}
14287 
14288 	reg = cur_regs(env) + BPF_REG_0;
14289 
14290 	if (frame->in_async_callback_fn) {
14291 		/* enforce return zero from async callbacks like timer */
14292 		if (reg->type != SCALAR_VALUE) {
14293 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14294 				reg_type_str(env, reg->type));
14295 			return -EINVAL;
14296 		}
14297 
14298 		if (!tnum_in(tnum_const(0), reg->var_off)) {
14299 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
14300 			return -EINVAL;
14301 		}
14302 		return 0;
14303 	}
14304 
14305 	if (is_subprog) {
14306 		if (reg->type != SCALAR_VALUE) {
14307 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14308 				reg_type_str(env, reg->type));
14309 			return -EINVAL;
14310 		}
14311 		return 0;
14312 	}
14313 
14314 	switch (prog_type) {
14315 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14316 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14317 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14318 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14319 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14320 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14321 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14322 			range = tnum_range(1, 1);
14323 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14324 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14325 			range = tnum_range(0, 3);
14326 		break;
14327 	case BPF_PROG_TYPE_CGROUP_SKB:
14328 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14329 			range = tnum_range(0, 3);
14330 			enforce_attach_type_range = tnum_range(2, 3);
14331 		}
14332 		break;
14333 	case BPF_PROG_TYPE_CGROUP_SOCK:
14334 	case BPF_PROG_TYPE_SOCK_OPS:
14335 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14336 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14337 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14338 		break;
14339 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14340 		if (!env->prog->aux->attach_btf_id)
14341 			return 0;
14342 		range = tnum_const(0);
14343 		break;
14344 	case BPF_PROG_TYPE_TRACING:
14345 		switch (env->prog->expected_attach_type) {
14346 		case BPF_TRACE_FENTRY:
14347 		case BPF_TRACE_FEXIT:
14348 			range = tnum_const(0);
14349 			break;
14350 		case BPF_TRACE_RAW_TP:
14351 		case BPF_MODIFY_RETURN:
14352 			return 0;
14353 		case BPF_TRACE_ITER:
14354 			break;
14355 		default:
14356 			return -ENOTSUPP;
14357 		}
14358 		break;
14359 	case BPF_PROG_TYPE_SK_LOOKUP:
14360 		range = tnum_range(SK_DROP, SK_PASS);
14361 		break;
14362 
14363 	case BPF_PROG_TYPE_LSM:
14364 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14365 			/* Regular BPF_PROG_TYPE_LSM programs can return
14366 			 * any value.
14367 			 */
14368 			return 0;
14369 		}
14370 		if (!env->prog->aux->attach_func_proto->type) {
14371 			/* Make sure programs that attach to void
14372 			 * hooks don't try to modify return value.
14373 			 */
14374 			range = tnum_range(1, 1);
14375 		}
14376 		break;
14377 
14378 	case BPF_PROG_TYPE_NETFILTER:
14379 		range = tnum_range(NF_DROP, NF_ACCEPT);
14380 		break;
14381 	case BPF_PROG_TYPE_EXT:
14382 		/* freplace program can return anything as its return value
14383 		 * depends on the to-be-replaced kernel func or bpf program.
14384 		 */
14385 	default:
14386 		return 0;
14387 	}
14388 
14389 	if (reg->type != SCALAR_VALUE) {
14390 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14391 			reg_type_str(env, reg->type));
14392 		return -EINVAL;
14393 	}
14394 
14395 	if (!tnum_in(range, reg->var_off)) {
14396 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14397 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14398 		    prog_type == BPF_PROG_TYPE_LSM &&
14399 		    !prog->aux->attach_func_proto->type)
14400 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14401 		return -EINVAL;
14402 	}
14403 
14404 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14405 	    tnum_in(enforce_attach_type_range, reg->var_off))
14406 		env->prog->enforce_expected_attach_type = 1;
14407 	return 0;
14408 }
14409 
14410 /* non-recursive DFS pseudo code
14411  * 1  procedure DFS-iterative(G,v):
14412  * 2      label v as discovered
14413  * 3      let S be a stack
14414  * 4      S.push(v)
14415  * 5      while S is not empty
14416  * 6            t <- S.peek()
14417  * 7            if t is what we're looking for:
14418  * 8                return t
14419  * 9            for all edges e in G.adjacentEdges(t) do
14420  * 10               if edge e is already labelled
14421  * 11                   continue with the next edge
14422  * 12               w <- G.adjacentVertex(t,e)
14423  * 13               if vertex w is not discovered and not explored
14424  * 14                   label e as tree-edge
14425  * 15                   label w as discovered
14426  * 16                   S.push(w)
14427  * 17                   continue at 5
14428  * 18               else if vertex w is discovered
14429  * 19                   label e as back-edge
14430  * 20               else
14431  * 21                   // vertex w is explored
14432  * 22                   label e as forward- or cross-edge
14433  * 23           label t as explored
14434  * 24           S.pop()
14435  *
14436  * convention:
14437  * 0x10 - discovered
14438  * 0x11 - discovered and fall-through edge labelled
14439  * 0x12 - discovered and fall-through and branch edges labelled
14440  * 0x20 - explored
14441  */
14442 
14443 enum {
14444 	DISCOVERED = 0x10,
14445 	EXPLORED = 0x20,
14446 	FALLTHROUGH = 1,
14447 	BRANCH = 2,
14448 };
14449 
14450 static u32 state_htab_size(struct bpf_verifier_env *env)
14451 {
14452 	return env->prog->len;
14453 }
14454 
14455 static struct bpf_verifier_state_list **explored_state(
14456 					struct bpf_verifier_env *env,
14457 					int idx)
14458 {
14459 	struct bpf_verifier_state *cur = env->cur_state;
14460 	struct bpf_func_state *state = cur->frame[cur->curframe];
14461 
14462 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14463 }
14464 
14465 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14466 {
14467 	env->insn_aux_data[idx].prune_point = true;
14468 }
14469 
14470 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14471 {
14472 	return env->insn_aux_data[insn_idx].prune_point;
14473 }
14474 
14475 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14476 {
14477 	env->insn_aux_data[idx].force_checkpoint = true;
14478 }
14479 
14480 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14481 {
14482 	return env->insn_aux_data[insn_idx].force_checkpoint;
14483 }
14484 
14485 
14486 enum {
14487 	DONE_EXPLORING = 0,
14488 	KEEP_EXPLORING = 1,
14489 };
14490 
14491 /* t, w, e - match pseudo-code above:
14492  * t - index of current instruction
14493  * w - next instruction
14494  * e - edge
14495  */
14496 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14497 		     bool loop_ok)
14498 {
14499 	int *insn_stack = env->cfg.insn_stack;
14500 	int *insn_state = env->cfg.insn_state;
14501 
14502 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14503 		return DONE_EXPLORING;
14504 
14505 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14506 		return DONE_EXPLORING;
14507 
14508 	if (w < 0 || w >= env->prog->len) {
14509 		verbose_linfo(env, t, "%d: ", t);
14510 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14511 		return -EINVAL;
14512 	}
14513 
14514 	if (e == BRANCH) {
14515 		/* mark branch target for state pruning */
14516 		mark_prune_point(env, w);
14517 		mark_jmp_point(env, w);
14518 	}
14519 
14520 	if (insn_state[w] == 0) {
14521 		/* tree-edge */
14522 		insn_state[t] = DISCOVERED | e;
14523 		insn_state[w] = DISCOVERED;
14524 		if (env->cfg.cur_stack >= env->prog->len)
14525 			return -E2BIG;
14526 		insn_stack[env->cfg.cur_stack++] = w;
14527 		return KEEP_EXPLORING;
14528 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14529 		if (loop_ok && env->bpf_capable)
14530 			return DONE_EXPLORING;
14531 		verbose_linfo(env, t, "%d: ", t);
14532 		verbose_linfo(env, w, "%d: ", w);
14533 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14534 		return -EINVAL;
14535 	} else if (insn_state[w] == EXPLORED) {
14536 		/* forward- or cross-edge */
14537 		insn_state[t] = DISCOVERED | e;
14538 	} else {
14539 		verbose(env, "insn state internal bug\n");
14540 		return -EFAULT;
14541 	}
14542 	return DONE_EXPLORING;
14543 }
14544 
14545 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14546 				struct bpf_verifier_env *env,
14547 				bool visit_callee)
14548 {
14549 	int ret;
14550 
14551 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14552 	if (ret)
14553 		return ret;
14554 
14555 	mark_prune_point(env, t + 1);
14556 	/* when we exit from subprog, we need to record non-linear history */
14557 	mark_jmp_point(env, t + 1);
14558 
14559 	if (visit_callee) {
14560 		mark_prune_point(env, t);
14561 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14562 				/* It's ok to allow recursion from CFG point of
14563 				 * view. __check_func_call() will do the actual
14564 				 * check.
14565 				 */
14566 				bpf_pseudo_func(insns + t));
14567 	}
14568 	return ret;
14569 }
14570 
14571 /* Visits the instruction at index t and returns one of the following:
14572  *  < 0 - an error occurred
14573  *  DONE_EXPLORING - the instruction was fully explored
14574  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14575  */
14576 static int visit_insn(int t, struct bpf_verifier_env *env)
14577 {
14578 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14579 	int ret;
14580 
14581 	if (bpf_pseudo_func(insn))
14582 		return visit_func_call_insn(t, insns, env, true);
14583 
14584 	/* All non-branch instructions have a single fall-through edge. */
14585 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14586 	    BPF_CLASS(insn->code) != BPF_JMP32)
14587 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
14588 
14589 	switch (BPF_OP(insn->code)) {
14590 	case BPF_EXIT:
14591 		return DONE_EXPLORING;
14592 
14593 	case BPF_CALL:
14594 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14595 			/* Mark this call insn as a prune point to trigger
14596 			 * is_state_visited() check before call itself is
14597 			 * processed by __check_func_call(). Otherwise new
14598 			 * async state will be pushed for further exploration.
14599 			 */
14600 			mark_prune_point(env, t);
14601 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14602 			struct bpf_kfunc_call_arg_meta meta;
14603 
14604 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14605 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14606 				mark_prune_point(env, t);
14607 				/* Checking and saving state checkpoints at iter_next() call
14608 				 * is crucial for fast convergence of open-coded iterator loop
14609 				 * logic, so we need to force it. If we don't do that,
14610 				 * is_state_visited() might skip saving a checkpoint, causing
14611 				 * unnecessarily long sequence of not checkpointed
14612 				 * instructions and jumps, leading to exhaustion of jump
14613 				 * history buffer, and potentially other undesired outcomes.
14614 				 * It is expected that with correct open-coded iterators
14615 				 * convergence will happen quickly, so we don't run a risk of
14616 				 * exhausting memory.
14617 				 */
14618 				mark_force_checkpoint(env, t);
14619 			}
14620 		}
14621 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14622 
14623 	case BPF_JA:
14624 		if (BPF_SRC(insn->code) != BPF_K)
14625 			return -EINVAL;
14626 
14627 		/* unconditional jump with single edge */
14628 		ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
14629 				true);
14630 		if (ret)
14631 			return ret;
14632 
14633 		mark_prune_point(env, t + insn->off + 1);
14634 		mark_jmp_point(env, t + insn->off + 1);
14635 
14636 		return ret;
14637 
14638 	default:
14639 		/* conditional jump with two edges */
14640 		mark_prune_point(env, t);
14641 
14642 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14643 		if (ret)
14644 			return ret;
14645 
14646 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
14647 	}
14648 }
14649 
14650 /* non-recursive depth-first-search to detect loops in BPF program
14651  * loop == back-edge in directed graph
14652  */
14653 static int check_cfg(struct bpf_verifier_env *env)
14654 {
14655 	int insn_cnt = env->prog->len;
14656 	int *insn_stack, *insn_state;
14657 	int ret = 0;
14658 	int i;
14659 
14660 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14661 	if (!insn_state)
14662 		return -ENOMEM;
14663 
14664 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14665 	if (!insn_stack) {
14666 		kvfree(insn_state);
14667 		return -ENOMEM;
14668 	}
14669 
14670 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14671 	insn_stack[0] = 0; /* 0 is the first instruction */
14672 	env->cfg.cur_stack = 1;
14673 
14674 	while (env->cfg.cur_stack > 0) {
14675 		int t = insn_stack[env->cfg.cur_stack - 1];
14676 
14677 		ret = visit_insn(t, env);
14678 		switch (ret) {
14679 		case DONE_EXPLORING:
14680 			insn_state[t] = EXPLORED;
14681 			env->cfg.cur_stack--;
14682 			break;
14683 		case KEEP_EXPLORING:
14684 			break;
14685 		default:
14686 			if (ret > 0) {
14687 				verbose(env, "visit_insn internal bug\n");
14688 				ret = -EFAULT;
14689 			}
14690 			goto err_free;
14691 		}
14692 	}
14693 
14694 	if (env->cfg.cur_stack < 0) {
14695 		verbose(env, "pop stack internal bug\n");
14696 		ret = -EFAULT;
14697 		goto err_free;
14698 	}
14699 
14700 	for (i = 0; i < insn_cnt; i++) {
14701 		if (insn_state[i] != EXPLORED) {
14702 			verbose(env, "unreachable insn %d\n", i);
14703 			ret = -EINVAL;
14704 			goto err_free;
14705 		}
14706 	}
14707 	ret = 0; /* cfg looks good */
14708 
14709 err_free:
14710 	kvfree(insn_state);
14711 	kvfree(insn_stack);
14712 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14713 	return ret;
14714 }
14715 
14716 static int check_abnormal_return(struct bpf_verifier_env *env)
14717 {
14718 	int i;
14719 
14720 	for (i = 1; i < env->subprog_cnt; i++) {
14721 		if (env->subprog_info[i].has_ld_abs) {
14722 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14723 			return -EINVAL;
14724 		}
14725 		if (env->subprog_info[i].has_tail_call) {
14726 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14727 			return -EINVAL;
14728 		}
14729 	}
14730 	return 0;
14731 }
14732 
14733 /* The minimum supported BTF func info size */
14734 #define MIN_BPF_FUNCINFO_SIZE	8
14735 #define MAX_FUNCINFO_REC_SIZE	252
14736 
14737 static int check_btf_func(struct bpf_verifier_env *env,
14738 			  const union bpf_attr *attr,
14739 			  bpfptr_t uattr)
14740 {
14741 	const struct btf_type *type, *func_proto, *ret_type;
14742 	u32 i, nfuncs, urec_size, min_size;
14743 	u32 krec_size = sizeof(struct bpf_func_info);
14744 	struct bpf_func_info *krecord;
14745 	struct bpf_func_info_aux *info_aux = NULL;
14746 	struct bpf_prog *prog;
14747 	const struct btf *btf;
14748 	bpfptr_t urecord;
14749 	u32 prev_offset = 0;
14750 	bool scalar_return;
14751 	int ret = -ENOMEM;
14752 
14753 	nfuncs = attr->func_info_cnt;
14754 	if (!nfuncs) {
14755 		if (check_abnormal_return(env))
14756 			return -EINVAL;
14757 		return 0;
14758 	}
14759 
14760 	if (nfuncs != env->subprog_cnt) {
14761 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14762 		return -EINVAL;
14763 	}
14764 
14765 	urec_size = attr->func_info_rec_size;
14766 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14767 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
14768 	    urec_size % sizeof(u32)) {
14769 		verbose(env, "invalid func info rec size %u\n", urec_size);
14770 		return -EINVAL;
14771 	}
14772 
14773 	prog = env->prog;
14774 	btf = prog->aux->btf;
14775 
14776 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
14777 	min_size = min_t(u32, krec_size, urec_size);
14778 
14779 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
14780 	if (!krecord)
14781 		return -ENOMEM;
14782 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
14783 	if (!info_aux)
14784 		goto err_free;
14785 
14786 	for (i = 0; i < nfuncs; i++) {
14787 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
14788 		if (ret) {
14789 			if (ret == -E2BIG) {
14790 				verbose(env, "nonzero tailing record in func info");
14791 				/* set the size kernel expects so loader can zero
14792 				 * out the rest of the record.
14793 				 */
14794 				if (copy_to_bpfptr_offset(uattr,
14795 							  offsetof(union bpf_attr, func_info_rec_size),
14796 							  &min_size, sizeof(min_size)))
14797 					ret = -EFAULT;
14798 			}
14799 			goto err_free;
14800 		}
14801 
14802 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
14803 			ret = -EFAULT;
14804 			goto err_free;
14805 		}
14806 
14807 		/* check insn_off */
14808 		ret = -EINVAL;
14809 		if (i == 0) {
14810 			if (krecord[i].insn_off) {
14811 				verbose(env,
14812 					"nonzero insn_off %u for the first func info record",
14813 					krecord[i].insn_off);
14814 				goto err_free;
14815 			}
14816 		} else if (krecord[i].insn_off <= prev_offset) {
14817 			verbose(env,
14818 				"same or smaller insn offset (%u) than previous func info record (%u)",
14819 				krecord[i].insn_off, prev_offset);
14820 			goto err_free;
14821 		}
14822 
14823 		if (env->subprog_info[i].start != krecord[i].insn_off) {
14824 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
14825 			goto err_free;
14826 		}
14827 
14828 		/* check type_id */
14829 		type = btf_type_by_id(btf, krecord[i].type_id);
14830 		if (!type || !btf_type_is_func(type)) {
14831 			verbose(env, "invalid type id %d in func info",
14832 				krecord[i].type_id);
14833 			goto err_free;
14834 		}
14835 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
14836 
14837 		func_proto = btf_type_by_id(btf, type->type);
14838 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
14839 			/* btf_func_check() already verified it during BTF load */
14840 			goto err_free;
14841 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
14842 		scalar_return =
14843 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
14844 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
14845 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
14846 			goto err_free;
14847 		}
14848 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
14849 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
14850 			goto err_free;
14851 		}
14852 
14853 		prev_offset = krecord[i].insn_off;
14854 		bpfptr_add(&urecord, urec_size);
14855 	}
14856 
14857 	prog->aux->func_info = krecord;
14858 	prog->aux->func_info_cnt = nfuncs;
14859 	prog->aux->func_info_aux = info_aux;
14860 	return 0;
14861 
14862 err_free:
14863 	kvfree(krecord);
14864 	kfree(info_aux);
14865 	return ret;
14866 }
14867 
14868 static void adjust_btf_func(struct bpf_verifier_env *env)
14869 {
14870 	struct bpf_prog_aux *aux = env->prog->aux;
14871 	int i;
14872 
14873 	if (!aux->func_info)
14874 		return;
14875 
14876 	for (i = 0; i < env->subprog_cnt; i++)
14877 		aux->func_info[i].insn_off = env->subprog_info[i].start;
14878 }
14879 
14880 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
14881 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
14882 
14883 static int check_btf_line(struct bpf_verifier_env *env,
14884 			  const union bpf_attr *attr,
14885 			  bpfptr_t uattr)
14886 {
14887 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
14888 	struct bpf_subprog_info *sub;
14889 	struct bpf_line_info *linfo;
14890 	struct bpf_prog *prog;
14891 	const struct btf *btf;
14892 	bpfptr_t ulinfo;
14893 	int err;
14894 
14895 	nr_linfo = attr->line_info_cnt;
14896 	if (!nr_linfo)
14897 		return 0;
14898 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
14899 		return -EINVAL;
14900 
14901 	rec_size = attr->line_info_rec_size;
14902 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
14903 	    rec_size > MAX_LINEINFO_REC_SIZE ||
14904 	    rec_size & (sizeof(u32) - 1))
14905 		return -EINVAL;
14906 
14907 	/* Need to zero it in case the userspace may
14908 	 * pass in a smaller bpf_line_info object.
14909 	 */
14910 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
14911 			 GFP_KERNEL | __GFP_NOWARN);
14912 	if (!linfo)
14913 		return -ENOMEM;
14914 
14915 	prog = env->prog;
14916 	btf = prog->aux->btf;
14917 
14918 	s = 0;
14919 	sub = env->subprog_info;
14920 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
14921 	expected_size = sizeof(struct bpf_line_info);
14922 	ncopy = min_t(u32, expected_size, rec_size);
14923 	for (i = 0; i < nr_linfo; i++) {
14924 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
14925 		if (err) {
14926 			if (err == -E2BIG) {
14927 				verbose(env, "nonzero tailing record in line_info");
14928 				if (copy_to_bpfptr_offset(uattr,
14929 							  offsetof(union bpf_attr, line_info_rec_size),
14930 							  &expected_size, sizeof(expected_size)))
14931 					err = -EFAULT;
14932 			}
14933 			goto err_free;
14934 		}
14935 
14936 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
14937 			err = -EFAULT;
14938 			goto err_free;
14939 		}
14940 
14941 		/*
14942 		 * Check insn_off to ensure
14943 		 * 1) strictly increasing AND
14944 		 * 2) bounded by prog->len
14945 		 *
14946 		 * The linfo[0].insn_off == 0 check logically falls into
14947 		 * the later "missing bpf_line_info for func..." case
14948 		 * because the first linfo[0].insn_off must be the
14949 		 * first sub also and the first sub must have
14950 		 * subprog_info[0].start == 0.
14951 		 */
14952 		if ((i && linfo[i].insn_off <= prev_offset) ||
14953 		    linfo[i].insn_off >= prog->len) {
14954 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
14955 				i, linfo[i].insn_off, prev_offset,
14956 				prog->len);
14957 			err = -EINVAL;
14958 			goto err_free;
14959 		}
14960 
14961 		if (!prog->insnsi[linfo[i].insn_off].code) {
14962 			verbose(env,
14963 				"Invalid insn code at line_info[%u].insn_off\n",
14964 				i);
14965 			err = -EINVAL;
14966 			goto err_free;
14967 		}
14968 
14969 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
14970 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
14971 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
14972 			err = -EINVAL;
14973 			goto err_free;
14974 		}
14975 
14976 		if (s != env->subprog_cnt) {
14977 			if (linfo[i].insn_off == sub[s].start) {
14978 				sub[s].linfo_idx = i;
14979 				s++;
14980 			} else if (sub[s].start < linfo[i].insn_off) {
14981 				verbose(env, "missing bpf_line_info for func#%u\n", s);
14982 				err = -EINVAL;
14983 				goto err_free;
14984 			}
14985 		}
14986 
14987 		prev_offset = linfo[i].insn_off;
14988 		bpfptr_add(&ulinfo, rec_size);
14989 	}
14990 
14991 	if (s != env->subprog_cnt) {
14992 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
14993 			env->subprog_cnt - s, s);
14994 		err = -EINVAL;
14995 		goto err_free;
14996 	}
14997 
14998 	prog->aux->linfo = linfo;
14999 	prog->aux->nr_linfo = nr_linfo;
15000 
15001 	return 0;
15002 
15003 err_free:
15004 	kvfree(linfo);
15005 	return err;
15006 }
15007 
15008 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15009 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15010 
15011 static int check_core_relo(struct bpf_verifier_env *env,
15012 			   const union bpf_attr *attr,
15013 			   bpfptr_t uattr)
15014 {
15015 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15016 	struct bpf_core_relo core_relo = {};
15017 	struct bpf_prog *prog = env->prog;
15018 	const struct btf *btf = prog->aux->btf;
15019 	struct bpf_core_ctx ctx = {
15020 		.log = &env->log,
15021 		.btf = btf,
15022 	};
15023 	bpfptr_t u_core_relo;
15024 	int err;
15025 
15026 	nr_core_relo = attr->core_relo_cnt;
15027 	if (!nr_core_relo)
15028 		return 0;
15029 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15030 		return -EINVAL;
15031 
15032 	rec_size = attr->core_relo_rec_size;
15033 	if (rec_size < MIN_CORE_RELO_SIZE ||
15034 	    rec_size > MAX_CORE_RELO_SIZE ||
15035 	    rec_size % sizeof(u32))
15036 		return -EINVAL;
15037 
15038 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15039 	expected_size = sizeof(struct bpf_core_relo);
15040 	ncopy = min_t(u32, expected_size, rec_size);
15041 
15042 	/* Unlike func_info and line_info, copy and apply each CO-RE
15043 	 * relocation record one at a time.
15044 	 */
15045 	for (i = 0; i < nr_core_relo; i++) {
15046 		/* future proofing when sizeof(bpf_core_relo) changes */
15047 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15048 		if (err) {
15049 			if (err == -E2BIG) {
15050 				verbose(env, "nonzero tailing record in core_relo");
15051 				if (copy_to_bpfptr_offset(uattr,
15052 							  offsetof(union bpf_attr, core_relo_rec_size),
15053 							  &expected_size, sizeof(expected_size)))
15054 					err = -EFAULT;
15055 			}
15056 			break;
15057 		}
15058 
15059 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15060 			err = -EFAULT;
15061 			break;
15062 		}
15063 
15064 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15065 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15066 				i, core_relo.insn_off, prog->len);
15067 			err = -EINVAL;
15068 			break;
15069 		}
15070 
15071 		err = bpf_core_apply(&ctx, &core_relo, i,
15072 				     &prog->insnsi[core_relo.insn_off / 8]);
15073 		if (err)
15074 			break;
15075 		bpfptr_add(&u_core_relo, rec_size);
15076 	}
15077 	return err;
15078 }
15079 
15080 static int check_btf_info(struct bpf_verifier_env *env,
15081 			  const union bpf_attr *attr,
15082 			  bpfptr_t uattr)
15083 {
15084 	struct btf *btf;
15085 	int err;
15086 
15087 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15088 		if (check_abnormal_return(env))
15089 			return -EINVAL;
15090 		return 0;
15091 	}
15092 
15093 	btf = btf_get_by_fd(attr->prog_btf_fd);
15094 	if (IS_ERR(btf))
15095 		return PTR_ERR(btf);
15096 	if (btf_is_kernel(btf)) {
15097 		btf_put(btf);
15098 		return -EACCES;
15099 	}
15100 	env->prog->aux->btf = btf;
15101 
15102 	err = check_btf_func(env, attr, uattr);
15103 	if (err)
15104 		return err;
15105 
15106 	err = check_btf_line(env, attr, uattr);
15107 	if (err)
15108 		return err;
15109 
15110 	err = check_core_relo(env, attr, uattr);
15111 	if (err)
15112 		return err;
15113 
15114 	return 0;
15115 }
15116 
15117 /* check %cur's range satisfies %old's */
15118 static bool range_within(struct bpf_reg_state *old,
15119 			 struct bpf_reg_state *cur)
15120 {
15121 	return old->umin_value <= cur->umin_value &&
15122 	       old->umax_value >= cur->umax_value &&
15123 	       old->smin_value <= cur->smin_value &&
15124 	       old->smax_value >= cur->smax_value &&
15125 	       old->u32_min_value <= cur->u32_min_value &&
15126 	       old->u32_max_value >= cur->u32_max_value &&
15127 	       old->s32_min_value <= cur->s32_min_value &&
15128 	       old->s32_max_value >= cur->s32_max_value;
15129 }
15130 
15131 /* If in the old state two registers had the same id, then they need to have
15132  * the same id in the new state as well.  But that id could be different from
15133  * the old state, so we need to track the mapping from old to new ids.
15134  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15135  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15136  * regs with a different old id could still have new id 9, we don't care about
15137  * that.
15138  * So we look through our idmap to see if this old id has been seen before.  If
15139  * so, we require the new id to match; otherwise, we add the id pair to the map.
15140  */
15141 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15142 {
15143 	struct bpf_id_pair *map = idmap->map;
15144 	unsigned int i;
15145 
15146 	/* either both IDs should be set or both should be zero */
15147 	if (!!old_id != !!cur_id)
15148 		return false;
15149 
15150 	if (old_id == 0) /* cur_id == 0 as well */
15151 		return true;
15152 
15153 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15154 		if (!map[i].old) {
15155 			/* Reached an empty slot; haven't seen this id before */
15156 			map[i].old = old_id;
15157 			map[i].cur = cur_id;
15158 			return true;
15159 		}
15160 		if (map[i].old == old_id)
15161 			return map[i].cur == cur_id;
15162 		if (map[i].cur == cur_id)
15163 			return false;
15164 	}
15165 	/* We ran out of idmap slots, which should be impossible */
15166 	WARN_ON_ONCE(1);
15167 	return false;
15168 }
15169 
15170 /* Similar to check_ids(), but allocate a unique temporary ID
15171  * for 'old_id' or 'cur_id' of zero.
15172  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15173  */
15174 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15175 {
15176 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15177 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15178 
15179 	return check_ids(old_id, cur_id, idmap);
15180 }
15181 
15182 static void clean_func_state(struct bpf_verifier_env *env,
15183 			     struct bpf_func_state *st)
15184 {
15185 	enum bpf_reg_liveness live;
15186 	int i, j;
15187 
15188 	for (i = 0; i < BPF_REG_FP; i++) {
15189 		live = st->regs[i].live;
15190 		/* liveness must not touch this register anymore */
15191 		st->regs[i].live |= REG_LIVE_DONE;
15192 		if (!(live & REG_LIVE_READ))
15193 			/* since the register is unused, clear its state
15194 			 * to make further comparison simpler
15195 			 */
15196 			__mark_reg_not_init(env, &st->regs[i]);
15197 	}
15198 
15199 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15200 		live = st->stack[i].spilled_ptr.live;
15201 		/* liveness must not touch this stack slot anymore */
15202 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15203 		if (!(live & REG_LIVE_READ)) {
15204 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15205 			for (j = 0; j < BPF_REG_SIZE; j++)
15206 				st->stack[i].slot_type[j] = STACK_INVALID;
15207 		}
15208 	}
15209 }
15210 
15211 static void clean_verifier_state(struct bpf_verifier_env *env,
15212 				 struct bpf_verifier_state *st)
15213 {
15214 	int i;
15215 
15216 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15217 		/* all regs in this state in all frames were already marked */
15218 		return;
15219 
15220 	for (i = 0; i <= st->curframe; i++)
15221 		clean_func_state(env, st->frame[i]);
15222 }
15223 
15224 /* the parentage chains form a tree.
15225  * the verifier states are added to state lists at given insn and
15226  * pushed into state stack for future exploration.
15227  * when the verifier reaches bpf_exit insn some of the verifer states
15228  * stored in the state lists have their final liveness state already,
15229  * but a lot of states will get revised from liveness point of view when
15230  * the verifier explores other branches.
15231  * Example:
15232  * 1: r0 = 1
15233  * 2: if r1 == 100 goto pc+1
15234  * 3: r0 = 2
15235  * 4: exit
15236  * when the verifier reaches exit insn the register r0 in the state list of
15237  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15238  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15239  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15240  *
15241  * Since the verifier pushes the branch states as it sees them while exploring
15242  * the program the condition of walking the branch instruction for the second
15243  * time means that all states below this branch were already explored and
15244  * their final liveness marks are already propagated.
15245  * Hence when the verifier completes the search of state list in is_state_visited()
15246  * we can call this clean_live_states() function to mark all liveness states
15247  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15248  * will not be used.
15249  * This function also clears the registers and stack for states that !READ
15250  * to simplify state merging.
15251  *
15252  * Important note here that walking the same branch instruction in the callee
15253  * doesn't meant that the states are DONE. The verifier has to compare
15254  * the callsites
15255  */
15256 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15257 			      struct bpf_verifier_state *cur)
15258 {
15259 	struct bpf_verifier_state_list *sl;
15260 	int i;
15261 
15262 	sl = *explored_state(env, insn);
15263 	while (sl) {
15264 		if (sl->state.branches)
15265 			goto next;
15266 		if (sl->state.insn_idx != insn ||
15267 		    sl->state.curframe != cur->curframe)
15268 			goto next;
15269 		for (i = 0; i <= cur->curframe; i++)
15270 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15271 				goto next;
15272 		clean_verifier_state(env, &sl->state);
15273 next:
15274 		sl = sl->next;
15275 	}
15276 }
15277 
15278 static bool regs_exact(const struct bpf_reg_state *rold,
15279 		       const struct bpf_reg_state *rcur,
15280 		       struct bpf_idmap *idmap)
15281 {
15282 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15283 	       check_ids(rold->id, rcur->id, idmap) &&
15284 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15285 }
15286 
15287 /* Returns true if (rold safe implies rcur safe) */
15288 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15289 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15290 {
15291 	if (!(rold->live & REG_LIVE_READ))
15292 		/* explored state didn't use this */
15293 		return true;
15294 	if (rold->type == NOT_INIT)
15295 		/* explored state can't have used this */
15296 		return true;
15297 	if (rcur->type == NOT_INIT)
15298 		return false;
15299 
15300 	/* Enforce that register types have to match exactly, including their
15301 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15302 	 * rule.
15303 	 *
15304 	 * One can make a point that using a pointer register as unbounded
15305 	 * SCALAR would be technically acceptable, but this could lead to
15306 	 * pointer leaks because scalars are allowed to leak while pointers
15307 	 * are not. We could make this safe in special cases if root is
15308 	 * calling us, but it's probably not worth the hassle.
15309 	 *
15310 	 * Also, register types that are *not* MAYBE_NULL could technically be
15311 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15312 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15313 	 * to the same map).
15314 	 * However, if the old MAYBE_NULL register then got NULL checked,
15315 	 * doing so could have affected others with the same id, and we can't
15316 	 * check for that because we lost the id when we converted to
15317 	 * a non-MAYBE_NULL variant.
15318 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15319 	 * non-MAYBE_NULL registers as well.
15320 	 */
15321 	if (rold->type != rcur->type)
15322 		return false;
15323 
15324 	switch (base_type(rold->type)) {
15325 	case SCALAR_VALUE:
15326 		if (env->explore_alu_limits) {
15327 			/* explore_alu_limits disables tnum_in() and range_within()
15328 			 * logic and requires everything to be strict
15329 			 */
15330 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15331 			       check_scalar_ids(rold->id, rcur->id, idmap);
15332 		}
15333 		if (!rold->precise)
15334 			return true;
15335 		/* Why check_ids() for scalar registers?
15336 		 *
15337 		 * Consider the following BPF code:
15338 		 *   1: r6 = ... unbound scalar, ID=a ...
15339 		 *   2: r7 = ... unbound scalar, ID=b ...
15340 		 *   3: if (r6 > r7) goto +1
15341 		 *   4: r6 = r7
15342 		 *   5: if (r6 > X) goto ...
15343 		 *   6: ... memory operation using r7 ...
15344 		 *
15345 		 * First verification path is [1-6]:
15346 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15347 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15348 		 *   r7 <= X, because r6 and r7 share same id.
15349 		 * Next verification path is [1-4, 6].
15350 		 *
15351 		 * Instruction (6) would be reached in two states:
15352 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15353 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15354 		 *
15355 		 * Use check_ids() to distinguish these states.
15356 		 * ---
15357 		 * Also verify that new value satisfies old value range knowledge.
15358 		 */
15359 		return range_within(rold, rcur) &&
15360 		       tnum_in(rold->var_off, rcur->var_off) &&
15361 		       check_scalar_ids(rold->id, rcur->id, idmap);
15362 	case PTR_TO_MAP_KEY:
15363 	case PTR_TO_MAP_VALUE:
15364 	case PTR_TO_MEM:
15365 	case PTR_TO_BUF:
15366 	case PTR_TO_TP_BUFFER:
15367 		/* If the new min/max/var_off satisfy the old ones and
15368 		 * everything else matches, we are OK.
15369 		 */
15370 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15371 		       range_within(rold, rcur) &&
15372 		       tnum_in(rold->var_off, rcur->var_off) &&
15373 		       check_ids(rold->id, rcur->id, idmap) &&
15374 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15375 	case PTR_TO_PACKET_META:
15376 	case PTR_TO_PACKET:
15377 		/* We must have at least as much range as the old ptr
15378 		 * did, so that any accesses which were safe before are
15379 		 * still safe.  This is true even if old range < old off,
15380 		 * since someone could have accessed through (ptr - k), or
15381 		 * even done ptr -= k in a register, to get a safe access.
15382 		 */
15383 		if (rold->range > rcur->range)
15384 			return false;
15385 		/* If the offsets don't match, we can't trust our alignment;
15386 		 * nor can we be sure that we won't fall out of range.
15387 		 */
15388 		if (rold->off != rcur->off)
15389 			return false;
15390 		/* id relations must be preserved */
15391 		if (!check_ids(rold->id, rcur->id, idmap))
15392 			return false;
15393 		/* new val must satisfy old val knowledge */
15394 		return range_within(rold, rcur) &&
15395 		       tnum_in(rold->var_off, rcur->var_off);
15396 	case PTR_TO_STACK:
15397 		/* two stack pointers are equal only if they're pointing to
15398 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15399 		 */
15400 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15401 	default:
15402 		return regs_exact(rold, rcur, idmap);
15403 	}
15404 }
15405 
15406 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15407 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
15408 {
15409 	int i, spi;
15410 
15411 	/* walk slots of the explored stack and ignore any additional
15412 	 * slots in the current stack, since explored(safe) state
15413 	 * didn't use them
15414 	 */
15415 	for (i = 0; i < old->allocated_stack; i++) {
15416 		struct bpf_reg_state *old_reg, *cur_reg;
15417 
15418 		spi = i / BPF_REG_SIZE;
15419 
15420 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15421 			i += BPF_REG_SIZE - 1;
15422 			/* explored state didn't use this */
15423 			continue;
15424 		}
15425 
15426 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15427 			continue;
15428 
15429 		if (env->allow_uninit_stack &&
15430 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15431 			continue;
15432 
15433 		/* explored stack has more populated slots than current stack
15434 		 * and these slots were used
15435 		 */
15436 		if (i >= cur->allocated_stack)
15437 			return false;
15438 
15439 		/* if old state was safe with misc data in the stack
15440 		 * it will be safe with zero-initialized stack.
15441 		 * The opposite is not true
15442 		 */
15443 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15444 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15445 			continue;
15446 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15447 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15448 			/* Ex: old explored (safe) state has STACK_SPILL in
15449 			 * this stack slot, but current has STACK_MISC ->
15450 			 * this verifier states are not equivalent,
15451 			 * return false to continue verification of this path
15452 			 */
15453 			return false;
15454 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15455 			continue;
15456 		/* Both old and cur are having same slot_type */
15457 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15458 		case STACK_SPILL:
15459 			/* when explored and current stack slot are both storing
15460 			 * spilled registers, check that stored pointers types
15461 			 * are the same as well.
15462 			 * Ex: explored safe path could have stored
15463 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15464 			 * but current path has stored:
15465 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15466 			 * such verifier states are not equivalent.
15467 			 * return false to continue verification of this path
15468 			 */
15469 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
15470 				     &cur->stack[spi].spilled_ptr, idmap))
15471 				return false;
15472 			break;
15473 		case STACK_DYNPTR:
15474 			old_reg = &old->stack[spi].spilled_ptr;
15475 			cur_reg = &cur->stack[spi].spilled_ptr;
15476 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15477 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15478 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15479 				return false;
15480 			break;
15481 		case STACK_ITER:
15482 			old_reg = &old->stack[spi].spilled_ptr;
15483 			cur_reg = &cur->stack[spi].spilled_ptr;
15484 			/* iter.depth is not compared between states as it
15485 			 * doesn't matter for correctness and would otherwise
15486 			 * prevent convergence; we maintain it only to prevent
15487 			 * infinite loop check triggering, see
15488 			 * iter_active_depths_differ()
15489 			 */
15490 			if (old_reg->iter.btf != cur_reg->iter.btf ||
15491 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15492 			    old_reg->iter.state != cur_reg->iter.state ||
15493 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
15494 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15495 				return false;
15496 			break;
15497 		case STACK_MISC:
15498 		case STACK_ZERO:
15499 		case STACK_INVALID:
15500 			continue;
15501 		/* Ensure that new unhandled slot types return false by default */
15502 		default:
15503 			return false;
15504 		}
15505 	}
15506 	return true;
15507 }
15508 
15509 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15510 		    struct bpf_idmap *idmap)
15511 {
15512 	int i;
15513 
15514 	if (old->acquired_refs != cur->acquired_refs)
15515 		return false;
15516 
15517 	for (i = 0; i < old->acquired_refs; i++) {
15518 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15519 			return false;
15520 	}
15521 
15522 	return true;
15523 }
15524 
15525 /* compare two verifier states
15526  *
15527  * all states stored in state_list are known to be valid, since
15528  * verifier reached 'bpf_exit' instruction through them
15529  *
15530  * this function is called when verifier exploring different branches of
15531  * execution popped from the state stack. If it sees an old state that has
15532  * more strict register state and more strict stack state then this execution
15533  * branch doesn't need to be explored further, since verifier already
15534  * concluded that more strict state leads to valid finish.
15535  *
15536  * Therefore two states are equivalent if register state is more conservative
15537  * and explored stack state is more conservative than the current one.
15538  * Example:
15539  *       explored                   current
15540  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15541  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15542  *
15543  * In other words if current stack state (one being explored) has more
15544  * valid slots than old one that already passed validation, it means
15545  * the verifier can stop exploring and conclude that current state is valid too
15546  *
15547  * Similarly with registers. If explored state has register type as invalid
15548  * whereas register type in current state is meaningful, it means that
15549  * the current state will reach 'bpf_exit' instruction safely
15550  */
15551 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15552 			      struct bpf_func_state *cur)
15553 {
15554 	int i;
15555 
15556 	for (i = 0; i < MAX_BPF_REG; i++)
15557 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
15558 			     &env->idmap_scratch))
15559 			return false;
15560 
15561 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
15562 		return false;
15563 
15564 	if (!refsafe(old, cur, &env->idmap_scratch))
15565 		return false;
15566 
15567 	return true;
15568 }
15569 
15570 static bool states_equal(struct bpf_verifier_env *env,
15571 			 struct bpf_verifier_state *old,
15572 			 struct bpf_verifier_state *cur)
15573 {
15574 	int i;
15575 
15576 	if (old->curframe != cur->curframe)
15577 		return false;
15578 
15579 	env->idmap_scratch.tmp_id_gen = env->id_gen;
15580 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15581 
15582 	/* Verification state from speculative execution simulation
15583 	 * must never prune a non-speculative execution one.
15584 	 */
15585 	if (old->speculative && !cur->speculative)
15586 		return false;
15587 
15588 	if (old->active_lock.ptr != cur->active_lock.ptr)
15589 		return false;
15590 
15591 	/* Old and cur active_lock's have to be either both present
15592 	 * or both absent.
15593 	 */
15594 	if (!!old->active_lock.id != !!cur->active_lock.id)
15595 		return false;
15596 
15597 	if (old->active_lock.id &&
15598 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15599 		return false;
15600 
15601 	if (old->active_rcu_lock != cur->active_rcu_lock)
15602 		return false;
15603 
15604 	/* for states to be equal callsites have to be the same
15605 	 * and all frame states need to be equivalent
15606 	 */
15607 	for (i = 0; i <= old->curframe; i++) {
15608 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15609 			return false;
15610 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15611 			return false;
15612 	}
15613 	return true;
15614 }
15615 
15616 /* Return 0 if no propagation happened. Return negative error code if error
15617  * happened. Otherwise, return the propagated bit.
15618  */
15619 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15620 				  struct bpf_reg_state *reg,
15621 				  struct bpf_reg_state *parent_reg)
15622 {
15623 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15624 	u8 flag = reg->live & REG_LIVE_READ;
15625 	int err;
15626 
15627 	/* When comes here, read flags of PARENT_REG or REG could be any of
15628 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15629 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15630 	 */
15631 	if (parent_flag == REG_LIVE_READ64 ||
15632 	    /* Or if there is no read flag from REG. */
15633 	    !flag ||
15634 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15635 	    parent_flag == flag)
15636 		return 0;
15637 
15638 	err = mark_reg_read(env, reg, parent_reg, flag);
15639 	if (err)
15640 		return err;
15641 
15642 	return flag;
15643 }
15644 
15645 /* A write screens off any subsequent reads; but write marks come from the
15646  * straight-line code between a state and its parent.  When we arrive at an
15647  * equivalent state (jump target or such) we didn't arrive by the straight-line
15648  * code, so read marks in the state must propagate to the parent regardless
15649  * of the state's write marks. That's what 'parent == state->parent' comparison
15650  * in mark_reg_read() is for.
15651  */
15652 static int propagate_liveness(struct bpf_verifier_env *env,
15653 			      const struct bpf_verifier_state *vstate,
15654 			      struct bpf_verifier_state *vparent)
15655 {
15656 	struct bpf_reg_state *state_reg, *parent_reg;
15657 	struct bpf_func_state *state, *parent;
15658 	int i, frame, err = 0;
15659 
15660 	if (vparent->curframe != vstate->curframe) {
15661 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15662 		     vparent->curframe, vstate->curframe);
15663 		return -EFAULT;
15664 	}
15665 	/* Propagate read liveness of registers... */
15666 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15667 	for (frame = 0; frame <= vstate->curframe; frame++) {
15668 		parent = vparent->frame[frame];
15669 		state = vstate->frame[frame];
15670 		parent_reg = parent->regs;
15671 		state_reg = state->regs;
15672 		/* We don't need to worry about FP liveness, it's read-only */
15673 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15674 			err = propagate_liveness_reg(env, &state_reg[i],
15675 						     &parent_reg[i]);
15676 			if (err < 0)
15677 				return err;
15678 			if (err == REG_LIVE_READ64)
15679 				mark_insn_zext(env, &parent_reg[i]);
15680 		}
15681 
15682 		/* Propagate stack slots. */
15683 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15684 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15685 			parent_reg = &parent->stack[i].spilled_ptr;
15686 			state_reg = &state->stack[i].spilled_ptr;
15687 			err = propagate_liveness_reg(env, state_reg,
15688 						     parent_reg);
15689 			if (err < 0)
15690 				return err;
15691 		}
15692 	}
15693 	return 0;
15694 }
15695 
15696 /* find precise scalars in the previous equivalent state and
15697  * propagate them into the current state
15698  */
15699 static int propagate_precision(struct bpf_verifier_env *env,
15700 			       const struct bpf_verifier_state *old)
15701 {
15702 	struct bpf_reg_state *state_reg;
15703 	struct bpf_func_state *state;
15704 	int i, err = 0, fr;
15705 	bool first;
15706 
15707 	for (fr = old->curframe; fr >= 0; fr--) {
15708 		state = old->frame[fr];
15709 		state_reg = state->regs;
15710 		first = true;
15711 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15712 			if (state_reg->type != SCALAR_VALUE ||
15713 			    !state_reg->precise ||
15714 			    !(state_reg->live & REG_LIVE_READ))
15715 				continue;
15716 			if (env->log.level & BPF_LOG_LEVEL2) {
15717 				if (first)
15718 					verbose(env, "frame %d: propagating r%d", fr, i);
15719 				else
15720 					verbose(env, ",r%d", i);
15721 			}
15722 			bt_set_frame_reg(&env->bt, fr, i);
15723 			first = false;
15724 		}
15725 
15726 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15727 			if (!is_spilled_reg(&state->stack[i]))
15728 				continue;
15729 			state_reg = &state->stack[i].spilled_ptr;
15730 			if (state_reg->type != SCALAR_VALUE ||
15731 			    !state_reg->precise ||
15732 			    !(state_reg->live & REG_LIVE_READ))
15733 				continue;
15734 			if (env->log.level & BPF_LOG_LEVEL2) {
15735 				if (first)
15736 					verbose(env, "frame %d: propagating fp%d",
15737 						fr, (-i - 1) * BPF_REG_SIZE);
15738 				else
15739 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
15740 			}
15741 			bt_set_frame_slot(&env->bt, fr, i);
15742 			first = false;
15743 		}
15744 		if (!first)
15745 			verbose(env, "\n");
15746 	}
15747 
15748 	err = mark_chain_precision_batch(env);
15749 	if (err < 0)
15750 		return err;
15751 
15752 	return 0;
15753 }
15754 
15755 static bool states_maybe_looping(struct bpf_verifier_state *old,
15756 				 struct bpf_verifier_state *cur)
15757 {
15758 	struct bpf_func_state *fold, *fcur;
15759 	int i, fr = cur->curframe;
15760 
15761 	if (old->curframe != fr)
15762 		return false;
15763 
15764 	fold = old->frame[fr];
15765 	fcur = cur->frame[fr];
15766 	for (i = 0; i < MAX_BPF_REG; i++)
15767 		if (memcmp(&fold->regs[i], &fcur->regs[i],
15768 			   offsetof(struct bpf_reg_state, parent)))
15769 			return false;
15770 	return true;
15771 }
15772 
15773 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
15774 {
15775 	return env->insn_aux_data[insn_idx].is_iter_next;
15776 }
15777 
15778 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
15779  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
15780  * states to match, which otherwise would look like an infinite loop. So while
15781  * iter_next() calls are taken care of, we still need to be careful and
15782  * prevent erroneous and too eager declaration of "ininite loop", when
15783  * iterators are involved.
15784  *
15785  * Here's a situation in pseudo-BPF assembly form:
15786  *
15787  *   0: again:                          ; set up iter_next() call args
15788  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
15789  *   2:   call bpf_iter_num_next        ; this is iter_next() call
15790  *   3:   if r0 == 0 goto done
15791  *   4:   ... something useful here ...
15792  *   5:   goto again                    ; another iteration
15793  *   6: done:
15794  *   7:   r1 = &it
15795  *   8:   call bpf_iter_num_destroy     ; clean up iter state
15796  *   9:   exit
15797  *
15798  * This is a typical loop. Let's assume that we have a prune point at 1:,
15799  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
15800  * again`, assuming other heuristics don't get in a way).
15801  *
15802  * When we first time come to 1:, let's say we have some state X. We proceed
15803  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
15804  * Now we come back to validate that forked ACTIVE state. We proceed through
15805  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
15806  * are converging. But the problem is that we don't know that yet, as this
15807  * convergence has to happen at iter_next() call site only. So if nothing is
15808  * done, at 1: verifier will use bounded loop logic and declare infinite
15809  * looping (and would be *technically* correct, if not for iterator's
15810  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
15811  * don't want that. So what we do in process_iter_next_call() when we go on
15812  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
15813  * a different iteration. So when we suspect an infinite loop, we additionally
15814  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
15815  * pretend we are not looping and wait for next iter_next() call.
15816  *
15817  * This only applies to ACTIVE state. In DRAINED state we don't expect to
15818  * loop, because that would actually mean infinite loop, as DRAINED state is
15819  * "sticky", and so we'll keep returning into the same instruction with the
15820  * same state (at least in one of possible code paths).
15821  *
15822  * This approach allows to keep infinite loop heuristic even in the face of
15823  * active iterator. E.g., C snippet below is and will be detected as
15824  * inifintely looping:
15825  *
15826  *   struct bpf_iter_num it;
15827  *   int *p, x;
15828  *
15829  *   bpf_iter_num_new(&it, 0, 10);
15830  *   while ((p = bpf_iter_num_next(&t))) {
15831  *       x = p;
15832  *       while (x--) {} // <<-- infinite loop here
15833  *   }
15834  *
15835  */
15836 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
15837 {
15838 	struct bpf_reg_state *slot, *cur_slot;
15839 	struct bpf_func_state *state;
15840 	int i, fr;
15841 
15842 	for (fr = old->curframe; fr >= 0; fr--) {
15843 		state = old->frame[fr];
15844 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15845 			if (state->stack[i].slot_type[0] != STACK_ITER)
15846 				continue;
15847 
15848 			slot = &state->stack[i].spilled_ptr;
15849 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
15850 				continue;
15851 
15852 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
15853 			if (cur_slot->iter.depth != slot->iter.depth)
15854 				return true;
15855 		}
15856 	}
15857 	return false;
15858 }
15859 
15860 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
15861 {
15862 	struct bpf_verifier_state_list *new_sl;
15863 	struct bpf_verifier_state_list *sl, **pprev;
15864 	struct bpf_verifier_state *cur = env->cur_state, *new;
15865 	int i, j, err, states_cnt = 0;
15866 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
15867 	bool add_new_state = force_new_state;
15868 
15869 	/* bpf progs typically have pruning point every 4 instructions
15870 	 * http://vger.kernel.org/bpfconf2019.html#session-1
15871 	 * Do not add new state for future pruning if the verifier hasn't seen
15872 	 * at least 2 jumps and at least 8 instructions.
15873 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
15874 	 * In tests that amounts to up to 50% reduction into total verifier
15875 	 * memory consumption and 20% verifier time speedup.
15876 	 */
15877 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
15878 	    env->insn_processed - env->prev_insn_processed >= 8)
15879 		add_new_state = true;
15880 
15881 	pprev = explored_state(env, insn_idx);
15882 	sl = *pprev;
15883 
15884 	clean_live_states(env, insn_idx, cur);
15885 
15886 	while (sl) {
15887 		states_cnt++;
15888 		if (sl->state.insn_idx != insn_idx)
15889 			goto next;
15890 
15891 		if (sl->state.branches) {
15892 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
15893 
15894 			if (frame->in_async_callback_fn &&
15895 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
15896 				/* Different async_entry_cnt means that the verifier is
15897 				 * processing another entry into async callback.
15898 				 * Seeing the same state is not an indication of infinite
15899 				 * loop or infinite recursion.
15900 				 * But finding the same state doesn't mean that it's safe
15901 				 * to stop processing the current state. The previous state
15902 				 * hasn't yet reached bpf_exit, since state.branches > 0.
15903 				 * Checking in_async_callback_fn alone is not enough either.
15904 				 * Since the verifier still needs to catch infinite loops
15905 				 * inside async callbacks.
15906 				 */
15907 				goto skip_inf_loop_check;
15908 			}
15909 			/* BPF open-coded iterators loop detection is special.
15910 			 * states_maybe_looping() logic is too simplistic in detecting
15911 			 * states that *might* be equivalent, because it doesn't know
15912 			 * about ID remapping, so don't even perform it.
15913 			 * See process_iter_next_call() and iter_active_depths_differ()
15914 			 * for overview of the logic. When current and one of parent
15915 			 * states are detected as equivalent, it's a good thing: we prove
15916 			 * convergence and can stop simulating further iterations.
15917 			 * It's safe to assume that iterator loop will finish, taking into
15918 			 * account iter_next() contract of eventually returning
15919 			 * sticky NULL result.
15920 			 */
15921 			if (is_iter_next_insn(env, insn_idx)) {
15922 				if (states_equal(env, &sl->state, cur)) {
15923 					struct bpf_func_state *cur_frame;
15924 					struct bpf_reg_state *iter_state, *iter_reg;
15925 					int spi;
15926 
15927 					cur_frame = cur->frame[cur->curframe];
15928 					/* btf_check_iter_kfuncs() enforces that
15929 					 * iter state pointer is always the first arg
15930 					 */
15931 					iter_reg = &cur_frame->regs[BPF_REG_1];
15932 					/* current state is valid due to states_equal(),
15933 					 * so we can assume valid iter and reg state,
15934 					 * no need for extra (re-)validations
15935 					 */
15936 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
15937 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
15938 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
15939 						goto hit;
15940 				}
15941 				goto skip_inf_loop_check;
15942 			}
15943 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
15944 			if (states_maybe_looping(&sl->state, cur) &&
15945 			    states_equal(env, &sl->state, cur) &&
15946 			    !iter_active_depths_differ(&sl->state, cur)) {
15947 				verbose_linfo(env, insn_idx, "; ");
15948 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
15949 				return -EINVAL;
15950 			}
15951 			/* if the verifier is processing a loop, avoid adding new state
15952 			 * too often, since different loop iterations have distinct
15953 			 * states and may not help future pruning.
15954 			 * This threshold shouldn't be too low to make sure that
15955 			 * a loop with large bound will be rejected quickly.
15956 			 * The most abusive loop will be:
15957 			 * r1 += 1
15958 			 * if r1 < 1000000 goto pc-2
15959 			 * 1M insn_procssed limit / 100 == 10k peak states.
15960 			 * This threshold shouldn't be too high either, since states
15961 			 * at the end of the loop are likely to be useful in pruning.
15962 			 */
15963 skip_inf_loop_check:
15964 			if (!force_new_state &&
15965 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
15966 			    env->insn_processed - env->prev_insn_processed < 100)
15967 				add_new_state = false;
15968 			goto miss;
15969 		}
15970 		if (states_equal(env, &sl->state, cur)) {
15971 hit:
15972 			sl->hit_cnt++;
15973 			/* reached equivalent register/stack state,
15974 			 * prune the search.
15975 			 * Registers read by the continuation are read by us.
15976 			 * If we have any write marks in env->cur_state, they
15977 			 * will prevent corresponding reads in the continuation
15978 			 * from reaching our parent (an explored_state).  Our
15979 			 * own state will get the read marks recorded, but
15980 			 * they'll be immediately forgotten as we're pruning
15981 			 * this state and will pop a new one.
15982 			 */
15983 			err = propagate_liveness(env, &sl->state, cur);
15984 
15985 			/* if previous state reached the exit with precision and
15986 			 * current state is equivalent to it (except precsion marks)
15987 			 * the precision needs to be propagated back in
15988 			 * the current state.
15989 			 */
15990 			err = err ? : push_jmp_history(env, cur);
15991 			err = err ? : propagate_precision(env, &sl->state);
15992 			if (err)
15993 				return err;
15994 			return 1;
15995 		}
15996 miss:
15997 		/* when new state is not going to be added do not increase miss count.
15998 		 * Otherwise several loop iterations will remove the state
15999 		 * recorded earlier. The goal of these heuristics is to have
16000 		 * states from some iterations of the loop (some in the beginning
16001 		 * and some at the end) to help pruning.
16002 		 */
16003 		if (add_new_state)
16004 			sl->miss_cnt++;
16005 		/* heuristic to determine whether this state is beneficial
16006 		 * to keep checking from state equivalence point of view.
16007 		 * Higher numbers increase max_states_per_insn and verification time,
16008 		 * but do not meaningfully decrease insn_processed.
16009 		 */
16010 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16011 			/* the state is unlikely to be useful. Remove it to
16012 			 * speed up verification
16013 			 */
16014 			*pprev = sl->next;
16015 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16016 				u32 br = sl->state.branches;
16017 
16018 				WARN_ONCE(br,
16019 					  "BUG live_done but branches_to_explore %d\n",
16020 					  br);
16021 				free_verifier_state(&sl->state, false);
16022 				kfree(sl);
16023 				env->peak_states--;
16024 			} else {
16025 				/* cannot free this state, since parentage chain may
16026 				 * walk it later. Add it for free_list instead to
16027 				 * be freed at the end of verification
16028 				 */
16029 				sl->next = env->free_list;
16030 				env->free_list = sl;
16031 			}
16032 			sl = *pprev;
16033 			continue;
16034 		}
16035 next:
16036 		pprev = &sl->next;
16037 		sl = *pprev;
16038 	}
16039 
16040 	if (env->max_states_per_insn < states_cnt)
16041 		env->max_states_per_insn = states_cnt;
16042 
16043 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16044 		return 0;
16045 
16046 	if (!add_new_state)
16047 		return 0;
16048 
16049 	/* There were no equivalent states, remember the current one.
16050 	 * Technically the current state is not proven to be safe yet,
16051 	 * but it will either reach outer most bpf_exit (which means it's safe)
16052 	 * or it will be rejected. When there are no loops the verifier won't be
16053 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16054 	 * again on the way to bpf_exit.
16055 	 * When looping the sl->state.branches will be > 0 and this state
16056 	 * will not be considered for equivalence until branches == 0.
16057 	 */
16058 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16059 	if (!new_sl)
16060 		return -ENOMEM;
16061 	env->total_states++;
16062 	env->peak_states++;
16063 	env->prev_jmps_processed = env->jmps_processed;
16064 	env->prev_insn_processed = env->insn_processed;
16065 
16066 	/* forget precise markings we inherited, see __mark_chain_precision */
16067 	if (env->bpf_capable)
16068 		mark_all_scalars_imprecise(env, cur);
16069 
16070 	/* add new state to the head of linked list */
16071 	new = &new_sl->state;
16072 	err = copy_verifier_state(new, cur);
16073 	if (err) {
16074 		free_verifier_state(new, false);
16075 		kfree(new_sl);
16076 		return err;
16077 	}
16078 	new->insn_idx = insn_idx;
16079 	WARN_ONCE(new->branches != 1,
16080 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16081 
16082 	cur->parent = new;
16083 	cur->first_insn_idx = insn_idx;
16084 	clear_jmp_history(cur);
16085 	new_sl->next = *explored_state(env, insn_idx);
16086 	*explored_state(env, insn_idx) = new_sl;
16087 	/* connect new state to parentage chain. Current frame needs all
16088 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16089 	 * to the stack implicitly by JITs) so in callers' frames connect just
16090 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16091 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16092 	 * from callee with its full parentage chain, anyway.
16093 	 */
16094 	/* clear write marks in current state: the writes we did are not writes
16095 	 * our child did, so they don't screen off its reads from us.
16096 	 * (There are no read marks in current state, because reads always mark
16097 	 * their parent and current state never has children yet.  Only
16098 	 * explored_states can get read marks.)
16099 	 */
16100 	for (j = 0; j <= cur->curframe; j++) {
16101 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16102 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16103 		for (i = 0; i < BPF_REG_FP; i++)
16104 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16105 	}
16106 
16107 	/* all stack frames are accessible from callee, clear them all */
16108 	for (j = 0; j <= cur->curframe; j++) {
16109 		struct bpf_func_state *frame = cur->frame[j];
16110 		struct bpf_func_state *newframe = new->frame[j];
16111 
16112 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16113 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16114 			frame->stack[i].spilled_ptr.parent =
16115 						&newframe->stack[i].spilled_ptr;
16116 		}
16117 	}
16118 	return 0;
16119 }
16120 
16121 /* Return true if it's OK to have the same insn return a different type. */
16122 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16123 {
16124 	switch (base_type(type)) {
16125 	case PTR_TO_CTX:
16126 	case PTR_TO_SOCKET:
16127 	case PTR_TO_SOCK_COMMON:
16128 	case PTR_TO_TCP_SOCK:
16129 	case PTR_TO_XDP_SOCK:
16130 	case PTR_TO_BTF_ID:
16131 		return false;
16132 	default:
16133 		return true;
16134 	}
16135 }
16136 
16137 /* If an instruction was previously used with particular pointer types, then we
16138  * need to be careful to avoid cases such as the below, where it may be ok
16139  * for one branch accessing the pointer, but not ok for the other branch:
16140  *
16141  * R1 = sock_ptr
16142  * goto X;
16143  * ...
16144  * R1 = some_other_valid_ptr;
16145  * goto X;
16146  * ...
16147  * R2 = *(u32 *)(R1 + 0);
16148  */
16149 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16150 {
16151 	return src != prev && (!reg_type_mismatch_ok(src) ||
16152 			       !reg_type_mismatch_ok(prev));
16153 }
16154 
16155 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16156 			     bool allow_trust_missmatch)
16157 {
16158 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16159 
16160 	if (*prev_type == NOT_INIT) {
16161 		/* Saw a valid insn
16162 		 * dst_reg = *(u32 *)(src_reg + off)
16163 		 * save type to validate intersecting paths
16164 		 */
16165 		*prev_type = type;
16166 	} else if (reg_type_mismatch(type, *prev_type)) {
16167 		/* Abuser program is trying to use the same insn
16168 		 * dst_reg = *(u32*) (src_reg + off)
16169 		 * with different pointer types:
16170 		 * src_reg == ctx in one branch and
16171 		 * src_reg == stack|map in some other branch.
16172 		 * Reject it.
16173 		 */
16174 		if (allow_trust_missmatch &&
16175 		    base_type(type) == PTR_TO_BTF_ID &&
16176 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16177 			/*
16178 			 * Have to support a use case when one path through
16179 			 * the program yields TRUSTED pointer while another
16180 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16181 			 * BPF_PROBE_MEM.
16182 			 */
16183 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16184 		} else {
16185 			verbose(env, "same insn cannot be used with different pointers\n");
16186 			return -EINVAL;
16187 		}
16188 	}
16189 
16190 	return 0;
16191 }
16192 
16193 static int do_check(struct bpf_verifier_env *env)
16194 {
16195 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16196 	struct bpf_verifier_state *state = env->cur_state;
16197 	struct bpf_insn *insns = env->prog->insnsi;
16198 	struct bpf_reg_state *regs;
16199 	int insn_cnt = env->prog->len;
16200 	bool do_print_state = false;
16201 	int prev_insn_idx = -1;
16202 
16203 	for (;;) {
16204 		struct bpf_insn *insn;
16205 		u8 class;
16206 		int err;
16207 
16208 		env->prev_insn_idx = prev_insn_idx;
16209 		if (env->insn_idx >= insn_cnt) {
16210 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16211 				env->insn_idx, insn_cnt);
16212 			return -EFAULT;
16213 		}
16214 
16215 		insn = &insns[env->insn_idx];
16216 		class = BPF_CLASS(insn->code);
16217 
16218 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16219 			verbose(env,
16220 				"BPF program is too large. Processed %d insn\n",
16221 				env->insn_processed);
16222 			return -E2BIG;
16223 		}
16224 
16225 		state->last_insn_idx = env->prev_insn_idx;
16226 
16227 		if (is_prune_point(env, env->insn_idx)) {
16228 			err = is_state_visited(env, env->insn_idx);
16229 			if (err < 0)
16230 				return err;
16231 			if (err == 1) {
16232 				/* found equivalent state, can prune the search */
16233 				if (env->log.level & BPF_LOG_LEVEL) {
16234 					if (do_print_state)
16235 						verbose(env, "\nfrom %d to %d%s: safe\n",
16236 							env->prev_insn_idx, env->insn_idx,
16237 							env->cur_state->speculative ?
16238 							" (speculative execution)" : "");
16239 					else
16240 						verbose(env, "%d: safe\n", env->insn_idx);
16241 				}
16242 				goto process_bpf_exit;
16243 			}
16244 		}
16245 
16246 		if (is_jmp_point(env, env->insn_idx)) {
16247 			err = push_jmp_history(env, state);
16248 			if (err)
16249 				return err;
16250 		}
16251 
16252 		if (signal_pending(current))
16253 			return -EAGAIN;
16254 
16255 		if (need_resched())
16256 			cond_resched();
16257 
16258 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16259 			verbose(env, "\nfrom %d to %d%s:",
16260 				env->prev_insn_idx, env->insn_idx,
16261 				env->cur_state->speculative ?
16262 				" (speculative execution)" : "");
16263 			print_verifier_state(env, state->frame[state->curframe], true);
16264 			do_print_state = false;
16265 		}
16266 
16267 		if (env->log.level & BPF_LOG_LEVEL) {
16268 			const struct bpf_insn_cbs cbs = {
16269 				.cb_call	= disasm_kfunc_name,
16270 				.cb_print	= verbose,
16271 				.private_data	= env,
16272 			};
16273 
16274 			if (verifier_state_scratched(env))
16275 				print_insn_state(env, state->frame[state->curframe]);
16276 
16277 			verbose_linfo(env, env->insn_idx, "; ");
16278 			env->prev_log_pos = env->log.end_pos;
16279 			verbose(env, "%d: ", env->insn_idx);
16280 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16281 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16282 			env->prev_log_pos = env->log.end_pos;
16283 		}
16284 
16285 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16286 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16287 							   env->prev_insn_idx);
16288 			if (err)
16289 				return err;
16290 		}
16291 
16292 		regs = cur_regs(env);
16293 		sanitize_mark_insn_seen(env);
16294 		prev_insn_idx = env->insn_idx;
16295 
16296 		if (class == BPF_ALU || class == BPF_ALU64) {
16297 			err = check_alu_op(env, insn);
16298 			if (err)
16299 				return err;
16300 
16301 		} else if (class == BPF_LDX) {
16302 			enum bpf_reg_type src_reg_type;
16303 
16304 			/* check for reserved fields is already done */
16305 
16306 			/* check src operand */
16307 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16308 			if (err)
16309 				return err;
16310 
16311 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16312 			if (err)
16313 				return err;
16314 
16315 			src_reg_type = regs[insn->src_reg].type;
16316 
16317 			/* check that memory (src_reg + off) is readable,
16318 			 * the state of dst_reg will be updated by this func
16319 			 */
16320 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16321 					       insn->off, BPF_SIZE(insn->code),
16322 					       BPF_READ, insn->dst_reg, false);
16323 			if (err)
16324 				return err;
16325 
16326 			err = save_aux_ptr_type(env, src_reg_type, true);
16327 			if (err)
16328 				return err;
16329 		} else if (class == BPF_STX) {
16330 			enum bpf_reg_type dst_reg_type;
16331 
16332 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16333 				err = check_atomic(env, env->insn_idx, insn);
16334 				if (err)
16335 					return err;
16336 				env->insn_idx++;
16337 				continue;
16338 			}
16339 
16340 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16341 				verbose(env, "BPF_STX uses reserved fields\n");
16342 				return -EINVAL;
16343 			}
16344 
16345 			/* check src1 operand */
16346 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16347 			if (err)
16348 				return err;
16349 			/* check src2 operand */
16350 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16351 			if (err)
16352 				return err;
16353 
16354 			dst_reg_type = regs[insn->dst_reg].type;
16355 
16356 			/* check that memory (dst_reg + off) is writeable */
16357 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16358 					       insn->off, BPF_SIZE(insn->code),
16359 					       BPF_WRITE, insn->src_reg, false);
16360 			if (err)
16361 				return err;
16362 
16363 			err = save_aux_ptr_type(env, dst_reg_type, false);
16364 			if (err)
16365 				return err;
16366 		} else if (class == BPF_ST) {
16367 			enum bpf_reg_type dst_reg_type;
16368 
16369 			if (BPF_MODE(insn->code) != BPF_MEM ||
16370 			    insn->src_reg != BPF_REG_0) {
16371 				verbose(env, "BPF_ST uses reserved fields\n");
16372 				return -EINVAL;
16373 			}
16374 			/* check src operand */
16375 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16376 			if (err)
16377 				return err;
16378 
16379 			dst_reg_type = regs[insn->dst_reg].type;
16380 
16381 			/* check that memory (dst_reg + off) is writeable */
16382 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16383 					       insn->off, BPF_SIZE(insn->code),
16384 					       BPF_WRITE, -1, false);
16385 			if (err)
16386 				return err;
16387 
16388 			err = save_aux_ptr_type(env, dst_reg_type, false);
16389 			if (err)
16390 				return err;
16391 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16392 			u8 opcode = BPF_OP(insn->code);
16393 
16394 			env->jmps_processed++;
16395 			if (opcode == BPF_CALL) {
16396 				if (BPF_SRC(insn->code) != BPF_K ||
16397 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16398 				     && insn->off != 0) ||
16399 				    (insn->src_reg != BPF_REG_0 &&
16400 				     insn->src_reg != BPF_PSEUDO_CALL &&
16401 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16402 				    insn->dst_reg != BPF_REG_0 ||
16403 				    class == BPF_JMP32) {
16404 					verbose(env, "BPF_CALL uses reserved fields\n");
16405 					return -EINVAL;
16406 				}
16407 
16408 				if (env->cur_state->active_lock.ptr) {
16409 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16410 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16411 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16412 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16413 						verbose(env, "function calls are not allowed while holding a lock\n");
16414 						return -EINVAL;
16415 					}
16416 				}
16417 				if (insn->src_reg == BPF_PSEUDO_CALL)
16418 					err = check_func_call(env, insn, &env->insn_idx);
16419 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16420 					err = check_kfunc_call(env, insn, &env->insn_idx);
16421 				else
16422 					err = check_helper_call(env, insn, &env->insn_idx);
16423 				if (err)
16424 					return err;
16425 
16426 				mark_reg_scratched(env, BPF_REG_0);
16427 			} else if (opcode == BPF_JA) {
16428 				if (BPF_SRC(insn->code) != BPF_K ||
16429 				    insn->imm != 0 ||
16430 				    insn->src_reg != BPF_REG_0 ||
16431 				    insn->dst_reg != BPF_REG_0 ||
16432 				    class == BPF_JMP32) {
16433 					verbose(env, "BPF_JA uses reserved fields\n");
16434 					return -EINVAL;
16435 				}
16436 
16437 				env->insn_idx += insn->off + 1;
16438 				continue;
16439 
16440 			} else if (opcode == BPF_EXIT) {
16441 				if (BPF_SRC(insn->code) != BPF_K ||
16442 				    insn->imm != 0 ||
16443 				    insn->src_reg != BPF_REG_0 ||
16444 				    insn->dst_reg != BPF_REG_0 ||
16445 				    class == BPF_JMP32) {
16446 					verbose(env, "BPF_EXIT uses reserved fields\n");
16447 					return -EINVAL;
16448 				}
16449 
16450 				if (env->cur_state->active_lock.ptr &&
16451 				    !in_rbtree_lock_required_cb(env)) {
16452 					verbose(env, "bpf_spin_unlock is missing\n");
16453 					return -EINVAL;
16454 				}
16455 
16456 				if (env->cur_state->active_rcu_lock) {
16457 					verbose(env, "bpf_rcu_read_unlock is missing\n");
16458 					return -EINVAL;
16459 				}
16460 
16461 				/* We must do check_reference_leak here before
16462 				 * prepare_func_exit to handle the case when
16463 				 * state->curframe > 0, it may be a callback
16464 				 * function, for which reference_state must
16465 				 * match caller reference state when it exits.
16466 				 */
16467 				err = check_reference_leak(env);
16468 				if (err)
16469 					return err;
16470 
16471 				if (state->curframe) {
16472 					/* exit from nested function */
16473 					err = prepare_func_exit(env, &env->insn_idx);
16474 					if (err)
16475 						return err;
16476 					do_print_state = true;
16477 					continue;
16478 				}
16479 
16480 				err = check_return_code(env);
16481 				if (err)
16482 					return err;
16483 process_bpf_exit:
16484 				mark_verifier_state_scratched(env);
16485 				update_branch_counts(env, env->cur_state);
16486 				err = pop_stack(env, &prev_insn_idx,
16487 						&env->insn_idx, pop_log);
16488 				if (err < 0) {
16489 					if (err != -ENOENT)
16490 						return err;
16491 					break;
16492 				} else {
16493 					do_print_state = true;
16494 					continue;
16495 				}
16496 			} else {
16497 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
16498 				if (err)
16499 					return err;
16500 			}
16501 		} else if (class == BPF_LD) {
16502 			u8 mode = BPF_MODE(insn->code);
16503 
16504 			if (mode == BPF_ABS || mode == BPF_IND) {
16505 				err = check_ld_abs(env, insn);
16506 				if (err)
16507 					return err;
16508 
16509 			} else if (mode == BPF_IMM) {
16510 				err = check_ld_imm(env, insn);
16511 				if (err)
16512 					return err;
16513 
16514 				env->insn_idx++;
16515 				sanitize_mark_insn_seen(env);
16516 			} else {
16517 				verbose(env, "invalid BPF_LD mode\n");
16518 				return -EINVAL;
16519 			}
16520 		} else {
16521 			verbose(env, "unknown insn class %d\n", class);
16522 			return -EINVAL;
16523 		}
16524 
16525 		env->insn_idx++;
16526 	}
16527 
16528 	return 0;
16529 }
16530 
16531 static int find_btf_percpu_datasec(struct btf *btf)
16532 {
16533 	const struct btf_type *t;
16534 	const char *tname;
16535 	int i, n;
16536 
16537 	/*
16538 	 * Both vmlinux and module each have their own ".data..percpu"
16539 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16540 	 * types to look at only module's own BTF types.
16541 	 */
16542 	n = btf_nr_types(btf);
16543 	if (btf_is_module(btf))
16544 		i = btf_nr_types(btf_vmlinux);
16545 	else
16546 		i = 1;
16547 
16548 	for(; i < n; i++) {
16549 		t = btf_type_by_id(btf, i);
16550 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16551 			continue;
16552 
16553 		tname = btf_name_by_offset(btf, t->name_off);
16554 		if (!strcmp(tname, ".data..percpu"))
16555 			return i;
16556 	}
16557 
16558 	return -ENOENT;
16559 }
16560 
16561 /* replace pseudo btf_id with kernel symbol address */
16562 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16563 			       struct bpf_insn *insn,
16564 			       struct bpf_insn_aux_data *aux)
16565 {
16566 	const struct btf_var_secinfo *vsi;
16567 	const struct btf_type *datasec;
16568 	struct btf_mod_pair *btf_mod;
16569 	const struct btf_type *t;
16570 	const char *sym_name;
16571 	bool percpu = false;
16572 	u32 type, id = insn->imm;
16573 	struct btf *btf;
16574 	s32 datasec_id;
16575 	u64 addr;
16576 	int i, btf_fd, err;
16577 
16578 	btf_fd = insn[1].imm;
16579 	if (btf_fd) {
16580 		btf = btf_get_by_fd(btf_fd);
16581 		if (IS_ERR(btf)) {
16582 			verbose(env, "invalid module BTF object FD specified.\n");
16583 			return -EINVAL;
16584 		}
16585 	} else {
16586 		if (!btf_vmlinux) {
16587 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16588 			return -EINVAL;
16589 		}
16590 		btf = btf_vmlinux;
16591 		btf_get(btf);
16592 	}
16593 
16594 	t = btf_type_by_id(btf, id);
16595 	if (!t) {
16596 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16597 		err = -ENOENT;
16598 		goto err_put;
16599 	}
16600 
16601 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16602 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16603 		err = -EINVAL;
16604 		goto err_put;
16605 	}
16606 
16607 	sym_name = btf_name_by_offset(btf, t->name_off);
16608 	addr = kallsyms_lookup_name(sym_name);
16609 	if (!addr) {
16610 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16611 			sym_name);
16612 		err = -ENOENT;
16613 		goto err_put;
16614 	}
16615 	insn[0].imm = (u32)addr;
16616 	insn[1].imm = addr >> 32;
16617 
16618 	if (btf_type_is_func(t)) {
16619 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16620 		aux->btf_var.mem_size = 0;
16621 		goto check_btf;
16622 	}
16623 
16624 	datasec_id = find_btf_percpu_datasec(btf);
16625 	if (datasec_id > 0) {
16626 		datasec = btf_type_by_id(btf, datasec_id);
16627 		for_each_vsi(i, datasec, vsi) {
16628 			if (vsi->type == id) {
16629 				percpu = true;
16630 				break;
16631 			}
16632 		}
16633 	}
16634 
16635 	type = t->type;
16636 	t = btf_type_skip_modifiers(btf, type, NULL);
16637 	if (percpu) {
16638 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16639 		aux->btf_var.btf = btf;
16640 		aux->btf_var.btf_id = type;
16641 	} else if (!btf_type_is_struct(t)) {
16642 		const struct btf_type *ret;
16643 		const char *tname;
16644 		u32 tsize;
16645 
16646 		/* resolve the type size of ksym. */
16647 		ret = btf_resolve_size(btf, t, &tsize);
16648 		if (IS_ERR(ret)) {
16649 			tname = btf_name_by_offset(btf, t->name_off);
16650 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16651 				tname, PTR_ERR(ret));
16652 			err = -EINVAL;
16653 			goto err_put;
16654 		}
16655 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16656 		aux->btf_var.mem_size = tsize;
16657 	} else {
16658 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16659 		aux->btf_var.btf = btf;
16660 		aux->btf_var.btf_id = type;
16661 	}
16662 check_btf:
16663 	/* check whether we recorded this BTF (and maybe module) already */
16664 	for (i = 0; i < env->used_btf_cnt; i++) {
16665 		if (env->used_btfs[i].btf == btf) {
16666 			btf_put(btf);
16667 			return 0;
16668 		}
16669 	}
16670 
16671 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16672 		err = -E2BIG;
16673 		goto err_put;
16674 	}
16675 
16676 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16677 	btf_mod->btf = btf;
16678 	btf_mod->module = NULL;
16679 
16680 	/* if we reference variables from kernel module, bump its refcount */
16681 	if (btf_is_module(btf)) {
16682 		btf_mod->module = btf_try_get_module(btf);
16683 		if (!btf_mod->module) {
16684 			err = -ENXIO;
16685 			goto err_put;
16686 		}
16687 	}
16688 
16689 	env->used_btf_cnt++;
16690 
16691 	return 0;
16692 err_put:
16693 	btf_put(btf);
16694 	return err;
16695 }
16696 
16697 static bool is_tracing_prog_type(enum bpf_prog_type type)
16698 {
16699 	switch (type) {
16700 	case BPF_PROG_TYPE_KPROBE:
16701 	case BPF_PROG_TYPE_TRACEPOINT:
16702 	case BPF_PROG_TYPE_PERF_EVENT:
16703 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16704 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16705 		return true;
16706 	default:
16707 		return false;
16708 	}
16709 }
16710 
16711 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16712 					struct bpf_map *map,
16713 					struct bpf_prog *prog)
16714 
16715 {
16716 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16717 
16718 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16719 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16720 		if (is_tracing_prog_type(prog_type)) {
16721 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16722 			return -EINVAL;
16723 		}
16724 	}
16725 
16726 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16727 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16728 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16729 			return -EINVAL;
16730 		}
16731 
16732 		if (is_tracing_prog_type(prog_type)) {
16733 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16734 			return -EINVAL;
16735 		}
16736 
16737 		if (prog->aux->sleepable) {
16738 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16739 			return -EINVAL;
16740 		}
16741 	}
16742 
16743 	if (btf_record_has_field(map->record, BPF_TIMER)) {
16744 		if (is_tracing_prog_type(prog_type)) {
16745 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
16746 			return -EINVAL;
16747 		}
16748 	}
16749 
16750 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
16751 	    !bpf_offload_prog_map_match(prog, map)) {
16752 		verbose(env, "offload device mismatch between prog and map\n");
16753 		return -EINVAL;
16754 	}
16755 
16756 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16757 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16758 		return -EINVAL;
16759 	}
16760 
16761 	if (prog->aux->sleepable)
16762 		switch (map->map_type) {
16763 		case BPF_MAP_TYPE_HASH:
16764 		case BPF_MAP_TYPE_LRU_HASH:
16765 		case BPF_MAP_TYPE_ARRAY:
16766 		case BPF_MAP_TYPE_PERCPU_HASH:
16767 		case BPF_MAP_TYPE_PERCPU_ARRAY:
16768 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16769 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
16770 		case BPF_MAP_TYPE_HASH_OF_MAPS:
16771 		case BPF_MAP_TYPE_RINGBUF:
16772 		case BPF_MAP_TYPE_USER_RINGBUF:
16773 		case BPF_MAP_TYPE_INODE_STORAGE:
16774 		case BPF_MAP_TYPE_SK_STORAGE:
16775 		case BPF_MAP_TYPE_TASK_STORAGE:
16776 		case BPF_MAP_TYPE_CGRP_STORAGE:
16777 			break;
16778 		default:
16779 			verbose(env,
16780 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
16781 			return -EINVAL;
16782 		}
16783 
16784 	return 0;
16785 }
16786 
16787 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
16788 {
16789 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
16790 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
16791 }
16792 
16793 /* find and rewrite pseudo imm in ld_imm64 instructions:
16794  *
16795  * 1. if it accesses map FD, replace it with actual map pointer.
16796  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
16797  *
16798  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
16799  */
16800 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
16801 {
16802 	struct bpf_insn *insn = env->prog->insnsi;
16803 	int insn_cnt = env->prog->len;
16804 	int i, j, err;
16805 
16806 	err = bpf_prog_calc_tag(env->prog);
16807 	if (err)
16808 		return err;
16809 
16810 	for (i = 0; i < insn_cnt; i++, insn++) {
16811 		if (BPF_CLASS(insn->code) == BPF_LDX &&
16812 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
16813 			verbose(env, "BPF_LDX uses reserved fields\n");
16814 			return -EINVAL;
16815 		}
16816 
16817 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
16818 			struct bpf_insn_aux_data *aux;
16819 			struct bpf_map *map;
16820 			struct fd f;
16821 			u64 addr;
16822 			u32 fd;
16823 
16824 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
16825 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
16826 			    insn[1].off != 0) {
16827 				verbose(env, "invalid bpf_ld_imm64 insn\n");
16828 				return -EINVAL;
16829 			}
16830 
16831 			if (insn[0].src_reg == 0)
16832 				/* valid generic load 64-bit imm */
16833 				goto next_insn;
16834 
16835 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
16836 				aux = &env->insn_aux_data[i];
16837 				err = check_pseudo_btf_id(env, insn, aux);
16838 				if (err)
16839 					return err;
16840 				goto next_insn;
16841 			}
16842 
16843 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
16844 				aux = &env->insn_aux_data[i];
16845 				aux->ptr_type = PTR_TO_FUNC;
16846 				goto next_insn;
16847 			}
16848 
16849 			/* In final convert_pseudo_ld_imm64() step, this is
16850 			 * converted into regular 64-bit imm load insn.
16851 			 */
16852 			switch (insn[0].src_reg) {
16853 			case BPF_PSEUDO_MAP_VALUE:
16854 			case BPF_PSEUDO_MAP_IDX_VALUE:
16855 				break;
16856 			case BPF_PSEUDO_MAP_FD:
16857 			case BPF_PSEUDO_MAP_IDX:
16858 				if (insn[1].imm == 0)
16859 					break;
16860 				fallthrough;
16861 			default:
16862 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
16863 				return -EINVAL;
16864 			}
16865 
16866 			switch (insn[0].src_reg) {
16867 			case BPF_PSEUDO_MAP_IDX_VALUE:
16868 			case BPF_PSEUDO_MAP_IDX:
16869 				if (bpfptr_is_null(env->fd_array)) {
16870 					verbose(env, "fd_idx without fd_array is invalid\n");
16871 					return -EPROTO;
16872 				}
16873 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
16874 							    insn[0].imm * sizeof(fd),
16875 							    sizeof(fd)))
16876 					return -EFAULT;
16877 				break;
16878 			default:
16879 				fd = insn[0].imm;
16880 				break;
16881 			}
16882 
16883 			f = fdget(fd);
16884 			map = __bpf_map_get(f);
16885 			if (IS_ERR(map)) {
16886 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
16887 					insn[0].imm);
16888 				return PTR_ERR(map);
16889 			}
16890 
16891 			err = check_map_prog_compatibility(env, map, env->prog);
16892 			if (err) {
16893 				fdput(f);
16894 				return err;
16895 			}
16896 
16897 			aux = &env->insn_aux_data[i];
16898 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
16899 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
16900 				addr = (unsigned long)map;
16901 			} else {
16902 				u32 off = insn[1].imm;
16903 
16904 				if (off >= BPF_MAX_VAR_OFF) {
16905 					verbose(env, "direct value offset of %u is not allowed\n", off);
16906 					fdput(f);
16907 					return -EINVAL;
16908 				}
16909 
16910 				if (!map->ops->map_direct_value_addr) {
16911 					verbose(env, "no direct value access support for this map type\n");
16912 					fdput(f);
16913 					return -EINVAL;
16914 				}
16915 
16916 				err = map->ops->map_direct_value_addr(map, &addr, off);
16917 				if (err) {
16918 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
16919 						map->value_size, off);
16920 					fdput(f);
16921 					return err;
16922 				}
16923 
16924 				aux->map_off = off;
16925 				addr += off;
16926 			}
16927 
16928 			insn[0].imm = (u32)addr;
16929 			insn[1].imm = addr >> 32;
16930 
16931 			/* check whether we recorded this map already */
16932 			for (j = 0; j < env->used_map_cnt; j++) {
16933 				if (env->used_maps[j] == map) {
16934 					aux->map_index = j;
16935 					fdput(f);
16936 					goto next_insn;
16937 				}
16938 			}
16939 
16940 			if (env->used_map_cnt >= MAX_USED_MAPS) {
16941 				fdput(f);
16942 				return -E2BIG;
16943 			}
16944 
16945 			/* hold the map. If the program is rejected by verifier,
16946 			 * the map will be released by release_maps() or it
16947 			 * will be used by the valid program until it's unloaded
16948 			 * and all maps are released in free_used_maps()
16949 			 */
16950 			bpf_map_inc(map);
16951 
16952 			aux->map_index = env->used_map_cnt;
16953 			env->used_maps[env->used_map_cnt++] = map;
16954 
16955 			if (bpf_map_is_cgroup_storage(map) &&
16956 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
16957 				verbose(env, "only one cgroup storage of each type is allowed\n");
16958 				fdput(f);
16959 				return -EBUSY;
16960 			}
16961 
16962 			fdput(f);
16963 next_insn:
16964 			insn++;
16965 			i++;
16966 			continue;
16967 		}
16968 
16969 		/* Basic sanity check before we invest more work here. */
16970 		if (!bpf_opcode_in_insntable(insn->code)) {
16971 			verbose(env, "unknown opcode %02x\n", insn->code);
16972 			return -EINVAL;
16973 		}
16974 	}
16975 
16976 	/* now all pseudo BPF_LD_IMM64 instructions load valid
16977 	 * 'struct bpf_map *' into a register instead of user map_fd.
16978 	 * These pointers will be used later by verifier to validate map access.
16979 	 */
16980 	return 0;
16981 }
16982 
16983 /* drop refcnt of maps used by the rejected program */
16984 static void release_maps(struct bpf_verifier_env *env)
16985 {
16986 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
16987 			     env->used_map_cnt);
16988 }
16989 
16990 /* drop refcnt of maps used by the rejected program */
16991 static void release_btfs(struct bpf_verifier_env *env)
16992 {
16993 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
16994 			     env->used_btf_cnt);
16995 }
16996 
16997 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
16998 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
16999 {
17000 	struct bpf_insn *insn = env->prog->insnsi;
17001 	int insn_cnt = env->prog->len;
17002 	int i;
17003 
17004 	for (i = 0; i < insn_cnt; i++, insn++) {
17005 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17006 			continue;
17007 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17008 			continue;
17009 		insn->src_reg = 0;
17010 	}
17011 }
17012 
17013 /* single env->prog->insni[off] instruction was replaced with the range
17014  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17015  * [0, off) and [off, end) to new locations, so the patched range stays zero
17016  */
17017 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17018 				 struct bpf_insn_aux_data *new_data,
17019 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17020 {
17021 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17022 	struct bpf_insn *insn = new_prog->insnsi;
17023 	u32 old_seen = old_data[off].seen;
17024 	u32 prog_len;
17025 	int i;
17026 
17027 	/* aux info at OFF always needs adjustment, no matter fast path
17028 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17029 	 * original insn at old prog.
17030 	 */
17031 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17032 
17033 	if (cnt == 1)
17034 		return;
17035 	prog_len = new_prog->len;
17036 
17037 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17038 	memcpy(new_data + off + cnt - 1, old_data + off,
17039 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17040 	for (i = off; i < off + cnt - 1; i++) {
17041 		/* Expand insni[off]'s seen count to the patched range. */
17042 		new_data[i].seen = old_seen;
17043 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17044 	}
17045 	env->insn_aux_data = new_data;
17046 	vfree(old_data);
17047 }
17048 
17049 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17050 {
17051 	int i;
17052 
17053 	if (len == 1)
17054 		return;
17055 	/* NOTE: fake 'exit' subprog should be updated as well. */
17056 	for (i = 0; i <= env->subprog_cnt; i++) {
17057 		if (env->subprog_info[i].start <= off)
17058 			continue;
17059 		env->subprog_info[i].start += len - 1;
17060 	}
17061 }
17062 
17063 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17064 {
17065 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17066 	int i, sz = prog->aux->size_poke_tab;
17067 	struct bpf_jit_poke_descriptor *desc;
17068 
17069 	for (i = 0; i < sz; i++) {
17070 		desc = &tab[i];
17071 		if (desc->insn_idx <= off)
17072 			continue;
17073 		desc->insn_idx += len - 1;
17074 	}
17075 }
17076 
17077 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17078 					    const struct bpf_insn *patch, u32 len)
17079 {
17080 	struct bpf_prog *new_prog;
17081 	struct bpf_insn_aux_data *new_data = NULL;
17082 
17083 	if (len > 1) {
17084 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17085 					      sizeof(struct bpf_insn_aux_data)));
17086 		if (!new_data)
17087 			return NULL;
17088 	}
17089 
17090 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17091 	if (IS_ERR(new_prog)) {
17092 		if (PTR_ERR(new_prog) == -ERANGE)
17093 			verbose(env,
17094 				"insn %d cannot be patched due to 16-bit range\n",
17095 				env->insn_aux_data[off].orig_idx);
17096 		vfree(new_data);
17097 		return NULL;
17098 	}
17099 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17100 	adjust_subprog_starts(env, off, len);
17101 	adjust_poke_descs(new_prog, off, len);
17102 	return new_prog;
17103 }
17104 
17105 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17106 					      u32 off, u32 cnt)
17107 {
17108 	int i, j;
17109 
17110 	/* find first prog starting at or after off (first to remove) */
17111 	for (i = 0; i < env->subprog_cnt; i++)
17112 		if (env->subprog_info[i].start >= off)
17113 			break;
17114 	/* find first prog starting at or after off + cnt (first to stay) */
17115 	for (j = i; j < env->subprog_cnt; j++)
17116 		if (env->subprog_info[j].start >= off + cnt)
17117 			break;
17118 	/* if j doesn't start exactly at off + cnt, we are just removing
17119 	 * the front of previous prog
17120 	 */
17121 	if (env->subprog_info[j].start != off + cnt)
17122 		j--;
17123 
17124 	if (j > i) {
17125 		struct bpf_prog_aux *aux = env->prog->aux;
17126 		int move;
17127 
17128 		/* move fake 'exit' subprog as well */
17129 		move = env->subprog_cnt + 1 - j;
17130 
17131 		memmove(env->subprog_info + i,
17132 			env->subprog_info + j,
17133 			sizeof(*env->subprog_info) * move);
17134 		env->subprog_cnt -= j - i;
17135 
17136 		/* remove func_info */
17137 		if (aux->func_info) {
17138 			move = aux->func_info_cnt - j;
17139 
17140 			memmove(aux->func_info + i,
17141 				aux->func_info + j,
17142 				sizeof(*aux->func_info) * move);
17143 			aux->func_info_cnt -= j - i;
17144 			/* func_info->insn_off is set after all code rewrites,
17145 			 * in adjust_btf_func() - no need to adjust
17146 			 */
17147 		}
17148 	} else {
17149 		/* convert i from "first prog to remove" to "first to adjust" */
17150 		if (env->subprog_info[i].start == off)
17151 			i++;
17152 	}
17153 
17154 	/* update fake 'exit' subprog as well */
17155 	for (; i <= env->subprog_cnt; i++)
17156 		env->subprog_info[i].start -= cnt;
17157 
17158 	return 0;
17159 }
17160 
17161 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17162 				      u32 cnt)
17163 {
17164 	struct bpf_prog *prog = env->prog;
17165 	u32 i, l_off, l_cnt, nr_linfo;
17166 	struct bpf_line_info *linfo;
17167 
17168 	nr_linfo = prog->aux->nr_linfo;
17169 	if (!nr_linfo)
17170 		return 0;
17171 
17172 	linfo = prog->aux->linfo;
17173 
17174 	/* find first line info to remove, count lines to be removed */
17175 	for (i = 0; i < nr_linfo; i++)
17176 		if (linfo[i].insn_off >= off)
17177 			break;
17178 
17179 	l_off = i;
17180 	l_cnt = 0;
17181 	for (; i < nr_linfo; i++)
17182 		if (linfo[i].insn_off < off + cnt)
17183 			l_cnt++;
17184 		else
17185 			break;
17186 
17187 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17188 	 * last removed linfo.  prog is already modified, so prog->len == off
17189 	 * means no live instructions after (tail of the program was removed).
17190 	 */
17191 	if (prog->len != off && l_cnt &&
17192 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17193 		l_cnt--;
17194 		linfo[--i].insn_off = off + cnt;
17195 	}
17196 
17197 	/* remove the line info which refer to the removed instructions */
17198 	if (l_cnt) {
17199 		memmove(linfo + l_off, linfo + i,
17200 			sizeof(*linfo) * (nr_linfo - i));
17201 
17202 		prog->aux->nr_linfo -= l_cnt;
17203 		nr_linfo = prog->aux->nr_linfo;
17204 	}
17205 
17206 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17207 	for (i = l_off; i < nr_linfo; i++)
17208 		linfo[i].insn_off -= cnt;
17209 
17210 	/* fix up all subprogs (incl. 'exit') which start >= off */
17211 	for (i = 0; i <= env->subprog_cnt; i++)
17212 		if (env->subprog_info[i].linfo_idx > l_off) {
17213 			/* program may have started in the removed region but
17214 			 * may not be fully removed
17215 			 */
17216 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17217 				env->subprog_info[i].linfo_idx -= l_cnt;
17218 			else
17219 				env->subprog_info[i].linfo_idx = l_off;
17220 		}
17221 
17222 	return 0;
17223 }
17224 
17225 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17226 {
17227 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17228 	unsigned int orig_prog_len = env->prog->len;
17229 	int err;
17230 
17231 	if (bpf_prog_is_offloaded(env->prog->aux))
17232 		bpf_prog_offload_remove_insns(env, off, cnt);
17233 
17234 	err = bpf_remove_insns(env->prog, off, cnt);
17235 	if (err)
17236 		return err;
17237 
17238 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17239 	if (err)
17240 		return err;
17241 
17242 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17243 	if (err)
17244 		return err;
17245 
17246 	memmove(aux_data + off,	aux_data + off + cnt,
17247 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17248 
17249 	return 0;
17250 }
17251 
17252 /* The verifier does more data flow analysis than llvm and will not
17253  * explore branches that are dead at run time. Malicious programs can
17254  * have dead code too. Therefore replace all dead at-run-time code
17255  * with 'ja -1'.
17256  *
17257  * Just nops are not optimal, e.g. if they would sit at the end of the
17258  * program and through another bug we would manage to jump there, then
17259  * we'd execute beyond program memory otherwise. Returning exception
17260  * code also wouldn't work since we can have subprogs where the dead
17261  * code could be located.
17262  */
17263 static void sanitize_dead_code(struct bpf_verifier_env *env)
17264 {
17265 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17266 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17267 	struct bpf_insn *insn = env->prog->insnsi;
17268 	const int insn_cnt = env->prog->len;
17269 	int i;
17270 
17271 	for (i = 0; i < insn_cnt; i++) {
17272 		if (aux_data[i].seen)
17273 			continue;
17274 		memcpy(insn + i, &trap, sizeof(trap));
17275 		aux_data[i].zext_dst = false;
17276 	}
17277 }
17278 
17279 static bool insn_is_cond_jump(u8 code)
17280 {
17281 	u8 op;
17282 
17283 	if (BPF_CLASS(code) == BPF_JMP32)
17284 		return true;
17285 
17286 	if (BPF_CLASS(code) != BPF_JMP)
17287 		return false;
17288 
17289 	op = BPF_OP(code);
17290 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17291 }
17292 
17293 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17294 {
17295 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17296 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17297 	struct bpf_insn *insn = env->prog->insnsi;
17298 	const int insn_cnt = env->prog->len;
17299 	int i;
17300 
17301 	for (i = 0; i < insn_cnt; i++, insn++) {
17302 		if (!insn_is_cond_jump(insn->code))
17303 			continue;
17304 
17305 		if (!aux_data[i + 1].seen)
17306 			ja.off = insn->off;
17307 		else if (!aux_data[i + 1 + insn->off].seen)
17308 			ja.off = 0;
17309 		else
17310 			continue;
17311 
17312 		if (bpf_prog_is_offloaded(env->prog->aux))
17313 			bpf_prog_offload_replace_insn(env, i, &ja);
17314 
17315 		memcpy(insn, &ja, sizeof(ja));
17316 	}
17317 }
17318 
17319 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17320 {
17321 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17322 	int insn_cnt = env->prog->len;
17323 	int i, err;
17324 
17325 	for (i = 0; i < insn_cnt; i++) {
17326 		int j;
17327 
17328 		j = 0;
17329 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17330 			j++;
17331 		if (!j)
17332 			continue;
17333 
17334 		err = verifier_remove_insns(env, i, j);
17335 		if (err)
17336 			return err;
17337 		insn_cnt = env->prog->len;
17338 	}
17339 
17340 	return 0;
17341 }
17342 
17343 static int opt_remove_nops(struct bpf_verifier_env *env)
17344 {
17345 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17346 	struct bpf_insn *insn = env->prog->insnsi;
17347 	int insn_cnt = env->prog->len;
17348 	int i, err;
17349 
17350 	for (i = 0; i < insn_cnt; i++) {
17351 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17352 			continue;
17353 
17354 		err = verifier_remove_insns(env, i, 1);
17355 		if (err)
17356 			return err;
17357 		insn_cnt--;
17358 		i--;
17359 	}
17360 
17361 	return 0;
17362 }
17363 
17364 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17365 					 const union bpf_attr *attr)
17366 {
17367 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17368 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17369 	int i, patch_len, delta = 0, len = env->prog->len;
17370 	struct bpf_insn *insns = env->prog->insnsi;
17371 	struct bpf_prog *new_prog;
17372 	bool rnd_hi32;
17373 
17374 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17375 	zext_patch[1] = BPF_ZEXT_REG(0);
17376 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17377 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17378 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17379 	for (i = 0; i < len; i++) {
17380 		int adj_idx = i + delta;
17381 		struct bpf_insn insn;
17382 		int load_reg;
17383 
17384 		insn = insns[adj_idx];
17385 		load_reg = insn_def_regno(&insn);
17386 		if (!aux[adj_idx].zext_dst) {
17387 			u8 code, class;
17388 			u32 imm_rnd;
17389 
17390 			if (!rnd_hi32)
17391 				continue;
17392 
17393 			code = insn.code;
17394 			class = BPF_CLASS(code);
17395 			if (load_reg == -1)
17396 				continue;
17397 
17398 			/* NOTE: arg "reg" (the fourth one) is only used for
17399 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17400 			 *       here.
17401 			 */
17402 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17403 				if (class == BPF_LD &&
17404 				    BPF_MODE(code) == BPF_IMM)
17405 					i++;
17406 				continue;
17407 			}
17408 
17409 			/* ctx load could be transformed into wider load. */
17410 			if (class == BPF_LDX &&
17411 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17412 				continue;
17413 
17414 			imm_rnd = get_random_u32();
17415 			rnd_hi32_patch[0] = insn;
17416 			rnd_hi32_patch[1].imm = imm_rnd;
17417 			rnd_hi32_patch[3].dst_reg = load_reg;
17418 			patch = rnd_hi32_patch;
17419 			patch_len = 4;
17420 			goto apply_patch_buffer;
17421 		}
17422 
17423 		/* Add in an zero-extend instruction if a) the JIT has requested
17424 		 * it or b) it's a CMPXCHG.
17425 		 *
17426 		 * The latter is because: BPF_CMPXCHG always loads a value into
17427 		 * R0, therefore always zero-extends. However some archs'
17428 		 * equivalent instruction only does this load when the
17429 		 * comparison is successful. This detail of CMPXCHG is
17430 		 * orthogonal to the general zero-extension behaviour of the
17431 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
17432 		 */
17433 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17434 			continue;
17435 
17436 		/* Zero-extension is done by the caller. */
17437 		if (bpf_pseudo_kfunc_call(&insn))
17438 			continue;
17439 
17440 		if (WARN_ON(load_reg == -1)) {
17441 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17442 			return -EFAULT;
17443 		}
17444 
17445 		zext_patch[0] = insn;
17446 		zext_patch[1].dst_reg = load_reg;
17447 		zext_patch[1].src_reg = load_reg;
17448 		patch = zext_patch;
17449 		patch_len = 2;
17450 apply_patch_buffer:
17451 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17452 		if (!new_prog)
17453 			return -ENOMEM;
17454 		env->prog = new_prog;
17455 		insns = new_prog->insnsi;
17456 		aux = env->insn_aux_data;
17457 		delta += patch_len - 1;
17458 	}
17459 
17460 	return 0;
17461 }
17462 
17463 /* convert load instructions that access fields of a context type into a
17464  * sequence of instructions that access fields of the underlying structure:
17465  *     struct __sk_buff    -> struct sk_buff
17466  *     struct bpf_sock_ops -> struct sock
17467  */
17468 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17469 {
17470 	const struct bpf_verifier_ops *ops = env->ops;
17471 	int i, cnt, size, ctx_field_size, delta = 0;
17472 	const int insn_cnt = env->prog->len;
17473 	struct bpf_insn insn_buf[16], *insn;
17474 	u32 target_size, size_default, off;
17475 	struct bpf_prog *new_prog;
17476 	enum bpf_access_type type;
17477 	bool is_narrower_load;
17478 
17479 	if (ops->gen_prologue || env->seen_direct_write) {
17480 		if (!ops->gen_prologue) {
17481 			verbose(env, "bpf verifier is misconfigured\n");
17482 			return -EINVAL;
17483 		}
17484 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17485 					env->prog);
17486 		if (cnt >= ARRAY_SIZE(insn_buf)) {
17487 			verbose(env, "bpf verifier is misconfigured\n");
17488 			return -EINVAL;
17489 		} else if (cnt) {
17490 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17491 			if (!new_prog)
17492 				return -ENOMEM;
17493 
17494 			env->prog = new_prog;
17495 			delta += cnt - 1;
17496 		}
17497 	}
17498 
17499 	if (bpf_prog_is_offloaded(env->prog->aux))
17500 		return 0;
17501 
17502 	insn = env->prog->insnsi + delta;
17503 
17504 	for (i = 0; i < insn_cnt; i++, insn++) {
17505 		bpf_convert_ctx_access_t convert_ctx_access;
17506 
17507 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17508 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17509 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17510 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
17511 			type = BPF_READ;
17512 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17513 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17514 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17515 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17516 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17517 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17518 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17519 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17520 			type = BPF_WRITE;
17521 		} else {
17522 			continue;
17523 		}
17524 
17525 		if (type == BPF_WRITE &&
17526 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
17527 			struct bpf_insn patch[] = {
17528 				*insn,
17529 				BPF_ST_NOSPEC(),
17530 			};
17531 
17532 			cnt = ARRAY_SIZE(patch);
17533 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17534 			if (!new_prog)
17535 				return -ENOMEM;
17536 
17537 			delta    += cnt - 1;
17538 			env->prog = new_prog;
17539 			insn      = new_prog->insnsi + i + delta;
17540 			continue;
17541 		}
17542 
17543 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17544 		case PTR_TO_CTX:
17545 			if (!ops->convert_ctx_access)
17546 				continue;
17547 			convert_ctx_access = ops->convert_ctx_access;
17548 			break;
17549 		case PTR_TO_SOCKET:
17550 		case PTR_TO_SOCK_COMMON:
17551 			convert_ctx_access = bpf_sock_convert_ctx_access;
17552 			break;
17553 		case PTR_TO_TCP_SOCK:
17554 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17555 			break;
17556 		case PTR_TO_XDP_SOCK:
17557 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17558 			break;
17559 		case PTR_TO_BTF_ID:
17560 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17561 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17562 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17563 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17564 		 * any faults for loads into such types. BPF_WRITE is disallowed
17565 		 * for this case.
17566 		 */
17567 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17568 			if (type == BPF_READ) {
17569 				insn->code = BPF_LDX | BPF_PROBE_MEM |
17570 					BPF_SIZE((insn)->code);
17571 				env->prog->aux->num_exentries++;
17572 			}
17573 			continue;
17574 		default:
17575 			continue;
17576 		}
17577 
17578 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17579 		size = BPF_LDST_BYTES(insn);
17580 
17581 		/* If the read access is a narrower load of the field,
17582 		 * convert to a 4/8-byte load, to minimum program type specific
17583 		 * convert_ctx_access changes. If conversion is successful,
17584 		 * we will apply proper mask to the result.
17585 		 */
17586 		is_narrower_load = size < ctx_field_size;
17587 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17588 		off = insn->off;
17589 		if (is_narrower_load) {
17590 			u8 size_code;
17591 
17592 			if (type == BPF_WRITE) {
17593 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17594 				return -EINVAL;
17595 			}
17596 
17597 			size_code = BPF_H;
17598 			if (ctx_field_size == 4)
17599 				size_code = BPF_W;
17600 			else if (ctx_field_size == 8)
17601 				size_code = BPF_DW;
17602 
17603 			insn->off = off & ~(size_default - 1);
17604 			insn->code = BPF_LDX | BPF_MEM | size_code;
17605 		}
17606 
17607 		target_size = 0;
17608 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17609 					 &target_size);
17610 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17611 		    (ctx_field_size && !target_size)) {
17612 			verbose(env, "bpf verifier is misconfigured\n");
17613 			return -EINVAL;
17614 		}
17615 
17616 		if (is_narrower_load && size < target_size) {
17617 			u8 shift = bpf_ctx_narrow_access_offset(
17618 				off, size, size_default) * 8;
17619 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17620 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17621 				return -EINVAL;
17622 			}
17623 			if (ctx_field_size <= 4) {
17624 				if (shift)
17625 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17626 									insn->dst_reg,
17627 									shift);
17628 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17629 								(1 << size * 8) - 1);
17630 			} else {
17631 				if (shift)
17632 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17633 									insn->dst_reg,
17634 									shift);
17635 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17636 								(1ULL << size * 8) - 1);
17637 			}
17638 		}
17639 
17640 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17641 		if (!new_prog)
17642 			return -ENOMEM;
17643 
17644 		delta += cnt - 1;
17645 
17646 		/* keep walking new program and skip insns we just inserted */
17647 		env->prog = new_prog;
17648 		insn      = new_prog->insnsi + i + delta;
17649 	}
17650 
17651 	return 0;
17652 }
17653 
17654 static int jit_subprogs(struct bpf_verifier_env *env)
17655 {
17656 	struct bpf_prog *prog = env->prog, **func, *tmp;
17657 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17658 	struct bpf_map *map_ptr;
17659 	struct bpf_insn *insn;
17660 	void *old_bpf_func;
17661 	int err, num_exentries;
17662 
17663 	if (env->subprog_cnt <= 1)
17664 		return 0;
17665 
17666 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17667 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17668 			continue;
17669 
17670 		/* Upon error here we cannot fall back to interpreter but
17671 		 * need a hard reject of the program. Thus -EFAULT is
17672 		 * propagated in any case.
17673 		 */
17674 		subprog = find_subprog(env, i + insn->imm + 1);
17675 		if (subprog < 0) {
17676 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17677 				  i + insn->imm + 1);
17678 			return -EFAULT;
17679 		}
17680 		/* temporarily remember subprog id inside insn instead of
17681 		 * aux_data, since next loop will split up all insns into funcs
17682 		 */
17683 		insn->off = subprog;
17684 		/* remember original imm in case JIT fails and fallback
17685 		 * to interpreter will be needed
17686 		 */
17687 		env->insn_aux_data[i].call_imm = insn->imm;
17688 		/* point imm to __bpf_call_base+1 from JITs point of view */
17689 		insn->imm = 1;
17690 		if (bpf_pseudo_func(insn))
17691 			/* jit (e.g. x86_64) may emit fewer instructions
17692 			 * if it learns a u32 imm is the same as a u64 imm.
17693 			 * Force a non zero here.
17694 			 */
17695 			insn[1].imm = 1;
17696 	}
17697 
17698 	err = bpf_prog_alloc_jited_linfo(prog);
17699 	if (err)
17700 		goto out_undo_insn;
17701 
17702 	err = -ENOMEM;
17703 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17704 	if (!func)
17705 		goto out_undo_insn;
17706 
17707 	for (i = 0; i < env->subprog_cnt; i++) {
17708 		subprog_start = subprog_end;
17709 		subprog_end = env->subprog_info[i + 1].start;
17710 
17711 		len = subprog_end - subprog_start;
17712 		/* bpf_prog_run() doesn't call subprogs directly,
17713 		 * hence main prog stats include the runtime of subprogs.
17714 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17715 		 * func[i]->stats will never be accessed and stays NULL
17716 		 */
17717 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17718 		if (!func[i])
17719 			goto out_free;
17720 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17721 		       len * sizeof(struct bpf_insn));
17722 		func[i]->type = prog->type;
17723 		func[i]->len = len;
17724 		if (bpf_prog_calc_tag(func[i]))
17725 			goto out_free;
17726 		func[i]->is_func = 1;
17727 		func[i]->aux->func_idx = i;
17728 		/* Below members will be freed only at prog->aux */
17729 		func[i]->aux->btf = prog->aux->btf;
17730 		func[i]->aux->func_info = prog->aux->func_info;
17731 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
17732 		func[i]->aux->poke_tab = prog->aux->poke_tab;
17733 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
17734 
17735 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
17736 			struct bpf_jit_poke_descriptor *poke;
17737 
17738 			poke = &prog->aux->poke_tab[j];
17739 			if (poke->insn_idx < subprog_end &&
17740 			    poke->insn_idx >= subprog_start)
17741 				poke->aux = func[i]->aux;
17742 		}
17743 
17744 		func[i]->aux->name[0] = 'F';
17745 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
17746 		func[i]->jit_requested = 1;
17747 		func[i]->blinding_requested = prog->blinding_requested;
17748 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
17749 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
17750 		func[i]->aux->linfo = prog->aux->linfo;
17751 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17752 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17753 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
17754 		num_exentries = 0;
17755 		insn = func[i]->insnsi;
17756 		for (j = 0; j < func[i]->len; j++, insn++) {
17757 			if (BPF_CLASS(insn->code) == BPF_LDX &&
17758 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
17759 				num_exentries++;
17760 		}
17761 		func[i]->aux->num_exentries = num_exentries;
17762 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
17763 		func[i] = bpf_int_jit_compile(func[i]);
17764 		if (!func[i]->jited) {
17765 			err = -ENOTSUPP;
17766 			goto out_free;
17767 		}
17768 		cond_resched();
17769 	}
17770 
17771 	/* at this point all bpf functions were successfully JITed
17772 	 * now populate all bpf_calls with correct addresses and
17773 	 * run last pass of JIT
17774 	 */
17775 	for (i = 0; i < env->subprog_cnt; i++) {
17776 		insn = func[i]->insnsi;
17777 		for (j = 0; j < func[i]->len; j++, insn++) {
17778 			if (bpf_pseudo_func(insn)) {
17779 				subprog = insn->off;
17780 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
17781 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
17782 				continue;
17783 			}
17784 			if (!bpf_pseudo_call(insn))
17785 				continue;
17786 			subprog = insn->off;
17787 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
17788 		}
17789 
17790 		/* we use the aux data to keep a list of the start addresses
17791 		 * of the JITed images for each function in the program
17792 		 *
17793 		 * for some architectures, such as powerpc64, the imm field
17794 		 * might not be large enough to hold the offset of the start
17795 		 * address of the callee's JITed image from __bpf_call_base
17796 		 *
17797 		 * in such cases, we can lookup the start address of a callee
17798 		 * by using its subprog id, available from the off field of
17799 		 * the call instruction, as an index for this list
17800 		 */
17801 		func[i]->aux->func = func;
17802 		func[i]->aux->func_cnt = env->subprog_cnt;
17803 	}
17804 	for (i = 0; i < env->subprog_cnt; i++) {
17805 		old_bpf_func = func[i]->bpf_func;
17806 		tmp = bpf_int_jit_compile(func[i]);
17807 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
17808 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
17809 			err = -ENOTSUPP;
17810 			goto out_free;
17811 		}
17812 		cond_resched();
17813 	}
17814 
17815 	/* finally lock prog and jit images for all functions and
17816 	 * populate kallsysm. Begin at the first subprogram, since
17817 	 * bpf_prog_load will add the kallsyms for the main program.
17818 	 */
17819 	for (i = 1; i < env->subprog_cnt; i++) {
17820 		bpf_prog_lock_ro(func[i]);
17821 		bpf_prog_kallsyms_add(func[i]);
17822 	}
17823 
17824 	/* Last step: make now unused interpreter insns from main
17825 	 * prog consistent for later dump requests, so they can
17826 	 * later look the same as if they were interpreted only.
17827 	 */
17828 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17829 		if (bpf_pseudo_func(insn)) {
17830 			insn[0].imm = env->insn_aux_data[i].call_imm;
17831 			insn[1].imm = insn->off;
17832 			insn->off = 0;
17833 			continue;
17834 		}
17835 		if (!bpf_pseudo_call(insn))
17836 			continue;
17837 		insn->off = env->insn_aux_data[i].call_imm;
17838 		subprog = find_subprog(env, i + insn->off + 1);
17839 		insn->imm = subprog;
17840 	}
17841 
17842 	prog->jited = 1;
17843 	prog->bpf_func = func[0]->bpf_func;
17844 	prog->jited_len = func[0]->jited_len;
17845 	prog->aux->extable = func[0]->aux->extable;
17846 	prog->aux->num_exentries = func[0]->aux->num_exentries;
17847 	prog->aux->func = func;
17848 	prog->aux->func_cnt = env->subprog_cnt;
17849 	bpf_prog_jit_attempt_done(prog);
17850 	return 0;
17851 out_free:
17852 	/* We failed JIT'ing, so at this point we need to unregister poke
17853 	 * descriptors from subprogs, so that kernel is not attempting to
17854 	 * patch it anymore as we're freeing the subprog JIT memory.
17855 	 */
17856 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
17857 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
17858 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
17859 	}
17860 	/* At this point we're guaranteed that poke descriptors are not
17861 	 * live anymore. We can just unlink its descriptor table as it's
17862 	 * released with the main prog.
17863 	 */
17864 	for (i = 0; i < env->subprog_cnt; i++) {
17865 		if (!func[i])
17866 			continue;
17867 		func[i]->aux->poke_tab = NULL;
17868 		bpf_jit_free(func[i]);
17869 	}
17870 	kfree(func);
17871 out_undo_insn:
17872 	/* cleanup main prog to be interpreted */
17873 	prog->jit_requested = 0;
17874 	prog->blinding_requested = 0;
17875 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17876 		if (!bpf_pseudo_call(insn))
17877 			continue;
17878 		insn->off = 0;
17879 		insn->imm = env->insn_aux_data[i].call_imm;
17880 	}
17881 	bpf_prog_jit_attempt_done(prog);
17882 	return err;
17883 }
17884 
17885 static int fixup_call_args(struct bpf_verifier_env *env)
17886 {
17887 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17888 	struct bpf_prog *prog = env->prog;
17889 	struct bpf_insn *insn = prog->insnsi;
17890 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
17891 	int i, depth;
17892 #endif
17893 	int err = 0;
17894 
17895 	if (env->prog->jit_requested &&
17896 	    !bpf_prog_is_offloaded(env->prog->aux)) {
17897 		err = jit_subprogs(env);
17898 		if (err == 0)
17899 			return 0;
17900 		if (err == -EFAULT)
17901 			return err;
17902 	}
17903 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17904 	if (has_kfunc_call) {
17905 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
17906 		return -EINVAL;
17907 	}
17908 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
17909 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
17910 		 * have to be rejected, since interpreter doesn't support them yet.
17911 		 */
17912 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
17913 		return -EINVAL;
17914 	}
17915 	for (i = 0; i < prog->len; i++, insn++) {
17916 		if (bpf_pseudo_func(insn)) {
17917 			/* When JIT fails the progs with callback calls
17918 			 * have to be rejected, since interpreter doesn't support them yet.
17919 			 */
17920 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
17921 			return -EINVAL;
17922 		}
17923 
17924 		if (!bpf_pseudo_call(insn))
17925 			continue;
17926 		depth = get_callee_stack_depth(env, insn, i);
17927 		if (depth < 0)
17928 			return depth;
17929 		bpf_patch_call_args(insn, depth);
17930 	}
17931 	err = 0;
17932 #endif
17933 	return err;
17934 }
17935 
17936 /* replace a generic kfunc with a specialized version if necessary */
17937 static void specialize_kfunc(struct bpf_verifier_env *env,
17938 			     u32 func_id, u16 offset, unsigned long *addr)
17939 {
17940 	struct bpf_prog *prog = env->prog;
17941 	bool seen_direct_write;
17942 	void *xdp_kfunc;
17943 	bool is_rdonly;
17944 
17945 	if (bpf_dev_bound_kfunc_id(func_id)) {
17946 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
17947 		if (xdp_kfunc) {
17948 			*addr = (unsigned long)xdp_kfunc;
17949 			return;
17950 		}
17951 		/* fallback to default kfunc when not supported by netdev */
17952 	}
17953 
17954 	if (offset)
17955 		return;
17956 
17957 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
17958 		seen_direct_write = env->seen_direct_write;
17959 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
17960 
17961 		if (is_rdonly)
17962 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
17963 
17964 		/* restore env->seen_direct_write to its original value, since
17965 		 * may_access_direct_pkt_data mutates it
17966 		 */
17967 		env->seen_direct_write = seen_direct_write;
17968 	}
17969 }
17970 
17971 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
17972 					    u16 struct_meta_reg,
17973 					    u16 node_offset_reg,
17974 					    struct bpf_insn *insn,
17975 					    struct bpf_insn *insn_buf,
17976 					    int *cnt)
17977 {
17978 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
17979 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
17980 
17981 	insn_buf[0] = addr[0];
17982 	insn_buf[1] = addr[1];
17983 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
17984 	insn_buf[3] = *insn;
17985 	*cnt = 4;
17986 }
17987 
17988 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
17989 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
17990 {
17991 	const struct bpf_kfunc_desc *desc;
17992 
17993 	if (!insn->imm) {
17994 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
17995 		return -EINVAL;
17996 	}
17997 
17998 	*cnt = 0;
17999 
18000 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18001 	 * __bpf_call_base, unless the JIT needs to call functions that are
18002 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18003 	 */
18004 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18005 	if (!desc) {
18006 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18007 			insn->imm);
18008 		return -EFAULT;
18009 	}
18010 
18011 	if (!bpf_jit_supports_far_kfunc_call())
18012 		insn->imm = BPF_CALL_IMM(desc->addr);
18013 	if (insn->off)
18014 		return 0;
18015 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18016 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18017 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18018 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18019 
18020 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18021 		insn_buf[1] = addr[0];
18022 		insn_buf[2] = addr[1];
18023 		insn_buf[3] = *insn;
18024 		*cnt = 4;
18025 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18026 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18027 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18028 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18029 
18030 		insn_buf[0] = addr[0];
18031 		insn_buf[1] = addr[1];
18032 		insn_buf[2] = *insn;
18033 		*cnt = 3;
18034 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18035 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18036 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18037 		int struct_meta_reg = BPF_REG_3;
18038 		int node_offset_reg = BPF_REG_4;
18039 
18040 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18041 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18042 			struct_meta_reg = BPF_REG_4;
18043 			node_offset_reg = BPF_REG_5;
18044 		}
18045 
18046 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18047 						node_offset_reg, insn, insn_buf, cnt);
18048 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18049 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18050 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18051 		*cnt = 1;
18052 	}
18053 	return 0;
18054 }
18055 
18056 /* Do various post-verification rewrites in a single program pass.
18057  * These rewrites simplify JIT and interpreter implementations.
18058  */
18059 static int do_misc_fixups(struct bpf_verifier_env *env)
18060 {
18061 	struct bpf_prog *prog = env->prog;
18062 	enum bpf_attach_type eatype = prog->expected_attach_type;
18063 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18064 	struct bpf_insn *insn = prog->insnsi;
18065 	const struct bpf_func_proto *fn;
18066 	const int insn_cnt = prog->len;
18067 	const struct bpf_map_ops *ops;
18068 	struct bpf_insn_aux_data *aux;
18069 	struct bpf_insn insn_buf[16];
18070 	struct bpf_prog *new_prog;
18071 	struct bpf_map *map_ptr;
18072 	int i, ret, cnt, delta = 0;
18073 
18074 	for (i = 0; i < insn_cnt; i++, insn++) {
18075 		/* Make divide-by-zero exceptions impossible. */
18076 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18077 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18078 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18079 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18080 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18081 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18082 			struct bpf_insn *patchlet;
18083 			struct bpf_insn chk_and_div[] = {
18084 				/* [R,W]x div 0 -> 0 */
18085 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18086 					     BPF_JNE | BPF_K, insn->src_reg,
18087 					     0, 2, 0),
18088 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18089 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18090 				*insn,
18091 			};
18092 			struct bpf_insn chk_and_mod[] = {
18093 				/* [R,W]x mod 0 -> [R,W]x */
18094 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18095 					     BPF_JEQ | BPF_K, insn->src_reg,
18096 					     0, 1 + (is64 ? 0 : 1), 0),
18097 				*insn,
18098 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18099 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18100 			};
18101 
18102 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18103 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18104 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18105 
18106 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18107 			if (!new_prog)
18108 				return -ENOMEM;
18109 
18110 			delta    += cnt - 1;
18111 			env->prog = prog = new_prog;
18112 			insn      = new_prog->insnsi + i + delta;
18113 			continue;
18114 		}
18115 
18116 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18117 		if (BPF_CLASS(insn->code) == BPF_LD &&
18118 		    (BPF_MODE(insn->code) == BPF_ABS ||
18119 		     BPF_MODE(insn->code) == BPF_IND)) {
18120 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18121 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18122 				verbose(env, "bpf verifier is misconfigured\n");
18123 				return -EINVAL;
18124 			}
18125 
18126 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18127 			if (!new_prog)
18128 				return -ENOMEM;
18129 
18130 			delta    += cnt - 1;
18131 			env->prog = prog = new_prog;
18132 			insn      = new_prog->insnsi + i + delta;
18133 			continue;
18134 		}
18135 
18136 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18137 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18138 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18139 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18140 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18141 			struct bpf_insn *patch = &insn_buf[0];
18142 			bool issrc, isneg, isimm;
18143 			u32 off_reg;
18144 
18145 			aux = &env->insn_aux_data[i + delta];
18146 			if (!aux->alu_state ||
18147 			    aux->alu_state == BPF_ALU_NON_POINTER)
18148 				continue;
18149 
18150 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18151 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18152 				BPF_ALU_SANITIZE_SRC;
18153 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18154 
18155 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18156 			if (isimm) {
18157 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18158 			} else {
18159 				if (isneg)
18160 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18161 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18162 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18163 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18164 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18165 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18166 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18167 			}
18168 			if (!issrc)
18169 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18170 			insn->src_reg = BPF_REG_AX;
18171 			if (isneg)
18172 				insn->code = insn->code == code_add ?
18173 					     code_sub : code_add;
18174 			*patch++ = *insn;
18175 			if (issrc && isneg && !isimm)
18176 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18177 			cnt = patch - insn_buf;
18178 
18179 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18180 			if (!new_prog)
18181 				return -ENOMEM;
18182 
18183 			delta    += cnt - 1;
18184 			env->prog = prog = new_prog;
18185 			insn      = new_prog->insnsi + i + delta;
18186 			continue;
18187 		}
18188 
18189 		if (insn->code != (BPF_JMP | BPF_CALL))
18190 			continue;
18191 		if (insn->src_reg == BPF_PSEUDO_CALL)
18192 			continue;
18193 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18194 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18195 			if (ret)
18196 				return ret;
18197 			if (cnt == 0)
18198 				continue;
18199 
18200 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18201 			if (!new_prog)
18202 				return -ENOMEM;
18203 
18204 			delta	 += cnt - 1;
18205 			env->prog = prog = new_prog;
18206 			insn	  = new_prog->insnsi + i + delta;
18207 			continue;
18208 		}
18209 
18210 		if (insn->imm == BPF_FUNC_get_route_realm)
18211 			prog->dst_needed = 1;
18212 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18213 			bpf_user_rnd_init_once();
18214 		if (insn->imm == BPF_FUNC_override_return)
18215 			prog->kprobe_override = 1;
18216 		if (insn->imm == BPF_FUNC_tail_call) {
18217 			/* If we tail call into other programs, we
18218 			 * cannot make any assumptions since they can
18219 			 * be replaced dynamically during runtime in
18220 			 * the program array.
18221 			 */
18222 			prog->cb_access = 1;
18223 			if (!allow_tail_call_in_subprogs(env))
18224 				prog->aux->stack_depth = MAX_BPF_STACK;
18225 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18226 
18227 			/* mark bpf_tail_call as different opcode to avoid
18228 			 * conditional branch in the interpreter for every normal
18229 			 * call and to prevent accidental JITing by JIT compiler
18230 			 * that doesn't support bpf_tail_call yet
18231 			 */
18232 			insn->imm = 0;
18233 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18234 
18235 			aux = &env->insn_aux_data[i + delta];
18236 			if (env->bpf_capable && !prog->blinding_requested &&
18237 			    prog->jit_requested &&
18238 			    !bpf_map_key_poisoned(aux) &&
18239 			    !bpf_map_ptr_poisoned(aux) &&
18240 			    !bpf_map_ptr_unpriv(aux)) {
18241 				struct bpf_jit_poke_descriptor desc = {
18242 					.reason = BPF_POKE_REASON_TAIL_CALL,
18243 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18244 					.tail_call.key = bpf_map_key_immediate(aux),
18245 					.insn_idx = i + delta,
18246 				};
18247 
18248 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18249 				if (ret < 0) {
18250 					verbose(env, "adding tail call poke descriptor failed\n");
18251 					return ret;
18252 				}
18253 
18254 				insn->imm = ret + 1;
18255 				continue;
18256 			}
18257 
18258 			if (!bpf_map_ptr_unpriv(aux))
18259 				continue;
18260 
18261 			/* instead of changing every JIT dealing with tail_call
18262 			 * emit two extra insns:
18263 			 * if (index >= max_entries) goto out;
18264 			 * index &= array->index_mask;
18265 			 * to avoid out-of-bounds cpu speculation
18266 			 */
18267 			if (bpf_map_ptr_poisoned(aux)) {
18268 				verbose(env, "tail_call abusing map_ptr\n");
18269 				return -EINVAL;
18270 			}
18271 
18272 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18273 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18274 						  map_ptr->max_entries, 2);
18275 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18276 						    container_of(map_ptr,
18277 								 struct bpf_array,
18278 								 map)->index_mask);
18279 			insn_buf[2] = *insn;
18280 			cnt = 3;
18281 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18282 			if (!new_prog)
18283 				return -ENOMEM;
18284 
18285 			delta    += cnt - 1;
18286 			env->prog = prog = new_prog;
18287 			insn      = new_prog->insnsi + i + delta;
18288 			continue;
18289 		}
18290 
18291 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18292 			/* The verifier will process callback_fn as many times as necessary
18293 			 * with different maps and the register states prepared by
18294 			 * set_timer_callback_state will be accurate.
18295 			 *
18296 			 * The following use case is valid:
18297 			 *   map1 is shared by prog1, prog2, prog3.
18298 			 *   prog1 calls bpf_timer_init for some map1 elements
18299 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18300 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18301 			 *   prog3 calls bpf_timer_start for some map1 elements.
18302 			 *     Those that were not both bpf_timer_init-ed and
18303 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18304 			 */
18305 			struct bpf_insn ld_addrs[2] = {
18306 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18307 			};
18308 
18309 			insn_buf[0] = ld_addrs[0];
18310 			insn_buf[1] = ld_addrs[1];
18311 			insn_buf[2] = *insn;
18312 			cnt = 3;
18313 
18314 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18315 			if (!new_prog)
18316 				return -ENOMEM;
18317 
18318 			delta    += cnt - 1;
18319 			env->prog = prog = new_prog;
18320 			insn      = new_prog->insnsi + i + delta;
18321 			goto patch_call_imm;
18322 		}
18323 
18324 		if (is_storage_get_function(insn->imm)) {
18325 			if (!env->prog->aux->sleepable ||
18326 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
18327 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18328 			else
18329 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18330 			insn_buf[1] = *insn;
18331 			cnt = 2;
18332 
18333 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18334 			if (!new_prog)
18335 				return -ENOMEM;
18336 
18337 			delta += cnt - 1;
18338 			env->prog = prog = new_prog;
18339 			insn = new_prog->insnsi + i + delta;
18340 			goto patch_call_imm;
18341 		}
18342 
18343 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18344 		 * and other inlining handlers are currently limited to 64 bit
18345 		 * only.
18346 		 */
18347 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18348 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
18349 		     insn->imm == BPF_FUNC_map_update_elem ||
18350 		     insn->imm == BPF_FUNC_map_delete_elem ||
18351 		     insn->imm == BPF_FUNC_map_push_elem   ||
18352 		     insn->imm == BPF_FUNC_map_pop_elem    ||
18353 		     insn->imm == BPF_FUNC_map_peek_elem   ||
18354 		     insn->imm == BPF_FUNC_redirect_map    ||
18355 		     insn->imm == BPF_FUNC_for_each_map_elem ||
18356 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18357 			aux = &env->insn_aux_data[i + delta];
18358 			if (bpf_map_ptr_poisoned(aux))
18359 				goto patch_call_imm;
18360 
18361 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18362 			ops = map_ptr->ops;
18363 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
18364 			    ops->map_gen_lookup) {
18365 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18366 				if (cnt == -EOPNOTSUPP)
18367 					goto patch_map_ops_generic;
18368 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18369 					verbose(env, "bpf verifier is misconfigured\n");
18370 					return -EINVAL;
18371 				}
18372 
18373 				new_prog = bpf_patch_insn_data(env, i + delta,
18374 							       insn_buf, cnt);
18375 				if (!new_prog)
18376 					return -ENOMEM;
18377 
18378 				delta    += cnt - 1;
18379 				env->prog = prog = new_prog;
18380 				insn      = new_prog->insnsi + i + delta;
18381 				continue;
18382 			}
18383 
18384 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18385 				     (void *(*)(struct bpf_map *map, void *key))NULL));
18386 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18387 				     (long (*)(struct bpf_map *map, void *key))NULL));
18388 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18389 				     (long (*)(struct bpf_map *map, void *key, void *value,
18390 					      u64 flags))NULL));
18391 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18392 				     (long (*)(struct bpf_map *map, void *value,
18393 					      u64 flags))NULL));
18394 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18395 				     (long (*)(struct bpf_map *map, void *value))NULL));
18396 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18397 				     (long (*)(struct bpf_map *map, void *value))NULL));
18398 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
18399 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18400 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18401 				     (long (*)(struct bpf_map *map,
18402 					      bpf_callback_t callback_fn,
18403 					      void *callback_ctx,
18404 					      u64 flags))NULL));
18405 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18406 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18407 
18408 patch_map_ops_generic:
18409 			switch (insn->imm) {
18410 			case BPF_FUNC_map_lookup_elem:
18411 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18412 				continue;
18413 			case BPF_FUNC_map_update_elem:
18414 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18415 				continue;
18416 			case BPF_FUNC_map_delete_elem:
18417 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18418 				continue;
18419 			case BPF_FUNC_map_push_elem:
18420 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18421 				continue;
18422 			case BPF_FUNC_map_pop_elem:
18423 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18424 				continue;
18425 			case BPF_FUNC_map_peek_elem:
18426 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18427 				continue;
18428 			case BPF_FUNC_redirect_map:
18429 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
18430 				continue;
18431 			case BPF_FUNC_for_each_map_elem:
18432 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18433 				continue;
18434 			case BPF_FUNC_map_lookup_percpu_elem:
18435 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18436 				continue;
18437 			}
18438 
18439 			goto patch_call_imm;
18440 		}
18441 
18442 		/* Implement bpf_jiffies64 inline. */
18443 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18444 		    insn->imm == BPF_FUNC_jiffies64) {
18445 			struct bpf_insn ld_jiffies_addr[2] = {
18446 				BPF_LD_IMM64(BPF_REG_0,
18447 					     (unsigned long)&jiffies),
18448 			};
18449 
18450 			insn_buf[0] = ld_jiffies_addr[0];
18451 			insn_buf[1] = ld_jiffies_addr[1];
18452 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18453 						  BPF_REG_0, 0);
18454 			cnt = 3;
18455 
18456 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18457 						       cnt);
18458 			if (!new_prog)
18459 				return -ENOMEM;
18460 
18461 			delta    += cnt - 1;
18462 			env->prog = prog = new_prog;
18463 			insn      = new_prog->insnsi + i + delta;
18464 			continue;
18465 		}
18466 
18467 		/* Implement bpf_get_func_arg inline. */
18468 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18469 		    insn->imm == BPF_FUNC_get_func_arg) {
18470 			/* Load nr_args from ctx - 8 */
18471 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18472 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18473 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18474 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18475 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18476 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18477 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18478 			insn_buf[7] = BPF_JMP_A(1);
18479 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18480 			cnt = 9;
18481 
18482 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18483 			if (!new_prog)
18484 				return -ENOMEM;
18485 
18486 			delta    += cnt - 1;
18487 			env->prog = prog = new_prog;
18488 			insn      = new_prog->insnsi + i + delta;
18489 			continue;
18490 		}
18491 
18492 		/* Implement bpf_get_func_ret inline. */
18493 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18494 		    insn->imm == BPF_FUNC_get_func_ret) {
18495 			if (eatype == BPF_TRACE_FEXIT ||
18496 			    eatype == BPF_MODIFY_RETURN) {
18497 				/* Load nr_args from ctx - 8 */
18498 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18499 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18500 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18501 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18502 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18503 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18504 				cnt = 6;
18505 			} else {
18506 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18507 				cnt = 1;
18508 			}
18509 
18510 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18511 			if (!new_prog)
18512 				return -ENOMEM;
18513 
18514 			delta    += cnt - 1;
18515 			env->prog = prog = new_prog;
18516 			insn      = new_prog->insnsi + i + delta;
18517 			continue;
18518 		}
18519 
18520 		/* Implement get_func_arg_cnt inline. */
18521 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18522 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
18523 			/* Load nr_args from ctx - 8 */
18524 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18525 
18526 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18527 			if (!new_prog)
18528 				return -ENOMEM;
18529 
18530 			env->prog = prog = new_prog;
18531 			insn      = new_prog->insnsi + i + delta;
18532 			continue;
18533 		}
18534 
18535 		/* Implement bpf_get_func_ip inline. */
18536 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18537 		    insn->imm == BPF_FUNC_get_func_ip) {
18538 			/* Load IP address from ctx - 16 */
18539 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18540 
18541 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18542 			if (!new_prog)
18543 				return -ENOMEM;
18544 
18545 			env->prog = prog = new_prog;
18546 			insn      = new_prog->insnsi + i + delta;
18547 			continue;
18548 		}
18549 
18550 patch_call_imm:
18551 		fn = env->ops->get_func_proto(insn->imm, env->prog);
18552 		/* all functions that have prototype and verifier allowed
18553 		 * programs to call them, must be real in-kernel functions
18554 		 */
18555 		if (!fn->func) {
18556 			verbose(env,
18557 				"kernel subsystem misconfigured func %s#%d\n",
18558 				func_id_name(insn->imm), insn->imm);
18559 			return -EFAULT;
18560 		}
18561 		insn->imm = fn->func - __bpf_call_base;
18562 	}
18563 
18564 	/* Since poke tab is now finalized, publish aux to tracker. */
18565 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18566 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18567 		if (!map_ptr->ops->map_poke_track ||
18568 		    !map_ptr->ops->map_poke_untrack ||
18569 		    !map_ptr->ops->map_poke_run) {
18570 			verbose(env, "bpf verifier is misconfigured\n");
18571 			return -EINVAL;
18572 		}
18573 
18574 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18575 		if (ret < 0) {
18576 			verbose(env, "tracking tail call prog failed\n");
18577 			return ret;
18578 		}
18579 	}
18580 
18581 	sort_kfunc_descs_by_imm_off(env->prog);
18582 
18583 	return 0;
18584 }
18585 
18586 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18587 					int position,
18588 					s32 stack_base,
18589 					u32 callback_subprogno,
18590 					u32 *cnt)
18591 {
18592 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18593 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18594 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18595 	int reg_loop_max = BPF_REG_6;
18596 	int reg_loop_cnt = BPF_REG_7;
18597 	int reg_loop_ctx = BPF_REG_8;
18598 
18599 	struct bpf_prog *new_prog;
18600 	u32 callback_start;
18601 	u32 call_insn_offset;
18602 	s32 callback_offset;
18603 
18604 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
18605 	 * be careful to modify this code in sync.
18606 	 */
18607 	struct bpf_insn insn_buf[] = {
18608 		/* Return error and jump to the end of the patch if
18609 		 * expected number of iterations is too big.
18610 		 */
18611 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18612 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18613 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18614 		/* spill R6, R7, R8 to use these as loop vars */
18615 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18616 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18617 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18618 		/* initialize loop vars */
18619 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18620 		BPF_MOV32_IMM(reg_loop_cnt, 0),
18621 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18622 		/* loop header,
18623 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
18624 		 */
18625 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18626 		/* callback call,
18627 		 * correct callback offset would be set after patching
18628 		 */
18629 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18630 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18631 		BPF_CALL_REL(0),
18632 		/* increment loop counter */
18633 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18634 		/* jump to loop header if callback returned 0 */
18635 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18636 		/* return value of bpf_loop,
18637 		 * set R0 to the number of iterations
18638 		 */
18639 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18640 		/* restore original values of R6, R7, R8 */
18641 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18642 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18643 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18644 	};
18645 
18646 	*cnt = ARRAY_SIZE(insn_buf);
18647 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18648 	if (!new_prog)
18649 		return new_prog;
18650 
18651 	/* callback start is known only after patching */
18652 	callback_start = env->subprog_info[callback_subprogno].start;
18653 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18654 	call_insn_offset = position + 12;
18655 	callback_offset = callback_start - call_insn_offset - 1;
18656 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18657 
18658 	return new_prog;
18659 }
18660 
18661 static bool is_bpf_loop_call(struct bpf_insn *insn)
18662 {
18663 	return insn->code == (BPF_JMP | BPF_CALL) &&
18664 		insn->src_reg == 0 &&
18665 		insn->imm == BPF_FUNC_loop;
18666 }
18667 
18668 /* For all sub-programs in the program (including main) check
18669  * insn_aux_data to see if there are bpf_loop calls that require
18670  * inlining. If such calls are found the calls are replaced with a
18671  * sequence of instructions produced by `inline_bpf_loop` function and
18672  * subprog stack_depth is increased by the size of 3 registers.
18673  * This stack space is used to spill values of the R6, R7, R8.  These
18674  * registers are used to store the loop bound, counter and context
18675  * variables.
18676  */
18677 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18678 {
18679 	struct bpf_subprog_info *subprogs = env->subprog_info;
18680 	int i, cur_subprog = 0, cnt, delta = 0;
18681 	struct bpf_insn *insn = env->prog->insnsi;
18682 	int insn_cnt = env->prog->len;
18683 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18684 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18685 	u16 stack_depth_extra = 0;
18686 
18687 	for (i = 0; i < insn_cnt; i++, insn++) {
18688 		struct bpf_loop_inline_state *inline_state =
18689 			&env->insn_aux_data[i + delta].loop_inline_state;
18690 
18691 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18692 			struct bpf_prog *new_prog;
18693 
18694 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18695 			new_prog = inline_bpf_loop(env,
18696 						   i + delta,
18697 						   -(stack_depth + stack_depth_extra),
18698 						   inline_state->callback_subprogno,
18699 						   &cnt);
18700 			if (!new_prog)
18701 				return -ENOMEM;
18702 
18703 			delta     += cnt - 1;
18704 			env->prog  = new_prog;
18705 			insn       = new_prog->insnsi + i + delta;
18706 		}
18707 
18708 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18709 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
18710 			cur_subprog++;
18711 			stack_depth = subprogs[cur_subprog].stack_depth;
18712 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18713 			stack_depth_extra = 0;
18714 		}
18715 	}
18716 
18717 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18718 
18719 	return 0;
18720 }
18721 
18722 static void free_states(struct bpf_verifier_env *env)
18723 {
18724 	struct bpf_verifier_state_list *sl, *sln;
18725 	int i;
18726 
18727 	sl = env->free_list;
18728 	while (sl) {
18729 		sln = sl->next;
18730 		free_verifier_state(&sl->state, false);
18731 		kfree(sl);
18732 		sl = sln;
18733 	}
18734 	env->free_list = NULL;
18735 
18736 	if (!env->explored_states)
18737 		return;
18738 
18739 	for (i = 0; i < state_htab_size(env); i++) {
18740 		sl = env->explored_states[i];
18741 
18742 		while (sl) {
18743 			sln = sl->next;
18744 			free_verifier_state(&sl->state, false);
18745 			kfree(sl);
18746 			sl = sln;
18747 		}
18748 		env->explored_states[i] = NULL;
18749 	}
18750 }
18751 
18752 static int do_check_common(struct bpf_verifier_env *env, int subprog)
18753 {
18754 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18755 	struct bpf_verifier_state *state;
18756 	struct bpf_reg_state *regs;
18757 	int ret, i;
18758 
18759 	env->prev_linfo = NULL;
18760 	env->pass_cnt++;
18761 
18762 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
18763 	if (!state)
18764 		return -ENOMEM;
18765 	state->curframe = 0;
18766 	state->speculative = false;
18767 	state->branches = 1;
18768 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
18769 	if (!state->frame[0]) {
18770 		kfree(state);
18771 		return -ENOMEM;
18772 	}
18773 	env->cur_state = state;
18774 	init_func_state(env, state->frame[0],
18775 			BPF_MAIN_FUNC /* callsite */,
18776 			0 /* frameno */,
18777 			subprog);
18778 	state->first_insn_idx = env->subprog_info[subprog].start;
18779 	state->last_insn_idx = -1;
18780 
18781 	regs = state->frame[state->curframe]->regs;
18782 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
18783 		ret = btf_prepare_func_args(env, subprog, regs);
18784 		if (ret)
18785 			goto out;
18786 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
18787 			if (regs[i].type == PTR_TO_CTX)
18788 				mark_reg_known_zero(env, regs, i);
18789 			else if (regs[i].type == SCALAR_VALUE)
18790 				mark_reg_unknown(env, regs, i);
18791 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
18792 				const u32 mem_size = regs[i].mem_size;
18793 
18794 				mark_reg_known_zero(env, regs, i);
18795 				regs[i].mem_size = mem_size;
18796 				regs[i].id = ++env->id_gen;
18797 			}
18798 		}
18799 	} else {
18800 		/* 1st arg to a function */
18801 		regs[BPF_REG_1].type = PTR_TO_CTX;
18802 		mark_reg_known_zero(env, regs, BPF_REG_1);
18803 		ret = btf_check_subprog_arg_match(env, subprog, regs);
18804 		if (ret == -EFAULT)
18805 			/* unlikely verifier bug. abort.
18806 			 * ret == 0 and ret < 0 are sadly acceptable for
18807 			 * main() function due to backward compatibility.
18808 			 * Like socket filter program may be written as:
18809 			 * int bpf_prog(struct pt_regs *ctx)
18810 			 * and never dereference that ctx in the program.
18811 			 * 'struct pt_regs' is a type mismatch for socket
18812 			 * filter that should be using 'struct __sk_buff'.
18813 			 */
18814 			goto out;
18815 	}
18816 
18817 	ret = do_check(env);
18818 out:
18819 	/* check for NULL is necessary, since cur_state can be freed inside
18820 	 * do_check() under memory pressure.
18821 	 */
18822 	if (env->cur_state) {
18823 		free_verifier_state(env->cur_state, true);
18824 		env->cur_state = NULL;
18825 	}
18826 	while (!pop_stack(env, NULL, NULL, false));
18827 	if (!ret && pop_log)
18828 		bpf_vlog_reset(&env->log, 0);
18829 	free_states(env);
18830 	return ret;
18831 }
18832 
18833 /* Verify all global functions in a BPF program one by one based on their BTF.
18834  * All global functions must pass verification. Otherwise the whole program is rejected.
18835  * Consider:
18836  * int bar(int);
18837  * int foo(int f)
18838  * {
18839  *    return bar(f);
18840  * }
18841  * int bar(int b)
18842  * {
18843  *    ...
18844  * }
18845  * foo() will be verified first for R1=any_scalar_value. During verification it
18846  * will be assumed that bar() already verified successfully and call to bar()
18847  * from foo() will be checked for type match only. Later bar() will be verified
18848  * independently to check that it's safe for R1=any_scalar_value.
18849  */
18850 static int do_check_subprogs(struct bpf_verifier_env *env)
18851 {
18852 	struct bpf_prog_aux *aux = env->prog->aux;
18853 	int i, ret;
18854 
18855 	if (!aux->func_info)
18856 		return 0;
18857 
18858 	for (i = 1; i < env->subprog_cnt; i++) {
18859 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
18860 			continue;
18861 		env->insn_idx = env->subprog_info[i].start;
18862 		WARN_ON_ONCE(env->insn_idx == 0);
18863 		ret = do_check_common(env, i);
18864 		if (ret) {
18865 			return ret;
18866 		} else if (env->log.level & BPF_LOG_LEVEL) {
18867 			verbose(env,
18868 				"Func#%d is safe for any args that match its prototype\n",
18869 				i);
18870 		}
18871 	}
18872 	return 0;
18873 }
18874 
18875 static int do_check_main(struct bpf_verifier_env *env)
18876 {
18877 	int ret;
18878 
18879 	env->insn_idx = 0;
18880 	ret = do_check_common(env, 0);
18881 	if (!ret)
18882 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18883 	return ret;
18884 }
18885 
18886 
18887 static void print_verification_stats(struct bpf_verifier_env *env)
18888 {
18889 	int i;
18890 
18891 	if (env->log.level & BPF_LOG_STATS) {
18892 		verbose(env, "verification time %lld usec\n",
18893 			div_u64(env->verification_time, 1000));
18894 		verbose(env, "stack depth ");
18895 		for (i = 0; i < env->subprog_cnt; i++) {
18896 			u32 depth = env->subprog_info[i].stack_depth;
18897 
18898 			verbose(env, "%d", depth);
18899 			if (i + 1 < env->subprog_cnt)
18900 				verbose(env, "+");
18901 		}
18902 		verbose(env, "\n");
18903 	}
18904 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
18905 		"total_states %d peak_states %d mark_read %d\n",
18906 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
18907 		env->max_states_per_insn, env->total_states,
18908 		env->peak_states, env->longest_mark_read_walk);
18909 }
18910 
18911 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
18912 {
18913 	const struct btf_type *t, *func_proto;
18914 	const struct bpf_struct_ops *st_ops;
18915 	const struct btf_member *member;
18916 	struct bpf_prog *prog = env->prog;
18917 	u32 btf_id, member_idx;
18918 	const char *mname;
18919 
18920 	if (!prog->gpl_compatible) {
18921 		verbose(env, "struct ops programs must have a GPL compatible license\n");
18922 		return -EINVAL;
18923 	}
18924 
18925 	btf_id = prog->aux->attach_btf_id;
18926 	st_ops = bpf_struct_ops_find(btf_id);
18927 	if (!st_ops) {
18928 		verbose(env, "attach_btf_id %u is not a supported struct\n",
18929 			btf_id);
18930 		return -ENOTSUPP;
18931 	}
18932 
18933 	t = st_ops->type;
18934 	member_idx = prog->expected_attach_type;
18935 	if (member_idx >= btf_type_vlen(t)) {
18936 		verbose(env, "attach to invalid member idx %u of struct %s\n",
18937 			member_idx, st_ops->name);
18938 		return -EINVAL;
18939 	}
18940 
18941 	member = &btf_type_member(t)[member_idx];
18942 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
18943 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
18944 					       NULL);
18945 	if (!func_proto) {
18946 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
18947 			mname, member_idx, st_ops->name);
18948 		return -EINVAL;
18949 	}
18950 
18951 	if (st_ops->check_member) {
18952 		int err = st_ops->check_member(t, member, prog);
18953 
18954 		if (err) {
18955 			verbose(env, "attach to unsupported member %s of struct %s\n",
18956 				mname, st_ops->name);
18957 			return err;
18958 		}
18959 	}
18960 
18961 	prog->aux->attach_func_proto = func_proto;
18962 	prog->aux->attach_func_name = mname;
18963 	env->ops = st_ops->verifier_ops;
18964 
18965 	return 0;
18966 }
18967 #define SECURITY_PREFIX "security_"
18968 
18969 static int check_attach_modify_return(unsigned long addr, const char *func_name)
18970 {
18971 	if (within_error_injection_list(addr) ||
18972 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
18973 		return 0;
18974 
18975 	return -EINVAL;
18976 }
18977 
18978 /* list of non-sleepable functions that are otherwise on
18979  * ALLOW_ERROR_INJECTION list
18980  */
18981 BTF_SET_START(btf_non_sleepable_error_inject)
18982 /* Three functions below can be called from sleepable and non-sleepable context.
18983  * Assume non-sleepable from bpf safety point of view.
18984  */
18985 BTF_ID(func, __filemap_add_folio)
18986 BTF_ID(func, should_fail_alloc_page)
18987 BTF_ID(func, should_failslab)
18988 BTF_SET_END(btf_non_sleepable_error_inject)
18989 
18990 static int check_non_sleepable_error_inject(u32 btf_id)
18991 {
18992 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
18993 }
18994 
18995 int bpf_check_attach_target(struct bpf_verifier_log *log,
18996 			    const struct bpf_prog *prog,
18997 			    const struct bpf_prog *tgt_prog,
18998 			    u32 btf_id,
18999 			    struct bpf_attach_target_info *tgt_info)
19000 {
19001 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19002 	const char prefix[] = "btf_trace_";
19003 	int ret = 0, subprog = -1, i;
19004 	const struct btf_type *t;
19005 	bool conservative = true;
19006 	const char *tname;
19007 	struct btf *btf;
19008 	long addr = 0;
19009 	struct module *mod = NULL;
19010 
19011 	if (!btf_id) {
19012 		bpf_log(log, "Tracing programs must provide btf_id\n");
19013 		return -EINVAL;
19014 	}
19015 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19016 	if (!btf) {
19017 		bpf_log(log,
19018 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19019 		return -EINVAL;
19020 	}
19021 	t = btf_type_by_id(btf, btf_id);
19022 	if (!t) {
19023 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19024 		return -EINVAL;
19025 	}
19026 	tname = btf_name_by_offset(btf, t->name_off);
19027 	if (!tname) {
19028 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19029 		return -EINVAL;
19030 	}
19031 	if (tgt_prog) {
19032 		struct bpf_prog_aux *aux = tgt_prog->aux;
19033 
19034 		if (bpf_prog_is_dev_bound(prog->aux) &&
19035 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19036 			bpf_log(log, "Target program bound device mismatch");
19037 			return -EINVAL;
19038 		}
19039 
19040 		for (i = 0; i < aux->func_info_cnt; i++)
19041 			if (aux->func_info[i].type_id == btf_id) {
19042 				subprog = i;
19043 				break;
19044 			}
19045 		if (subprog == -1) {
19046 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19047 			return -EINVAL;
19048 		}
19049 		conservative = aux->func_info_aux[subprog].unreliable;
19050 		if (prog_extension) {
19051 			if (conservative) {
19052 				bpf_log(log,
19053 					"Cannot replace static functions\n");
19054 				return -EINVAL;
19055 			}
19056 			if (!prog->jit_requested) {
19057 				bpf_log(log,
19058 					"Extension programs should be JITed\n");
19059 				return -EINVAL;
19060 			}
19061 		}
19062 		if (!tgt_prog->jited) {
19063 			bpf_log(log, "Can attach to only JITed progs\n");
19064 			return -EINVAL;
19065 		}
19066 		if (tgt_prog->type == prog->type) {
19067 			/* Cannot fentry/fexit another fentry/fexit program.
19068 			 * Cannot attach program extension to another extension.
19069 			 * It's ok to attach fentry/fexit to extension program.
19070 			 */
19071 			bpf_log(log, "Cannot recursively attach\n");
19072 			return -EINVAL;
19073 		}
19074 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19075 		    prog_extension &&
19076 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19077 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19078 			/* Program extensions can extend all program types
19079 			 * except fentry/fexit. The reason is the following.
19080 			 * The fentry/fexit programs are used for performance
19081 			 * analysis, stats and can be attached to any program
19082 			 * type except themselves. When extension program is
19083 			 * replacing XDP function it is necessary to allow
19084 			 * performance analysis of all functions. Both original
19085 			 * XDP program and its program extension. Hence
19086 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19087 			 * allowed. If extending of fentry/fexit was allowed it
19088 			 * would be possible to create long call chain
19089 			 * fentry->extension->fentry->extension beyond
19090 			 * reasonable stack size. Hence extending fentry is not
19091 			 * allowed.
19092 			 */
19093 			bpf_log(log, "Cannot extend fentry/fexit\n");
19094 			return -EINVAL;
19095 		}
19096 	} else {
19097 		if (prog_extension) {
19098 			bpf_log(log, "Cannot replace kernel functions\n");
19099 			return -EINVAL;
19100 		}
19101 	}
19102 
19103 	switch (prog->expected_attach_type) {
19104 	case BPF_TRACE_RAW_TP:
19105 		if (tgt_prog) {
19106 			bpf_log(log,
19107 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19108 			return -EINVAL;
19109 		}
19110 		if (!btf_type_is_typedef(t)) {
19111 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19112 				btf_id);
19113 			return -EINVAL;
19114 		}
19115 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19116 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19117 				btf_id, tname);
19118 			return -EINVAL;
19119 		}
19120 		tname += sizeof(prefix) - 1;
19121 		t = btf_type_by_id(btf, t->type);
19122 		if (!btf_type_is_ptr(t))
19123 			/* should never happen in valid vmlinux build */
19124 			return -EINVAL;
19125 		t = btf_type_by_id(btf, t->type);
19126 		if (!btf_type_is_func_proto(t))
19127 			/* should never happen in valid vmlinux build */
19128 			return -EINVAL;
19129 
19130 		break;
19131 	case BPF_TRACE_ITER:
19132 		if (!btf_type_is_func(t)) {
19133 			bpf_log(log, "attach_btf_id %u is not a function\n",
19134 				btf_id);
19135 			return -EINVAL;
19136 		}
19137 		t = btf_type_by_id(btf, t->type);
19138 		if (!btf_type_is_func_proto(t))
19139 			return -EINVAL;
19140 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19141 		if (ret)
19142 			return ret;
19143 		break;
19144 	default:
19145 		if (!prog_extension)
19146 			return -EINVAL;
19147 		fallthrough;
19148 	case BPF_MODIFY_RETURN:
19149 	case BPF_LSM_MAC:
19150 	case BPF_LSM_CGROUP:
19151 	case BPF_TRACE_FENTRY:
19152 	case BPF_TRACE_FEXIT:
19153 		if (!btf_type_is_func(t)) {
19154 			bpf_log(log, "attach_btf_id %u is not a function\n",
19155 				btf_id);
19156 			return -EINVAL;
19157 		}
19158 		if (prog_extension &&
19159 		    btf_check_type_match(log, prog, btf, t))
19160 			return -EINVAL;
19161 		t = btf_type_by_id(btf, t->type);
19162 		if (!btf_type_is_func_proto(t))
19163 			return -EINVAL;
19164 
19165 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19166 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19167 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19168 			return -EINVAL;
19169 
19170 		if (tgt_prog && conservative)
19171 			t = NULL;
19172 
19173 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19174 		if (ret < 0)
19175 			return ret;
19176 
19177 		if (tgt_prog) {
19178 			if (subprog == 0)
19179 				addr = (long) tgt_prog->bpf_func;
19180 			else
19181 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19182 		} else {
19183 			if (btf_is_module(btf)) {
19184 				mod = btf_try_get_module(btf);
19185 				if (mod)
19186 					addr = find_kallsyms_symbol_value(mod, tname);
19187 				else
19188 					addr = 0;
19189 			} else {
19190 				addr = kallsyms_lookup_name(tname);
19191 			}
19192 			if (!addr) {
19193 				module_put(mod);
19194 				bpf_log(log,
19195 					"The address of function %s cannot be found\n",
19196 					tname);
19197 				return -ENOENT;
19198 			}
19199 		}
19200 
19201 		if (prog->aux->sleepable) {
19202 			ret = -EINVAL;
19203 			switch (prog->type) {
19204 			case BPF_PROG_TYPE_TRACING:
19205 
19206 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19207 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19208 				 */
19209 				if (!check_non_sleepable_error_inject(btf_id) &&
19210 				    within_error_injection_list(addr))
19211 					ret = 0;
19212 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19213 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19214 				 */
19215 				else {
19216 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19217 										prog);
19218 
19219 					if (flags && (*flags & KF_SLEEPABLE))
19220 						ret = 0;
19221 				}
19222 				break;
19223 			case BPF_PROG_TYPE_LSM:
19224 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19225 				 * Only some of them are sleepable.
19226 				 */
19227 				if (bpf_lsm_is_sleepable_hook(btf_id))
19228 					ret = 0;
19229 				break;
19230 			default:
19231 				break;
19232 			}
19233 			if (ret) {
19234 				module_put(mod);
19235 				bpf_log(log, "%s is not sleepable\n", tname);
19236 				return ret;
19237 			}
19238 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19239 			if (tgt_prog) {
19240 				module_put(mod);
19241 				bpf_log(log, "can't modify return codes of BPF programs\n");
19242 				return -EINVAL;
19243 			}
19244 			ret = -EINVAL;
19245 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19246 			    !check_attach_modify_return(addr, tname))
19247 				ret = 0;
19248 			if (ret) {
19249 				module_put(mod);
19250 				bpf_log(log, "%s() is not modifiable\n", tname);
19251 				return ret;
19252 			}
19253 		}
19254 
19255 		break;
19256 	}
19257 	tgt_info->tgt_addr = addr;
19258 	tgt_info->tgt_name = tname;
19259 	tgt_info->tgt_type = t;
19260 	tgt_info->tgt_mod = mod;
19261 	return 0;
19262 }
19263 
19264 BTF_SET_START(btf_id_deny)
19265 BTF_ID_UNUSED
19266 #ifdef CONFIG_SMP
19267 BTF_ID(func, migrate_disable)
19268 BTF_ID(func, migrate_enable)
19269 #endif
19270 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19271 BTF_ID(func, rcu_read_unlock_strict)
19272 #endif
19273 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19274 BTF_ID(func, preempt_count_add)
19275 BTF_ID(func, preempt_count_sub)
19276 #endif
19277 #ifdef CONFIG_PREEMPT_RCU
19278 BTF_ID(func, __rcu_read_lock)
19279 BTF_ID(func, __rcu_read_unlock)
19280 #endif
19281 BTF_SET_END(btf_id_deny)
19282 
19283 static bool can_be_sleepable(struct bpf_prog *prog)
19284 {
19285 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19286 		switch (prog->expected_attach_type) {
19287 		case BPF_TRACE_FENTRY:
19288 		case BPF_TRACE_FEXIT:
19289 		case BPF_MODIFY_RETURN:
19290 		case BPF_TRACE_ITER:
19291 			return true;
19292 		default:
19293 			return false;
19294 		}
19295 	}
19296 	return prog->type == BPF_PROG_TYPE_LSM ||
19297 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19298 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19299 }
19300 
19301 static int check_attach_btf_id(struct bpf_verifier_env *env)
19302 {
19303 	struct bpf_prog *prog = env->prog;
19304 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19305 	struct bpf_attach_target_info tgt_info = {};
19306 	u32 btf_id = prog->aux->attach_btf_id;
19307 	struct bpf_trampoline *tr;
19308 	int ret;
19309 	u64 key;
19310 
19311 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19312 		if (prog->aux->sleepable)
19313 			/* attach_btf_id checked to be zero already */
19314 			return 0;
19315 		verbose(env, "Syscall programs can only be sleepable\n");
19316 		return -EINVAL;
19317 	}
19318 
19319 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19320 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19321 		return -EINVAL;
19322 	}
19323 
19324 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19325 		return check_struct_ops_btf_id(env);
19326 
19327 	if (prog->type != BPF_PROG_TYPE_TRACING &&
19328 	    prog->type != BPF_PROG_TYPE_LSM &&
19329 	    prog->type != BPF_PROG_TYPE_EXT)
19330 		return 0;
19331 
19332 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19333 	if (ret)
19334 		return ret;
19335 
19336 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19337 		/* to make freplace equivalent to their targets, they need to
19338 		 * inherit env->ops and expected_attach_type for the rest of the
19339 		 * verification
19340 		 */
19341 		env->ops = bpf_verifier_ops[tgt_prog->type];
19342 		prog->expected_attach_type = tgt_prog->expected_attach_type;
19343 	}
19344 
19345 	/* store info about the attachment target that will be used later */
19346 	prog->aux->attach_func_proto = tgt_info.tgt_type;
19347 	prog->aux->attach_func_name = tgt_info.tgt_name;
19348 	prog->aux->mod = tgt_info.tgt_mod;
19349 
19350 	if (tgt_prog) {
19351 		prog->aux->saved_dst_prog_type = tgt_prog->type;
19352 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19353 	}
19354 
19355 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19356 		prog->aux->attach_btf_trace = true;
19357 		return 0;
19358 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19359 		if (!bpf_iter_prog_supported(prog))
19360 			return -EINVAL;
19361 		return 0;
19362 	}
19363 
19364 	if (prog->type == BPF_PROG_TYPE_LSM) {
19365 		ret = bpf_lsm_verify_prog(&env->log, prog);
19366 		if (ret < 0)
19367 			return ret;
19368 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
19369 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
19370 		return -EINVAL;
19371 	}
19372 
19373 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19374 	tr = bpf_trampoline_get(key, &tgt_info);
19375 	if (!tr)
19376 		return -ENOMEM;
19377 
19378 	prog->aux->dst_trampoline = tr;
19379 	return 0;
19380 }
19381 
19382 struct btf *bpf_get_btf_vmlinux(void)
19383 {
19384 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19385 		mutex_lock(&bpf_verifier_lock);
19386 		if (!btf_vmlinux)
19387 			btf_vmlinux = btf_parse_vmlinux();
19388 		mutex_unlock(&bpf_verifier_lock);
19389 	}
19390 	return btf_vmlinux;
19391 }
19392 
19393 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19394 {
19395 	u64 start_time = ktime_get_ns();
19396 	struct bpf_verifier_env *env;
19397 	int i, len, ret = -EINVAL, err;
19398 	u32 log_true_size;
19399 	bool is_priv;
19400 
19401 	/* no program is valid */
19402 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19403 		return -EINVAL;
19404 
19405 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
19406 	 * allocate/free it every time bpf_check() is called
19407 	 */
19408 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19409 	if (!env)
19410 		return -ENOMEM;
19411 
19412 	env->bt.env = env;
19413 
19414 	len = (*prog)->len;
19415 	env->insn_aux_data =
19416 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19417 	ret = -ENOMEM;
19418 	if (!env->insn_aux_data)
19419 		goto err_free_env;
19420 	for (i = 0; i < len; i++)
19421 		env->insn_aux_data[i].orig_idx = i;
19422 	env->prog = *prog;
19423 	env->ops = bpf_verifier_ops[env->prog->type];
19424 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19425 	is_priv = bpf_capable();
19426 
19427 	bpf_get_btf_vmlinux();
19428 
19429 	/* grab the mutex to protect few globals used by verifier */
19430 	if (!is_priv)
19431 		mutex_lock(&bpf_verifier_lock);
19432 
19433 	/* user could have requested verbose verifier output
19434 	 * and supplied buffer to store the verification trace
19435 	 */
19436 	ret = bpf_vlog_init(&env->log, attr->log_level,
19437 			    (char __user *) (unsigned long) attr->log_buf,
19438 			    attr->log_size);
19439 	if (ret)
19440 		goto err_unlock;
19441 
19442 	mark_verifier_state_clean(env);
19443 
19444 	if (IS_ERR(btf_vmlinux)) {
19445 		/* Either gcc or pahole or kernel are broken. */
19446 		verbose(env, "in-kernel BTF is malformed\n");
19447 		ret = PTR_ERR(btf_vmlinux);
19448 		goto skip_full_check;
19449 	}
19450 
19451 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19452 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19453 		env->strict_alignment = true;
19454 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19455 		env->strict_alignment = false;
19456 
19457 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19458 	env->allow_uninit_stack = bpf_allow_uninit_stack();
19459 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
19460 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
19461 	env->bpf_capable = bpf_capable();
19462 
19463 	if (is_priv)
19464 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19465 
19466 	env->explored_states = kvcalloc(state_htab_size(env),
19467 				       sizeof(struct bpf_verifier_state_list *),
19468 				       GFP_USER);
19469 	ret = -ENOMEM;
19470 	if (!env->explored_states)
19471 		goto skip_full_check;
19472 
19473 	ret = add_subprog_and_kfunc(env);
19474 	if (ret < 0)
19475 		goto skip_full_check;
19476 
19477 	ret = check_subprogs(env);
19478 	if (ret < 0)
19479 		goto skip_full_check;
19480 
19481 	ret = check_btf_info(env, attr, uattr);
19482 	if (ret < 0)
19483 		goto skip_full_check;
19484 
19485 	ret = check_attach_btf_id(env);
19486 	if (ret)
19487 		goto skip_full_check;
19488 
19489 	ret = resolve_pseudo_ldimm64(env);
19490 	if (ret < 0)
19491 		goto skip_full_check;
19492 
19493 	if (bpf_prog_is_offloaded(env->prog->aux)) {
19494 		ret = bpf_prog_offload_verifier_prep(env->prog);
19495 		if (ret)
19496 			goto skip_full_check;
19497 	}
19498 
19499 	ret = check_cfg(env);
19500 	if (ret < 0)
19501 		goto skip_full_check;
19502 
19503 	ret = do_check_subprogs(env);
19504 	ret = ret ?: do_check_main(env);
19505 
19506 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19507 		ret = bpf_prog_offload_finalize(env);
19508 
19509 skip_full_check:
19510 	kvfree(env->explored_states);
19511 
19512 	if (ret == 0)
19513 		ret = check_max_stack_depth(env);
19514 
19515 	/* instruction rewrites happen after this point */
19516 	if (ret == 0)
19517 		ret = optimize_bpf_loop(env);
19518 
19519 	if (is_priv) {
19520 		if (ret == 0)
19521 			opt_hard_wire_dead_code_branches(env);
19522 		if (ret == 0)
19523 			ret = opt_remove_dead_code(env);
19524 		if (ret == 0)
19525 			ret = opt_remove_nops(env);
19526 	} else {
19527 		if (ret == 0)
19528 			sanitize_dead_code(env);
19529 	}
19530 
19531 	if (ret == 0)
19532 		/* program is valid, convert *(u32*)(ctx + off) accesses */
19533 		ret = convert_ctx_accesses(env);
19534 
19535 	if (ret == 0)
19536 		ret = do_misc_fixups(env);
19537 
19538 	/* do 32-bit optimization after insn patching has done so those patched
19539 	 * insns could be handled correctly.
19540 	 */
19541 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19542 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19543 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19544 								     : false;
19545 	}
19546 
19547 	if (ret == 0)
19548 		ret = fixup_call_args(env);
19549 
19550 	env->verification_time = ktime_get_ns() - start_time;
19551 	print_verification_stats(env);
19552 	env->prog->aux->verified_insns = env->insn_processed;
19553 
19554 	/* preserve original error even if log finalization is successful */
19555 	err = bpf_vlog_finalize(&env->log, &log_true_size);
19556 	if (err)
19557 		ret = err;
19558 
19559 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19560 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19561 				  &log_true_size, sizeof(log_true_size))) {
19562 		ret = -EFAULT;
19563 		goto err_release_maps;
19564 	}
19565 
19566 	if (ret)
19567 		goto err_release_maps;
19568 
19569 	if (env->used_map_cnt) {
19570 		/* if program passed verifier, update used_maps in bpf_prog_info */
19571 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19572 							  sizeof(env->used_maps[0]),
19573 							  GFP_KERNEL);
19574 
19575 		if (!env->prog->aux->used_maps) {
19576 			ret = -ENOMEM;
19577 			goto err_release_maps;
19578 		}
19579 
19580 		memcpy(env->prog->aux->used_maps, env->used_maps,
19581 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
19582 		env->prog->aux->used_map_cnt = env->used_map_cnt;
19583 	}
19584 	if (env->used_btf_cnt) {
19585 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
19586 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19587 							  sizeof(env->used_btfs[0]),
19588 							  GFP_KERNEL);
19589 		if (!env->prog->aux->used_btfs) {
19590 			ret = -ENOMEM;
19591 			goto err_release_maps;
19592 		}
19593 
19594 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
19595 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19596 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19597 	}
19598 	if (env->used_map_cnt || env->used_btf_cnt) {
19599 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
19600 		 * bpf_ld_imm64 instructions
19601 		 */
19602 		convert_pseudo_ld_imm64(env);
19603 	}
19604 
19605 	adjust_btf_func(env);
19606 
19607 err_release_maps:
19608 	if (!env->prog->aux->used_maps)
19609 		/* if we didn't copy map pointers into bpf_prog_info, release
19610 		 * them now. Otherwise free_used_maps() will release them.
19611 		 */
19612 		release_maps(env);
19613 	if (!env->prog->aux->used_btfs)
19614 		release_btfs(env);
19615 
19616 	/* extension progs temporarily inherit the attach_type of their targets
19617 	   for verification purposes, so set it back to zero before returning
19618 	 */
19619 	if (env->prog->type == BPF_PROG_TYPE_EXT)
19620 		env->prog->expected_attach_type = 0;
19621 
19622 	*prog = env->prog;
19623 err_unlock:
19624 	if (!is_priv)
19625 		mutex_unlock(&bpf_verifier_lock);
19626 	vfree(env->insn_aux_data);
19627 err_free_env:
19628 	kfree(env);
19629 	return ret;
19630 }
19631