xref: /openbmc/linux/kernel/bpf/verifier.c (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 
25 #include "disasm.h"
26 
27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
29 	[_id] = & _name ## _verifier_ops,
30 #define BPF_MAP_TYPE(_id, _ops)
31 #include <linux/bpf_types.h>
32 #undef BPF_PROG_TYPE
33 #undef BPF_MAP_TYPE
34 };
35 
36 /* bpf_check() is a static code analyzer that walks eBPF program
37  * instruction by instruction and updates register/stack state.
38  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
39  *
40  * The first pass is depth-first-search to check that the program is a DAG.
41  * It rejects the following programs:
42  * - larger than BPF_MAXINSNS insns
43  * - if loop is present (detected via back-edge)
44  * - unreachable insns exist (shouldn't be a forest. program = one function)
45  * - out of bounds or malformed jumps
46  * The second pass is all possible path descent from the 1st insn.
47  * Since it's analyzing all pathes through the program, the length of the
48  * analysis is limited to 64k insn, which may be hit even if total number of
49  * insn is less then 4K, but there are too many branches that change stack/regs.
50  * Number of 'branches to be analyzed' is limited to 1k
51  *
52  * On entry to each instruction, each register has a type, and the instruction
53  * changes the types of the registers depending on instruction semantics.
54  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
55  * copied to R1.
56  *
57  * All registers are 64-bit.
58  * R0 - return register
59  * R1-R5 argument passing registers
60  * R6-R9 callee saved registers
61  * R10 - frame pointer read-only
62  *
63  * At the start of BPF program the register R1 contains a pointer to bpf_context
64  * and has type PTR_TO_CTX.
65  *
66  * Verifier tracks arithmetic operations on pointers in case:
67  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
68  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
69  * 1st insn copies R10 (which has FRAME_PTR) type into R1
70  * and 2nd arithmetic instruction is pattern matched to recognize
71  * that it wants to construct a pointer to some element within stack.
72  * So after 2nd insn, the register R1 has type PTR_TO_STACK
73  * (and -20 constant is saved for further stack bounds checking).
74  * Meaning that this reg is a pointer to stack plus known immediate constant.
75  *
76  * Most of the time the registers have SCALAR_VALUE type, which
77  * means the register has some value, but it's not a valid pointer.
78  * (like pointer plus pointer becomes SCALAR_VALUE type)
79  *
80  * When verifier sees load or store instructions the type of base register
81  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
82  * four pointer types recognized by check_mem_access() function.
83  *
84  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
85  * and the range of [ptr, ptr + map's value_size) is accessible.
86  *
87  * registers used to pass values to function calls are checked against
88  * function argument constraints.
89  *
90  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
91  * It means that the register type passed to this function must be
92  * PTR_TO_STACK and it will be used inside the function as
93  * 'pointer to map element key'
94  *
95  * For example the argument constraints for bpf_map_lookup_elem():
96  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
97  *   .arg1_type = ARG_CONST_MAP_PTR,
98  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
99  *
100  * ret_type says that this function returns 'pointer to map elem value or null'
101  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
102  * 2nd argument should be a pointer to stack, which will be used inside
103  * the helper function as a pointer to map element key.
104  *
105  * On the kernel side the helper function looks like:
106  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
107  * {
108  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
109  *    void *key = (void *) (unsigned long) r2;
110  *    void *value;
111  *
112  *    here kernel can access 'key' and 'map' pointers safely, knowing that
113  *    [key, key + map->key_size) bytes are valid and were initialized on
114  *    the stack of eBPF program.
115  * }
116  *
117  * Corresponding eBPF program may look like:
118  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
119  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
120  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
121  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
122  * here verifier looks at prototype of map_lookup_elem() and sees:
123  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
124  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
125  *
126  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
127  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
128  * and were initialized prior to this call.
129  * If it's ok, then verifier allows this BPF_CALL insn and looks at
130  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
131  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
132  * returns ether pointer to map value or NULL.
133  *
134  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
135  * insn, the register holding that pointer in the true branch changes state to
136  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
137  * branch. See check_cond_jmp_op().
138  *
139  * After the call R0 is set to return type of the function and registers R1-R5
140  * are set to NOT_INIT to indicate that they are no longer readable.
141  *
142  * The following reference types represent a potential reference to a kernel
143  * resource which, after first being allocated, must be checked and freed by
144  * the BPF program:
145  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
146  *
147  * When the verifier sees a helper call return a reference type, it allocates a
148  * pointer id for the reference and stores it in the current function state.
149  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
150  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
151  * passes through a NULL-check conditional. For the branch wherein the state is
152  * changed to CONST_IMM, the verifier releases the reference.
153  *
154  * For each helper function that allocates a reference, such as
155  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
156  * bpf_sk_release(). When a reference type passes into the release function,
157  * the verifier also releases the reference. If any unchecked or unreleased
158  * reference remains at the end of the program, the verifier rejects it.
159  */
160 
161 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
162 struct bpf_verifier_stack_elem {
163 	/* verifer state is 'st'
164 	 * before processing instruction 'insn_idx'
165 	 * and after processing instruction 'prev_insn_idx'
166 	 */
167 	struct bpf_verifier_state st;
168 	int insn_idx;
169 	int prev_insn_idx;
170 	struct bpf_verifier_stack_elem *next;
171 };
172 
173 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
174 #define BPF_COMPLEXITY_LIMIT_STATES	64
175 
176 #define BPF_MAP_KEY_POISON	(1ULL << 63)
177 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
178 
179 #define BPF_MAP_PTR_UNPRIV	1UL
180 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
181 					  POISON_POINTER_DELTA))
182 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183 
184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185 {
186 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
187 }
188 
189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190 {
191 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
192 }
193 
194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 			      const struct bpf_map *map, bool unpriv)
196 {
197 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 	unpriv |= bpf_map_ptr_unpriv(aux);
199 	aux->map_ptr_state = (unsigned long)map |
200 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201 }
202 
203 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
204 {
205 	return aux->map_key_state & BPF_MAP_KEY_POISON;
206 }
207 
208 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
209 {
210 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
211 }
212 
213 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
216 }
217 
218 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
219 {
220 	bool poisoned = bpf_map_key_poisoned(aux);
221 
222 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
223 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
224 }
225 
226 struct bpf_call_arg_meta {
227 	struct bpf_map *map_ptr;
228 	bool raw_mode;
229 	bool pkt_access;
230 	int regno;
231 	int access_size;
232 	u64 msize_max_value;
233 	int ref_obj_id;
234 	int func_id;
235 	u32 btf_id;
236 };
237 
238 struct btf *btf_vmlinux;
239 
240 static DEFINE_MUTEX(bpf_verifier_lock);
241 
242 static const struct bpf_line_info *
243 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
244 {
245 	const struct bpf_line_info *linfo;
246 	const struct bpf_prog *prog;
247 	u32 i, nr_linfo;
248 
249 	prog = env->prog;
250 	nr_linfo = prog->aux->nr_linfo;
251 
252 	if (!nr_linfo || insn_off >= prog->len)
253 		return NULL;
254 
255 	linfo = prog->aux->linfo;
256 	for (i = 1; i < nr_linfo; i++)
257 		if (insn_off < linfo[i].insn_off)
258 			break;
259 
260 	return &linfo[i - 1];
261 }
262 
263 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
264 		       va_list args)
265 {
266 	unsigned int n;
267 
268 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
269 
270 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
271 		  "verifier log line truncated - local buffer too short\n");
272 
273 	n = min(log->len_total - log->len_used - 1, n);
274 	log->kbuf[n] = '\0';
275 
276 	if (log->level == BPF_LOG_KERNEL) {
277 		pr_err("BPF:%s\n", log->kbuf);
278 		return;
279 	}
280 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
281 		log->len_used += n;
282 	else
283 		log->ubuf = NULL;
284 }
285 
286 /* log_level controls verbosity level of eBPF verifier.
287  * bpf_verifier_log_write() is used to dump the verification trace to the log,
288  * so the user can figure out what's wrong with the program
289  */
290 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
291 					   const char *fmt, ...)
292 {
293 	va_list args;
294 
295 	if (!bpf_verifier_log_needed(&env->log))
296 		return;
297 
298 	va_start(args, fmt);
299 	bpf_verifier_vlog(&env->log, fmt, args);
300 	va_end(args);
301 }
302 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
303 
304 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
305 {
306 	struct bpf_verifier_env *env = private_data;
307 	va_list args;
308 
309 	if (!bpf_verifier_log_needed(&env->log))
310 		return;
311 
312 	va_start(args, fmt);
313 	bpf_verifier_vlog(&env->log, fmt, args);
314 	va_end(args);
315 }
316 
317 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
318 			    const char *fmt, ...)
319 {
320 	va_list args;
321 
322 	if (!bpf_verifier_log_needed(log))
323 		return;
324 
325 	va_start(args, fmt);
326 	bpf_verifier_vlog(log, fmt, args);
327 	va_end(args);
328 }
329 
330 static const char *ltrim(const char *s)
331 {
332 	while (isspace(*s))
333 		s++;
334 
335 	return s;
336 }
337 
338 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
339 					 u32 insn_off,
340 					 const char *prefix_fmt, ...)
341 {
342 	const struct bpf_line_info *linfo;
343 
344 	if (!bpf_verifier_log_needed(&env->log))
345 		return;
346 
347 	linfo = find_linfo(env, insn_off);
348 	if (!linfo || linfo == env->prev_linfo)
349 		return;
350 
351 	if (prefix_fmt) {
352 		va_list args;
353 
354 		va_start(args, prefix_fmt);
355 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
356 		va_end(args);
357 	}
358 
359 	verbose(env, "%s\n",
360 		ltrim(btf_name_by_offset(env->prog->aux->btf,
361 					 linfo->line_off)));
362 
363 	env->prev_linfo = linfo;
364 }
365 
366 static bool type_is_pkt_pointer(enum bpf_reg_type type)
367 {
368 	return type == PTR_TO_PACKET ||
369 	       type == PTR_TO_PACKET_META;
370 }
371 
372 static bool type_is_sk_pointer(enum bpf_reg_type type)
373 {
374 	return type == PTR_TO_SOCKET ||
375 		type == PTR_TO_SOCK_COMMON ||
376 		type == PTR_TO_TCP_SOCK ||
377 		type == PTR_TO_XDP_SOCK;
378 }
379 
380 static bool reg_type_may_be_null(enum bpf_reg_type type)
381 {
382 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
383 	       type == PTR_TO_SOCKET_OR_NULL ||
384 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
385 	       type == PTR_TO_TCP_SOCK_OR_NULL;
386 }
387 
388 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
389 {
390 	return reg->type == PTR_TO_MAP_VALUE &&
391 		map_value_has_spin_lock(reg->map_ptr);
392 }
393 
394 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
395 {
396 	return type == PTR_TO_SOCKET ||
397 		type == PTR_TO_SOCKET_OR_NULL ||
398 		type == PTR_TO_TCP_SOCK ||
399 		type == PTR_TO_TCP_SOCK_OR_NULL;
400 }
401 
402 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
403 {
404 	return type == ARG_PTR_TO_SOCK_COMMON;
405 }
406 
407 /* Determine whether the function releases some resources allocated by another
408  * function call. The first reference type argument will be assumed to be
409  * released by release_reference().
410  */
411 static bool is_release_function(enum bpf_func_id func_id)
412 {
413 	return func_id == BPF_FUNC_sk_release;
414 }
415 
416 static bool is_acquire_function(enum bpf_func_id func_id)
417 {
418 	return func_id == BPF_FUNC_sk_lookup_tcp ||
419 		func_id == BPF_FUNC_sk_lookup_udp ||
420 		func_id == BPF_FUNC_skc_lookup_tcp;
421 }
422 
423 static bool is_ptr_cast_function(enum bpf_func_id func_id)
424 {
425 	return func_id == BPF_FUNC_tcp_sock ||
426 		func_id == BPF_FUNC_sk_fullsock;
427 }
428 
429 /* string representation of 'enum bpf_reg_type' */
430 static const char * const reg_type_str[] = {
431 	[NOT_INIT]		= "?",
432 	[SCALAR_VALUE]		= "inv",
433 	[PTR_TO_CTX]		= "ctx",
434 	[CONST_PTR_TO_MAP]	= "map_ptr",
435 	[PTR_TO_MAP_VALUE]	= "map_value",
436 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
437 	[PTR_TO_STACK]		= "fp",
438 	[PTR_TO_PACKET]		= "pkt",
439 	[PTR_TO_PACKET_META]	= "pkt_meta",
440 	[PTR_TO_PACKET_END]	= "pkt_end",
441 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
442 	[PTR_TO_SOCKET]		= "sock",
443 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
444 	[PTR_TO_SOCK_COMMON]	= "sock_common",
445 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
446 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
447 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
448 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
449 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
450 	[PTR_TO_BTF_ID]		= "ptr_",
451 };
452 
453 static char slot_type_char[] = {
454 	[STACK_INVALID]	= '?',
455 	[STACK_SPILL]	= 'r',
456 	[STACK_MISC]	= 'm',
457 	[STACK_ZERO]	= '0',
458 };
459 
460 static void print_liveness(struct bpf_verifier_env *env,
461 			   enum bpf_reg_liveness live)
462 {
463 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
464 	    verbose(env, "_");
465 	if (live & REG_LIVE_READ)
466 		verbose(env, "r");
467 	if (live & REG_LIVE_WRITTEN)
468 		verbose(env, "w");
469 	if (live & REG_LIVE_DONE)
470 		verbose(env, "D");
471 }
472 
473 static struct bpf_func_state *func(struct bpf_verifier_env *env,
474 				   const struct bpf_reg_state *reg)
475 {
476 	struct bpf_verifier_state *cur = env->cur_state;
477 
478 	return cur->frame[reg->frameno];
479 }
480 
481 const char *kernel_type_name(u32 id)
482 {
483 	return btf_name_by_offset(btf_vmlinux,
484 				  btf_type_by_id(btf_vmlinux, id)->name_off);
485 }
486 
487 static void print_verifier_state(struct bpf_verifier_env *env,
488 				 const struct bpf_func_state *state)
489 {
490 	const struct bpf_reg_state *reg;
491 	enum bpf_reg_type t;
492 	int i;
493 
494 	if (state->frameno)
495 		verbose(env, " frame%d:", state->frameno);
496 	for (i = 0; i < MAX_BPF_REG; i++) {
497 		reg = &state->regs[i];
498 		t = reg->type;
499 		if (t == NOT_INIT)
500 			continue;
501 		verbose(env, " R%d", i);
502 		print_liveness(env, reg->live);
503 		verbose(env, "=%s", reg_type_str[t]);
504 		if (t == SCALAR_VALUE && reg->precise)
505 			verbose(env, "P");
506 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
507 		    tnum_is_const(reg->var_off)) {
508 			/* reg->off should be 0 for SCALAR_VALUE */
509 			verbose(env, "%lld", reg->var_off.value + reg->off);
510 		} else {
511 			if (t == PTR_TO_BTF_ID)
512 				verbose(env, "%s", kernel_type_name(reg->btf_id));
513 			verbose(env, "(id=%d", reg->id);
514 			if (reg_type_may_be_refcounted_or_null(t))
515 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
516 			if (t != SCALAR_VALUE)
517 				verbose(env, ",off=%d", reg->off);
518 			if (type_is_pkt_pointer(t))
519 				verbose(env, ",r=%d", reg->range);
520 			else if (t == CONST_PTR_TO_MAP ||
521 				 t == PTR_TO_MAP_VALUE ||
522 				 t == PTR_TO_MAP_VALUE_OR_NULL)
523 				verbose(env, ",ks=%d,vs=%d",
524 					reg->map_ptr->key_size,
525 					reg->map_ptr->value_size);
526 			if (tnum_is_const(reg->var_off)) {
527 				/* Typically an immediate SCALAR_VALUE, but
528 				 * could be a pointer whose offset is too big
529 				 * for reg->off
530 				 */
531 				verbose(env, ",imm=%llx", reg->var_off.value);
532 			} else {
533 				if (reg->smin_value != reg->umin_value &&
534 				    reg->smin_value != S64_MIN)
535 					verbose(env, ",smin_value=%lld",
536 						(long long)reg->smin_value);
537 				if (reg->smax_value != reg->umax_value &&
538 				    reg->smax_value != S64_MAX)
539 					verbose(env, ",smax_value=%lld",
540 						(long long)reg->smax_value);
541 				if (reg->umin_value != 0)
542 					verbose(env, ",umin_value=%llu",
543 						(unsigned long long)reg->umin_value);
544 				if (reg->umax_value != U64_MAX)
545 					verbose(env, ",umax_value=%llu",
546 						(unsigned long long)reg->umax_value);
547 				if (!tnum_is_unknown(reg->var_off)) {
548 					char tn_buf[48];
549 
550 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
551 					verbose(env, ",var_off=%s", tn_buf);
552 				}
553 				if (reg->s32_min_value != reg->smin_value &&
554 				    reg->s32_min_value != S32_MIN)
555 					verbose(env, ",s32_min_value=%d",
556 						(int)(reg->s32_min_value));
557 				if (reg->s32_max_value != reg->smax_value &&
558 				    reg->s32_max_value != S32_MAX)
559 					verbose(env, ",s32_max_value=%d",
560 						(int)(reg->s32_max_value));
561 				if (reg->u32_min_value != reg->umin_value &&
562 				    reg->u32_min_value != U32_MIN)
563 					verbose(env, ",u32_min_value=%d",
564 						(int)(reg->u32_min_value));
565 				if (reg->u32_max_value != reg->umax_value &&
566 				    reg->u32_max_value != U32_MAX)
567 					verbose(env, ",u32_max_value=%d",
568 						(int)(reg->u32_max_value));
569 			}
570 			verbose(env, ")");
571 		}
572 	}
573 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
574 		char types_buf[BPF_REG_SIZE + 1];
575 		bool valid = false;
576 		int j;
577 
578 		for (j = 0; j < BPF_REG_SIZE; j++) {
579 			if (state->stack[i].slot_type[j] != STACK_INVALID)
580 				valid = true;
581 			types_buf[j] = slot_type_char[
582 					state->stack[i].slot_type[j]];
583 		}
584 		types_buf[BPF_REG_SIZE] = 0;
585 		if (!valid)
586 			continue;
587 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
588 		print_liveness(env, state->stack[i].spilled_ptr.live);
589 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
590 			reg = &state->stack[i].spilled_ptr;
591 			t = reg->type;
592 			verbose(env, "=%s", reg_type_str[t]);
593 			if (t == SCALAR_VALUE && reg->precise)
594 				verbose(env, "P");
595 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
596 				verbose(env, "%lld", reg->var_off.value + reg->off);
597 		} else {
598 			verbose(env, "=%s", types_buf);
599 		}
600 	}
601 	if (state->acquired_refs && state->refs[0].id) {
602 		verbose(env, " refs=%d", state->refs[0].id);
603 		for (i = 1; i < state->acquired_refs; i++)
604 			if (state->refs[i].id)
605 				verbose(env, ",%d", state->refs[i].id);
606 	}
607 	verbose(env, "\n");
608 }
609 
610 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
611 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
612 			       const struct bpf_func_state *src)	\
613 {									\
614 	if (!src->FIELD)						\
615 		return 0;						\
616 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
617 		/* internal bug, make state invalid to reject the program */ \
618 		memset(dst, 0, sizeof(*dst));				\
619 		return -EFAULT;						\
620 	}								\
621 	memcpy(dst->FIELD, src->FIELD,					\
622 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
623 	return 0;							\
624 }
625 /* copy_reference_state() */
626 COPY_STATE_FN(reference, acquired_refs, refs, 1)
627 /* copy_stack_state() */
628 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
629 #undef COPY_STATE_FN
630 
631 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
632 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
633 				  bool copy_old)			\
634 {									\
635 	u32 old_size = state->COUNT;					\
636 	struct bpf_##NAME##_state *new_##FIELD;				\
637 	int slot = size / SIZE;						\
638 									\
639 	if (size <= old_size || !size) {				\
640 		if (copy_old)						\
641 			return 0;					\
642 		state->COUNT = slot * SIZE;				\
643 		if (!size && old_size) {				\
644 			kfree(state->FIELD);				\
645 			state->FIELD = NULL;				\
646 		}							\
647 		return 0;						\
648 	}								\
649 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
650 				    GFP_KERNEL);			\
651 	if (!new_##FIELD)						\
652 		return -ENOMEM;						\
653 	if (copy_old) {							\
654 		if (state->FIELD)					\
655 			memcpy(new_##FIELD, state->FIELD,		\
656 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
657 		memset(new_##FIELD + old_size / SIZE, 0,		\
658 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
659 	}								\
660 	state->COUNT = slot * SIZE;					\
661 	kfree(state->FIELD);						\
662 	state->FIELD = new_##FIELD;					\
663 	return 0;							\
664 }
665 /* realloc_reference_state() */
666 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
667 /* realloc_stack_state() */
668 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
669 #undef REALLOC_STATE_FN
670 
671 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
672  * make it consume minimal amount of memory. check_stack_write() access from
673  * the program calls into realloc_func_state() to grow the stack size.
674  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
675  * which realloc_stack_state() copies over. It points to previous
676  * bpf_verifier_state which is never reallocated.
677  */
678 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
679 			      int refs_size, bool copy_old)
680 {
681 	int err = realloc_reference_state(state, refs_size, copy_old);
682 	if (err)
683 		return err;
684 	return realloc_stack_state(state, stack_size, copy_old);
685 }
686 
687 /* Acquire a pointer id from the env and update the state->refs to include
688  * this new pointer reference.
689  * On success, returns a valid pointer id to associate with the register
690  * On failure, returns a negative errno.
691  */
692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
693 {
694 	struct bpf_func_state *state = cur_func(env);
695 	int new_ofs = state->acquired_refs;
696 	int id, err;
697 
698 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
699 	if (err)
700 		return err;
701 	id = ++env->id_gen;
702 	state->refs[new_ofs].id = id;
703 	state->refs[new_ofs].insn_idx = insn_idx;
704 
705 	return id;
706 }
707 
708 /* release function corresponding to acquire_reference_state(). Idempotent. */
709 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
710 {
711 	int i, last_idx;
712 
713 	last_idx = state->acquired_refs - 1;
714 	for (i = 0; i < state->acquired_refs; i++) {
715 		if (state->refs[i].id == ptr_id) {
716 			if (last_idx && i != last_idx)
717 				memcpy(&state->refs[i], &state->refs[last_idx],
718 				       sizeof(*state->refs));
719 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
720 			state->acquired_refs--;
721 			return 0;
722 		}
723 	}
724 	return -EINVAL;
725 }
726 
727 static int transfer_reference_state(struct bpf_func_state *dst,
728 				    struct bpf_func_state *src)
729 {
730 	int err = realloc_reference_state(dst, src->acquired_refs, false);
731 	if (err)
732 		return err;
733 	err = copy_reference_state(dst, src);
734 	if (err)
735 		return err;
736 	return 0;
737 }
738 
739 static void free_func_state(struct bpf_func_state *state)
740 {
741 	if (!state)
742 		return;
743 	kfree(state->refs);
744 	kfree(state->stack);
745 	kfree(state);
746 }
747 
748 static void clear_jmp_history(struct bpf_verifier_state *state)
749 {
750 	kfree(state->jmp_history);
751 	state->jmp_history = NULL;
752 	state->jmp_history_cnt = 0;
753 }
754 
755 static void free_verifier_state(struct bpf_verifier_state *state,
756 				bool free_self)
757 {
758 	int i;
759 
760 	for (i = 0; i <= state->curframe; i++) {
761 		free_func_state(state->frame[i]);
762 		state->frame[i] = NULL;
763 	}
764 	clear_jmp_history(state);
765 	if (free_self)
766 		kfree(state);
767 }
768 
769 /* copy verifier state from src to dst growing dst stack space
770  * when necessary to accommodate larger src stack
771  */
772 static int copy_func_state(struct bpf_func_state *dst,
773 			   const struct bpf_func_state *src)
774 {
775 	int err;
776 
777 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
778 				 false);
779 	if (err)
780 		return err;
781 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
782 	err = copy_reference_state(dst, src);
783 	if (err)
784 		return err;
785 	return copy_stack_state(dst, src);
786 }
787 
788 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
789 			       const struct bpf_verifier_state *src)
790 {
791 	struct bpf_func_state *dst;
792 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
793 	int i, err;
794 
795 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
796 		kfree(dst_state->jmp_history);
797 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
798 		if (!dst_state->jmp_history)
799 			return -ENOMEM;
800 	}
801 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
802 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
803 
804 	/* if dst has more stack frames then src frame, free them */
805 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
806 		free_func_state(dst_state->frame[i]);
807 		dst_state->frame[i] = NULL;
808 	}
809 	dst_state->speculative = src->speculative;
810 	dst_state->curframe = src->curframe;
811 	dst_state->active_spin_lock = src->active_spin_lock;
812 	dst_state->branches = src->branches;
813 	dst_state->parent = src->parent;
814 	dst_state->first_insn_idx = src->first_insn_idx;
815 	dst_state->last_insn_idx = src->last_insn_idx;
816 	for (i = 0; i <= src->curframe; i++) {
817 		dst = dst_state->frame[i];
818 		if (!dst) {
819 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
820 			if (!dst)
821 				return -ENOMEM;
822 			dst_state->frame[i] = dst;
823 		}
824 		err = copy_func_state(dst, src->frame[i]);
825 		if (err)
826 			return err;
827 	}
828 	return 0;
829 }
830 
831 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
832 {
833 	while (st) {
834 		u32 br = --st->branches;
835 
836 		/* WARN_ON(br > 1) technically makes sense here,
837 		 * but see comment in push_stack(), hence:
838 		 */
839 		WARN_ONCE((int)br < 0,
840 			  "BUG update_branch_counts:branches_to_explore=%d\n",
841 			  br);
842 		if (br)
843 			break;
844 		st = st->parent;
845 	}
846 }
847 
848 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
849 		     int *insn_idx)
850 {
851 	struct bpf_verifier_state *cur = env->cur_state;
852 	struct bpf_verifier_stack_elem *elem, *head = env->head;
853 	int err;
854 
855 	if (env->head == NULL)
856 		return -ENOENT;
857 
858 	if (cur) {
859 		err = copy_verifier_state(cur, &head->st);
860 		if (err)
861 			return err;
862 	}
863 	if (insn_idx)
864 		*insn_idx = head->insn_idx;
865 	if (prev_insn_idx)
866 		*prev_insn_idx = head->prev_insn_idx;
867 	elem = head->next;
868 	free_verifier_state(&head->st, false);
869 	kfree(head);
870 	env->head = elem;
871 	env->stack_size--;
872 	return 0;
873 }
874 
875 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
876 					     int insn_idx, int prev_insn_idx,
877 					     bool speculative)
878 {
879 	struct bpf_verifier_state *cur = env->cur_state;
880 	struct bpf_verifier_stack_elem *elem;
881 	int err;
882 
883 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
884 	if (!elem)
885 		goto err;
886 
887 	elem->insn_idx = insn_idx;
888 	elem->prev_insn_idx = prev_insn_idx;
889 	elem->next = env->head;
890 	env->head = elem;
891 	env->stack_size++;
892 	err = copy_verifier_state(&elem->st, cur);
893 	if (err)
894 		goto err;
895 	elem->st.speculative |= speculative;
896 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
897 		verbose(env, "The sequence of %d jumps is too complex.\n",
898 			env->stack_size);
899 		goto err;
900 	}
901 	if (elem->st.parent) {
902 		++elem->st.parent->branches;
903 		/* WARN_ON(branches > 2) technically makes sense here,
904 		 * but
905 		 * 1. speculative states will bump 'branches' for non-branch
906 		 * instructions
907 		 * 2. is_state_visited() heuristics may decide not to create
908 		 * a new state for a sequence of branches and all such current
909 		 * and cloned states will be pointing to a single parent state
910 		 * which might have large 'branches' count.
911 		 */
912 	}
913 	return &elem->st;
914 err:
915 	free_verifier_state(env->cur_state, true);
916 	env->cur_state = NULL;
917 	/* pop all elements and return */
918 	while (!pop_stack(env, NULL, NULL));
919 	return NULL;
920 }
921 
922 #define CALLER_SAVED_REGS 6
923 static const int caller_saved[CALLER_SAVED_REGS] = {
924 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
925 };
926 
927 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
928 				struct bpf_reg_state *reg);
929 
930 /* Mark the unknown part of a register (variable offset or scalar value) as
931  * known to have the value @imm.
932  */
933 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
934 {
935 	/* Clear id, off, and union(map_ptr, range) */
936 	memset(((u8 *)reg) + sizeof(reg->type), 0,
937 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
938 	reg->var_off = tnum_const(imm);
939 	reg->smin_value = (s64)imm;
940 	reg->smax_value = (s64)imm;
941 	reg->umin_value = imm;
942 	reg->umax_value = imm;
943 
944 	reg->s32_min_value = (s32)imm;
945 	reg->s32_max_value = (s32)imm;
946 	reg->u32_min_value = (u32)imm;
947 	reg->u32_max_value = (u32)imm;
948 }
949 
950 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
951 {
952 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
953 	reg->s32_min_value = (s32)imm;
954 	reg->s32_max_value = (s32)imm;
955 	reg->u32_min_value = (u32)imm;
956 	reg->u32_max_value = (u32)imm;
957 }
958 
959 /* Mark the 'variable offset' part of a register as zero.  This should be
960  * used only on registers holding a pointer type.
961  */
962 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
963 {
964 	__mark_reg_known(reg, 0);
965 }
966 
967 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
968 {
969 	__mark_reg_known(reg, 0);
970 	reg->type = SCALAR_VALUE;
971 }
972 
973 static void mark_reg_known_zero(struct bpf_verifier_env *env,
974 				struct bpf_reg_state *regs, u32 regno)
975 {
976 	if (WARN_ON(regno >= MAX_BPF_REG)) {
977 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
978 		/* Something bad happened, let's kill all regs */
979 		for (regno = 0; regno < MAX_BPF_REG; regno++)
980 			__mark_reg_not_init(env, regs + regno);
981 		return;
982 	}
983 	__mark_reg_known_zero(regs + regno);
984 }
985 
986 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
987 {
988 	return type_is_pkt_pointer(reg->type);
989 }
990 
991 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
992 {
993 	return reg_is_pkt_pointer(reg) ||
994 	       reg->type == PTR_TO_PACKET_END;
995 }
996 
997 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
998 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
999 				    enum bpf_reg_type which)
1000 {
1001 	/* The register can already have a range from prior markings.
1002 	 * This is fine as long as it hasn't been advanced from its
1003 	 * origin.
1004 	 */
1005 	return reg->type == which &&
1006 	       reg->id == 0 &&
1007 	       reg->off == 0 &&
1008 	       tnum_equals_const(reg->var_off, 0);
1009 }
1010 
1011 /* Reset the min/max bounds of a register */
1012 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1013 {
1014 	reg->smin_value = S64_MIN;
1015 	reg->smax_value = S64_MAX;
1016 	reg->umin_value = 0;
1017 	reg->umax_value = U64_MAX;
1018 
1019 	reg->s32_min_value = S32_MIN;
1020 	reg->s32_max_value = S32_MAX;
1021 	reg->u32_min_value = 0;
1022 	reg->u32_max_value = U32_MAX;
1023 }
1024 
1025 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1026 {
1027 	reg->smin_value = S64_MIN;
1028 	reg->smax_value = S64_MAX;
1029 	reg->umin_value = 0;
1030 	reg->umax_value = U64_MAX;
1031 }
1032 
1033 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1034 {
1035 	reg->s32_min_value = S32_MIN;
1036 	reg->s32_max_value = S32_MAX;
1037 	reg->u32_min_value = 0;
1038 	reg->u32_max_value = U32_MAX;
1039 }
1040 
1041 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1042 {
1043 	struct tnum var32_off = tnum_subreg(reg->var_off);
1044 
1045 	/* min signed is max(sign bit) | min(other bits) */
1046 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1047 			var32_off.value | (var32_off.mask & S32_MIN));
1048 	/* max signed is min(sign bit) | max(other bits) */
1049 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1050 			var32_off.value | (var32_off.mask & S32_MAX));
1051 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1052 	reg->u32_max_value = min(reg->u32_max_value,
1053 				 (u32)(var32_off.value | var32_off.mask));
1054 }
1055 
1056 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1057 {
1058 	/* min signed is max(sign bit) | min(other bits) */
1059 	reg->smin_value = max_t(s64, reg->smin_value,
1060 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1061 	/* max signed is min(sign bit) | max(other bits) */
1062 	reg->smax_value = min_t(s64, reg->smax_value,
1063 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1064 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1065 	reg->umax_value = min(reg->umax_value,
1066 			      reg->var_off.value | reg->var_off.mask);
1067 }
1068 
1069 static void __update_reg_bounds(struct bpf_reg_state *reg)
1070 {
1071 	__update_reg32_bounds(reg);
1072 	__update_reg64_bounds(reg);
1073 }
1074 
1075 /* Uses signed min/max values to inform unsigned, and vice-versa */
1076 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1077 {
1078 	/* Learn sign from signed bounds.
1079 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1080 	 * are the same, so combine.  This works even in the negative case, e.g.
1081 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1082 	 */
1083 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1084 		reg->s32_min_value = reg->u32_min_value =
1085 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1086 		reg->s32_max_value = reg->u32_max_value =
1087 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1088 		return;
1089 	}
1090 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1091 	 * boundary, so we must be careful.
1092 	 */
1093 	if ((s32)reg->u32_max_value >= 0) {
1094 		/* Positive.  We can't learn anything from the smin, but smax
1095 		 * is positive, hence safe.
1096 		 */
1097 		reg->s32_min_value = reg->u32_min_value;
1098 		reg->s32_max_value = reg->u32_max_value =
1099 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1100 	} else if ((s32)reg->u32_min_value < 0) {
1101 		/* Negative.  We can't learn anything from the smax, but smin
1102 		 * is negative, hence safe.
1103 		 */
1104 		reg->s32_min_value = reg->u32_min_value =
1105 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1106 		reg->s32_max_value = reg->u32_max_value;
1107 	}
1108 }
1109 
1110 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1111 {
1112 	/* Learn sign from signed bounds.
1113 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1114 	 * are the same, so combine.  This works even in the negative case, e.g.
1115 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1116 	 */
1117 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1118 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1119 							  reg->umin_value);
1120 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1121 							  reg->umax_value);
1122 		return;
1123 	}
1124 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1125 	 * boundary, so we must be careful.
1126 	 */
1127 	if ((s64)reg->umax_value >= 0) {
1128 		/* Positive.  We can't learn anything from the smin, but smax
1129 		 * is positive, hence safe.
1130 		 */
1131 		reg->smin_value = reg->umin_value;
1132 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1133 							  reg->umax_value);
1134 	} else if ((s64)reg->umin_value < 0) {
1135 		/* Negative.  We can't learn anything from the smax, but smin
1136 		 * is negative, hence safe.
1137 		 */
1138 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1139 							  reg->umin_value);
1140 		reg->smax_value = reg->umax_value;
1141 	}
1142 }
1143 
1144 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1145 {
1146 	__reg32_deduce_bounds(reg);
1147 	__reg64_deduce_bounds(reg);
1148 }
1149 
1150 /* Attempts to improve var_off based on unsigned min/max information */
1151 static void __reg_bound_offset(struct bpf_reg_state *reg)
1152 {
1153 	struct tnum var64_off = tnum_intersect(reg->var_off,
1154 					       tnum_range(reg->umin_value,
1155 							  reg->umax_value));
1156 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1157 						tnum_range(reg->u32_min_value,
1158 							   reg->u32_max_value));
1159 
1160 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1161 }
1162 
1163 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1164 {
1165 	reg->umin_value = reg->u32_min_value;
1166 	reg->umax_value = reg->u32_max_value;
1167 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1168 	 * but must be positive otherwise set to worse case bounds
1169 	 * and refine later from tnum.
1170 	 */
1171 	if (reg->s32_min_value > 0)
1172 		reg->smin_value = reg->s32_min_value;
1173 	else
1174 		reg->smin_value = 0;
1175 	if (reg->s32_max_value > 0)
1176 		reg->smax_value = reg->s32_max_value;
1177 	else
1178 		reg->smax_value = U32_MAX;
1179 }
1180 
1181 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1182 {
1183 	/* special case when 64-bit register has upper 32-bit register
1184 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1185 	 * allowing us to use 32-bit bounds directly,
1186 	 */
1187 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1188 		__reg_assign_32_into_64(reg);
1189 	} else {
1190 		/* Otherwise the best we can do is push lower 32bit known and
1191 		 * unknown bits into register (var_off set from jmp logic)
1192 		 * then learn as much as possible from the 64-bit tnum
1193 		 * known and unknown bits. The previous smin/smax bounds are
1194 		 * invalid here because of jmp32 compare so mark them unknown
1195 		 * so they do not impact tnum bounds calculation.
1196 		 */
1197 		__mark_reg64_unbounded(reg);
1198 		__update_reg_bounds(reg);
1199 	}
1200 
1201 	/* Intersecting with the old var_off might have improved our bounds
1202 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1203 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1204 	 */
1205 	__reg_deduce_bounds(reg);
1206 	__reg_bound_offset(reg);
1207 	__update_reg_bounds(reg);
1208 }
1209 
1210 static bool __reg64_bound_s32(s64 a)
1211 {
1212 	if (a > S32_MIN && a < S32_MAX)
1213 		return true;
1214 	return false;
1215 }
1216 
1217 static bool __reg64_bound_u32(u64 a)
1218 {
1219 	if (a > U32_MIN && a < U32_MAX)
1220 		return true;
1221 	return false;
1222 }
1223 
1224 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1225 {
1226 	__mark_reg32_unbounded(reg);
1227 
1228 	if (__reg64_bound_s32(reg->smin_value))
1229 		reg->s32_min_value = (s32)reg->smin_value;
1230 	if (__reg64_bound_s32(reg->smax_value))
1231 		reg->s32_max_value = (s32)reg->smax_value;
1232 	if (__reg64_bound_u32(reg->umin_value))
1233 		reg->u32_min_value = (u32)reg->umin_value;
1234 	if (__reg64_bound_u32(reg->umax_value))
1235 		reg->u32_max_value = (u32)reg->umax_value;
1236 
1237 	/* Intersecting with the old var_off might have improved our bounds
1238 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1239 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1240 	 */
1241 	__reg_deduce_bounds(reg);
1242 	__reg_bound_offset(reg);
1243 	__update_reg_bounds(reg);
1244 }
1245 
1246 /* Mark a register as having a completely unknown (scalar) value. */
1247 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1248 			       struct bpf_reg_state *reg)
1249 {
1250 	/*
1251 	 * Clear type, id, off, and union(map_ptr, range) and
1252 	 * padding between 'type' and union
1253 	 */
1254 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1255 	reg->type = SCALAR_VALUE;
1256 	reg->var_off = tnum_unknown;
1257 	reg->frameno = 0;
1258 	reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1259 		       true : false;
1260 	__mark_reg_unbounded(reg);
1261 }
1262 
1263 static void mark_reg_unknown(struct bpf_verifier_env *env,
1264 			     struct bpf_reg_state *regs, u32 regno)
1265 {
1266 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1267 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1268 		/* Something bad happened, let's kill all regs except FP */
1269 		for (regno = 0; regno < BPF_REG_FP; regno++)
1270 			__mark_reg_not_init(env, regs + regno);
1271 		return;
1272 	}
1273 	__mark_reg_unknown(env, regs + regno);
1274 }
1275 
1276 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1277 				struct bpf_reg_state *reg)
1278 {
1279 	__mark_reg_unknown(env, reg);
1280 	reg->type = NOT_INIT;
1281 }
1282 
1283 static void mark_reg_not_init(struct bpf_verifier_env *env,
1284 			      struct bpf_reg_state *regs, u32 regno)
1285 {
1286 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1287 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1288 		/* Something bad happened, let's kill all regs except FP */
1289 		for (regno = 0; regno < BPF_REG_FP; regno++)
1290 			__mark_reg_not_init(env, regs + regno);
1291 		return;
1292 	}
1293 	__mark_reg_not_init(env, regs + regno);
1294 }
1295 
1296 #define DEF_NOT_SUBREG	(0)
1297 static void init_reg_state(struct bpf_verifier_env *env,
1298 			   struct bpf_func_state *state)
1299 {
1300 	struct bpf_reg_state *regs = state->regs;
1301 	int i;
1302 
1303 	for (i = 0; i < MAX_BPF_REG; i++) {
1304 		mark_reg_not_init(env, regs, i);
1305 		regs[i].live = REG_LIVE_NONE;
1306 		regs[i].parent = NULL;
1307 		regs[i].subreg_def = DEF_NOT_SUBREG;
1308 	}
1309 
1310 	/* frame pointer */
1311 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1312 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1313 	regs[BPF_REG_FP].frameno = state->frameno;
1314 }
1315 
1316 #define BPF_MAIN_FUNC (-1)
1317 static void init_func_state(struct bpf_verifier_env *env,
1318 			    struct bpf_func_state *state,
1319 			    int callsite, int frameno, int subprogno)
1320 {
1321 	state->callsite = callsite;
1322 	state->frameno = frameno;
1323 	state->subprogno = subprogno;
1324 	init_reg_state(env, state);
1325 }
1326 
1327 enum reg_arg_type {
1328 	SRC_OP,		/* register is used as source operand */
1329 	DST_OP,		/* register is used as destination operand */
1330 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1331 };
1332 
1333 static int cmp_subprogs(const void *a, const void *b)
1334 {
1335 	return ((struct bpf_subprog_info *)a)->start -
1336 	       ((struct bpf_subprog_info *)b)->start;
1337 }
1338 
1339 static int find_subprog(struct bpf_verifier_env *env, int off)
1340 {
1341 	struct bpf_subprog_info *p;
1342 
1343 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1344 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1345 	if (!p)
1346 		return -ENOENT;
1347 	return p - env->subprog_info;
1348 
1349 }
1350 
1351 static int add_subprog(struct bpf_verifier_env *env, int off)
1352 {
1353 	int insn_cnt = env->prog->len;
1354 	int ret;
1355 
1356 	if (off >= insn_cnt || off < 0) {
1357 		verbose(env, "call to invalid destination\n");
1358 		return -EINVAL;
1359 	}
1360 	ret = find_subprog(env, off);
1361 	if (ret >= 0)
1362 		return 0;
1363 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1364 		verbose(env, "too many subprograms\n");
1365 		return -E2BIG;
1366 	}
1367 	env->subprog_info[env->subprog_cnt++].start = off;
1368 	sort(env->subprog_info, env->subprog_cnt,
1369 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1370 	return 0;
1371 }
1372 
1373 static int check_subprogs(struct bpf_verifier_env *env)
1374 {
1375 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1376 	struct bpf_subprog_info *subprog = env->subprog_info;
1377 	struct bpf_insn *insn = env->prog->insnsi;
1378 	int insn_cnt = env->prog->len;
1379 
1380 	/* Add entry function. */
1381 	ret = add_subprog(env, 0);
1382 	if (ret < 0)
1383 		return ret;
1384 
1385 	/* determine subprog starts. The end is one before the next starts */
1386 	for (i = 0; i < insn_cnt; i++) {
1387 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1388 			continue;
1389 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1390 			continue;
1391 		if (!env->allow_ptr_leaks) {
1392 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1393 			return -EPERM;
1394 		}
1395 		ret = add_subprog(env, i + insn[i].imm + 1);
1396 		if (ret < 0)
1397 			return ret;
1398 	}
1399 
1400 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1401 	 * logic. 'subprog_cnt' should not be increased.
1402 	 */
1403 	subprog[env->subprog_cnt].start = insn_cnt;
1404 
1405 	if (env->log.level & BPF_LOG_LEVEL2)
1406 		for (i = 0; i < env->subprog_cnt; i++)
1407 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1408 
1409 	/* now check that all jumps are within the same subprog */
1410 	subprog_start = subprog[cur_subprog].start;
1411 	subprog_end = subprog[cur_subprog + 1].start;
1412 	for (i = 0; i < insn_cnt; i++) {
1413 		u8 code = insn[i].code;
1414 
1415 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1416 			goto next;
1417 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1418 			goto next;
1419 		off = i + insn[i].off + 1;
1420 		if (off < subprog_start || off >= subprog_end) {
1421 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1422 			return -EINVAL;
1423 		}
1424 next:
1425 		if (i == subprog_end - 1) {
1426 			/* to avoid fall-through from one subprog into another
1427 			 * the last insn of the subprog should be either exit
1428 			 * or unconditional jump back
1429 			 */
1430 			if (code != (BPF_JMP | BPF_EXIT) &&
1431 			    code != (BPF_JMP | BPF_JA)) {
1432 				verbose(env, "last insn is not an exit or jmp\n");
1433 				return -EINVAL;
1434 			}
1435 			subprog_start = subprog_end;
1436 			cur_subprog++;
1437 			if (cur_subprog < env->subprog_cnt)
1438 				subprog_end = subprog[cur_subprog + 1].start;
1439 		}
1440 	}
1441 	return 0;
1442 }
1443 
1444 /* Parentage chain of this register (or stack slot) should take care of all
1445  * issues like callee-saved registers, stack slot allocation time, etc.
1446  */
1447 static int mark_reg_read(struct bpf_verifier_env *env,
1448 			 const struct bpf_reg_state *state,
1449 			 struct bpf_reg_state *parent, u8 flag)
1450 {
1451 	bool writes = parent == state->parent; /* Observe write marks */
1452 	int cnt = 0;
1453 
1454 	while (parent) {
1455 		/* if read wasn't screened by an earlier write ... */
1456 		if (writes && state->live & REG_LIVE_WRITTEN)
1457 			break;
1458 		if (parent->live & REG_LIVE_DONE) {
1459 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1460 				reg_type_str[parent->type],
1461 				parent->var_off.value, parent->off);
1462 			return -EFAULT;
1463 		}
1464 		/* The first condition is more likely to be true than the
1465 		 * second, checked it first.
1466 		 */
1467 		if ((parent->live & REG_LIVE_READ) == flag ||
1468 		    parent->live & REG_LIVE_READ64)
1469 			/* The parentage chain never changes and
1470 			 * this parent was already marked as LIVE_READ.
1471 			 * There is no need to keep walking the chain again and
1472 			 * keep re-marking all parents as LIVE_READ.
1473 			 * This case happens when the same register is read
1474 			 * multiple times without writes into it in-between.
1475 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1476 			 * then no need to set the weak REG_LIVE_READ32.
1477 			 */
1478 			break;
1479 		/* ... then we depend on parent's value */
1480 		parent->live |= flag;
1481 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1482 		if (flag == REG_LIVE_READ64)
1483 			parent->live &= ~REG_LIVE_READ32;
1484 		state = parent;
1485 		parent = state->parent;
1486 		writes = true;
1487 		cnt++;
1488 	}
1489 
1490 	if (env->longest_mark_read_walk < cnt)
1491 		env->longest_mark_read_walk = cnt;
1492 	return 0;
1493 }
1494 
1495 /* This function is supposed to be used by the following 32-bit optimization
1496  * code only. It returns TRUE if the source or destination register operates
1497  * on 64-bit, otherwise return FALSE.
1498  */
1499 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1500 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1501 {
1502 	u8 code, class, op;
1503 
1504 	code = insn->code;
1505 	class = BPF_CLASS(code);
1506 	op = BPF_OP(code);
1507 	if (class == BPF_JMP) {
1508 		/* BPF_EXIT for "main" will reach here. Return TRUE
1509 		 * conservatively.
1510 		 */
1511 		if (op == BPF_EXIT)
1512 			return true;
1513 		if (op == BPF_CALL) {
1514 			/* BPF to BPF call will reach here because of marking
1515 			 * caller saved clobber with DST_OP_NO_MARK for which we
1516 			 * don't care the register def because they are anyway
1517 			 * marked as NOT_INIT already.
1518 			 */
1519 			if (insn->src_reg == BPF_PSEUDO_CALL)
1520 				return false;
1521 			/* Helper call will reach here because of arg type
1522 			 * check, conservatively return TRUE.
1523 			 */
1524 			if (t == SRC_OP)
1525 				return true;
1526 
1527 			return false;
1528 		}
1529 	}
1530 
1531 	if (class == BPF_ALU64 || class == BPF_JMP ||
1532 	    /* BPF_END always use BPF_ALU class. */
1533 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1534 		return true;
1535 
1536 	if (class == BPF_ALU || class == BPF_JMP32)
1537 		return false;
1538 
1539 	if (class == BPF_LDX) {
1540 		if (t != SRC_OP)
1541 			return BPF_SIZE(code) == BPF_DW;
1542 		/* LDX source must be ptr. */
1543 		return true;
1544 	}
1545 
1546 	if (class == BPF_STX) {
1547 		if (reg->type != SCALAR_VALUE)
1548 			return true;
1549 		return BPF_SIZE(code) == BPF_DW;
1550 	}
1551 
1552 	if (class == BPF_LD) {
1553 		u8 mode = BPF_MODE(code);
1554 
1555 		/* LD_IMM64 */
1556 		if (mode == BPF_IMM)
1557 			return true;
1558 
1559 		/* Both LD_IND and LD_ABS return 32-bit data. */
1560 		if (t != SRC_OP)
1561 			return  false;
1562 
1563 		/* Implicit ctx ptr. */
1564 		if (regno == BPF_REG_6)
1565 			return true;
1566 
1567 		/* Explicit source could be any width. */
1568 		return true;
1569 	}
1570 
1571 	if (class == BPF_ST)
1572 		/* The only source register for BPF_ST is a ptr. */
1573 		return true;
1574 
1575 	/* Conservatively return true at default. */
1576 	return true;
1577 }
1578 
1579 /* Return TRUE if INSN doesn't have explicit value define. */
1580 static bool insn_no_def(struct bpf_insn *insn)
1581 {
1582 	u8 class = BPF_CLASS(insn->code);
1583 
1584 	return (class == BPF_JMP || class == BPF_JMP32 ||
1585 		class == BPF_STX || class == BPF_ST);
1586 }
1587 
1588 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1589 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1590 {
1591 	if (insn_no_def(insn))
1592 		return false;
1593 
1594 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1595 }
1596 
1597 static void mark_insn_zext(struct bpf_verifier_env *env,
1598 			   struct bpf_reg_state *reg)
1599 {
1600 	s32 def_idx = reg->subreg_def;
1601 
1602 	if (def_idx == DEF_NOT_SUBREG)
1603 		return;
1604 
1605 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1606 	/* The dst will be zero extended, so won't be sub-register anymore. */
1607 	reg->subreg_def = DEF_NOT_SUBREG;
1608 }
1609 
1610 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1611 			 enum reg_arg_type t)
1612 {
1613 	struct bpf_verifier_state *vstate = env->cur_state;
1614 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1615 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1616 	struct bpf_reg_state *reg, *regs = state->regs;
1617 	bool rw64;
1618 
1619 	if (regno >= MAX_BPF_REG) {
1620 		verbose(env, "R%d is invalid\n", regno);
1621 		return -EINVAL;
1622 	}
1623 
1624 	reg = &regs[regno];
1625 	rw64 = is_reg64(env, insn, regno, reg, t);
1626 	if (t == SRC_OP) {
1627 		/* check whether register used as source operand can be read */
1628 		if (reg->type == NOT_INIT) {
1629 			verbose(env, "R%d !read_ok\n", regno);
1630 			return -EACCES;
1631 		}
1632 		/* We don't need to worry about FP liveness because it's read-only */
1633 		if (regno == BPF_REG_FP)
1634 			return 0;
1635 
1636 		if (rw64)
1637 			mark_insn_zext(env, reg);
1638 
1639 		return mark_reg_read(env, reg, reg->parent,
1640 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1641 	} else {
1642 		/* check whether register used as dest operand can be written to */
1643 		if (regno == BPF_REG_FP) {
1644 			verbose(env, "frame pointer is read only\n");
1645 			return -EACCES;
1646 		}
1647 		reg->live |= REG_LIVE_WRITTEN;
1648 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1649 		if (t == DST_OP)
1650 			mark_reg_unknown(env, regs, regno);
1651 	}
1652 	return 0;
1653 }
1654 
1655 /* for any branch, call, exit record the history of jmps in the given state */
1656 static int push_jmp_history(struct bpf_verifier_env *env,
1657 			    struct bpf_verifier_state *cur)
1658 {
1659 	u32 cnt = cur->jmp_history_cnt;
1660 	struct bpf_idx_pair *p;
1661 
1662 	cnt++;
1663 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1664 	if (!p)
1665 		return -ENOMEM;
1666 	p[cnt - 1].idx = env->insn_idx;
1667 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1668 	cur->jmp_history = p;
1669 	cur->jmp_history_cnt = cnt;
1670 	return 0;
1671 }
1672 
1673 /* Backtrack one insn at a time. If idx is not at the top of recorded
1674  * history then previous instruction came from straight line execution.
1675  */
1676 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1677 			     u32 *history)
1678 {
1679 	u32 cnt = *history;
1680 
1681 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1682 		i = st->jmp_history[cnt - 1].prev_idx;
1683 		(*history)--;
1684 	} else {
1685 		i--;
1686 	}
1687 	return i;
1688 }
1689 
1690 /* For given verifier state backtrack_insn() is called from the last insn to
1691  * the first insn. Its purpose is to compute a bitmask of registers and
1692  * stack slots that needs precision in the parent verifier state.
1693  */
1694 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1695 			  u32 *reg_mask, u64 *stack_mask)
1696 {
1697 	const struct bpf_insn_cbs cbs = {
1698 		.cb_print	= verbose,
1699 		.private_data	= env,
1700 	};
1701 	struct bpf_insn *insn = env->prog->insnsi + idx;
1702 	u8 class = BPF_CLASS(insn->code);
1703 	u8 opcode = BPF_OP(insn->code);
1704 	u8 mode = BPF_MODE(insn->code);
1705 	u32 dreg = 1u << insn->dst_reg;
1706 	u32 sreg = 1u << insn->src_reg;
1707 	u32 spi;
1708 
1709 	if (insn->code == 0)
1710 		return 0;
1711 	if (env->log.level & BPF_LOG_LEVEL) {
1712 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1713 		verbose(env, "%d: ", idx);
1714 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1715 	}
1716 
1717 	if (class == BPF_ALU || class == BPF_ALU64) {
1718 		if (!(*reg_mask & dreg))
1719 			return 0;
1720 		if (opcode == BPF_MOV) {
1721 			if (BPF_SRC(insn->code) == BPF_X) {
1722 				/* dreg = sreg
1723 				 * dreg needs precision after this insn
1724 				 * sreg needs precision before this insn
1725 				 */
1726 				*reg_mask &= ~dreg;
1727 				*reg_mask |= sreg;
1728 			} else {
1729 				/* dreg = K
1730 				 * dreg needs precision after this insn.
1731 				 * Corresponding register is already marked
1732 				 * as precise=true in this verifier state.
1733 				 * No further markings in parent are necessary
1734 				 */
1735 				*reg_mask &= ~dreg;
1736 			}
1737 		} else {
1738 			if (BPF_SRC(insn->code) == BPF_X) {
1739 				/* dreg += sreg
1740 				 * both dreg and sreg need precision
1741 				 * before this insn
1742 				 */
1743 				*reg_mask |= sreg;
1744 			} /* else dreg += K
1745 			   * dreg still needs precision before this insn
1746 			   */
1747 		}
1748 	} else if (class == BPF_LDX) {
1749 		if (!(*reg_mask & dreg))
1750 			return 0;
1751 		*reg_mask &= ~dreg;
1752 
1753 		/* scalars can only be spilled into stack w/o losing precision.
1754 		 * Load from any other memory can be zero extended.
1755 		 * The desire to keep that precision is already indicated
1756 		 * by 'precise' mark in corresponding register of this state.
1757 		 * No further tracking necessary.
1758 		 */
1759 		if (insn->src_reg != BPF_REG_FP)
1760 			return 0;
1761 		if (BPF_SIZE(insn->code) != BPF_DW)
1762 			return 0;
1763 
1764 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1765 		 * that [fp - off] slot contains scalar that needs to be
1766 		 * tracked with precision
1767 		 */
1768 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1769 		if (spi >= 64) {
1770 			verbose(env, "BUG spi %d\n", spi);
1771 			WARN_ONCE(1, "verifier backtracking bug");
1772 			return -EFAULT;
1773 		}
1774 		*stack_mask |= 1ull << spi;
1775 	} else if (class == BPF_STX || class == BPF_ST) {
1776 		if (*reg_mask & dreg)
1777 			/* stx & st shouldn't be using _scalar_ dst_reg
1778 			 * to access memory. It means backtracking
1779 			 * encountered a case of pointer subtraction.
1780 			 */
1781 			return -ENOTSUPP;
1782 		/* scalars can only be spilled into stack */
1783 		if (insn->dst_reg != BPF_REG_FP)
1784 			return 0;
1785 		if (BPF_SIZE(insn->code) != BPF_DW)
1786 			return 0;
1787 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1788 		if (spi >= 64) {
1789 			verbose(env, "BUG spi %d\n", spi);
1790 			WARN_ONCE(1, "verifier backtracking bug");
1791 			return -EFAULT;
1792 		}
1793 		if (!(*stack_mask & (1ull << spi)))
1794 			return 0;
1795 		*stack_mask &= ~(1ull << spi);
1796 		if (class == BPF_STX)
1797 			*reg_mask |= sreg;
1798 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1799 		if (opcode == BPF_CALL) {
1800 			if (insn->src_reg == BPF_PSEUDO_CALL)
1801 				return -ENOTSUPP;
1802 			/* regular helper call sets R0 */
1803 			*reg_mask &= ~1;
1804 			if (*reg_mask & 0x3f) {
1805 				/* if backtracing was looking for registers R1-R5
1806 				 * they should have been found already.
1807 				 */
1808 				verbose(env, "BUG regs %x\n", *reg_mask);
1809 				WARN_ONCE(1, "verifier backtracking bug");
1810 				return -EFAULT;
1811 			}
1812 		} else if (opcode == BPF_EXIT) {
1813 			return -ENOTSUPP;
1814 		}
1815 	} else if (class == BPF_LD) {
1816 		if (!(*reg_mask & dreg))
1817 			return 0;
1818 		*reg_mask &= ~dreg;
1819 		/* It's ld_imm64 or ld_abs or ld_ind.
1820 		 * For ld_imm64 no further tracking of precision
1821 		 * into parent is necessary
1822 		 */
1823 		if (mode == BPF_IND || mode == BPF_ABS)
1824 			/* to be analyzed */
1825 			return -ENOTSUPP;
1826 	}
1827 	return 0;
1828 }
1829 
1830 /* the scalar precision tracking algorithm:
1831  * . at the start all registers have precise=false.
1832  * . scalar ranges are tracked as normal through alu and jmp insns.
1833  * . once precise value of the scalar register is used in:
1834  *   .  ptr + scalar alu
1835  *   . if (scalar cond K|scalar)
1836  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1837  *   backtrack through the verifier states and mark all registers and
1838  *   stack slots with spilled constants that these scalar regisers
1839  *   should be precise.
1840  * . during state pruning two registers (or spilled stack slots)
1841  *   are equivalent if both are not precise.
1842  *
1843  * Note the verifier cannot simply walk register parentage chain,
1844  * since many different registers and stack slots could have been
1845  * used to compute single precise scalar.
1846  *
1847  * The approach of starting with precise=true for all registers and then
1848  * backtrack to mark a register as not precise when the verifier detects
1849  * that program doesn't care about specific value (e.g., when helper
1850  * takes register as ARG_ANYTHING parameter) is not safe.
1851  *
1852  * It's ok to walk single parentage chain of the verifier states.
1853  * It's possible that this backtracking will go all the way till 1st insn.
1854  * All other branches will be explored for needing precision later.
1855  *
1856  * The backtracking needs to deal with cases like:
1857  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1858  * r9 -= r8
1859  * r5 = r9
1860  * if r5 > 0x79f goto pc+7
1861  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1862  * r5 += 1
1863  * ...
1864  * call bpf_perf_event_output#25
1865  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1866  *
1867  * and this case:
1868  * r6 = 1
1869  * call foo // uses callee's r6 inside to compute r0
1870  * r0 += r6
1871  * if r0 == 0 goto
1872  *
1873  * to track above reg_mask/stack_mask needs to be independent for each frame.
1874  *
1875  * Also if parent's curframe > frame where backtracking started,
1876  * the verifier need to mark registers in both frames, otherwise callees
1877  * may incorrectly prune callers. This is similar to
1878  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1879  *
1880  * For now backtracking falls back into conservative marking.
1881  */
1882 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1883 				     struct bpf_verifier_state *st)
1884 {
1885 	struct bpf_func_state *func;
1886 	struct bpf_reg_state *reg;
1887 	int i, j;
1888 
1889 	/* big hammer: mark all scalars precise in this path.
1890 	 * pop_stack may still get !precise scalars.
1891 	 */
1892 	for (; st; st = st->parent)
1893 		for (i = 0; i <= st->curframe; i++) {
1894 			func = st->frame[i];
1895 			for (j = 0; j < BPF_REG_FP; j++) {
1896 				reg = &func->regs[j];
1897 				if (reg->type != SCALAR_VALUE)
1898 					continue;
1899 				reg->precise = true;
1900 			}
1901 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1902 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1903 					continue;
1904 				reg = &func->stack[j].spilled_ptr;
1905 				if (reg->type != SCALAR_VALUE)
1906 					continue;
1907 				reg->precise = true;
1908 			}
1909 		}
1910 }
1911 
1912 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1913 				  int spi)
1914 {
1915 	struct bpf_verifier_state *st = env->cur_state;
1916 	int first_idx = st->first_insn_idx;
1917 	int last_idx = env->insn_idx;
1918 	struct bpf_func_state *func;
1919 	struct bpf_reg_state *reg;
1920 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1921 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1922 	bool skip_first = true;
1923 	bool new_marks = false;
1924 	int i, err;
1925 
1926 	if (!env->allow_ptr_leaks)
1927 		/* backtracking is root only for now */
1928 		return 0;
1929 
1930 	func = st->frame[st->curframe];
1931 	if (regno >= 0) {
1932 		reg = &func->regs[regno];
1933 		if (reg->type != SCALAR_VALUE) {
1934 			WARN_ONCE(1, "backtracing misuse");
1935 			return -EFAULT;
1936 		}
1937 		if (!reg->precise)
1938 			new_marks = true;
1939 		else
1940 			reg_mask = 0;
1941 		reg->precise = true;
1942 	}
1943 
1944 	while (spi >= 0) {
1945 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1946 			stack_mask = 0;
1947 			break;
1948 		}
1949 		reg = &func->stack[spi].spilled_ptr;
1950 		if (reg->type != SCALAR_VALUE) {
1951 			stack_mask = 0;
1952 			break;
1953 		}
1954 		if (!reg->precise)
1955 			new_marks = true;
1956 		else
1957 			stack_mask = 0;
1958 		reg->precise = true;
1959 		break;
1960 	}
1961 
1962 	if (!new_marks)
1963 		return 0;
1964 	if (!reg_mask && !stack_mask)
1965 		return 0;
1966 	for (;;) {
1967 		DECLARE_BITMAP(mask, 64);
1968 		u32 history = st->jmp_history_cnt;
1969 
1970 		if (env->log.level & BPF_LOG_LEVEL)
1971 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1972 		for (i = last_idx;;) {
1973 			if (skip_first) {
1974 				err = 0;
1975 				skip_first = false;
1976 			} else {
1977 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1978 			}
1979 			if (err == -ENOTSUPP) {
1980 				mark_all_scalars_precise(env, st);
1981 				return 0;
1982 			} else if (err) {
1983 				return err;
1984 			}
1985 			if (!reg_mask && !stack_mask)
1986 				/* Found assignment(s) into tracked register in this state.
1987 				 * Since this state is already marked, just return.
1988 				 * Nothing to be tracked further in the parent state.
1989 				 */
1990 				return 0;
1991 			if (i == first_idx)
1992 				break;
1993 			i = get_prev_insn_idx(st, i, &history);
1994 			if (i >= env->prog->len) {
1995 				/* This can happen if backtracking reached insn 0
1996 				 * and there are still reg_mask or stack_mask
1997 				 * to backtrack.
1998 				 * It means the backtracking missed the spot where
1999 				 * particular register was initialized with a constant.
2000 				 */
2001 				verbose(env, "BUG backtracking idx %d\n", i);
2002 				WARN_ONCE(1, "verifier backtracking bug");
2003 				return -EFAULT;
2004 			}
2005 		}
2006 		st = st->parent;
2007 		if (!st)
2008 			break;
2009 
2010 		new_marks = false;
2011 		func = st->frame[st->curframe];
2012 		bitmap_from_u64(mask, reg_mask);
2013 		for_each_set_bit(i, mask, 32) {
2014 			reg = &func->regs[i];
2015 			if (reg->type != SCALAR_VALUE) {
2016 				reg_mask &= ~(1u << i);
2017 				continue;
2018 			}
2019 			if (!reg->precise)
2020 				new_marks = true;
2021 			reg->precise = true;
2022 		}
2023 
2024 		bitmap_from_u64(mask, stack_mask);
2025 		for_each_set_bit(i, mask, 64) {
2026 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2027 				/* the sequence of instructions:
2028 				 * 2: (bf) r3 = r10
2029 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2030 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2031 				 * doesn't contain jmps. It's backtracked
2032 				 * as a single block.
2033 				 * During backtracking insn 3 is not recognized as
2034 				 * stack access, so at the end of backtracking
2035 				 * stack slot fp-8 is still marked in stack_mask.
2036 				 * However the parent state may not have accessed
2037 				 * fp-8 and it's "unallocated" stack space.
2038 				 * In such case fallback to conservative.
2039 				 */
2040 				mark_all_scalars_precise(env, st);
2041 				return 0;
2042 			}
2043 
2044 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2045 				stack_mask &= ~(1ull << i);
2046 				continue;
2047 			}
2048 			reg = &func->stack[i].spilled_ptr;
2049 			if (reg->type != SCALAR_VALUE) {
2050 				stack_mask &= ~(1ull << i);
2051 				continue;
2052 			}
2053 			if (!reg->precise)
2054 				new_marks = true;
2055 			reg->precise = true;
2056 		}
2057 		if (env->log.level & BPF_LOG_LEVEL) {
2058 			print_verifier_state(env, func);
2059 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2060 				new_marks ? "didn't have" : "already had",
2061 				reg_mask, stack_mask);
2062 		}
2063 
2064 		if (!reg_mask && !stack_mask)
2065 			break;
2066 		if (!new_marks)
2067 			break;
2068 
2069 		last_idx = st->last_insn_idx;
2070 		first_idx = st->first_insn_idx;
2071 	}
2072 	return 0;
2073 }
2074 
2075 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2076 {
2077 	return __mark_chain_precision(env, regno, -1);
2078 }
2079 
2080 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2081 {
2082 	return __mark_chain_precision(env, -1, spi);
2083 }
2084 
2085 static bool is_spillable_regtype(enum bpf_reg_type type)
2086 {
2087 	switch (type) {
2088 	case PTR_TO_MAP_VALUE:
2089 	case PTR_TO_MAP_VALUE_OR_NULL:
2090 	case PTR_TO_STACK:
2091 	case PTR_TO_CTX:
2092 	case PTR_TO_PACKET:
2093 	case PTR_TO_PACKET_META:
2094 	case PTR_TO_PACKET_END:
2095 	case PTR_TO_FLOW_KEYS:
2096 	case CONST_PTR_TO_MAP:
2097 	case PTR_TO_SOCKET:
2098 	case PTR_TO_SOCKET_OR_NULL:
2099 	case PTR_TO_SOCK_COMMON:
2100 	case PTR_TO_SOCK_COMMON_OR_NULL:
2101 	case PTR_TO_TCP_SOCK:
2102 	case PTR_TO_TCP_SOCK_OR_NULL:
2103 	case PTR_TO_XDP_SOCK:
2104 	case PTR_TO_BTF_ID:
2105 		return true;
2106 	default:
2107 		return false;
2108 	}
2109 }
2110 
2111 /* Does this register contain a constant zero? */
2112 static bool register_is_null(struct bpf_reg_state *reg)
2113 {
2114 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2115 }
2116 
2117 static bool register_is_const(struct bpf_reg_state *reg)
2118 {
2119 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2120 }
2121 
2122 static void save_register_state(struct bpf_func_state *state,
2123 				int spi, struct bpf_reg_state *reg)
2124 {
2125 	int i;
2126 
2127 	state->stack[spi].spilled_ptr = *reg;
2128 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2129 
2130 	for (i = 0; i < BPF_REG_SIZE; i++)
2131 		state->stack[spi].slot_type[i] = STACK_SPILL;
2132 }
2133 
2134 /* check_stack_read/write functions track spill/fill of registers,
2135  * stack boundary and alignment are checked in check_mem_access()
2136  */
2137 static int check_stack_write(struct bpf_verifier_env *env,
2138 			     struct bpf_func_state *state, /* func where register points to */
2139 			     int off, int size, int value_regno, int insn_idx)
2140 {
2141 	struct bpf_func_state *cur; /* state of the current function */
2142 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2143 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2144 	struct bpf_reg_state *reg = NULL;
2145 
2146 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2147 				 state->acquired_refs, true);
2148 	if (err)
2149 		return err;
2150 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2151 	 * so it's aligned access and [off, off + size) are within stack limits
2152 	 */
2153 	if (!env->allow_ptr_leaks &&
2154 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2155 	    size != BPF_REG_SIZE) {
2156 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2157 		return -EACCES;
2158 	}
2159 
2160 	cur = env->cur_state->frame[env->cur_state->curframe];
2161 	if (value_regno >= 0)
2162 		reg = &cur->regs[value_regno];
2163 
2164 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2165 	    !register_is_null(reg) && env->allow_ptr_leaks) {
2166 		if (dst_reg != BPF_REG_FP) {
2167 			/* The backtracking logic can only recognize explicit
2168 			 * stack slot address like [fp - 8]. Other spill of
2169 			 * scalar via different register has to be conervative.
2170 			 * Backtrack from here and mark all registers as precise
2171 			 * that contributed into 'reg' being a constant.
2172 			 */
2173 			err = mark_chain_precision(env, value_regno);
2174 			if (err)
2175 				return err;
2176 		}
2177 		save_register_state(state, spi, reg);
2178 	} else if (reg && is_spillable_regtype(reg->type)) {
2179 		/* register containing pointer is being spilled into stack */
2180 		if (size != BPF_REG_SIZE) {
2181 			verbose_linfo(env, insn_idx, "; ");
2182 			verbose(env, "invalid size of register spill\n");
2183 			return -EACCES;
2184 		}
2185 
2186 		if (state != cur && reg->type == PTR_TO_STACK) {
2187 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2188 			return -EINVAL;
2189 		}
2190 
2191 		if (!env->allow_ptr_leaks) {
2192 			bool sanitize = false;
2193 
2194 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2195 			    register_is_const(&state->stack[spi].spilled_ptr))
2196 				sanitize = true;
2197 			for (i = 0; i < BPF_REG_SIZE; i++)
2198 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2199 					sanitize = true;
2200 					break;
2201 				}
2202 			if (sanitize) {
2203 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2204 				int soff = (-spi - 1) * BPF_REG_SIZE;
2205 
2206 				/* detected reuse of integer stack slot with a pointer
2207 				 * which means either llvm is reusing stack slot or
2208 				 * an attacker is trying to exploit CVE-2018-3639
2209 				 * (speculative store bypass)
2210 				 * Have to sanitize that slot with preemptive
2211 				 * store of zero.
2212 				 */
2213 				if (*poff && *poff != soff) {
2214 					/* disallow programs where single insn stores
2215 					 * into two different stack slots, since verifier
2216 					 * cannot sanitize them
2217 					 */
2218 					verbose(env,
2219 						"insn %d cannot access two stack slots fp%d and fp%d",
2220 						insn_idx, *poff, soff);
2221 					return -EINVAL;
2222 				}
2223 				*poff = soff;
2224 			}
2225 		}
2226 		save_register_state(state, spi, reg);
2227 	} else {
2228 		u8 type = STACK_MISC;
2229 
2230 		/* regular write of data into stack destroys any spilled ptr */
2231 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2232 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2233 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2234 			for (i = 0; i < BPF_REG_SIZE; i++)
2235 				state->stack[spi].slot_type[i] = STACK_MISC;
2236 
2237 		/* only mark the slot as written if all 8 bytes were written
2238 		 * otherwise read propagation may incorrectly stop too soon
2239 		 * when stack slots are partially written.
2240 		 * This heuristic means that read propagation will be
2241 		 * conservative, since it will add reg_live_read marks
2242 		 * to stack slots all the way to first state when programs
2243 		 * writes+reads less than 8 bytes
2244 		 */
2245 		if (size == BPF_REG_SIZE)
2246 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2247 
2248 		/* when we zero initialize stack slots mark them as such */
2249 		if (reg && register_is_null(reg)) {
2250 			/* backtracking doesn't work for STACK_ZERO yet. */
2251 			err = mark_chain_precision(env, value_regno);
2252 			if (err)
2253 				return err;
2254 			type = STACK_ZERO;
2255 		}
2256 
2257 		/* Mark slots affected by this stack write. */
2258 		for (i = 0; i < size; i++)
2259 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2260 				type;
2261 	}
2262 	return 0;
2263 }
2264 
2265 static int check_stack_read(struct bpf_verifier_env *env,
2266 			    struct bpf_func_state *reg_state /* func where register points to */,
2267 			    int off, int size, int value_regno)
2268 {
2269 	struct bpf_verifier_state *vstate = env->cur_state;
2270 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2271 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2272 	struct bpf_reg_state *reg;
2273 	u8 *stype;
2274 
2275 	if (reg_state->allocated_stack <= slot) {
2276 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2277 			off, size);
2278 		return -EACCES;
2279 	}
2280 	stype = reg_state->stack[spi].slot_type;
2281 	reg = &reg_state->stack[spi].spilled_ptr;
2282 
2283 	if (stype[0] == STACK_SPILL) {
2284 		if (size != BPF_REG_SIZE) {
2285 			if (reg->type != SCALAR_VALUE) {
2286 				verbose_linfo(env, env->insn_idx, "; ");
2287 				verbose(env, "invalid size of register fill\n");
2288 				return -EACCES;
2289 			}
2290 			if (value_regno >= 0) {
2291 				mark_reg_unknown(env, state->regs, value_regno);
2292 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2293 			}
2294 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2295 			return 0;
2296 		}
2297 		for (i = 1; i < BPF_REG_SIZE; i++) {
2298 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2299 				verbose(env, "corrupted spill memory\n");
2300 				return -EACCES;
2301 			}
2302 		}
2303 
2304 		if (value_regno >= 0) {
2305 			/* restore register state from stack */
2306 			state->regs[value_regno] = *reg;
2307 			/* mark reg as written since spilled pointer state likely
2308 			 * has its liveness marks cleared by is_state_visited()
2309 			 * which resets stack/reg liveness for state transitions
2310 			 */
2311 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2312 		}
2313 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2314 	} else {
2315 		int zeros = 0;
2316 
2317 		for (i = 0; i < size; i++) {
2318 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2319 				continue;
2320 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2321 				zeros++;
2322 				continue;
2323 			}
2324 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2325 				off, i, size);
2326 			return -EACCES;
2327 		}
2328 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2329 		if (value_regno >= 0) {
2330 			if (zeros == size) {
2331 				/* any size read into register is zero extended,
2332 				 * so the whole register == const_zero
2333 				 */
2334 				__mark_reg_const_zero(&state->regs[value_regno]);
2335 				/* backtracking doesn't support STACK_ZERO yet,
2336 				 * so mark it precise here, so that later
2337 				 * backtracking can stop here.
2338 				 * Backtracking may not need this if this register
2339 				 * doesn't participate in pointer adjustment.
2340 				 * Forward propagation of precise flag is not
2341 				 * necessary either. This mark is only to stop
2342 				 * backtracking. Any register that contributed
2343 				 * to const 0 was marked precise before spill.
2344 				 */
2345 				state->regs[value_regno].precise = true;
2346 			} else {
2347 				/* have read misc data from the stack */
2348 				mark_reg_unknown(env, state->regs, value_regno);
2349 			}
2350 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2351 		}
2352 	}
2353 	return 0;
2354 }
2355 
2356 static int check_stack_access(struct bpf_verifier_env *env,
2357 			      const struct bpf_reg_state *reg,
2358 			      int off, int size)
2359 {
2360 	/* Stack accesses must be at a fixed offset, so that we
2361 	 * can determine what type of data were returned. See
2362 	 * check_stack_read().
2363 	 */
2364 	if (!tnum_is_const(reg->var_off)) {
2365 		char tn_buf[48];
2366 
2367 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2368 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2369 			tn_buf, off, size);
2370 		return -EACCES;
2371 	}
2372 
2373 	if (off >= 0 || off < -MAX_BPF_STACK) {
2374 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2375 		return -EACCES;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2382 				 int off, int size, enum bpf_access_type type)
2383 {
2384 	struct bpf_reg_state *regs = cur_regs(env);
2385 	struct bpf_map *map = regs[regno].map_ptr;
2386 	u32 cap = bpf_map_flags_to_cap(map);
2387 
2388 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2389 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2390 			map->value_size, off, size);
2391 		return -EACCES;
2392 	}
2393 
2394 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2395 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2396 			map->value_size, off, size);
2397 		return -EACCES;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 /* check read/write into map element returned by bpf_map_lookup_elem() */
2404 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2405 			      int size, bool zero_size_allowed)
2406 {
2407 	struct bpf_reg_state *regs = cur_regs(env);
2408 	struct bpf_map *map = regs[regno].map_ptr;
2409 
2410 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2411 	    off + size > map->value_size) {
2412 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2413 			map->value_size, off, size);
2414 		return -EACCES;
2415 	}
2416 	return 0;
2417 }
2418 
2419 /* check read/write into a map element with possible variable offset */
2420 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2421 			    int off, int size, bool zero_size_allowed)
2422 {
2423 	struct bpf_verifier_state *vstate = env->cur_state;
2424 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2425 	struct bpf_reg_state *reg = &state->regs[regno];
2426 	int err;
2427 
2428 	/* We may have adjusted the register to this map value, so we
2429 	 * need to try adding each of min_value and max_value to off
2430 	 * to make sure our theoretical access will be safe.
2431 	 */
2432 	if (env->log.level & BPF_LOG_LEVEL)
2433 		print_verifier_state(env, state);
2434 
2435 	/* The minimum value is only important with signed
2436 	 * comparisons where we can't assume the floor of a
2437 	 * value is 0.  If we are using signed variables for our
2438 	 * index'es we need to make sure that whatever we use
2439 	 * will have a set floor within our range.
2440 	 */
2441 	if (reg->smin_value < 0 &&
2442 	    (reg->smin_value == S64_MIN ||
2443 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2444 	      reg->smin_value + off < 0)) {
2445 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2446 			regno);
2447 		return -EACCES;
2448 	}
2449 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2450 				 zero_size_allowed);
2451 	if (err) {
2452 		verbose(env, "R%d min value is outside of the array range\n",
2453 			regno);
2454 		return err;
2455 	}
2456 
2457 	/* If we haven't set a max value then we need to bail since we can't be
2458 	 * sure we won't do bad things.
2459 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2460 	 */
2461 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2462 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2463 			regno);
2464 		return -EACCES;
2465 	}
2466 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2467 				 zero_size_allowed);
2468 	if (err)
2469 		verbose(env, "R%d max value is outside of the array range\n",
2470 			regno);
2471 
2472 	if (map_value_has_spin_lock(reg->map_ptr)) {
2473 		u32 lock = reg->map_ptr->spin_lock_off;
2474 
2475 		/* if any part of struct bpf_spin_lock can be touched by
2476 		 * load/store reject this program.
2477 		 * To check that [x1, x2) overlaps with [y1, y2)
2478 		 * it is sufficient to check x1 < y2 && y1 < x2.
2479 		 */
2480 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2481 		     lock < reg->umax_value + off + size) {
2482 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2483 			return -EACCES;
2484 		}
2485 	}
2486 	return err;
2487 }
2488 
2489 #define MAX_PACKET_OFF 0xffff
2490 
2491 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2492 				       const struct bpf_call_arg_meta *meta,
2493 				       enum bpf_access_type t)
2494 {
2495 	switch (env->prog->type) {
2496 	/* Program types only with direct read access go here! */
2497 	case BPF_PROG_TYPE_LWT_IN:
2498 	case BPF_PROG_TYPE_LWT_OUT:
2499 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2500 	case BPF_PROG_TYPE_SK_REUSEPORT:
2501 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2502 	case BPF_PROG_TYPE_CGROUP_SKB:
2503 		if (t == BPF_WRITE)
2504 			return false;
2505 		/* fallthrough */
2506 
2507 	/* Program types with direct read + write access go here! */
2508 	case BPF_PROG_TYPE_SCHED_CLS:
2509 	case BPF_PROG_TYPE_SCHED_ACT:
2510 	case BPF_PROG_TYPE_XDP:
2511 	case BPF_PROG_TYPE_LWT_XMIT:
2512 	case BPF_PROG_TYPE_SK_SKB:
2513 	case BPF_PROG_TYPE_SK_MSG:
2514 		if (meta)
2515 			return meta->pkt_access;
2516 
2517 		env->seen_direct_write = true;
2518 		return true;
2519 
2520 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2521 		if (t == BPF_WRITE)
2522 			env->seen_direct_write = true;
2523 
2524 		return true;
2525 
2526 	default:
2527 		return false;
2528 	}
2529 }
2530 
2531 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2532 				 int off, int size, bool zero_size_allowed)
2533 {
2534 	struct bpf_reg_state *regs = cur_regs(env);
2535 	struct bpf_reg_state *reg = &regs[regno];
2536 
2537 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2538 	    (u64)off + size > reg->range) {
2539 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2540 			off, size, regno, reg->id, reg->off, reg->range);
2541 		return -EACCES;
2542 	}
2543 	return 0;
2544 }
2545 
2546 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2547 			       int size, bool zero_size_allowed)
2548 {
2549 	struct bpf_reg_state *regs = cur_regs(env);
2550 	struct bpf_reg_state *reg = &regs[regno];
2551 	int err;
2552 
2553 	/* We may have added a variable offset to the packet pointer; but any
2554 	 * reg->range we have comes after that.  We are only checking the fixed
2555 	 * offset.
2556 	 */
2557 
2558 	/* We don't allow negative numbers, because we aren't tracking enough
2559 	 * detail to prove they're safe.
2560 	 */
2561 	if (reg->smin_value < 0) {
2562 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2563 			regno);
2564 		return -EACCES;
2565 	}
2566 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2567 	if (err) {
2568 		verbose(env, "R%d offset is outside of the packet\n", regno);
2569 		return err;
2570 	}
2571 
2572 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2573 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2574 	 * otherwise find_good_pkt_pointers would have refused to set range info
2575 	 * that __check_packet_access would have rejected this pkt access.
2576 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2577 	 */
2578 	env->prog->aux->max_pkt_offset =
2579 		max_t(u32, env->prog->aux->max_pkt_offset,
2580 		      off + reg->umax_value + size - 1);
2581 
2582 	return err;
2583 }
2584 
2585 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2586 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2587 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2588 			    u32 *btf_id)
2589 {
2590 	struct bpf_insn_access_aux info = {
2591 		.reg_type = *reg_type,
2592 		.log = &env->log,
2593 	};
2594 
2595 	if (env->ops->is_valid_access &&
2596 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2597 		/* A non zero info.ctx_field_size indicates that this field is a
2598 		 * candidate for later verifier transformation to load the whole
2599 		 * field and then apply a mask when accessed with a narrower
2600 		 * access than actual ctx access size. A zero info.ctx_field_size
2601 		 * will only allow for whole field access and rejects any other
2602 		 * type of narrower access.
2603 		 */
2604 		*reg_type = info.reg_type;
2605 
2606 		if (*reg_type == PTR_TO_BTF_ID)
2607 			*btf_id = info.btf_id;
2608 		else
2609 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2610 		/* remember the offset of last byte accessed in ctx */
2611 		if (env->prog->aux->max_ctx_offset < off + size)
2612 			env->prog->aux->max_ctx_offset = off + size;
2613 		return 0;
2614 	}
2615 
2616 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2617 	return -EACCES;
2618 }
2619 
2620 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2621 				  int size)
2622 {
2623 	if (size < 0 || off < 0 ||
2624 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2625 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2626 			off, size);
2627 		return -EACCES;
2628 	}
2629 	return 0;
2630 }
2631 
2632 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2633 			     u32 regno, int off, int size,
2634 			     enum bpf_access_type t)
2635 {
2636 	struct bpf_reg_state *regs = cur_regs(env);
2637 	struct bpf_reg_state *reg = &regs[regno];
2638 	struct bpf_insn_access_aux info = {};
2639 	bool valid;
2640 
2641 	if (reg->smin_value < 0) {
2642 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2643 			regno);
2644 		return -EACCES;
2645 	}
2646 
2647 	switch (reg->type) {
2648 	case PTR_TO_SOCK_COMMON:
2649 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2650 		break;
2651 	case PTR_TO_SOCKET:
2652 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2653 		break;
2654 	case PTR_TO_TCP_SOCK:
2655 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2656 		break;
2657 	case PTR_TO_XDP_SOCK:
2658 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2659 		break;
2660 	default:
2661 		valid = false;
2662 	}
2663 
2664 
2665 	if (valid) {
2666 		env->insn_aux_data[insn_idx].ctx_field_size =
2667 			info.ctx_field_size;
2668 		return 0;
2669 	}
2670 
2671 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2672 		regno, reg_type_str[reg->type], off, size);
2673 
2674 	return -EACCES;
2675 }
2676 
2677 static bool __is_pointer_value(bool allow_ptr_leaks,
2678 			       const struct bpf_reg_state *reg)
2679 {
2680 	if (allow_ptr_leaks)
2681 		return false;
2682 
2683 	return reg->type != SCALAR_VALUE;
2684 }
2685 
2686 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2687 {
2688 	return cur_regs(env) + regno;
2689 }
2690 
2691 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2692 {
2693 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2694 }
2695 
2696 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2697 {
2698 	const struct bpf_reg_state *reg = reg_state(env, regno);
2699 
2700 	return reg->type == PTR_TO_CTX;
2701 }
2702 
2703 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2704 {
2705 	const struct bpf_reg_state *reg = reg_state(env, regno);
2706 
2707 	return type_is_sk_pointer(reg->type);
2708 }
2709 
2710 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2711 {
2712 	const struct bpf_reg_state *reg = reg_state(env, regno);
2713 
2714 	return type_is_pkt_pointer(reg->type);
2715 }
2716 
2717 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2718 {
2719 	const struct bpf_reg_state *reg = reg_state(env, regno);
2720 
2721 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2722 	return reg->type == PTR_TO_FLOW_KEYS;
2723 }
2724 
2725 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2726 				   const struct bpf_reg_state *reg,
2727 				   int off, int size, bool strict)
2728 {
2729 	struct tnum reg_off;
2730 	int ip_align;
2731 
2732 	/* Byte size accesses are always allowed. */
2733 	if (!strict || size == 1)
2734 		return 0;
2735 
2736 	/* For platforms that do not have a Kconfig enabling
2737 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2738 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2739 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2740 	 * to this code only in strict mode where we want to emulate
2741 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2742 	 * unconditional IP align value of '2'.
2743 	 */
2744 	ip_align = 2;
2745 
2746 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2747 	if (!tnum_is_aligned(reg_off, size)) {
2748 		char tn_buf[48];
2749 
2750 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2751 		verbose(env,
2752 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2753 			ip_align, tn_buf, reg->off, off, size);
2754 		return -EACCES;
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2761 				       const struct bpf_reg_state *reg,
2762 				       const char *pointer_desc,
2763 				       int off, int size, bool strict)
2764 {
2765 	struct tnum reg_off;
2766 
2767 	/* Byte size accesses are always allowed. */
2768 	if (!strict || size == 1)
2769 		return 0;
2770 
2771 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2772 	if (!tnum_is_aligned(reg_off, size)) {
2773 		char tn_buf[48];
2774 
2775 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2776 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2777 			pointer_desc, tn_buf, reg->off, off, size);
2778 		return -EACCES;
2779 	}
2780 
2781 	return 0;
2782 }
2783 
2784 static int check_ptr_alignment(struct bpf_verifier_env *env,
2785 			       const struct bpf_reg_state *reg, int off,
2786 			       int size, bool strict_alignment_once)
2787 {
2788 	bool strict = env->strict_alignment || strict_alignment_once;
2789 	const char *pointer_desc = "";
2790 
2791 	switch (reg->type) {
2792 	case PTR_TO_PACKET:
2793 	case PTR_TO_PACKET_META:
2794 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2795 		 * right in front, treat it the very same way.
2796 		 */
2797 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2798 	case PTR_TO_FLOW_KEYS:
2799 		pointer_desc = "flow keys ";
2800 		break;
2801 	case PTR_TO_MAP_VALUE:
2802 		pointer_desc = "value ";
2803 		break;
2804 	case PTR_TO_CTX:
2805 		pointer_desc = "context ";
2806 		break;
2807 	case PTR_TO_STACK:
2808 		pointer_desc = "stack ";
2809 		/* The stack spill tracking logic in check_stack_write()
2810 		 * and check_stack_read() relies on stack accesses being
2811 		 * aligned.
2812 		 */
2813 		strict = true;
2814 		break;
2815 	case PTR_TO_SOCKET:
2816 		pointer_desc = "sock ";
2817 		break;
2818 	case PTR_TO_SOCK_COMMON:
2819 		pointer_desc = "sock_common ";
2820 		break;
2821 	case PTR_TO_TCP_SOCK:
2822 		pointer_desc = "tcp_sock ";
2823 		break;
2824 	case PTR_TO_XDP_SOCK:
2825 		pointer_desc = "xdp_sock ";
2826 		break;
2827 	default:
2828 		break;
2829 	}
2830 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2831 					   strict);
2832 }
2833 
2834 static int update_stack_depth(struct bpf_verifier_env *env,
2835 			      const struct bpf_func_state *func,
2836 			      int off)
2837 {
2838 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2839 
2840 	if (stack >= -off)
2841 		return 0;
2842 
2843 	/* update known max for given subprogram */
2844 	env->subprog_info[func->subprogno].stack_depth = -off;
2845 	return 0;
2846 }
2847 
2848 /* starting from main bpf function walk all instructions of the function
2849  * and recursively walk all callees that given function can call.
2850  * Ignore jump and exit insns.
2851  * Since recursion is prevented by check_cfg() this algorithm
2852  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2853  */
2854 static int check_max_stack_depth(struct bpf_verifier_env *env)
2855 {
2856 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2857 	struct bpf_subprog_info *subprog = env->subprog_info;
2858 	struct bpf_insn *insn = env->prog->insnsi;
2859 	int ret_insn[MAX_CALL_FRAMES];
2860 	int ret_prog[MAX_CALL_FRAMES];
2861 
2862 process_func:
2863 	/* round up to 32-bytes, since this is granularity
2864 	 * of interpreter stack size
2865 	 */
2866 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2867 	if (depth > MAX_BPF_STACK) {
2868 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2869 			frame + 1, depth);
2870 		return -EACCES;
2871 	}
2872 continue_func:
2873 	subprog_end = subprog[idx + 1].start;
2874 	for (; i < subprog_end; i++) {
2875 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2876 			continue;
2877 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2878 			continue;
2879 		/* remember insn and function to return to */
2880 		ret_insn[frame] = i + 1;
2881 		ret_prog[frame] = idx;
2882 
2883 		/* find the callee */
2884 		i = i + insn[i].imm + 1;
2885 		idx = find_subprog(env, i);
2886 		if (idx < 0) {
2887 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2888 				  i);
2889 			return -EFAULT;
2890 		}
2891 		frame++;
2892 		if (frame >= MAX_CALL_FRAMES) {
2893 			verbose(env, "the call stack of %d frames is too deep !\n",
2894 				frame);
2895 			return -E2BIG;
2896 		}
2897 		goto process_func;
2898 	}
2899 	/* end of for() loop means the last insn of the 'subprog'
2900 	 * was reached. Doesn't matter whether it was JA or EXIT
2901 	 */
2902 	if (frame == 0)
2903 		return 0;
2904 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2905 	frame--;
2906 	i = ret_insn[frame];
2907 	idx = ret_prog[frame];
2908 	goto continue_func;
2909 }
2910 
2911 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2912 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2913 				  const struct bpf_insn *insn, int idx)
2914 {
2915 	int start = idx + insn->imm + 1, subprog;
2916 
2917 	subprog = find_subprog(env, start);
2918 	if (subprog < 0) {
2919 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2920 			  start);
2921 		return -EFAULT;
2922 	}
2923 	return env->subprog_info[subprog].stack_depth;
2924 }
2925 #endif
2926 
2927 int check_ctx_reg(struct bpf_verifier_env *env,
2928 		  const struct bpf_reg_state *reg, int regno)
2929 {
2930 	/* Access to ctx or passing it to a helper is only allowed in
2931 	 * its original, unmodified form.
2932 	 */
2933 
2934 	if (reg->off) {
2935 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2936 			regno, reg->off);
2937 		return -EACCES;
2938 	}
2939 
2940 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2941 		char tn_buf[48];
2942 
2943 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2944 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2945 		return -EACCES;
2946 	}
2947 
2948 	return 0;
2949 }
2950 
2951 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2952 				  const struct bpf_reg_state *reg,
2953 				  int regno, int off, int size)
2954 {
2955 	if (off < 0) {
2956 		verbose(env,
2957 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2958 			regno, off, size);
2959 		return -EACCES;
2960 	}
2961 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2962 		char tn_buf[48];
2963 
2964 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2965 		verbose(env,
2966 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2967 			regno, off, tn_buf);
2968 		return -EACCES;
2969 	}
2970 	if (off + size > env->prog->aux->max_tp_access)
2971 		env->prog->aux->max_tp_access = off + size;
2972 
2973 	return 0;
2974 }
2975 
2976 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
2977 static void zext_32_to_64(struct bpf_reg_state *reg)
2978 {
2979 	reg->var_off = tnum_subreg(reg->var_off);
2980 	__reg_assign_32_into_64(reg);
2981 }
2982 
2983 /* truncate register to smaller size (in bytes)
2984  * must be called with size < BPF_REG_SIZE
2985  */
2986 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2987 {
2988 	u64 mask;
2989 
2990 	/* clear high bits in bit representation */
2991 	reg->var_off = tnum_cast(reg->var_off, size);
2992 
2993 	/* fix arithmetic bounds */
2994 	mask = ((u64)1 << (size * 8)) - 1;
2995 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2996 		reg->umin_value &= mask;
2997 		reg->umax_value &= mask;
2998 	} else {
2999 		reg->umin_value = 0;
3000 		reg->umax_value = mask;
3001 	}
3002 	reg->smin_value = reg->umin_value;
3003 	reg->smax_value = reg->umax_value;
3004 
3005 	/* If size is smaller than 32bit register the 32bit register
3006 	 * values are also truncated so we push 64-bit bounds into
3007 	 * 32-bit bounds. Above were truncated < 32-bits already.
3008 	 */
3009 	if (size >= 4)
3010 		return;
3011 	__reg_combine_64_into_32(reg);
3012 }
3013 
3014 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3015 {
3016 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3017 }
3018 
3019 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3020 {
3021 	void *ptr;
3022 	u64 addr;
3023 	int err;
3024 
3025 	err = map->ops->map_direct_value_addr(map, &addr, off);
3026 	if (err)
3027 		return err;
3028 	ptr = (void *)(long)addr + off;
3029 
3030 	switch (size) {
3031 	case sizeof(u8):
3032 		*val = (u64)*(u8 *)ptr;
3033 		break;
3034 	case sizeof(u16):
3035 		*val = (u64)*(u16 *)ptr;
3036 		break;
3037 	case sizeof(u32):
3038 		*val = (u64)*(u32 *)ptr;
3039 		break;
3040 	case sizeof(u64):
3041 		*val = *(u64 *)ptr;
3042 		break;
3043 	default:
3044 		return -EINVAL;
3045 	}
3046 	return 0;
3047 }
3048 
3049 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3050 				   struct bpf_reg_state *regs,
3051 				   int regno, int off, int size,
3052 				   enum bpf_access_type atype,
3053 				   int value_regno)
3054 {
3055 	struct bpf_reg_state *reg = regs + regno;
3056 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3057 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3058 	u32 btf_id;
3059 	int ret;
3060 
3061 	if (off < 0) {
3062 		verbose(env,
3063 			"R%d is ptr_%s invalid negative access: off=%d\n",
3064 			regno, tname, off);
3065 		return -EACCES;
3066 	}
3067 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3068 		char tn_buf[48];
3069 
3070 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3071 		verbose(env,
3072 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3073 			regno, tname, off, tn_buf);
3074 		return -EACCES;
3075 	}
3076 
3077 	if (env->ops->btf_struct_access) {
3078 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3079 						  atype, &btf_id);
3080 	} else {
3081 		if (atype != BPF_READ) {
3082 			verbose(env, "only read is supported\n");
3083 			return -EACCES;
3084 		}
3085 
3086 		ret = btf_struct_access(&env->log, t, off, size, atype,
3087 					&btf_id);
3088 	}
3089 
3090 	if (ret < 0)
3091 		return ret;
3092 
3093 	if (atype == BPF_READ) {
3094 		if (ret == SCALAR_VALUE) {
3095 			mark_reg_unknown(env, regs, value_regno);
3096 			return 0;
3097 		}
3098 		mark_reg_known_zero(env, regs, value_regno);
3099 		regs[value_regno].type = PTR_TO_BTF_ID;
3100 		regs[value_regno].btf_id = btf_id;
3101 	}
3102 
3103 	return 0;
3104 }
3105 
3106 /* check whether memory at (regno + off) is accessible for t = (read | write)
3107  * if t==write, value_regno is a register which value is stored into memory
3108  * if t==read, value_regno is a register which will receive the value from memory
3109  * if t==write && value_regno==-1, some unknown value is stored into memory
3110  * if t==read && value_regno==-1, don't care what we read from memory
3111  */
3112 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3113 			    int off, int bpf_size, enum bpf_access_type t,
3114 			    int value_regno, bool strict_alignment_once)
3115 {
3116 	struct bpf_reg_state *regs = cur_regs(env);
3117 	struct bpf_reg_state *reg = regs + regno;
3118 	struct bpf_func_state *state;
3119 	int size, err = 0;
3120 
3121 	size = bpf_size_to_bytes(bpf_size);
3122 	if (size < 0)
3123 		return size;
3124 
3125 	/* alignment checks will add in reg->off themselves */
3126 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3127 	if (err)
3128 		return err;
3129 
3130 	/* for access checks, reg->off is just part of off */
3131 	off += reg->off;
3132 
3133 	if (reg->type == PTR_TO_MAP_VALUE) {
3134 		if (t == BPF_WRITE && value_regno >= 0 &&
3135 		    is_pointer_value(env, value_regno)) {
3136 			verbose(env, "R%d leaks addr into map\n", value_regno);
3137 			return -EACCES;
3138 		}
3139 		err = check_map_access_type(env, regno, off, size, t);
3140 		if (err)
3141 			return err;
3142 		err = check_map_access(env, regno, off, size, false);
3143 		if (!err && t == BPF_READ && value_regno >= 0) {
3144 			struct bpf_map *map = reg->map_ptr;
3145 
3146 			/* if map is read-only, track its contents as scalars */
3147 			if (tnum_is_const(reg->var_off) &&
3148 			    bpf_map_is_rdonly(map) &&
3149 			    map->ops->map_direct_value_addr) {
3150 				int map_off = off + reg->var_off.value;
3151 				u64 val = 0;
3152 
3153 				err = bpf_map_direct_read(map, map_off, size,
3154 							  &val);
3155 				if (err)
3156 					return err;
3157 
3158 				regs[value_regno].type = SCALAR_VALUE;
3159 				__mark_reg_known(&regs[value_regno], val);
3160 			} else {
3161 				mark_reg_unknown(env, regs, value_regno);
3162 			}
3163 		}
3164 	} else if (reg->type == PTR_TO_CTX) {
3165 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3166 		u32 btf_id = 0;
3167 
3168 		if (t == BPF_WRITE && value_regno >= 0 &&
3169 		    is_pointer_value(env, value_regno)) {
3170 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3171 			return -EACCES;
3172 		}
3173 
3174 		err = check_ctx_reg(env, reg, regno);
3175 		if (err < 0)
3176 			return err;
3177 
3178 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3179 		if (err)
3180 			verbose_linfo(env, insn_idx, "; ");
3181 		if (!err && t == BPF_READ && value_regno >= 0) {
3182 			/* ctx access returns either a scalar, or a
3183 			 * PTR_TO_PACKET[_META,_END]. In the latter
3184 			 * case, we know the offset is zero.
3185 			 */
3186 			if (reg_type == SCALAR_VALUE) {
3187 				mark_reg_unknown(env, regs, value_regno);
3188 			} else {
3189 				mark_reg_known_zero(env, regs,
3190 						    value_regno);
3191 				if (reg_type_may_be_null(reg_type))
3192 					regs[value_regno].id = ++env->id_gen;
3193 				/* A load of ctx field could have different
3194 				 * actual load size with the one encoded in the
3195 				 * insn. When the dst is PTR, it is for sure not
3196 				 * a sub-register.
3197 				 */
3198 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3199 				if (reg_type == PTR_TO_BTF_ID)
3200 					regs[value_regno].btf_id = btf_id;
3201 			}
3202 			regs[value_regno].type = reg_type;
3203 		}
3204 
3205 	} else if (reg->type == PTR_TO_STACK) {
3206 		off += reg->var_off.value;
3207 		err = check_stack_access(env, reg, off, size);
3208 		if (err)
3209 			return err;
3210 
3211 		state = func(env, reg);
3212 		err = update_stack_depth(env, state, off);
3213 		if (err)
3214 			return err;
3215 
3216 		if (t == BPF_WRITE)
3217 			err = check_stack_write(env, state, off, size,
3218 						value_regno, insn_idx);
3219 		else
3220 			err = check_stack_read(env, state, off, size,
3221 					       value_regno);
3222 	} else if (reg_is_pkt_pointer(reg)) {
3223 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3224 			verbose(env, "cannot write into packet\n");
3225 			return -EACCES;
3226 		}
3227 		if (t == BPF_WRITE && value_regno >= 0 &&
3228 		    is_pointer_value(env, value_regno)) {
3229 			verbose(env, "R%d leaks addr into packet\n",
3230 				value_regno);
3231 			return -EACCES;
3232 		}
3233 		err = check_packet_access(env, regno, off, size, false);
3234 		if (!err && t == BPF_READ && value_regno >= 0)
3235 			mark_reg_unknown(env, regs, value_regno);
3236 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3237 		if (t == BPF_WRITE && value_regno >= 0 &&
3238 		    is_pointer_value(env, value_regno)) {
3239 			verbose(env, "R%d leaks addr into flow keys\n",
3240 				value_regno);
3241 			return -EACCES;
3242 		}
3243 
3244 		err = check_flow_keys_access(env, off, size);
3245 		if (!err && t == BPF_READ && value_regno >= 0)
3246 			mark_reg_unknown(env, regs, value_regno);
3247 	} else if (type_is_sk_pointer(reg->type)) {
3248 		if (t == BPF_WRITE) {
3249 			verbose(env, "R%d cannot write into %s\n",
3250 				regno, reg_type_str[reg->type]);
3251 			return -EACCES;
3252 		}
3253 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3254 		if (!err && value_regno >= 0)
3255 			mark_reg_unknown(env, regs, value_regno);
3256 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3257 		err = check_tp_buffer_access(env, reg, regno, off, size);
3258 		if (!err && t == BPF_READ && value_regno >= 0)
3259 			mark_reg_unknown(env, regs, value_regno);
3260 	} else if (reg->type == PTR_TO_BTF_ID) {
3261 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3262 					      value_regno);
3263 	} else {
3264 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3265 			reg_type_str[reg->type]);
3266 		return -EACCES;
3267 	}
3268 
3269 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3270 	    regs[value_regno].type == SCALAR_VALUE) {
3271 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3272 		coerce_reg_to_size(&regs[value_regno], size);
3273 	}
3274 	return err;
3275 }
3276 
3277 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3278 {
3279 	int err;
3280 
3281 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3282 	    insn->imm != 0) {
3283 		verbose(env, "BPF_XADD uses reserved fields\n");
3284 		return -EINVAL;
3285 	}
3286 
3287 	/* check src1 operand */
3288 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3289 	if (err)
3290 		return err;
3291 
3292 	/* check src2 operand */
3293 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3294 	if (err)
3295 		return err;
3296 
3297 	if (is_pointer_value(env, insn->src_reg)) {
3298 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3299 		return -EACCES;
3300 	}
3301 
3302 	if (is_ctx_reg(env, insn->dst_reg) ||
3303 	    is_pkt_reg(env, insn->dst_reg) ||
3304 	    is_flow_key_reg(env, insn->dst_reg) ||
3305 	    is_sk_reg(env, insn->dst_reg)) {
3306 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3307 			insn->dst_reg,
3308 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3309 		return -EACCES;
3310 	}
3311 
3312 	/* check whether atomic_add can read the memory */
3313 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3314 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3315 	if (err)
3316 		return err;
3317 
3318 	/* check whether atomic_add can write into the same memory */
3319 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3320 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3321 }
3322 
3323 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3324 				  int off, int access_size,
3325 				  bool zero_size_allowed)
3326 {
3327 	struct bpf_reg_state *reg = reg_state(env, regno);
3328 
3329 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3330 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3331 		if (tnum_is_const(reg->var_off)) {
3332 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3333 				regno, off, access_size);
3334 		} else {
3335 			char tn_buf[48];
3336 
3337 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3338 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3339 				regno, tn_buf, access_size);
3340 		}
3341 		return -EACCES;
3342 	}
3343 	return 0;
3344 }
3345 
3346 /* when register 'regno' is passed into function that will read 'access_size'
3347  * bytes from that pointer, make sure that it's within stack boundary
3348  * and all elements of stack are initialized.
3349  * Unlike most pointer bounds-checking functions, this one doesn't take an
3350  * 'off' argument, so it has to add in reg->off itself.
3351  */
3352 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3353 				int access_size, bool zero_size_allowed,
3354 				struct bpf_call_arg_meta *meta)
3355 {
3356 	struct bpf_reg_state *reg = reg_state(env, regno);
3357 	struct bpf_func_state *state = func(env, reg);
3358 	int err, min_off, max_off, i, j, slot, spi;
3359 
3360 	if (reg->type != PTR_TO_STACK) {
3361 		/* Allow zero-byte read from NULL, regardless of pointer type */
3362 		if (zero_size_allowed && access_size == 0 &&
3363 		    register_is_null(reg))
3364 			return 0;
3365 
3366 		verbose(env, "R%d type=%s expected=%s\n", regno,
3367 			reg_type_str[reg->type],
3368 			reg_type_str[PTR_TO_STACK]);
3369 		return -EACCES;
3370 	}
3371 
3372 	if (tnum_is_const(reg->var_off)) {
3373 		min_off = max_off = reg->var_off.value + reg->off;
3374 		err = __check_stack_boundary(env, regno, min_off, access_size,
3375 					     zero_size_allowed);
3376 		if (err)
3377 			return err;
3378 	} else {
3379 		/* Variable offset is prohibited for unprivileged mode for
3380 		 * simplicity since it requires corresponding support in
3381 		 * Spectre masking for stack ALU.
3382 		 * See also retrieve_ptr_limit().
3383 		 */
3384 		if (!env->allow_ptr_leaks) {
3385 			char tn_buf[48];
3386 
3387 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3388 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3389 				regno, tn_buf);
3390 			return -EACCES;
3391 		}
3392 		/* Only initialized buffer on stack is allowed to be accessed
3393 		 * with variable offset. With uninitialized buffer it's hard to
3394 		 * guarantee that whole memory is marked as initialized on
3395 		 * helper return since specific bounds are unknown what may
3396 		 * cause uninitialized stack leaking.
3397 		 */
3398 		if (meta && meta->raw_mode)
3399 			meta = NULL;
3400 
3401 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3402 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3403 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3404 				regno);
3405 			return -EACCES;
3406 		}
3407 		min_off = reg->smin_value + reg->off;
3408 		max_off = reg->smax_value + reg->off;
3409 		err = __check_stack_boundary(env, regno, min_off, access_size,
3410 					     zero_size_allowed);
3411 		if (err) {
3412 			verbose(env, "R%d min value is outside of stack bound\n",
3413 				regno);
3414 			return err;
3415 		}
3416 		err = __check_stack_boundary(env, regno, max_off, access_size,
3417 					     zero_size_allowed);
3418 		if (err) {
3419 			verbose(env, "R%d max value is outside of stack bound\n",
3420 				regno);
3421 			return err;
3422 		}
3423 	}
3424 
3425 	if (meta && meta->raw_mode) {
3426 		meta->access_size = access_size;
3427 		meta->regno = regno;
3428 		return 0;
3429 	}
3430 
3431 	for (i = min_off; i < max_off + access_size; i++) {
3432 		u8 *stype;
3433 
3434 		slot = -i - 1;
3435 		spi = slot / BPF_REG_SIZE;
3436 		if (state->allocated_stack <= slot)
3437 			goto err;
3438 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3439 		if (*stype == STACK_MISC)
3440 			goto mark;
3441 		if (*stype == STACK_ZERO) {
3442 			/* helper can write anything into the stack */
3443 			*stype = STACK_MISC;
3444 			goto mark;
3445 		}
3446 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3447 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3448 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3449 			for (j = 0; j < BPF_REG_SIZE; j++)
3450 				state->stack[spi].slot_type[j] = STACK_MISC;
3451 			goto mark;
3452 		}
3453 
3454 err:
3455 		if (tnum_is_const(reg->var_off)) {
3456 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3457 				min_off, i - min_off, access_size);
3458 		} else {
3459 			char tn_buf[48];
3460 
3461 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3462 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3463 				tn_buf, i - min_off, access_size);
3464 		}
3465 		return -EACCES;
3466 mark:
3467 		/* reading any byte out of 8-byte 'spill_slot' will cause
3468 		 * the whole slot to be marked as 'read'
3469 		 */
3470 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3471 			      state->stack[spi].spilled_ptr.parent,
3472 			      REG_LIVE_READ64);
3473 	}
3474 	return update_stack_depth(env, state, min_off);
3475 }
3476 
3477 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3478 				   int access_size, bool zero_size_allowed,
3479 				   struct bpf_call_arg_meta *meta)
3480 {
3481 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3482 
3483 	switch (reg->type) {
3484 	case PTR_TO_PACKET:
3485 	case PTR_TO_PACKET_META:
3486 		return check_packet_access(env, regno, reg->off, access_size,
3487 					   zero_size_allowed);
3488 	case PTR_TO_MAP_VALUE:
3489 		if (check_map_access_type(env, regno, reg->off, access_size,
3490 					  meta && meta->raw_mode ? BPF_WRITE :
3491 					  BPF_READ))
3492 			return -EACCES;
3493 		return check_map_access(env, regno, reg->off, access_size,
3494 					zero_size_allowed);
3495 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3496 		return check_stack_boundary(env, regno, access_size,
3497 					    zero_size_allowed, meta);
3498 	}
3499 }
3500 
3501 /* Implementation details:
3502  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3503  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3504  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3505  * value_or_null->value transition, since the verifier only cares about
3506  * the range of access to valid map value pointer and doesn't care about actual
3507  * address of the map element.
3508  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3509  * reg->id > 0 after value_or_null->value transition. By doing so
3510  * two bpf_map_lookups will be considered two different pointers that
3511  * point to different bpf_spin_locks.
3512  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3513  * dead-locks.
3514  * Since only one bpf_spin_lock is allowed the checks are simpler than
3515  * reg_is_refcounted() logic. The verifier needs to remember only
3516  * one spin_lock instead of array of acquired_refs.
3517  * cur_state->active_spin_lock remembers which map value element got locked
3518  * and clears it after bpf_spin_unlock.
3519  */
3520 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3521 			     bool is_lock)
3522 {
3523 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3524 	struct bpf_verifier_state *cur = env->cur_state;
3525 	bool is_const = tnum_is_const(reg->var_off);
3526 	struct bpf_map *map = reg->map_ptr;
3527 	u64 val = reg->var_off.value;
3528 
3529 	if (reg->type != PTR_TO_MAP_VALUE) {
3530 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3531 		return -EINVAL;
3532 	}
3533 	if (!is_const) {
3534 		verbose(env,
3535 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3536 			regno);
3537 		return -EINVAL;
3538 	}
3539 	if (!map->btf) {
3540 		verbose(env,
3541 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3542 			map->name);
3543 		return -EINVAL;
3544 	}
3545 	if (!map_value_has_spin_lock(map)) {
3546 		if (map->spin_lock_off == -E2BIG)
3547 			verbose(env,
3548 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3549 				map->name);
3550 		else if (map->spin_lock_off == -ENOENT)
3551 			verbose(env,
3552 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3553 				map->name);
3554 		else
3555 			verbose(env,
3556 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3557 				map->name);
3558 		return -EINVAL;
3559 	}
3560 	if (map->spin_lock_off != val + reg->off) {
3561 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3562 			val + reg->off);
3563 		return -EINVAL;
3564 	}
3565 	if (is_lock) {
3566 		if (cur->active_spin_lock) {
3567 			verbose(env,
3568 				"Locking two bpf_spin_locks are not allowed\n");
3569 			return -EINVAL;
3570 		}
3571 		cur->active_spin_lock = reg->id;
3572 	} else {
3573 		if (!cur->active_spin_lock) {
3574 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3575 			return -EINVAL;
3576 		}
3577 		if (cur->active_spin_lock != reg->id) {
3578 			verbose(env, "bpf_spin_unlock of different lock\n");
3579 			return -EINVAL;
3580 		}
3581 		cur->active_spin_lock = 0;
3582 	}
3583 	return 0;
3584 }
3585 
3586 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3587 {
3588 	return type == ARG_PTR_TO_MEM ||
3589 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3590 	       type == ARG_PTR_TO_UNINIT_MEM;
3591 }
3592 
3593 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3594 {
3595 	return type == ARG_CONST_SIZE ||
3596 	       type == ARG_CONST_SIZE_OR_ZERO;
3597 }
3598 
3599 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3600 {
3601 	return type == ARG_PTR_TO_INT ||
3602 	       type == ARG_PTR_TO_LONG;
3603 }
3604 
3605 static int int_ptr_type_to_size(enum bpf_arg_type type)
3606 {
3607 	if (type == ARG_PTR_TO_INT)
3608 		return sizeof(u32);
3609 	else if (type == ARG_PTR_TO_LONG)
3610 		return sizeof(u64);
3611 
3612 	return -EINVAL;
3613 }
3614 
3615 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3616 			  enum bpf_arg_type arg_type,
3617 			  struct bpf_call_arg_meta *meta)
3618 {
3619 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3620 	enum bpf_reg_type expected_type, type = reg->type;
3621 	int err = 0;
3622 
3623 	if (arg_type == ARG_DONTCARE)
3624 		return 0;
3625 
3626 	err = check_reg_arg(env, regno, SRC_OP);
3627 	if (err)
3628 		return err;
3629 
3630 	if (arg_type == ARG_ANYTHING) {
3631 		if (is_pointer_value(env, regno)) {
3632 			verbose(env, "R%d leaks addr into helper function\n",
3633 				regno);
3634 			return -EACCES;
3635 		}
3636 		return 0;
3637 	}
3638 
3639 	if (type_is_pkt_pointer(type) &&
3640 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3641 		verbose(env, "helper access to the packet is not allowed\n");
3642 		return -EACCES;
3643 	}
3644 
3645 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3646 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3647 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3648 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3649 		expected_type = PTR_TO_STACK;
3650 		if (register_is_null(reg) &&
3651 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3652 			/* final test in check_stack_boundary() */;
3653 		else if (!type_is_pkt_pointer(type) &&
3654 			 type != PTR_TO_MAP_VALUE &&
3655 			 type != expected_type)
3656 			goto err_type;
3657 	} else if (arg_type == ARG_CONST_SIZE ||
3658 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3659 		expected_type = SCALAR_VALUE;
3660 		if (type != expected_type)
3661 			goto err_type;
3662 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3663 		expected_type = CONST_PTR_TO_MAP;
3664 		if (type != expected_type)
3665 			goto err_type;
3666 	} else if (arg_type == ARG_PTR_TO_CTX ||
3667 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3668 		expected_type = PTR_TO_CTX;
3669 		if (!(register_is_null(reg) &&
3670 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3671 			if (type != expected_type)
3672 				goto err_type;
3673 			err = check_ctx_reg(env, reg, regno);
3674 			if (err < 0)
3675 				return err;
3676 		}
3677 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3678 		expected_type = PTR_TO_SOCK_COMMON;
3679 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3680 		if (!type_is_sk_pointer(type))
3681 			goto err_type;
3682 		if (reg->ref_obj_id) {
3683 			if (meta->ref_obj_id) {
3684 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3685 					regno, reg->ref_obj_id,
3686 					meta->ref_obj_id);
3687 				return -EFAULT;
3688 			}
3689 			meta->ref_obj_id = reg->ref_obj_id;
3690 		}
3691 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3692 		expected_type = PTR_TO_SOCKET;
3693 		if (type != expected_type)
3694 			goto err_type;
3695 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3696 		expected_type = PTR_TO_BTF_ID;
3697 		if (type != expected_type)
3698 			goto err_type;
3699 		if (reg->btf_id != meta->btf_id) {
3700 			verbose(env, "Helper has type %s got %s in R%d\n",
3701 				kernel_type_name(meta->btf_id),
3702 				kernel_type_name(reg->btf_id), regno);
3703 
3704 			return -EACCES;
3705 		}
3706 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3707 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3708 				regno);
3709 			return -EACCES;
3710 		}
3711 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3712 		if (meta->func_id == BPF_FUNC_spin_lock) {
3713 			if (process_spin_lock(env, regno, true))
3714 				return -EACCES;
3715 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3716 			if (process_spin_lock(env, regno, false))
3717 				return -EACCES;
3718 		} else {
3719 			verbose(env, "verifier internal error\n");
3720 			return -EFAULT;
3721 		}
3722 	} else if (arg_type_is_mem_ptr(arg_type)) {
3723 		expected_type = PTR_TO_STACK;
3724 		/* One exception here. In case function allows for NULL to be
3725 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3726 		 * happens during stack boundary checking.
3727 		 */
3728 		if (register_is_null(reg) &&
3729 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3730 			/* final test in check_stack_boundary() */;
3731 		else if (!type_is_pkt_pointer(type) &&
3732 			 type != PTR_TO_MAP_VALUE &&
3733 			 type != expected_type)
3734 			goto err_type;
3735 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3736 	} else if (arg_type_is_int_ptr(arg_type)) {
3737 		expected_type = PTR_TO_STACK;
3738 		if (!type_is_pkt_pointer(type) &&
3739 		    type != PTR_TO_MAP_VALUE &&
3740 		    type != expected_type)
3741 			goto err_type;
3742 	} else {
3743 		verbose(env, "unsupported arg_type %d\n", arg_type);
3744 		return -EFAULT;
3745 	}
3746 
3747 	if (arg_type == ARG_CONST_MAP_PTR) {
3748 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3749 		meta->map_ptr = reg->map_ptr;
3750 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3751 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3752 		 * check that [key, key + map->key_size) are within
3753 		 * stack limits and initialized
3754 		 */
3755 		if (!meta->map_ptr) {
3756 			/* in function declaration map_ptr must come before
3757 			 * map_key, so that it's verified and known before
3758 			 * we have to check map_key here. Otherwise it means
3759 			 * that kernel subsystem misconfigured verifier
3760 			 */
3761 			verbose(env, "invalid map_ptr to access map->key\n");
3762 			return -EACCES;
3763 		}
3764 		err = check_helper_mem_access(env, regno,
3765 					      meta->map_ptr->key_size, false,
3766 					      NULL);
3767 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3768 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3769 		    !register_is_null(reg)) ||
3770 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3771 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3772 		 * check [value, value + map->value_size) validity
3773 		 */
3774 		if (!meta->map_ptr) {
3775 			/* kernel subsystem misconfigured verifier */
3776 			verbose(env, "invalid map_ptr to access map->value\n");
3777 			return -EACCES;
3778 		}
3779 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3780 		err = check_helper_mem_access(env, regno,
3781 					      meta->map_ptr->value_size, false,
3782 					      meta);
3783 	} else if (arg_type_is_mem_size(arg_type)) {
3784 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3785 
3786 		/* This is used to refine r0 return value bounds for helpers
3787 		 * that enforce this value as an upper bound on return values.
3788 		 * See do_refine_retval_range() for helpers that can refine
3789 		 * the return value. C type of helper is u32 so we pull register
3790 		 * bound from umax_value however, if negative verifier errors
3791 		 * out. Only upper bounds can be learned because retval is an
3792 		 * int type and negative retvals are allowed.
3793 		 */
3794 		meta->msize_max_value = reg->umax_value;
3795 
3796 		/* The register is SCALAR_VALUE; the access check
3797 		 * happens using its boundaries.
3798 		 */
3799 		if (!tnum_is_const(reg->var_off))
3800 			/* For unprivileged variable accesses, disable raw
3801 			 * mode so that the program is required to
3802 			 * initialize all the memory that the helper could
3803 			 * just partially fill up.
3804 			 */
3805 			meta = NULL;
3806 
3807 		if (reg->smin_value < 0) {
3808 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3809 				regno);
3810 			return -EACCES;
3811 		}
3812 
3813 		if (reg->umin_value == 0) {
3814 			err = check_helper_mem_access(env, regno - 1, 0,
3815 						      zero_size_allowed,
3816 						      meta);
3817 			if (err)
3818 				return err;
3819 		}
3820 
3821 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3822 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3823 				regno);
3824 			return -EACCES;
3825 		}
3826 		err = check_helper_mem_access(env, regno - 1,
3827 					      reg->umax_value,
3828 					      zero_size_allowed, meta);
3829 		if (!err)
3830 			err = mark_chain_precision(env, regno);
3831 	} else if (arg_type_is_int_ptr(arg_type)) {
3832 		int size = int_ptr_type_to_size(arg_type);
3833 
3834 		err = check_helper_mem_access(env, regno, size, false, meta);
3835 		if (err)
3836 			return err;
3837 		err = check_ptr_alignment(env, reg, 0, size, true);
3838 	}
3839 
3840 	return err;
3841 err_type:
3842 	verbose(env, "R%d type=%s expected=%s\n", regno,
3843 		reg_type_str[type], reg_type_str[expected_type]);
3844 	return -EACCES;
3845 }
3846 
3847 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3848 					struct bpf_map *map, int func_id)
3849 {
3850 	if (!map)
3851 		return 0;
3852 
3853 	/* We need a two way check, first is from map perspective ... */
3854 	switch (map->map_type) {
3855 	case BPF_MAP_TYPE_PROG_ARRAY:
3856 		if (func_id != BPF_FUNC_tail_call)
3857 			goto error;
3858 		break;
3859 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3860 		if (func_id != BPF_FUNC_perf_event_read &&
3861 		    func_id != BPF_FUNC_perf_event_output &&
3862 		    func_id != BPF_FUNC_skb_output &&
3863 		    func_id != BPF_FUNC_perf_event_read_value &&
3864 		    func_id != BPF_FUNC_xdp_output)
3865 			goto error;
3866 		break;
3867 	case BPF_MAP_TYPE_STACK_TRACE:
3868 		if (func_id != BPF_FUNC_get_stackid)
3869 			goto error;
3870 		break;
3871 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3872 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3873 		    func_id != BPF_FUNC_current_task_under_cgroup)
3874 			goto error;
3875 		break;
3876 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3877 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3878 		if (func_id != BPF_FUNC_get_local_storage)
3879 			goto error;
3880 		break;
3881 	case BPF_MAP_TYPE_DEVMAP:
3882 	case BPF_MAP_TYPE_DEVMAP_HASH:
3883 		if (func_id != BPF_FUNC_redirect_map &&
3884 		    func_id != BPF_FUNC_map_lookup_elem)
3885 			goto error;
3886 		break;
3887 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3888 	 * appear.
3889 	 */
3890 	case BPF_MAP_TYPE_CPUMAP:
3891 		if (func_id != BPF_FUNC_redirect_map)
3892 			goto error;
3893 		break;
3894 	case BPF_MAP_TYPE_XSKMAP:
3895 		if (func_id != BPF_FUNC_redirect_map &&
3896 		    func_id != BPF_FUNC_map_lookup_elem)
3897 			goto error;
3898 		break;
3899 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3900 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3901 		if (func_id != BPF_FUNC_map_lookup_elem)
3902 			goto error;
3903 		break;
3904 	case BPF_MAP_TYPE_SOCKMAP:
3905 		if (func_id != BPF_FUNC_sk_redirect_map &&
3906 		    func_id != BPF_FUNC_sock_map_update &&
3907 		    func_id != BPF_FUNC_map_delete_elem &&
3908 		    func_id != BPF_FUNC_msg_redirect_map &&
3909 		    func_id != BPF_FUNC_sk_select_reuseport)
3910 			goto error;
3911 		break;
3912 	case BPF_MAP_TYPE_SOCKHASH:
3913 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3914 		    func_id != BPF_FUNC_sock_hash_update &&
3915 		    func_id != BPF_FUNC_map_delete_elem &&
3916 		    func_id != BPF_FUNC_msg_redirect_hash &&
3917 		    func_id != BPF_FUNC_sk_select_reuseport)
3918 			goto error;
3919 		break;
3920 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3921 		if (func_id != BPF_FUNC_sk_select_reuseport)
3922 			goto error;
3923 		break;
3924 	case BPF_MAP_TYPE_QUEUE:
3925 	case BPF_MAP_TYPE_STACK:
3926 		if (func_id != BPF_FUNC_map_peek_elem &&
3927 		    func_id != BPF_FUNC_map_pop_elem &&
3928 		    func_id != BPF_FUNC_map_push_elem)
3929 			goto error;
3930 		break;
3931 	case BPF_MAP_TYPE_SK_STORAGE:
3932 		if (func_id != BPF_FUNC_sk_storage_get &&
3933 		    func_id != BPF_FUNC_sk_storage_delete)
3934 			goto error;
3935 		break;
3936 	default:
3937 		break;
3938 	}
3939 
3940 	/* ... and second from the function itself. */
3941 	switch (func_id) {
3942 	case BPF_FUNC_tail_call:
3943 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3944 			goto error;
3945 		if (env->subprog_cnt > 1) {
3946 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3947 			return -EINVAL;
3948 		}
3949 		break;
3950 	case BPF_FUNC_perf_event_read:
3951 	case BPF_FUNC_perf_event_output:
3952 	case BPF_FUNC_perf_event_read_value:
3953 	case BPF_FUNC_skb_output:
3954 	case BPF_FUNC_xdp_output:
3955 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3956 			goto error;
3957 		break;
3958 	case BPF_FUNC_get_stackid:
3959 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3960 			goto error;
3961 		break;
3962 	case BPF_FUNC_current_task_under_cgroup:
3963 	case BPF_FUNC_skb_under_cgroup:
3964 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3965 			goto error;
3966 		break;
3967 	case BPF_FUNC_redirect_map:
3968 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3969 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3970 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3971 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3972 			goto error;
3973 		break;
3974 	case BPF_FUNC_sk_redirect_map:
3975 	case BPF_FUNC_msg_redirect_map:
3976 	case BPF_FUNC_sock_map_update:
3977 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3978 			goto error;
3979 		break;
3980 	case BPF_FUNC_sk_redirect_hash:
3981 	case BPF_FUNC_msg_redirect_hash:
3982 	case BPF_FUNC_sock_hash_update:
3983 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3984 			goto error;
3985 		break;
3986 	case BPF_FUNC_get_local_storage:
3987 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3988 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3989 			goto error;
3990 		break;
3991 	case BPF_FUNC_sk_select_reuseport:
3992 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
3993 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
3994 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
3995 			goto error;
3996 		break;
3997 	case BPF_FUNC_map_peek_elem:
3998 	case BPF_FUNC_map_pop_elem:
3999 	case BPF_FUNC_map_push_elem:
4000 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4001 		    map->map_type != BPF_MAP_TYPE_STACK)
4002 			goto error;
4003 		break;
4004 	case BPF_FUNC_sk_storage_get:
4005 	case BPF_FUNC_sk_storage_delete:
4006 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4007 			goto error;
4008 		break;
4009 	default:
4010 		break;
4011 	}
4012 
4013 	return 0;
4014 error:
4015 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4016 		map->map_type, func_id_name(func_id), func_id);
4017 	return -EINVAL;
4018 }
4019 
4020 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4021 {
4022 	int count = 0;
4023 
4024 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4025 		count++;
4026 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4027 		count++;
4028 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4029 		count++;
4030 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4031 		count++;
4032 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4033 		count++;
4034 
4035 	/* We only support one arg being in raw mode at the moment,
4036 	 * which is sufficient for the helper functions we have
4037 	 * right now.
4038 	 */
4039 	return count <= 1;
4040 }
4041 
4042 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4043 				    enum bpf_arg_type arg_next)
4044 {
4045 	return (arg_type_is_mem_ptr(arg_curr) &&
4046 	        !arg_type_is_mem_size(arg_next)) ||
4047 	       (!arg_type_is_mem_ptr(arg_curr) &&
4048 		arg_type_is_mem_size(arg_next));
4049 }
4050 
4051 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4052 {
4053 	/* bpf_xxx(..., buf, len) call will access 'len'
4054 	 * bytes from memory 'buf'. Both arg types need
4055 	 * to be paired, so make sure there's no buggy
4056 	 * helper function specification.
4057 	 */
4058 	if (arg_type_is_mem_size(fn->arg1_type) ||
4059 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4060 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4061 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4062 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4063 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4064 		return false;
4065 
4066 	return true;
4067 }
4068 
4069 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4070 {
4071 	int count = 0;
4072 
4073 	if (arg_type_may_be_refcounted(fn->arg1_type))
4074 		count++;
4075 	if (arg_type_may_be_refcounted(fn->arg2_type))
4076 		count++;
4077 	if (arg_type_may_be_refcounted(fn->arg3_type))
4078 		count++;
4079 	if (arg_type_may_be_refcounted(fn->arg4_type))
4080 		count++;
4081 	if (arg_type_may_be_refcounted(fn->arg5_type))
4082 		count++;
4083 
4084 	/* A reference acquiring function cannot acquire
4085 	 * another refcounted ptr.
4086 	 */
4087 	if (is_acquire_function(func_id) && count)
4088 		return false;
4089 
4090 	/* We only support one arg being unreferenced at the moment,
4091 	 * which is sufficient for the helper functions we have right now.
4092 	 */
4093 	return count <= 1;
4094 }
4095 
4096 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4097 {
4098 	return check_raw_mode_ok(fn) &&
4099 	       check_arg_pair_ok(fn) &&
4100 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4101 }
4102 
4103 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4104  * are now invalid, so turn them into unknown SCALAR_VALUE.
4105  */
4106 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4107 				     struct bpf_func_state *state)
4108 {
4109 	struct bpf_reg_state *regs = state->regs, *reg;
4110 	int i;
4111 
4112 	for (i = 0; i < MAX_BPF_REG; i++)
4113 		if (reg_is_pkt_pointer_any(&regs[i]))
4114 			mark_reg_unknown(env, regs, i);
4115 
4116 	bpf_for_each_spilled_reg(i, state, reg) {
4117 		if (!reg)
4118 			continue;
4119 		if (reg_is_pkt_pointer_any(reg))
4120 			__mark_reg_unknown(env, reg);
4121 	}
4122 }
4123 
4124 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4125 {
4126 	struct bpf_verifier_state *vstate = env->cur_state;
4127 	int i;
4128 
4129 	for (i = 0; i <= vstate->curframe; i++)
4130 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4131 }
4132 
4133 static void release_reg_references(struct bpf_verifier_env *env,
4134 				   struct bpf_func_state *state,
4135 				   int ref_obj_id)
4136 {
4137 	struct bpf_reg_state *regs = state->regs, *reg;
4138 	int i;
4139 
4140 	for (i = 0; i < MAX_BPF_REG; i++)
4141 		if (regs[i].ref_obj_id == ref_obj_id)
4142 			mark_reg_unknown(env, regs, i);
4143 
4144 	bpf_for_each_spilled_reg(i, state, reg) {
4145 		if (!reg)
4146 			continue;
4147 		if (reg->ref_obj_id == ref_obj_id)
4148 			__mark_reg_unknown(env, reg);
4149 	}
4150 }
4151 
4152 /* The pointer with the specified id has released its reference to kernel
4153  * resources. Identify all copies of the same pointer and clear the reference.
4154  */
4155 static int release_reference(struct bpf_verifier_env *env,
4156 			     int ref_obj_id)
4157 {
4158 	struct bpf_verifier_state *vstate = env->cur_state;
4159 	int err;
4160 	int i;
4161 
4162 	err = release_reference_state(cur_func(env), ref_obj_id);
4163 	if (err)
4164 		return err;
4165 
4166 	for (i = 0; i <= vstate->curframe; i++)
4167 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4168 
4169 	return 0;
4170 }
4171 
4172 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4173 				    struct bpf_reg_state *regs)
4174 {
4175 	int i;
4176 
4177 	/* after the call registers r0 - r5 were scratched */
4178 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4179 		mark_reg_not_init(env, regs, caller_saved[i]);
4180 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4181 	}
4182 }
4183 
4184 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4185 			   int *insn_idx)
4186 {
4187 	struct bpf_verifier_state *state = env->cur_state;
4188 	struct bpf_func_info_aux *func_info_aux;
4189 	struct bpf_func_state *caller, *callee;
4190 	int i, err, subprog, target_insn;
4191 	bool is_global = false;
4192 
4193 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4194 		verbose(env, "the call stack of %d frames is too deep\n",
4195 			state->curframe + 2);
4196 		return -E2BIG;
4197 	}
4198 
4199 	target_insn = *insn_idx + insn->imm;
4200 	subprog = find_subprog(env, target_insn + 1);
4201 	if (subprog < 0) {
4202 		verbose(env, "verifier bug. No program starts at insn %d\n",
4203 			target_insn + 1);
4204 		return -EFAULT;
4205 	}
4206 
4207 	caller = state->frame[state->curframe];
4208 	if (state->frame[state->curframe + 1]) {
4209 		verbose(env, "verifier bug. Frame %d already allocated\n",
4210 			state->curframe + 1);
4211 		return -EFAULT;
4212 	}
4213 
4214 	func_info_aux = env->prog->aux->func_info_aux;
4215 	if (func_info_aux)
4216 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4217 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4218 	if (err == -EFAULT)
4219 		return err;
4220 	if (is_global) {
4221 		if (err) {
4222 			verbose(env, "Caller passes invalid args into func#%d\n",
4223 				subprog);
4224 			return err;
4225 		} else {
4226 			if (env->log.level & BPF_LOG_LEVEL)
4227 				verbose(env,
4228 					"Func#%d is global and valid. Skipping.\n",
4229 					subprog);
4230 			clear_caller_saved_regs(env, caller->regs);
4231 
4232 			/* All global functions return SCALAR_VALUE */
4233 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4234 
4235 			/* continue with next insn after call */
4236 			return 0;
4237 		}
4238 	}
4239 
4240 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4241 	if (!callee)
4242 		return -ENOMEM;
4243 	state->frame[state->curframe + 1] = callee;
4244 
4245 	/* callee cannot access r0, r6 - r9 for reading and has to write
4246 	 * into its own stack before reading from it.
4247 	 * callee can read/write into caller's stack
4248 	 */
4249 	init_func_state(env, callee,
4250 			/* remember the callsite, it will be used by bpf_exit */
4251 			*insn_idx /* callsite */,
4252 			state->curframe + 1 /* frameno within this callchain */,
4253 			subprog /* subprog number within this prog */);
4254 
4255 	/* Transfer references to the callee */
4256 	err = transfer_reference_state(callee, caller);
4257 	if (err)
4258 		return err;
4259 
4260 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4261 	 * pointers, which connects us up to the liveness chain
4262 	 */
4263 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4264 		callee->regs[i] = caller->regs[i];
4265 
4266 	clear_caller_saved_regs(env, caller->regs);
4267 
4268 	/* only increment it after check_reg_arg() finished */
4269 	state->curframe++;
4270 
4271 	/* and go analyze first insn of the callee */
4272 	*insn_idx = target_insn;
4273 
4274 	if (env->log.level & BPF_LOG_LEVEL) {
4275 		verbose(env, "caller:\n");
4276 		print_verifier_state(env, caller);
4277 		verbose(env, "callee:\n");
4278 		print_verifier_state(env, callee);
4279 	}
4280 	return 0;
4281 }
4282 
4283 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4284 {
4285 	struct bpf_verifier_state *state = env->cur_state;
4286 	struct bpf_func_state *caller, *callee;
4287 	struct bpf_reg_state *r0;
4288 	int err;
4289 
4290 	callee = state->frame[state->curframe];
4291 	r0 = &callee->regs[BPF_REG_0];
4292 	if (r0->type == PTR_TO_STACK) {
4293 		/* technically it's ok to return caller's stack pointer
4294 		 * (or caller's caller's pointer) back to the caller,
4295 		 * since these pointers are valid. Only current stack
4296 		 * pointer will be invalid as soon as function exits,
4297 		 * but let's be conservative
4298 		 */
4299 		verbose(env, "cannot return stack pointer to the caller\n");
4300 		return -EINVAL;
4301 	}
4302 
4303 	state->curframe--;
4304 	caller = state->frame[state->curframe];
4305 	/* return to the caller whatever r0 had in the callee */
4306 	caller->regs[BPF_REG_0] = *r0;
4307 
4308 	/* Transfer references to the caller */
4309 	err = transfer_reference_state(caller, callee);
4310 	if (err)
4311 		return err;
4312 
4313 	*insn_idx = callee->callsite + 1;
4314 	if (env->log.level & BPF_LOG_LEVEL) {
4315 		verbose(env, "returning from callee:\n");
4316 		print_verifier_state(env, callee);
4317 		verbose(env, "to caller at %d:\n", *insn_idx);
4318 		print_verifier_state(env, caller);
4319 	}
4320 	/* clear everything in the callee */
4321 	free_func_state(callee);
4322 	state->frame[state->curframe + 1] = NULL;
4323 	return 0;
4324 }
4325 
4326 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4327 				   int func_id,
4328 				   struct bpf_call_arg_meta *meta)
4329 {
4330 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4331 
4332 	if (ret_type != RET_INTEGER ||
4333 	    (func_id != BPF_FUNC_get_stack &&
4334 	     func_id != BPF_FUNC_probe_read_str))
4335 		return;
4336 
4337 	ret_reg->smax_value = meta->msize_max_value;
4338 	ret_reg->s32_max_value = meta->msize_max_value;
4339 	__reg_deduce_bounds(ret_reg);
4340 	__reg_bound_offset(ret_reg);
4341 	__update_reg_bounds(ret_reg);
4342 }
4343 
4344 static int
4345 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4346 		int func_id, int insn_idx)
4347 {
4348 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4349 	struct bpf_map *map = meta->map_ptr;
4350 
4351 	if (func_id != BPF_FUNC_tail_call &&
4352 	    func_id != BPF_FUNC_map_lookup_elem &&
4353 	    func_id != BPF_FUNC_map_update_elem &&
4354 	    func_id != BPF_FUNC_map_delete_elem &&
4355 	    func_id != BPF_FUNC_map_push_elem &&
4356 	    func_id != BPF_FUNC_map_pop_elem &&
4357 	    func_id != BPF_FUNC_map_peek_elem)
4358 		return 0;
4359 
4360 	if (map == NULL) {
4361 		verbose(env, "kernel subsystem misconfigured verifier\n");
4362 		return -EINVAL;
4363 	}
4364 
4365 	/* In case of read-only, some additional restrictions
4366 	 * need to be applied in order to prevent altering the
4367 	 * state of the map from program side.
4368 	 */
4369 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4370 	    (func_id == BPF_FUNC_map_delete_elem ||
4371 	     func_id == BPF_FUNC_map_update_elem ||
4372 	     func_id == BPF_FUNC_map_push_elem ||
4373 	     func_id == BPF_FUNC_map_pop_elem)) {
4374 		verbose(env, "write into map forbidden\n");
4375 		return -EACCES;
4376 	}
4377 
4378 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4379 		bpf_map_ptr_store(aux, meta->map_ptr,
4380 				  meta->map_ptr->unpriv_array);
4381 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4382 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4383 				  meta->map_ptr->unpriv_array);
4384 	return 0;
4385 }
4386 
4387 static int
4388 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4389 		int func_id, int insn_idx)
4390 {
4391 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4392 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4393 	struct bpf_map *map = meta->map_ptr;
4394 	struct tnum range;
4395 	u64 val;
4396 	int err;
4397 
4398 	if (func_id != BPF_FUNC_tail_call)
4399 		return 0;
4400 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4401 		verbose(env, "kernel subsystem misconfigured verifier\n");
4402 		return -EINVAL;
4403 	}
4404 
4405 	range = tnum_range(0, map->max_entries - 1);
4406 	reg = &regs[BPF_REG_3];
4407 
4408 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4409 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4410 		return 0;
4411 	}
4412 
4413 	err = mark_chain_precision(env, BPF_REG_3);
4414 	if (err)
4415 		return err;
4416 
4417 	val = reg->var_off.value;
4418 	if (bpf_map_key_unseen(aux))
4419 		bpf_map_key_store(aux, val);
4420 	else if (!bpf_map_key_poisoned(aux) &&
4421 		  bpf_map_key_immediate(aux) != val)
4422 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4423 	return 0;
4424 }
4425 
4426 static int check_reference_leak(struct bpf_verifier_env *env)
4427 {
4428 	struct bpf_func_state *state = cur_func(env);
4429 	int i;
4430 
4431 	for (i = 0; i < state->acquired_refs; i++) {
4432 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4433 			state->refs[i].id, state->refs[i].insn_idx);
4434 	}
4435 	return state->acquired_refs ? -EINVAL : 0;
4436 }
4437 
4438 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4439 {
4440 	const struct bpf_func_proto *fn = NULL;
4441 	struct bpf_reg_state *regs;
4442 	struct bpf_call_arg_meta meta;
4443 	bool changes_data;
4444 	int i, err;
4445 
4446 	/* find function prototype */
4447 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4448 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4449 			func_id);
4450 		return -EINVAL;
4451 	}
4452 
4453 	if (env->ops->get_func_proto)
4454 		fn = env->ops->get_func_proto(func_id, env->prog);
4455 	if (!fn) {
4456 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4457 			func_id);
4458 		return -EINVAL;
4459 	}
4460 
4461 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4462 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4463 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4464 		return -EINVAL;
4465 	}
4466 
4467 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4468 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4469 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4470 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4471 			func_id_name(func_id), func_id);
4472 		return -EINVAL;
4473 	}
4474 
4475 	memset(&meta, 0, sizeof(meta));
4476 	meta.pkt_access = fn->pkt_access;
4477 
4478 	err = check_func_proto(fn, func_id);
4479 	if (err) {
4480 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4481 			func_id_name(func_id), func_id);
4482 		return err;
4483 	}
4484 
4485 	meta.func_id = func_id;
4486 	/* check args */
4487 	for (i = 0; i < 5; i++) {
4488 		err = btf_resolve_helper_id(&env->log, fn, i);
4489 		if (err > 0)
4490 			meta.btf_id = err;
4491 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4492 		if (err)
4493 			return err;
4494 	}
4495 
4496 	err = record_func_map(env, &meta, func_id, insn_idx);
4497 	if (err)
4498 		return err;
4499 
4500 	err = record_func_key(env, &meta, func_id, insn_idx);
4501 	if (err)
4502 		return err;
4503 
4504 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4505 	 * is inferred from register state.
4506 	 */
4507 	for (i = 0; i < meta.access_size; i++) {
4508 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4509 				       BPF_WRITE, -1, false);
4510 		if (err)
4511 			return err;
4512 	}
4513 
4514 	if (func_id == BPF_FUNC_tail_call) {
4515 		err = check_reference_leak(env);
4516 		if (err) {
4517 			verbose(env, "tail_call would lead to reference leak\n");
4518 			return err;
4519 		}
4520 	} else if (is_release_function(func_id)) {
4521 		err = release_reference(env, meta.ref_obj_id);
4522 		if (err) {
4523 			verbose(env, "func %s#%d reference has not been acquired before\n",
4524 				func_id_name(func_id), func_id);
4525 			return err;
4526 		}
4527 	}
4528 
4529 	regs = cur_regs(env);
4530 
4531 	/* check that flags argument in get_local_storage(map, flags) is 0,
4532 	 * this is required because get_local_storage() can't return an error.
4533 	 */
4534 	if (func_id == BPF_FUNC_get_local_storage &&
4535 	    !register_is_null(&regs[BPF_REG_2])) {
4536 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4537 		return -EINVAL;
4538 	}
4539 
4540 	/* reset caller saved regs */
4541 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4542 		mark_reg_not_init(env, regs, caller_saved[i]);
4543 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4544 	}
4545 
4546 	/* helper call returns 64-bit value. */
4547 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4548 
4549 	/* update return register (already marked as written above) */
4550 	if (fn->ret_type == RET_INTEGER) {
4551 		/* sets type to SCALAR_VALUE */
4552 		mark_reg_unknown(env, regs, BPF_REG_0);
4553 	} else if (fn->ret_type == RET_VOID) {
4554 		regs[BPF_REG_0].type = NOT_INIT;
4555 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4556 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4557 		/* There is no offset yet applied, variable or fixed */
4558 		mark_reg_known_zero(env, regs, BPF_REG_0);
4559 		/* remember map_ptr, so that check_map_access()
4560 		 * can check 'value_size' boundary of memory access
4561 		 * to map element returned from bpf_map_lookup_elem()
4562 		 */
4563 		if (meta.map_ptr == NULL) {
4564 			verbose(env,
4565 				"kernel subsystem misconfigured verifier\n");
4566 			return -EINVAL;
4567 		}
4568 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4569 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4570 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4571 			if (map_value_has_spin_lock(meta.map_ptr))
4572 				regs[BPF_REG_0].id = ++env->id_gen;
4573 		} else {
4574 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4575 			regs[BPF_REG_0].id = ++env->id_gen;
4576 		}
4577 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4578 		mark_reg_known_zero(env, regs, BPF_REG_0);
4579 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4580 		regs[BPF_REG_0].id = ++env->id_gen;
4581 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4582 		mark_reg_known_zero(env, regs, BPF_REG_0);
4583 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4584 		regs[BPF_REG_0].id = ++env->id_gen;
4585 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4586 		mark_reg_known_zero(env, regs, BPF_REG_0);
4587 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4588 		regs[BPF_REG_0].id = ++env->id_gen;
4589 	} else {
4590 		verbose(env, "unknown return type %d of func %s#%d\n",
4591 			fn->ret_type, func_id_name(func_id), func_id);
4592 		return -EINVAL;
4593 	}
4594 
4595 	if (is_ptr_cast_function(func_id)) {
4596 		/* For release_reference() */
4597 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4598 	} else if (is_acquire_function(func_id)) {
4599 		int id = acquire_reference_state(env, insn_idx);
4600 
4601 		if (id < 0)
4602 			return id;
4603 		/* For mark_ptr_or_null_reg() */
4604 		regs[BPF_REG_0].id = id;
4605 		/* For release_reference() */
4606 		regs[BPF_REG_0].ref_obj_id = id;
4607 	}
4608 
4609 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4610 
4611 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4612 	if (err)
4613 		return err;
4614 
4615 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4616 		const char *err_str;
4617 
4618 #ifdef CONFIG_PERF_EVENTS
4619 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4620 		err_str = "cannot get callchain buffer for func %s#%d\n";
4621 #else
4622 		err = -ENOTSUPP;
4623 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4624 #endif
4625 		if (err) {
4626 			verbose(env, err_str, func_id_name(func_id), func_id);
4627 			return err;
4628 		}
4629 
4630 		env->prog->has_callchain_buf = true;
4631 	}
4632 
4633 	if (changes_data)
4634 		clear_all_pkt_pointers(env);
4635 	return 0;
4636 }
4637 
4638 static bool signed_add_overflows(s64 a, s64 b)
4639 {
4640 	/* Do the add in u64, where overflow is well-defined */
4641 	s64 res = (s64)((u64)a + (u64)b);
4642 
4643 	if (b < 0)
4644 		return res > a;
4645 	return res < a;
4646 }
4647 
4648 static bool signed_add32_overflows(s64 a, s64 b)
4649 {
4650 	/* Do the add in u32, where overflow is well-defined */
4651 	s32 res = (s32)((u32)a + (u32)b);
4652 
4653 	if (b < 0)
4654 		return res > a;
4655 	return res < a;
4656 }
4657 
4658 static bool signed_sub_overflows(s32 a, s32 b)
4659 {
4660 	/* Do the sub in u64, where overflow is well-defined */
4661 	s64 res = (s64)((u64)a - (u64)b);
4662 
4663 	if (b < 0)
4664 		return res < a;
4665 	return res > a;
4666 }
4667 
4668 static bool signed_sub32_overflows(s32 a, s32 b)
4669 {
4670 	/* Do the sub in u64, where overflow is well-defined */
4671 	s32 res = (s32)((u32)a - (u32)b);
4672 
4673 	if (b < 0)
4674 		return res < a;
4675 	return res > a;
4676 }
4677 
4678 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4679 				  const struct bpf_reg_state *reg,
4680 				  enum bpf_reg_type type)
4681 {
4682 	bool known = tnum_is_const(reg->var_off);
4683 	s64 val = reg->var_off.value;
4684 	s64 smin = reg->smin_value;
4685 
4686 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4687 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4688 			reg_type_str[type], val);
4689 		return false;
4690 	}
4691 
4692 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4693 		verbose(env, "%s pointer offset %d is not allowed\n",
4694 			reg_type_str[type], reg->off);
4695 		return false;
4696 	}
4697 
4698 	if (smin == S64_MIN) {
4699 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4700 			reg_type_str[type]);
4701 		return false;
4702 	}
4703 
4704 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4705 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4706 			smin, reg_type_str[type]);
4707 		return false;
4708 	}
4709 
4710 	return true;
4711 }
4712 
4713 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4714 {
4715 	return &env->insn_aux_data[env->insn_idx];
4716 }
4717 
4718 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4719 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4720 {
4721 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4722 			    (opcode == BPF_SUB && !off_is_neg);
4723 	u32 off;
4724 
4725 	switch (ptr_reg->type) {
4726 	case PTR_TO_STACK:
4727 		/* Indirect variable offset stack access is prohibited in
4728 		 * unprivileged mode so it's not handled here.
4729 		 */
4730 		off = ptr_reg->off + ptr_reg->var_off.value;
4731 		if (mask_to_left)
4732 			*ptr_limit = MAX_BPF_STACK + off;
4733 		else
4734 			*ptr_limit = -off;
4735 		return 0;
4736 	case PTR_TO_MAP_VALUE:
4737 		if (mask_to_left) {
4738 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4739 		} else {
4740 			off = ptr_reg->smin_value + ptr_reg->off;
4741 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4742 		}
4743 		return 0;
4744 	default:
4745 		return -EINVAL;
4746 	}
4747 }
4748 
4749 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4750 				    const struct bpf_insn *insn)
4751 {
4752 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4753 }
4754 
4755 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4756 				       u32 alu_state, u32 alu_limit)
4757 {
4758 	/* If we arrived here from different branches with different
4759 	 * state or limits to sanitize, then this won't work.
4760 	 */
4761 	if (aux->alu_state &&
4762 	    (aux->alu_state != alu_state ||
4763 	     aux->alu_limit != alu_limit))
4764 		return -EACCES;
4765 
4766 	/* Corresponding fixup done in fixup_bpf_calls(). */
4767 	aux->alu_state = alu_state;
4768 	aux->alu_limit = alu_limit;
4769 	return 0;
4770 }
4771 
4772 static int sanitize_val_alu(struct bpf_verifier_env *env,
4773 			    struct bpf_insn *insn)
4774 {
4775 	struct bpf_insn_aux_data *aux = cur_aux(env);
4776 
4777 	if (can_skip_alu_sanitation(env, insn))
4778 		return 0;
4779 
4780 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4781 }
4782 
4783 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4784 			    struct bpf_insn *insn,
4785 			    const struct bpf_reg_state *ptr_reg,
4786 			    struct bpf_reg_state *dst_reg,
4787 			    bool off_is_neg)
4788 {
4789 	struct bpf_verifier_state *vstate = env->cur_state;
4790 	struct bpf_insn_aux_data *aux = cur_aux(env);
4791 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4792 	u8 opcode = BPF_OP(insn->code);
4793 	u32 alu_state, alu_limit;
4794 	struct bpf_reg_state tmp;
4795 	bool ret;
4796 
4797 	if (can_skip_alu_sanitation(env, insn))
4798 		return 0;
4799 
4800 	/* We already marked aux for masking from non-speculative
4801 	 * paths, thus we got here in the first place. We only care
4802 	 * to explore bad access from here.
4803 	 */
4804 	if (vstate->speculative)
4805 		goto do_sim;
4806 
4807 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4808 	alu_state |= ptr_is_dst_reg ?
4809 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4810 
4811 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4812 		return 0;
4813 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4814 		return -EACCES;
4815 do_sim:
4816 	/* Simulate and find potential out-of-bounds access under
4817 	 * speculative execution from truncation as a result of
4818 	 * masking when off was not within expected range. If off
4819 	 * sits in dst, then we temporarily need to move ptr there
4820 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4821 	 * for cases where we use K-based arithmetic in one direction
4822 	 * and truncated reg-based in the other in order to explore
4823 	 * bad access.
4824 	 */
4825 	if (!ptr_is_dst_reg) {
4826 		tmp = *dst_reg;
4827 		*dst_reg = *ptr_reg;
4828 	}
4829 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4830 	if (!ptr_is_dst_reg && ret)
4831 		*dst_reg = tmp;
4832 	return !ret ? -EFAULT : 0;
4833 }
4834 
4835 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4836  * Caller should also handle BPF_MOV case separately.
4837  * If we return -EACCES, caller may want to try again treating pointer as a
4838  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4839  */
4840 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4841 				   struct bpf_insn *insn,
4842 				   const struct bpf_reg_state *ptr_reg,
4843 				   const struct bpf_reg_state *off_reg)
4844 {
4845 	struct bpf_verifier_state *vstate = env->cur_state;
4846 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4847 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4848 	bool known = tnum_is_const(off_reg->var_off);
4849 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4850 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4851 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4852 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4853 	u32 dst = insn->dst_reg, src = insn->src_reg;
4854 	u8 opcode = BPF_OP(insn->code);
4855 	int ret;
4856 
4857 	dst_reg = &regs[dst];
4858 
4859 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4860 	    smin_val > smax_val || umin_val > umax_val) {
4861 		/* Taint dst register if offset had invalid bounds derived from
4862 		 * e.g. dead branches.
4863 		 */
4864 		__mark_reg_unknown(env, dst_reg);
4865 		return 0;
4866 	}
4867 
4868 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4869 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4870 		verbose(env,
4871 			"R%d 32-bit pointer arithmetic prohibited\n",
4872 			dst);
4873 		return -EACCES;
4874 	}
4875 
4876 	switch (ptr_reg->type) {
4877 	case PTR_TO_MAP_VALUE_OR_NULL:
4878 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4879 			dst, reg_type_str[ptr_reg->type]);
4880 		return -EACCES;
4881 	case CONST_PTR_TO_MAP:
4882 	case PTR_TO_PACKET_END:
4883 	case PTR_TO_SOCKET:
4884 	case PTR_TO_SOCKET_OR_NULL:
4885 	case PTR_TO_SOCK_COMMON:
4886 	case PTR_TO_SOCK_COMMON_OR_NULL:
4887 	case PTR_TO_TCP_SOCK:
4888 	case PTR_TO_TCP_SOCK_OR_NULL:
4889 	case PTR_TO_XDP_SOCK:
4890 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4891 			dst, reg_type_str[ptr_reg->type]);
4892 		return -EACCES;
4893 	case PTR_TO_MAP_VALUE:
4894 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4895 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4896 				off_reg == dst_reg ? dst : src);
4897 			return -EACCES;
4898 		}
4899 		/* fall-through */
4900 	default:
4901 		break;
4902 	}
4903 
4904 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4905 	 * The id may be overwritten later if we create a new variable offset.
4906 	 */
4907 	dst_reg->type = ptr_reg->type;
4908 	dst_reg->id = ptr_reg->id;
4909 
4910 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4911 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4912 		return -EINVAL;
4913 
4914 	/* pointer types do not carry 32-bit bounds at the moment. */
4915 	__mark_reg32_unbounded(dst_reg);
4916 
4917 	switch (opcode) {
4918 	case BPF_ADD:
4919 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4920 		if (ret < 0) {
4921 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4922 			return ret;
4923 		}
4924 		/* We can take a fixed offset as long as it doesn't overflow
4925 		 * the s32 'off' field
4926 		 */
4927 		if (known && (ptr_reg->off + smin_val ==
4928 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4929 			/* pointer += K.  Accumulate it into fixed offset */
4930 			dst_reg->smin_value = smin_ptr;
4931 			dst_reg->smax_value = smax_ptr;
4932 			dst_reg->umin_value = umin_ptr;
4933 			dst_reg->umax_value = umax_ptr;
4934 			dst_reg->var_off = ptr_reg->var_off;
4935 			dst_reg->off = ptr_reg->off + smin_val;
4936 			dst_reg->raw = ptr_reg->raw;
4937 			break;
4938 		}
4939 		/* A new variable offset is created.  Note that off_reg->off
4940 		 * == 0, since it's a scalar.
4941 		 * dst_reg gets the pointer type and since some positive
4942 		 * integer value was added to the pointer, give it a new 'id'
4943 		 * if it's a PTR_TO_PACKET.
4944 		 * this creates a new 'base' pointer, off_reg (variable) gets
4945 		 * added into the variable offset, and we copy the fixed offset
4946 		 * from ptr_reg.
4947 		 */
4948 		if (signed_add_overflows(smin_ptr, smin_val) ||
4949 		    signed_add_overflows(smax_ptr, smax_val)) {
4950 			dst_reg->smin_value = S64_MIN;
4951 			dst_reg->smax_value = S64_MAX;
4952 		} else {
4953 			dst_reg->smin_value = smin_ptr + smin_val;
4954 			dst_reg->smax_value = smax_ptr + smax_val;
4955 		}
4956 		if (umin_ptr + umin_val < umin_ptr ||
4957 		    umax_ptr + umax_val < umax_ptr) {
4958 			dst_reg->umin_value = 0;
4959 			dst_reg->umax_value = U64_MAX;
4960 		} else {
4961 			dst_reg->umin_value = umin_ptr + umin_val;
4962 			dst_reg->umax_value = umax_ptr + umax_val;
4963 		}
4964 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4965 		dst_reg->off = ptr_reg->off;
4966 		dst_reg->raw = ptr_reg->raw;
4967 		if (reg_is_pkt_pointer(ptr_reg)) {
4968 			dst_reg->id = ++env->id_gen;
4969 			/* something was added to pkt_ptr, set range to zero */
4970 			dst_reg->raw = 0;
4971 		}
4972 		break;
4973 	case BPF_SUB:
4974 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4975 		if (ret < 0) {
4976 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4977 			return ret;
4978 		}
4979 		if (dst_reg == off_reg) {
4980 			/* scalar -= pointer.  Creates an unknown scalar */
4981 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4982 				dst);
4983 			return -EACCES;
4984 		}
4985 		/* We don't allow subtraction from FP, because (according to
4986 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4987 		 * be able to deal with it.
4988 		 */
4989 		if (ptr_reg->type == PTR_TO_STACK) {
4990 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4991 				dst);
4992 			return -EACCES;
4993 		}
4994 		if (known && (ptr_reg->off - smin_val ==
4995 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4996 			/* pointer -= K.  Subtract it from fixed offset */
4997 			dst_reg->smin_value = smin_ptr;
4998 			dst_reg->smax_value = smax_ptr;
4999 			dst_reg->umin_value = umin_ptr;
5000 			dst_reg->umax_value = umax_ptr;
5001 			dst_reg->var_off = ptr_reg->var_off;
5002 			dst_reg->id = ptr_reg->id;
5003 			dst_reg->off = ptr_reg->off - smin_val;
5004 			dst_reg->raw = ptr_reg->raw;
5005 			break;
5006 		}
5007 		/* A new variable offset is created.  If the subtrahend is known
5008 		 * nonnegative, then any reg->range we had before is still good.
5009 		 */
5010 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5011 		    signed_sub_overflows(smax_ptr, smin_val)) {
5012 			/* Overflow possible, we know nothing */
5013 			dst_reg->smin_value = S64_MIN;
5014 			dst_reg->smax_value = S64_MAX;
5015 		} else {
5016 			dst_reg->smin_value = smin_ptr - smax_val;
5017 			dst_reg->smax_value = smax_ptr - smin_val;
5018 		}
5019 		if (umin_ptr < umax_val) {
5020 			/* Overflow possible, we know nothing */
5021 			dst_reg->umin_value = 0;
5022 			dst_reg->umax_value = U64_MAX;
5023 		} else {
5024 			/* Cannot overflow (as long as bounds are consistent) */
5025 			dst_reg->umin_value = umin_ptr - umax_val;
5026 			dst_reg->umax_value = umax_ptr - umin_val;
5027 		}
5028 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5029 		dst_reg->off = ptr_reg->off;
5030 		dst_reg->raw = ptr_reg->raw;
5031 		if (reg_is_pkt_pointer(ptr_reg)) {
5032 			dst_reg->id = ++env->id_gen;
5033 			/* something was added to pkt_ptr, set range to zero */
5034 			if (smin_val < 0)
5035 				dst_reg->raw = 0;
5036 		}
5037 		break;
5038 	case BPF_AND:
5039 	case BPF_OR:
5040 	case BPF_XOR:
5041 		/* bitwise ops on pointers are troublesome, prohibit. */
5042 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5043 			dst, bpf_alu_string[opcode >> 4]);
5044 		return -EACCES;
5045 	default:
5046 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5047 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5048 			dst, bpf_alu_string[opcode >> 4]);
5049 		return -EACCES;
5050 	}
5051 
5052 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5053 		return -EINVAL;
5054 
5055 	__update_reg_bounds(dst_reg);
5056 	__reg_deduce_bounds(dst_reg);
5057 	__reg_bound_offset(dst_reg);
5058 
5059 	/* For unprivileged we require that resulting offset must be in bounds
5060 	 * in order to be able to sanitize access later on.
5061 	 */
5062 	if (!env->allow_ptr_leaks) {
5063 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5064 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5065 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5066 				"prohibited for !root\n", dst);
5067 			return -EACCES;
5068 		} else if (dst_reg->type == PTR_TO_STACK &&
5069 			   check_stack_access(env, dst_reg, dst_reg->off +
5070 					      dst_reg->var_off.value, 1)) {
5071 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5072 				"prohibited for !root\n", dst);
5073 			return -EACCES;
5074 		}
5075 	}
5076 
5077 	return 0;
5078 }
5079 
5080 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5081 				 struct bpf_reg_state *src_reg)
5082 {
5083 	s32 smin_val = src_reg->s32_min_value;
5084 	s32 smax_val = src_reg->s32_max_value;
5085 	u32 umin_val = src_reg->u32_min_value;
5086 	u32 umax_val = src_reg->u32_max_value;
5087 
5088 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5089 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5090 		dst_reg->s32_min_value = S32_MIN;
5091 		dst_reg->s32_max_value = S32_MAX;
5092 	} else {
5093 		dst_reg->s32_min_value += smin_val;
5094 		dst_reg->s32_max_value += smax_val;
5095 	}
5096 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5097 	    dst_reg->u32_max_value + umax_val < umax_val) {
5098 		dst_reg->u32_min_value = 0;
5099 		dst_reg->u32_max_value = U32_MAX;
5100 	} else {
5101 		dst_reg->u32_min_value += umin_val;
5102 		dst_reg->u32_max_value += umax_val;
5103 	}
5104 }
5105 
5106 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5107 			       struct bpf_reg_state *src_reg)
5108 {
5109 	s64 smin_val = src_reg->smin_value;
5110 	s64 smax_val = src_reg->smax_value;
5111 	u64 umin_val = src_reg->umin_value;
5112 	u64 umax_val = src_reg->umax_value;
5113 
5114 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5115 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5116 		dst_reg->smin_value = S64_MIN;
5117 		dst_reg->smax_value = S64_MAX;
5118 	} else {
5119 		dst_reg->smin_value += smin_val;
5120 		dst_reg->smax_value += smax_val;
5121 	}
5122 	if (dst_reg->umin_value + umin_val < umin_val ||
5123 	    dst_reg->umax_value + umax_val < umax_val) {
5124 		dst_reg->umin_value = 0;
5125 		dst_reg->umax_value = U64_MAX;
5126 	} else {
5127 		dst_reg->umin_value += umin_val;
5128 		dst_reg->umax_value += umax_val;
5129 	}
5130 }
5131 
5132 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5133 				 struct bpf_reg_state *src_reg)
5134 {
5135 	s32 smin_val = src_reg->s32_min_value;
5136 	s32 smax_val = src_reg->s32_max_value;
5137 	u32 umin_val = src_reg->u32_min_value;
5138 	u32 umax_val = src_reg->u32_max_value;
5139 
5140 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5141 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5142 		/* Overflow possible, we know nothing */
5143 		dst_reg->s32_min_value = S32_MIN;
5144 		dst_reg->s32_max_value = S32_MAX;
5145 	} else {
5146 		dst_reg->s32_min_value -= smax_val;
5147 		dst_reg->s32_max_value -= smin_val;
5148 	}
5149 	if (dst_reg->u32_min_value < umax_val) {
5150 		/* Overflow possible, we know nothing */
5151 		dst_reg->u32_min_value = 0;
5152 		dst_reg->u32_max_value = U32_MAX;
5153 	} else {
5154 		/* Cannot overflow (as long as bounds are consistent) */
5155 		dst_reg->u32_min_value -= umax_val;
5156 		dst_reg->u32_max_value -= umin_val;
5157 	}
5158 }
5159 
5160 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5161 			       struct bpf_reg_state *src_reg)
5162 {
5163 	s64 smin_val = src_reg->smin_value;
5164 	s64 smax_val = src_reg->smax_value;
5165 	u64 umin_val = src_reg->umin_value;
5166 	u64 umax_val = src_reg->umax_value;
5167 
5168 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5169 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5170 		/* Overflow possible, we know nothing */
5171 		dst_reg->smin_value = S64_MIN;
5172 		dst_reg->smax_value = S64_MAX;
5173 	} else {
5174 		dst_reg->smin_value -= smax_val;
5175 		dst_reg->smax_value -= smin_val;
5176 	}
5177 	if (dst_reg->umin_value < umax_val) {
5178 		/* Overflow possible, we know nothing */
5179 		dst_reg->umin_value = 0;
5180 		dst_reg->umax_value = U64_MAX;
5181 	} else {
5182 		/* Cannot overflow (as long as bounds are consistent) */
5183 		dst_reg->umin_value -= umax_val;
5184 		dst_reg->umax_value -= umin_val;
5185 	}
5186 }
5187 
5188 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5189 				 struct bpf_reg_state *src_reg)
5190 {
5191 	s32 smin_val = src_reg->s32_min_value;
5192 	u32 umin_val = src_reg->u32_min_value;
5193 	u32 umax_val = src_reg->u32_max_value;
5194 
5195 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5196 		/* Ain't nobody got time to multiply that sign */
5197 		__mark_reg32_unbounded(dst_reg);
5198 		return;
5199 	}
5200 	/* Both values are positive, so we can work with unsigned and
5201 	 * copy the result to signed (unless it exceeds S32_MAX).
5202 	 */
5203 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5204 		/* Potential overflow, we know nothing */
5205 		__mark_reg32_unbounded(dst_reg);
5206 		return;
5207 	}
5208 	dst_reg->u32_min_value *= umin_val;
5209 	dst_reg->u32_max_value *= umax_val;
5210 	if (dst_reg->u32_max_value > S32_MAX) {
5211 		/* Overflow possible, we know nothing */
5212 		dst_reg->s32_min_value = S32_MIN;
5213 		dst_reg->s32_max_value = S32_MAX;
5214 	} else {
5215 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5216 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5217 	}
5218 }
5219 
5220 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5221 			       struct bpf_reg_state *src_reg)
5222 {
5223 	s64 smin_val = src_reg->smin_value;
5224 	u64 umin_val = src_reg->umin_value;
5225 	u64 umax_val = src_reg->umax_value;
5226 
5227 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5228 		/* Ain't nobody got time to multiply that sign */
5229 		__mark_reg64_unbounded(dst_reg);
5230 		return;
5231 	}
5232 	/* Both values are positive, so we can work with unsigned and
5233 	 * copy the result to signed (unless it exceeds S64_MAX).
5234 	 */
5235 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5236 		/* Potential overflow, we know nothing */
5237 		__mark_reg64_unbounded(dst_reg);
5238 		return;
5239 	}
5240 	dst_reg->umin_value *= umin_val;
5241 	dst_reg->umax_value *= umax_val;
5242 	if (dst_reg->umax_value > S64_MAX) {
5243 		/* Overflow possible, we know nothing */
5244 		dst_reg->smin_value = S64_MIN;
5245 		dst_reg->smax_value = S64_MAX;
5246 	} else {
5247 		dst_reg->smin_value = dst_reg->umin_value;
5248 		dst_reg->smax_value = dst_reg->umax_value;
5249 	}
5250 }
5251 
5252 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5253 				 struct bpf_reg_state *src_reg)
5254 {
5255 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5256 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5257 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5258 	s32 smin_val = src_reg->s32_min_value;
5259 	u32 umax_val = src_reg->u32_max_value;
5260 
5261 	/* Assuming scalar64_min_max_and will be called so its safe
5262 	 * to skip updating register for known 32-bit case.
5263 	 */
5264 	if (src_known && dst_known)
5265 		return;
5266 
5267 	/* We get our minimum from the var_off, since that's inherently
5268 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5269 	 */
5270 	dst_reg->u32_min_value = var32_off.value;
5271 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5272 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5273 		/* Lose signed bounds when ANDing negative numbers,
5274 		 * ain't nobody got time for that.
5275 		 */
5276 		dst_reg->s32_min_value = S32_MIN;
5277 		dst_reg->s32_max_value = S32_MAX;
5278 	} else {
5279 		/* ANDing two positives gives a positive, so safe to
5280 		 * cast result into s64.
5281 		 */
5282 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5283 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5284 	}
5285 
5286 }
5287 
5288 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5289 			       struct bpf_reg_state *src_reg)
5290 {
5291 	bool src_known = tnum_is_const(src_reg->var_off);
5292 	bool dst_known = tnum_is_const(dst_reg->var_off);
5293 	s64 smin_val = src_reg->smin_value;
5294 	u64 umax_val = src_reg->umax_value;
5295 
5296 	if (src_known && dst_known) {
5297 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5298 					  src_reg->var_off.value);
5299 		return;
5300 	}
5301 
5302 	/* We get our minimum from the var_off, since that's inherently
5303 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5304 	 */
5305 	dst_reg->umin_value = dst_reg->var_off.value;
5306 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5307 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5308 		/* Lose signed bounds when ANDing negative numbers,
5309 		 * ain't nobody got time for that.
5310 		 */
5311 		dst_reg->smin_value = S64_MIN;
5312 		dst_reg->smax_value = S64_MAX;
5313 	} else {
5314 		/* ANDing two positives gives a positive, so safe to
5315 		 * cast result into s64.
5316 		 */
5317 		dst_reg->smin_value = dst_reg->umin_value;
5318 		dst_reg->smax_value = dst_reg->umax_value;
5319 	}
5320 	/* We may learn something more from the var_off */
5321 	__update_reg_bounds(dst_reg);
5322 }
5323 
5324 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5325 				struct bpf_reg_state *src_reg)
5326 {
5327 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5328 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5329 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5330 	s32 smin_val = src_reg->smin_value;
5331 	u32 umin_val = src_reg->umin_value;
5332 
5333 	/* Assuming scalar64_min_max_or will be called so it is safe
5334 	 * to skip updating register for known case.
5335 	 */
5336 	if (src_known && dst_known)
5337 		return;
5338 
5339 	/* We get our maximum from the var_off, and our minimum is the
5340 	 * maximum of the operands' minima
5341 	 */
5342 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5343 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5344 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5345 		/* Lose signed bounds when ORing negative numbers,
5346 		 * ain't nobody got time for that.
5347 		 */
5348 		dst_reg->s32_min_value = S32_MIN;
5349 		dst_reg->s32_max_value = S32_MAX;
5350 	} else {
5351 		/* ORing two positives gives a positive, so safe to
5352 		 * cast result into s64.
5353 		 */
5354 		dst_reg->s32_min_value = dst_reg->umin_value;
5355 		dst_reg->s32_max_value = dst_reg->umax_value;
5356 	}
5357 }
5358 
5359 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5360 			      struct bpf_reg_state *src_reg)
5361 {
5362 	bool src_known = tnum_is_const(src_reg->var_off);
5363 	bool dst_known = tnum_is_const(dst_reg->var_off);
5364 	s64 smin_val = src_reg->smin_value;
5365 	u64 umin_val = src_reg->umin_value;
5366 
5367 	if (src_known && dst_known) {
5368 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5369 					  src_reg->var_off.value);
5370 		return;
5371 	}
5372 
5373 	/* We get our maximum from the var_off, and our minimum is the
5374 	 * maximum of the operands' minima
5375 	 */
5376 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5377 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5378 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5379 		/* Lose signed bounds when ORing negative numbers,
5380 		 * ain't nobody got time for that.
5381 		 */
5382 		dst_reg->smin_value = S64_MIN;
5383 		dst_reg->smax_value = S64_MAX;
5384 	} else {
5385 		/* ORing two positives gives a positive, so safe to
5386 		 * cast result into s64.
5387 		 */
5388 		dst_reg->smin_value = dst_reg->umin_value;
5389 		dst_reg->smax_value = dst_reg->umax_value;
5390 	}
5391 	/* We may learn something more from the var_off */
5392 	__update_reg_bounds(dst_reg);
5393 }
5394 
5395 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5396 				   u64 umin_val, u64 umax_val)
5397 {
5398 	/* We lose all sign bit information (except what we can pick
5399 	 * up from var_off)
5400 	 */
5401 	dst_reg->s32_min_value = S32_MIN;
5402 	dst_reg->s32_max_value = S32_MAX;
5403 	/* If we might shift our top bit out, then we know nothing */
5404 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5405 		dst_reg->u32_min_value = 0;
5406 		dst_reg->u32_max_value = U32_MAX;
5407 	} else {
5408 		dst_reg->u32_min_value <<= umin_val;
5409 		dst_reg->u32_max_value <<= umax_val;
5410 	}
5411 }
5412 
5413 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5414 				 struct bpf_reg_state *src_reg)
5415 {
5416 	u32 umax_val = src_reg->u32_max_value;
5417 	u32 umin_val = src_reg->u32_min_value;
5418 	/* u32 alu operation will zext upper bits */
5419 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5420 
5421 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5422 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5423 	/* Not required but being careful mark reg64 bounds as unknown so
5424 	 * that we are forced to pick them up from tnum and zext later and
5425 	 * if some path skips this step we are still safe.
5426 	 */
5427 	__mark_reg64_unbounded(dst_reg);
5428 	__update_reg32_bounds(dst_reg);
5429 }
5430 
5431 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5432 				   u64 umin_val, u64 umax_val)
5433 {
5434 	/* Special case <<32 because it is a common compiler pattern to sign
5435 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5436 	 * positive we know this shift will also be positive so we can track
5437 	 * bounds correctly. Otherwise we lose all sign bit information except
5438 	 * what we can pick up from var_off. Perhaps we can generalize this
5439 	 * later to shifts of any length.
5440 	 */
5441 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5442 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5443 	else
5444 		dst_reg->smax_value = S64_MAX;
5445 
5446 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5447 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5448 	else
5449 		dst_reg->smin_value = S64_MIN;
5450 
5451 	/* If we might shift our top bit out, then we know nothing */
5452 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5453 		dst_reg->umin_value = 0;
5454 		dst_reg->umax_value = U64_MAX;
5455 	} else {
5456 		dst_reg->umin_value <<= umin_val;
5457 		dst_reg->umax_value <<= umax_val;
5458 	}
5459 }
5460 
5461 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5462 			       struct bpf_reg_state *src_reg)
5463 {
5464 	u64 umax_val = src_reg->umax_value;
5465 	u64 umin_val = src_reg->umin_value;
5466 
5467 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
5468 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5469 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5470 
5471 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5472 	/* We may learn something more from the var_off */
5473 	__update_reg_bounds(dst_reg);
5474 }
5475 
5476 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5477 				 struct bpf_reg_state *src_reg)
5478 {
5479 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5480 	u32 umax_val = src_reg->u32_max_value;
5481 	u32 umin_val = src_reg->u32_min_value;
5482 
5483 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5484 	 * be negative, then either:
5485 	 * 1) src_reg might be zero, so the sign bit of the result is
5486 	 *    unknown, so we lose our signed bounds
5487 	 * 2) it's known negative, thus the unsigned bounds capture the
5488 	 *    signed bounds
5489 	 * 3) the signed bounds cross zero, so they tell us nothing
5490 	 *    about the result
5491 	 * If the value in dst_reg is known nonnegative, then again the
5492 	 * unsigned bounts capture the signed bounds.
5493 	 * Thus, in all cases it suffices to blow away our signed bounds
5494 	 * and rely on inferring new ones from the unsigned bounds and
5495 	 * var_off of the result.
5496 	 */
5497 	dst_reg->s32_min_value = S32_MIN;
5498 	dst_reg->s32_max_value = S32_MAX;
5499 
5500 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
5501 	dst_reg->u32_min_value >>= umax_val;
5502 	dst_reg->u32_max_value >>= umin_val;
5503 
5504 	__mark_reg64_unbounded(dst_reg);
5505 	__update_reg32_bounds(dst_reg);
5506 }
5507 
5508 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5509 			       struct bpf_reg_state *src_reg)
5510 {
5511 	u64 umax_val = src_reg->umax_value;
5512 	u64 umin_val = src_reg->umin_value;
5513 
5514 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5515 	 * be negative, then either:
5516 	 * 1) src_reg might be zero, so the sign bit of the result is
5517 	 *    unknown, so we lose our signed bounds
5518 	 * 2) it's known negative, thus the unsigned bounds capture the
5519 	 *    signed bounds
5520 	 * 3) the signed bounds cross zero, so they tell us nothing
5521 	 *    about the result
5522 	 * If the value in dst_reg is known nonnegative, then again the
5523 	 * unsigned bounts capture the signed bounds.
5524 	 * Thus, in all cases it suffices to blow away our signed bounds
5525 	 * and rely on inferring new ones from the unsigned bounds and
5526 	 * var_off of the result.
5527 	 */
5528 	dst_reg->smin_value = S64_MIN;
5529 	dst_reg->smax_value = S64_MAX;
5530 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5531 	dst_reg->umin_value >>= umax_val;
5532 	dst_reg->umax_value >>= umin_val;
5533 
5534 	/* Its not easy to operate on alu32 bounds here because it depends
5535 	 * on bits being shifted in. Take easy way out and mark unbounded
5536 	 * so we can recalculate later from tnum.
5537 	 */
5538 	__mark_reg32_unbounded(dst_reg);
5539 	__update_reg_bounds(dst_reg);
5540 }
5541 
5542 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5543 				  struct bpf_reg_state *src_reg)
5544 {
5545 	u64 umin_val = src_reg->u32_min_value;
5546 
5547 	/* Upon reaching here, src_known is true and
5548 	 * umax_val is equal to umin_val.
5549 	 */
5550 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5551 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5552 
5553 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5554 
5555 	/* blow away the dst_reg umin_value/umax_value and rely on
5556 	 * dst_reg var_off to refine the result.
5557 	 */
5558 	dst_reg->u32_min_value = 0;
5559 	dst_reg->u32_max_value = U32_MAX;
5560 
5561 	__mark_reg64_unbounded(dst_reg);
5562 	__update_reg32_bounds(dst_reg);
5563 }
5564 
5565 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5566 				struct bpf_reg_state *src_reg)
5567 {
5568 	u64 umin_val = src_reg->umin_value;
5569 
5570 	/* Upon reaching here, src_known is true and umax_val is equal
5571 	 * to umin_val.
5572 	 */
5573 	dst_reg->smin_value >>= umin_val;
5574 	dst_reg->smax_value >>= umin_val;
5575 
5576 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5577 
5578 	/* blow away the dst_reg umin_value/umax_value and rely on
5579 	 * dst_reg var_off to refine the result.
5580 	 */
5581 	dst_reg->umin_value = 0;
5582 	dst_reg->umax_value = U64_MAX;
5583 
5584 	/* Its not easy to operate on alu32 bounds here because it depends
5585 	 * on bits being shifted in from upper 32-bits. Take easy way out
5586 	 * and mark unbounded so we can recalculate later from tnum.
5587 	 */
5588 	__mark_reg32_unbounded(dst_reg);
5589 	__update_reg_bounds(dst_reg);
5590 }
5591 
5592 /* WARNING: This function does calculations on 64-bit values, but the actual
5593  * execution may occur on 32-bit values. Therefore, things like bitshifts
5594  * need extra checks in the 32-bit case.
5595  */
5596 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5597 				      struct bpf_insn *insn,
5598 				      struct bpf_reg_state *dst_reg,
5599 				      struct bpf_reg_state src_reg)
5600 {
5601 	struct bpf_reg_state *regs = cur_regs(env);
5602 	u8 opcode = BPF_OP(insn->code);
5603 	bool src_known, dst_known;
5604 	s64 smin_val, smax_val;
5605 	u64 umin_val, umax_val;
5606 	s32 s32_min_val, s32_max_val;
5607 	u32 u32_min_val, u32_max_val;
5608 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5609 	u32 dst = insn->dst_reg;
5610 	int ret;
5611 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5612 
5613 	smin_val = src_reg.smin_value;
5614 	smax_val = src_reg.smax_value;
5615 	umin_val = src_reg.umin_value;
5616 	umax_val = src_reg.umax_value;
5617 
5618 	s32_min_val = src_reg.s32_min_value;
5619 	s32_max_val = src_reg.s32_max_value;
5620 	u32_min_val = src_reg.u32_min_value;
5621 	u32_max_val = src_reg.u32_max_value;
5622 
5623 	if (alu32) {
5624 		src_known = tnum_subreg_is_const(src_reg.var_off);
5625 		dst_known = tnum_subreg_is_const(dst_reg->var_off);
5626 		if ((src_known &&
5627 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5628 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5629 			/* Taint dst register if offset had invalid bounds
5630 			 * derived from e.g. dead branches.
5631 			 */
5632 			__mark_reg_unknown(env, dst_reg);
5633 			return 0;
5634 		}
5635 	} else {
5636 		src_known = tnum_is_const(src_reg.var_off);
5637 		dst_known = tnum_is_const(dst_reg->var_off);
5638 		if ((src_known &&
5639 		     (smin_val != smax_val || umin_val != umax_val)) ||
5640 		    smin_val > smax_val || umin_val > umax_val) {
5641 			/* Taint dst register if offset had invalid bounds
5642 			 * derived from e.g. dead branches.
5643 			 */
5644 			__mark_reg_unknown(env, dst_reg);
5645 			return 0;
5646 		}
5647 	}
5648 
5649 	if (!src_known &&
5650 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5651 		__mark_reg_unknown(env, dst_reg);
5652 		return 0;
5653 	}
5654 
5655 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5656 	 * There are two classes of instructions: The first class we track both
5657 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
5658 	 * greatest amount of precision when alu operations are mixed with jmp32
5659 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5660 	 * and BPF_OR. This is possible because these ops have fairly easy to
5661 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5662 	 * See alu32 verifier tests for examples. The second class of
5663 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5664 	 * with regards to tracking sign/unsigned bounds because the bits may
5665 	 * cross subreg boundaries in the alu64 case. When this happens we mark
5666 	 * the reg unbounded in the subreg bound space and use the resulting
5667 	 * tnum to calculate an approximation of the sign/unsigned bounds.
5668 	 */
5669 	switch (opcode) {
5670 	case BPF_ADD:
5671 		ret = sanitize_val_alu(env, insn);
5672 		if (ret < 0) {
5673 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5674 			return ret;
5675 		}
5676 		scalar32_min_max_add(dst_reg, &src_reg);
5677 		scalar_min_max_add(dst_reg, &src_reg);
5678 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
5679 		break;
5680 	case BPF_SUB:
5681 		ret = sanitize_val_alu(env, insn);
5682 		if (ret < 0) {
5683 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5684 			return ret;
5685 		}
5686 		scalar32_min_max_sub(dst_reg, &src_reg);
5687 		scalar_min_max_sub(dst_reg, &src_reg);
5688 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
5689 		break;
5690 	case BPF_MUL:
5691 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5692 		scalar32_min_max_mul(dst_reg, &src_reg);
5693 		scalar_min_max_mul(dst_reg, &src_reg);
5694 		break;
5695 	case BPF_AND:
5696 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5697 		scalar32_min_max_and(dst_reg, &src_reg);
5698 		scalar_min_max_and(dst_reg, &src_reg);
5699 		break;
5700 	case BPF_OR:
5701 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5702 		scalar32_min_max_or(dst_reg, &src_reg);
5703 		scalar_min_max_or(dst_reg, &src_reg);
5704 		break;
5705 	case BPF_LSH:
5706 		if (umax_val >= insn_bitness) {
5707 			/* Shifts greater than 31 or 63 are undefined.
5708 			 * This includes shifts by a negative number.
5709 			 */
5710 			mark_reg_unknown(env, regs, insn->dst_reg);
5711 			break;
5712 		}
5713 		if (alu32)
5714 			scalar32_min_max_lsh(dst_reg, &src_reg);
5715 		else
5716 			scalar_min_max_lsh(dst_reg, &src_reg);
5717 		break;
5718 	case BPF_RSH:
5719 		if (umax_val >= insn_bitness) {
5720 			/* Shifts greater than 31 or 63 are undefined.
5721 			 * This includes shifts by a negative number.
5722 			 */
5723 			mark_reg_unknown(env, regs, insn->dst_reg);
5724 			break;
5725 		}
5726 		if (alu32)
5727 			scalar32_min_max_rsh(dst_reg, &src_reg);
5728 		else
5729 			scalar_min_max_rsh(dst_reg, &src_reg);
5730 		break;
5731 	case BPF_ARSH:
5732 		if (umax_val >= insn_bitness) {
5733 			/* Shifts greater than 31 or 63 are undefined.
5734 			 * This includes shifts by a negative number.
5735 			 */
5736 			mark_reg_unknown(env, regs, insn->dst_reg);
5737 			break;
5738 		}
5739 		if (alu32)
5740 			scalar32_min_max_arsh(dst_reg, &src_reg);
5741 		else
5742 			scalar_min_max_arsh(dst_reg, &src_reg);
5743 		break;
5744 	default:
5745 		mark_reg_unknown(env, regs, insn->dst_reg);
5746 		break;
5747 	}
5748 
5749 	/* ALU32 ops are zero extended into 64bit register */
5750 	if (alu32)
5751 		zext_32_to_64(dst_reg);
5752 
5753 	__update_reg_bounds(dst_reg);
5754 	__reg_deduce_bounds(dst_reg);
5755 	__reg_bound_offset(dst_reg);
5756 	return 0;
5757 }
5758 
5759 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5760  * and var_off.
5761  */
5762 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5763 				   struct bpf_insn *insn)
5764 {
5765 	struct bpf_verifier_state *vstate = env->cur_state;
5766 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5767 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5768 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5769 	u8 opcode = BPF_OP(insn->code);
5770 	int err;
5771 
5772 	dst_reg = &regs[insn->dst_reg];
5773 	src_reg = NULL;
5774 	if (dst_reg->type != SCALAR_VALUE)
5775 		ptr_reg = dst_reg;
5776 	if (BPF_SRC(insn->code) == BPF_X) {
5777 		src_reg = &regs[insn->src_reg];
5778 		if (src_reg->type != SCALAR_VALUE) {
5779 			if (dst_reg->type != SCALAR_VALUE) {
5780 				/* Combining two pointers by any ALU op yields
5781 				 * an arbitrary scalar. Disallow all math except
5782 				 * pointer subtraction
5783 				 */
5784 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5785 					mark_reg_unknown(env, regs, insn->dst_reg);
5786 					return 0;
5787 				}
5788 				verbose(env, "R%d pointer %s pointer prohibited\n",
5789 					insn->dst_reg,
5790 					bpf_alu_string[opcode >> 4]);
5791 				return -EACCES;
5792 			} else {
5793 				/* scalar += pointer
5794 				 * This is legal, but we have to reverse our
5795 				 * src/dest handling in computing the range
5796 				 */
5797 				err = mark_chain_precision(env, insn->dst_reg);
5798 				if (err)
5799 					return err;
5800 				return adjust_ptr_min_max_vals(env, insn,
5801 							       src_reg, dst_reg);
5802 			}
5803 		} else if (ptr_reg) {
5804 			/* pointer += scalar */
5805 			err = mark_chain_precision(env, insn->src_reg);
5806 			if (err)
5807 				return err;
5808 			return adjust_ptr_min_max_vals(env, insn,
5809 						       dst_reg, src_reg);
5810 		}
5811 	} else {
5812 		/* Pretend the src is a reg with a known value, since we only
5813 		 * need to be able to read from this state.
5814 		 */
5815 		off_reg.type = SCALAR_VALUE;
5816 		__mark_reg_known(&off_reg, insn->imm);
5817 		src_reg = &off_reg;
5818 		if (ptr_reg) /* pointer += K */
5819 			return adjust_ptr_min_max_vals(env, insn,
5820 						       ptr_reg, src_reg);
5821 	}
5822 
5823 	/* Got here implies adding two SCALAR_VALUEs */
5824 	if (WARN_ON_ONCE(ptr_reg)) {
5825 		print_verifier_state(env, state);
5826 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5827 		return -EINVAL;
5828 	}
5829 	if (WARN_ON(!src_reg)) {
5830 		print_verifier_state(env, state);
5831 		verbose(env, "verifier internal error: no src_reg\n");
5832 		return -EINVAL;
5833 	}
5834 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5835 }
5836 
5837 /* check validity of 32-bit and 64-bit arithmetic operations */
5838 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5839 {
5840 	struct bpf_reg_state *regs = cur_regs(env);
5841 	u8 opcode = BPF_OP(insn->code);
5842 	int err;
5843 
5844 	if (opcode == BPF_END || opcode == BPF_NEG) {
5845 		if (opcode == BPF_NEG) {
5846 			if (BPF_SRC(insn->code) != 0 ||
5847 			    insn->src_reg != BPF_REG_0 ||
5848 			    insn->off != 0 || insn->imm != 0) {
5849 				verbose(env, "BPF_NEG uses reserved fields\n");
5850 				return -EINVAL;
5851 			}
5852 		} else {
5853 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5854 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5855 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5856 				verbose(env, "BPF_END uses reserved fields\n");
5857 				return -EINVAL;
5858 			}
5859 		}
5860 
5861 		/* check src operand */
5862 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5863 		if (err)
5864 			return err;
5865 
5866 		if (is_pointer_value(env, insn->dst_reg)) {
5867 			verbose(env, "R%d pointer arithmetic prohibited\n",
5868 				insn->dst_reg);
5869 			return -EACCES;
5870 		}
5871 
5872 		/* check dest operand */
5873 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5874 		if (err)
5875 			return err;
5876 
5877 	} else if (opcode == BPF_MOV) {
5878 
5879 		if (BPF_SRC(insn->code) == BPF_X) {
5880 			if (insn->imm != 0 || insn->off != 0) {
5881 				verbose(env, "BPF_MOV uses reserved fields\n");
5882 				return -EINVAL;
5883 			}
5884 
5885 			/* check src operand */
5886 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5887 			if (err)
5888 				return err;
5889 		} else {
5890 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5891 				verbose(env, "BPF_MOV uses reserved fields\n");
5892 				return -EINVAL;
5893 			}
5894 		}
5895 
5896 		/* check dest operand, mark as required later */
5897 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5898 		if (err)
5899 			return err;
5900 
5901 		if (BPF_SRC(insn->code) == BPF_X) {
5902 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5903 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5904 
5905 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5906 				/* case: R1 = R2
5907 				 * copy register state to dest reg
5908 				 */
5909 				*dst_reg = *src_reg;
5910 				dst_reg->live |= REG_LIVE_WRITTEN;
5911 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5912 			} else {
5913 				/* R1 = (u32) R2 */
5914 				if (is_pointer_value(env, insn->src_reg)) {
5915 					verbose(env,
5916 						"R%d partial copy of pointer\n",
5917 						insn->src_reg);
5918 					return -EACCES;
5919 				} else if (src_reg->type == SCALAR_VALUE) {
5920 					*dst_reg = *src_reg;
5921 					dst_reg->live |= REG_LIVE_WRITTEN;
5922 					dst_reg->subreg_def = env->insn_idx + 1;
5923 				} else {
5924 					mark_reg_unknown(env, regs,
5925 							 insn->dst_reg);
5926 				}
5927 				zext_32_to_64(dst_reg);
5928 			}
5929 		} else {
5930 			/* case: R = imm
5931 			 * remember the value we stored into this reg
5932 			 */
5933 			/* clear any state __mark_reg_known doesn't set */
5934 			mark_reg_unknown(env, regs, insn->dst_reg);
5935 			regs[insn->dst_reg].type = SCALAR_VALUE;
5936 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5937 				__mark_reg_known(regs + insn->dst_reg,
5938 						 insn->imm);
5939 			} else {
5940 				__mark_reg_known(regs + insn->dst_reg,
5941 						 (u32)insn->imm);
5942 			}
5943 		}
5944 
5945 	} else if (opcode > BPF_END) {
5946 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5947 		return -EINVAL;
5948 
5949 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5950 
5951 		if (BPF_SRC(insn->code) == BPF_X) {
5952 			if (insn->imm != 0 || insn->off != 0) {
5953 				verbose(env, "BPF_ALU uses reserved fields\n");
5954 				return -EINVAL;
5955 			}
5956 			/* check src1 operand */
5957 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5958 			if (err)
5959 				return err;
5960 		} else {
5961 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5962 				verbose(env, "BPF_ALU uses reserved fields\n");
5963 				return -EINVAL;
5964 			}
5965 		}
5966 
5967 		/* check src2 operand */
5968 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5969 		if (err)
5970 			return err;
5971 
5972 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5973 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5974 			verbose(env, "div by zero\n");
5975 			return -EINVAL;
5976 		}
5977 
5978 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5979 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5980 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5981 
5982 			if (insn->imm < 0 || insn->imm >= size) {
5983 				verbose(env, "invalid shift %d\n", insn->imm);
5984 				return -EINVAL;
5985 			}
5986 		}
5987 
5988 		/* check dest operand */
5989 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5990 		if (err)
5991 			return err;
5992 
5993 		return adjust_reg_min_max_vals(env, insn);
5994 	}
5995 
5996 	return 0;
5997 }
5998 
5999 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6000 				     struct bpf_reg_state *dst_reg,
6001 				     enum bpf_reg_type type, u16 new_range)
6002 {
6003 	struct bpf_reg_state *reg;
6004 	int i;
6005 
6006 	for (i = 0; i < MAX_BPF_REG; i++) {
6007 		reg = &state->regs[i];
6008 		if (reg->type == type && reg->id == dst_reg->id)
6009 			/* keep the maximum range already checked */
6010 			reg->range = max(reg->range, new_range);
6011 	}
6012 
6013 	bpf_for_each_spilled_reg(i, state, reg) {
6014 		if (!reg)
6015 			continue;
6016 		if (reg->type == type && reg->id == dst_reg->id)
6017 			reg->range = max(reg->range, new_range);
6018 	}
6019 }
6020 
6021 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6022 				   struct bpf_reg_state *dst_reg,
6023 				   enum bpf_reg_type type,
6024 				   bool range_right_open)
6025 {
6026 	u16 new_range;
6027 	int i;
6028 
6029 	if (dst_reg->off < 0 ||
6030 	    (dst_reg->off == 0 && range_right_open))
6031 		/* This doesn't give us any range */
6032 		return;
6033 
6034 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6035 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6036 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6037 		 * than pkt_end, but that's because it's also less than pkt.
6038 		 */
6039 		return;
6040 
6041 	new_range = dst_reg->off;
6042 	if (range_right_open)
6043 		new_range--;
6044 
6045 	/* Examples for register markings:
6046 	 *
6047 	 * pkt_data in dst register:
6048 	 *
6049 	 *   r2 = r3;
6050 	 *   r2 += 8;
6051 	 *   if (r2 > pkt_end) goto <handle exception>
6052 	 *   <access okay>
6053 	 *
6054 	 *   r2 = r3;
6055 	 *   r2 += 8;
6056 	 *   if (r2 < pkt_end) goto <access okay>
6057 	 *   <handle exception>
6058 	 *
6059 	 *   Where:
6060 	 *     r2 == dst_reg, pkt_end == src_reg
6061 	 *     r2=pkt(id=n,off=8,r=0)
6062 	 *     r3=pkt(id=n,off=0,r=0)
6063 	 *
6064 	 * pkt_data in src register:
6065 	 *
6066 	 *   r2 = r3;
6067 	 *   r2 += 8;
6068 	 *   if (pkt_end >= r2) goto <access okay>
6069 	 *   <handle exception>
6070 	 *
6071 	 *   r2 = r3;
6072 	 *   r2 += 8;
6073 	 *   if (pkt_end <= r2) goto <handle exception>
6074 	 *   <access okay>
6075 	 *
6076 	 *   Where:
6077 	 *     pkt_end == dst_reg, r2 == src_reg
6078 	 *     r2=pkt(id=n,off=8,r=0)
6079 	 *     r3=pkt(id=n,off=0,r=0)
6080 	 *
6081 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6082 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6083 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6084 	 * the check.
6085 	 */
6086 
6087 	/* If our ids match, then we must have the same max_value.  And we
6088 	 * don't care about the other reg's fixed offset, since if it's too big
6089 	 * the range won't allow anything.
6090 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6091 	 */
6092 	for (i = 0; i <= vstate->curframe; i++)
6093 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6094 					 new_range);
6095 }
6096 
6097 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6098 {
6099 	struct tnum subreg = tnum_subreg(reg->var_off);
6100 	s32 sval = (s32)val;
6101 
6102 	switch (opcode) {
6103 	case BPF_JEQ:
6104 		if (tnum_is_const(subreg))
6105 			return !!tnum_equals_const(subreg, val);
6106 		break;
6107 	case BPF_JNE:
6108 		if (tnum_is_const(subreg))
6109 			return !tnum_equals_const(subreg, val);
6110 		break;
6111 	case BPF_JSET:
6112 		if ((~subreg.mask & subreg.value) & val)
6113 			return 1;
6114 		if (!((subreg.mask | subreg.value) & val))
6115 			return 0;
6116 		break;
6117 	case BPF_JGT:
6118 		if (reg->u32_min_value > val)
6119 			return 1;
6120 		else if (reg->u32_max_value <= val)
6121 			return 0;
6122 		break;
6123 	case BPF_JSGT:
6124 		if (reg->s32_min_value > sval)
6125 			return 1;
6126 		else if (reg->s32_max_value < sval)
6127 			return 0;
6128 		break;
6129 	case BPF_JLT:
6130 		if (reg->u32_max_value < val)
6131 			return 1;
6132 		else if (reg->u32_min_value >= val)
6133 			return 0;
6134 		break;
6135 	case BPF_JSLT:
6136 		if (reg->s32_max_value < sval)
6137 			return 1;
6138 		else if (reg->s32_min_value >= sval)
6139 			return 0;
6140 		break;
6141 	case BPF_JGE:
6142 		if (reg->u32_min_value >= val)
6143 			return 1;
6144 		else if (reg->u32_max_value < val)
6145 			return 0;
6146 		break;
6147 	case BPF_JSGE:
6148 		if (reg->s32_min_value >= sval)
6149 			return 1;
6150 		else if (reg->s32_max_value < sval)
6151 			return 0;
6152 		break;
6153 	case BPF_JLE:
6154 		if (reg->u32_max_value <= val)
6155 			return 1;
6156 		else if (reg->u32_min_value > val)
6157 			return 0;
6158 		break;
6159 	case BPF_JSLE:
6160 		if (reg->s32_max_value <= sval)
6161 			return 1;
6162 		else if (reg->s32_min_value > sval)
6163 			return 0;
6164 		break;
6165 	}
6166 
6167 	return -1;
6168 }
6169 
6170 
6171 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6172 {
6173 	s64 sval = (s64)val;
6174 
6175 	switch (opcode) {
6176 	case BPF_JEQ:
6177 		if (tnum_is_const(reg->var_off))
6178 			return !!tnum_equals_const(reg->var_off, val);
6179 		break;
6180 	case BPF_JNE:
6181 		if (tnum_is_const(reg->var_off))
6182 			return !tnum_equals_const(reg->var_off, val);
6183 		break;
6184 	case BPF_JSET:
6185 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6186 			return 1;
6187 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6188 			return 0;
6189 		break;
6190 	case BPF_JGT:
6191 		if (reg->umin_value > val)
6192 			return 1;
6193 		else if (reg->umax_value <= val)
6194 			return 0;
6195 		break;
6196 	case BPF_JSGT:
6197 		if (reg->smin_value > sval)
6198 			return 1;
6199 		else if (reg->smax_value < sval)
6200 			return 0;
6201 		break;
6202 	case BPF_JLT:
6203 		if (reg->umax_value < val)
6204 			return 1;
6205 		else if (reg->umin_value >= val)
6206 			return 0;
6207 		break;
6208 	case BPF_JSLT:
6209 		if (reg->smax_value < sval)
6210 			return 1;
6211 		else if (reg->smin_value >= sval)
6212 			return 0;
6213 		break;
6214 	case BPF_JGE:
6215 		if (reg->umin_value >= val)
6216 			return 1;
6217 		else if (reg->umax_value < val)
6218 			return 0;
6219 		break;
6220 	case BPF_JSGE:
6221 		if (reg->smin_value >= sval)
6222 			return 1;
6223 		else if (reg->smax_value < sval)
6224 			return 0;
6225 		break;
6226 	case BPF_JLE:
6227 		if (reg->umax_value <= val)
6228 			return 1;
6229 		else if (reg->umin_value > val)
6230 			return 0;
6231 		break;
6232 	case BPF_JSLE:
6233 		if (reg->smax_value <= sval)
6234 			return 1;
6235 		else if (reg->smin_value > sval)
6236 			return 0;
6237 		break;
6238 	}
6239 
6240 	return -1;
6241 }
6242 
6243 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6244  * and return:
6245  *  1 - branch will be taken and "goto target" will be executed
6246  *  0 - branch will not be taken and fall-through to next insn
6247  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6248  *      range [0,10]
6249  */
6250 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6251 			   bool is_jmp32)
6252 {
6253 	if (__is_pointer_value(false, reg))
6254 		return -1;
6255 
6256 	if (is_jmp32)
6257 		return is_branch32_taken(reg, val, opcode);
6258 	return is_branch64_taken(reg, val, opcode);
6259 }
6260 
6261 /* Adjusts the register min/max values in the case that the dst_reg is the
6262  * variable register that we are working on, and src_reg is a constant or we're
6263  * simply doing a BPF_K check.
6264  * In JEQ/JNE cases we also adjust the var_off values.
6265  */
6266 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6267 			    struct bpf_reg_state *false_reg,
6268 			    u64 val, u32 val32,
6269 			    u8 opcode, bool is_jmp32)
6270 {
6271 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6272 	struct tnum false_64off = false_reg->var_off;
6273 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6274 	struct tnum true_64off = true_reg->var_off;
6275 	s64 sval = (s64)val;
6276 	s32 sval32 = (s32)val32;
6277 
6278 	/* If the dst_reg is a pointer, we can't learn anything about its
6279 	 * variable offset from the compare (unless src_reg were a pointer into
6280 	 * the same object, but we don't bother with that.
6281 	 * Since false_reg and true_reg have the same type by construction, we
6282 	 * only need to check one of them for pointerness.
6283 	 */
6284 	if (__is_pointer_value(false, false_reg))
6285 		return;
6286 
6287 	switch (opcode) {
6288 	case BPF_JEQ:
6289 	case BPF_JNE:
6290 	{
6291 		struct bpf_reg_state *reg =
6292 			opcode == BPF_JEQ ? true_reg : false_reg;
6293 
6294 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6295 		 * if it is true we know the value for sure. Likewise for
6296 		 * BPF_JNE.
6297 		 */
6298 		if (is_jmp32)
6299 			__mark_reg32_known(reg, val32);
6300 		else
6301 			__mark_reg_known(reg, val);
6302 		break;
6303 	}
6304 	case BPF_JSET:
6305 		if (is_jmp32) {
6306 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6307 			if (is_power_of_2(val32))
6308 				true_32off = tnum_or(true_32off,
6309 						     tnum_const(val32));
6310 		} else {
6311 			false_64off = tnum_and(false_64off, tnum_const(~val));
6312 			if (is_power_of_2(val))
6313 				true_64off = tnum_or(true_64off,
6314 						     tnum_const(val));
6315 		}
6316 		break;
6317 	case BPF_JGE:
6318 	case BPF_JGT:
6319 	{
6320 		if (is_jmp32) {
6321 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6322 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6323 
6324 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6325 						       false_umax);
6326 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6327 						      true_umin);
6328 		} else {
6329 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6330 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6331 
6332 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6333 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6334 		}
6335 		break;
6336 	}
6337 	case BPF_JSGE:
6338 	case BPF_JSGT:
6339 	{
6340 		if (is_jmp32) {
6341 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6342 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6343 
6344 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6345 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6346 		} else {
6347 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6348 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6349 
6350 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6351 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6352 		}
6353 		break;
6354 	}
6355 	case BPF_JLE:
6356 	case BPF_JLT:
6357 	{
6358 		if (is_jmp32) {
6359 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6360 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6361 
6362 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6363 						       false_umin);
6364 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6365 						      true_umax);
6366 		} else {
6367 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6368 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6369 
6370 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6371 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6372 		}
6373 		break;
6374 	}
6375 	case BPF_JSLE:
6376 	case BPF_JSLT:
6377 	{
6378 		if (is_jmp32) {
6379 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6380 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6381 
6382 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6383 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6384 		} else {
6385 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6386 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6387 
6388 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6389 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6390 		}
6391 		break;
6392 	}
6393 	default:
6394 		return;
6395 	}
6396 
6397 	if (is_jmp32) {
6398 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6399 					     tnum_subreg(false_32off));
6400 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6401 					    tnum_subreg(true_32off));
6402 		__reg_combine_32_into_64(false_reg);
6403 		__reg_combine_32_into_64(true_reg);
6404 	} else {
6405 		false_reg->var_off = false_64off;
6406 		true_reg->var_off = true_64off;
6407 		__reg_combine_64_into_32(false_reg);
6408 		__reg_combine_64_into_32(true_reg);
6409 	}
6410 }
6411 
6412 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
6413  * the variable reg.
6414  */
6415 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6416 				struct bpf_reg_state *false_reg,
6417 				u64 val, u32 val32,
6418 				u8 opcode, bool is_jmp32)
6419 {
6420 	/* How can we transform "a <op> b" into "b <op> a"? */
6421 	static const u8 opcode_flip[16] = {
6422 		/* these stay the same */
6423 		[BPF_JEQ  >> 4] = BPF_JEQ,
6424 		[BPF_JNE  >> 4] = BPF_JNE,
6425 		[BPF_JSET >> 4] = BPF_JSET,
6426 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
6427 		[BPF_JGE  >> 4] = BPF_JLE,
6428 		[BPF_JGT  >> 4] = BPF_JLT,
6429 		[BPF_JLE  >> 4] = BPF_JGE,
6430 		[BPF_JLT  >> 4] = BPF_JGT,
6431 		[BPF_JSGE >> 4] = BPF_JSLE,
6432 		[BPF_JSGT >> 4] = BPF_JSLT,
6433 		[BPF_JSLE >> 4] = BPF_JSGE,
6434 		[BPF_JSLT >> 4] = BPF_JSGT
6435 	};
6436 	opcode = opcode_flip[opcode >> 4];
6437 	/* This uses zero as "not present in table"; luckily the zero opcode,
6438 	 * BPF_JA, can't get here.
6439 	 */
6440 	if (opcode)
6441 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6442 }
6443 
6444 /* Regs are known to be equal, so intersect their min/max/var_off */
6445 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6446 				  struct bpf_reg_state *dst_reg)
6447 {
6448 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6449 							dst_reg->umin_value);
6450 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6451 							dst_reg->umax_value);
6452 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6453 							dst_reg->smin_value);
6454 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6455 							dst_reg->smax_value);
6456 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6457 							     dst_reg->var_off);
6458 	/* We might have learned new bounds from the var_off. */
6459 	__update_reg_bounds(src_reg);
6460 	__update_reg_bounds(dst_reg);
6461 	/* We might have learned something about the sign bit. */
6462 	__reg_deduce_bounds(src_reg);
6463 	__reg_deduce_bounds(dst_reg);
6464 	/* We might have learned some bits from the bounds. */
6465 	__reg_bound_offset(src_reg);
6466 	__reg_bound_offset(dst_reg);
6467 	/* Intersecting with the old var_off might have improved our bounds
6468 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6469 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
6470 	 */
6471 	__update_reg_bounds(src_reg);
6472 	__update_reg_bounds(dst_reg);
6473 }
6474 
6475 static void reg_combine_min_max(struct bpf_reg_state *true_src,
6476 				struct bpf_reg_state *true_dst,
6477 				struct bpf_reg_state *false_src,
6478 				struct bpf_reg_state *false_dst,
6479 				u8 opcode)
6480 {
6481 	switch (opcode) {
6482 	case BPF_JEQ:
6483 		__reg_combine_min_max(true_src, true_dst);
6484 		break;
6485 	case BPF_JNE:
6486 		__reg_combine_min_max(false_src, false_dst);
6487 		break;
6488 	}
6489 }
6490 
6491 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6492 				 struct bpf_reg_state *reg, u32 id,
6493 				 bool is_null)
6494 {
6495 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
6496 		/* Old offset (both fixed and variable parts) should
6497 		 * have been known-zero, because we don't allow pointer
6498 		 * arithmetic on pointers that might be NULL.
6499 		 */
6500 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6501 				 !tnum_equals_const(reg->var_off, 0) ||
6502 				 reg->off)) {
6503 			__mark_reg_known_zero(reg);
6504 			reg->off = 0;
6505 		}
6506 		if (is_null) {
6507 			reg->type = SCALAR_VALUE;
6508 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6509 			if (reg->map_ptr->inner_map_meta) {
6510 				reg->type = CONST_PTR_TO_MAP;
6511 				reg->map_ptr = reg->map_ptr->inner_map_meta;
6512 			} else if (reg->map_ptr->map_type ==
6513 				   BPF_MAP_TYPE_XSKMAP) {
6514 				reg->type = PTR_TO_XDP_SOCK;
6515 			} else {
6516 				reg->type = PTR_TO_MAP_VALUE;
6517 			}
6518 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6519 			reg->type = PTR_TO_SOCKET;
6520 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6521 			reg->type = PTR_TO_SOCK_COMMON;
6522 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6523 			reg->type = PTR_TO_TCP_SOCK;
6524 		}
6525 		if (is_null) {
6526 			/* We don't need id and ref_obj_id from this point
6527 			 * onwards anymore, thus we should better reset it,
6528 			 * so that state pruning has chances to take effect.
6529 			 */
6530 			reg->id = 0;
6531 			reg->ref_obj_id = 0;
6532 		} else if (!reg_may_point_to_spin_lock(reg)) {
6533 			/* For not-NULL ptr, reg->ref_obj_id will be reset
6534 			 * in release_reg_references().
6535 			 *
6536 			 * reg->id is still used by spin_lock ptr. Other
6537 			 * than spin_lock ptr type, reg->id can be reset.
6538 			 */
6539 			reg->id = 0;
6540 		}
6541 	}
6542 }
6543 
6544 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6545 				    bool is_null)
6546 {
6547 	struct bpf_reg_state *reg;
6548 	int i;
6549 
6550 	for (i = 0; i < MAX_BPF_REG; i++)
6551 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6552 
6553 	bpf_for_each_spilled_reg(i, state, reg) {
6554 		if (!reg)
6555 			continue;
6556 		mark_ptr_or_null_reg(state, reg, id, is_null);
6557 	}
6558 }
6559 
6560 /* The logic is similar to find_good_pkt_pointers(), both could eventually
6561  * be folded together at some point.
6562  */
6563 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6564 				  bool is_null)
6565 {
6566 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6567 	struct bpf_reg_state *regs = state->regs;
6568 	u32 ref_obj_id = regs[regno].ref_obj_id;
6569 	u32 id = regs[regno].id;
6570 	int i;
6571 
6572 	if (ref_obj_id && ref_obj_id == id && is_null)
6573 		/* regs[regno] is in the " == NULL" branch.
6574 		 * No one could have freed the reference state before
6575 		 * doing the NULL check.
6576 		 */
6577 		WARN_ON_ONCE(release_reference_state(state, id));
6578 
6579 	for (i = 0; i <= vstate->curframe; i++)
6580 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6581 }
6582 
6583 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6584 				   struct bpf_reg_state *dst_reg,
6585 				   struct bpf_reg_state *src_reg,
6586 				   struct bpf_verifier_state *this_branch,
6587 				   struct bpf_verifier_state *other_branch)
6588 {
6589 	if (BPF_SRC(insn->code) != BPF_X)
6590 		return false;
6591 
6592 	/* Pointers are always 64-bit. */
6593 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6594 		return false;
6595 
6596 	switch (BPF_OP(insn->code)) {
6597 	case BPF_JGT:
6598 		if ((dst_reg->type == PTR_TO_PACKET &&
6599 		     src_reg->type == PTR_TO_PACKET_END) ||
6600 		    (dst_reg->type == PTR_TO_PACKET_META &&
6601 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6602 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6603 			find_good_pkt_pointers(this_branch, dst_reg,
6604 					       dst_reg->type, false);
6605 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6606 			    src_reg->type == PTR_TO_PACKET) ||
6607 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6608 			    src_reg->type == PTR_TO_PACKET_META)) {
6609 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6610 			find_good_pkt_pointers(other_branch, src_reg,
6611 					       src_reg->type, true);
6612 		} else {
6613 			return false;
6614 		}
6615 		break;
6616 	case BPF_JLT:
6617 		if ((dst_reg->type == PTR_TO_PACKET &&
6618 		     src_reg->type == PTR_TO_PACKET_END) ||
6619 		    (dst_reg->type == PTR_TO_PACKET_META &&
6620 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6621 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6622 			find_good_pkt_pointers(other_branch, dst_reg,
6623 					       dst_reg->type, true);
6624 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6625 			    src_reg->type == PTR_TO_PACKET) ||
6626 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6627 			    src_reg->type == PTR_TO_PACKET_META)) {
6628 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6629 			find_good_pkt_pointers(this_branch, src_reg,
6630 					       src_reg->type, false);
6631 		} else {
6632 			return false;
6633 		}
6634 		break;
6635 	case BPF_JGE:
6636 		if ((dst_reg->type == PTR_TO_PACKET &&
6637 		     src_reg->type == PTR_TO_PACKET_END) ||
6638 		    (dst_reg->type == PTR_TO_PACKET_META &&
6639 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6640 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6641 			find_good_pkt_pointers(this_branch, dst_reg,
6642 					       dst_reg->type, true);
6643 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6644 			    src_reg->type == PTR_TO_PACKET) ||
6645 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6646 			    src_reg->type == PTR_TO_PACKET_META)) {
6647 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6648 			find_good_pkt_pointers(other_branch, src_reg,
6649 					       src_reg->type, false);
6650 		} else {
6651 			return false;
6652 		}
6653 		break;
6654 	case BPF_JLE:
6655 		if ((dst_reg->type == PTR_TO_PACKET &&
6656 		     src_reg->type == PTR_TO_PACKET_END) ||
6657 		    (dst_reg->type == PTR_TO_PACKET_META &&
6658 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6659 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6660 			find_good_pkt_pointers(other_branch, dst_reg,
6661 					       dst_reg->type, false);
6662 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6663 			    src_reg->type == PTR_TO_PACKET) ||
6664 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6665 			    src_reg->type == PTR_TO_PACKET_META)) {
6666 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6667 			find_good_pkt_pointers(this_branch, src_reg,
6668 					       src_reg->type, true);
6669 		} else {
6670 			return false;
6671 		}
6672 		break;
6673 	default:
6674 		return false;
6675 	}
6676 
6677 	return true;
6678 }
6679 
6680 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6681 			     struct bpf_insn *insn, int *insn_idx)
6682 {
6683 	struct bpf_verifier_state *this_branch = env->cur_state;
6684 	struct bpf_verifier_state *other_branch;
6685 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6686 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6687 	u8 opcode = BPF_OP(insn->code);
6688 	bool is_jmp32;
6689 	int pred = -1;
6690 	int err;
6691 
6692 	/* Only conditional jumps are expected to reach here. */
6693 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6694 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6695 		return -EINVAL;
6696 	}
6697 
6698 	if (BPF_SRC(insn->code) == BPF_X) {
6699 		if (insn->imm != 0) {
6700 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6701 			return -EINVAL;
6702 		}
6703 
6704 		/* check src1 operand */
6705 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6706 		if (err)
6707 			return err;
6708 
6709 		if (is_pointer_value(env, insn->src_reg)) {
6710 			verbose(env, "R%d pointer comparison prohibited\n",
6711 				insn->src_reg);
6712 			return -EACCES;
6713 		}
6714 		src_reg = &regs[insn->src_reg];
6715 	} else {
6716 		if (insn->src_reg != BPF_REG_0) {
6717 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6718 			return -EINVAL;
6719 		}
6720 	}
6721 
6722 	/* check src2 operand */
6723 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6724 	if (err)
6725 		return err;
6726 
6727 	dst_reg = &regs[insn->dst_reg];
6728 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6729 
6730 	if (BPF_SRC(insn->code) == BPF_K) {
6731 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
6732 	} else if (src_reg->type == SCALAR_VALUE &&
6733 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
6734 		pred = is_branch_taken(dst_reg,
6735 				       tnum_subreg(src_reg->var_off).value,
6736 				       opcode,
6737 				       is_jmp32);
6738 	} else if (src_reg->type == SCALAR_VALUE &&
6739 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
6740 		pred = is_branch_taken(dst_reg,
6741 				       src_reg->var_off.value,
6742 				       opcode,
6743 				       is_jmp32);
6744 	}
6745 
6746 	if (pred >= 0) {
6747 		err = mark_chain_precision(env, insn->dst_reg);
6748 		if (BPF_SRC(insn->code) == BPF_X && !err)
6749 			err = mark_chain_precision(env, insn->src_reg);
6750 		if (err)
6751 			return err;
6752 	}
6753 	if (pred == 1) {
6754 		/* only follow the goto, ignore fall-through */
6755 		*insn_idx += insn->off;
6756 		return 0;
6757 	} else if (pred == 0) {
6758 		/* only follow fall-through branch, since
6759 		 * that's where the program will go
6760 		 */
6761 		return 0;
6762 	}
6763 
6764 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6765 				  false);
6766 	if (!other_branch)
6767 		return -EFAULT;
6768 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6769 
6770 	/* detect if we are comparing against a constant value so we can adjust
6771 	 * our min/max values for our dst register.
6772 	 * this is only legit if both are scalars (or pointers to the same
6773 	 * object, I suppose, but we don't support that right now), because
6774 	 * otherwise the different base pointers mean the offsets aren't
6775 	 * comparable.
6776 	 */
6777 	if (BPF_SRC(insn->code) == BPF_X) {
6778 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6779 
6780 		if (dst_reg->type == SCALAR_VALUE &&
6781 		    src_reg->type == SCALAR_VALUE) {
6782 			if (tnum_is_const(src_reg->var_off) ||
6783 			    (is_jmp32 &&
6784 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
6785 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6786 						dst_reg,
6787 						src_reg->var_off.value,
6788 						tnum_subreg(src_reg->var_off).value,
6789 						opcode, is_jmp32);
6790 			else if (tnum_is_const(dst_reg->var_off) ||
6791 				 (is_jmp32 &&
6792 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
6793 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6794 						    src_reg,
6795 						    dst_reg->var_off.value,
6796 						    tnum_subreg(dst_reg->var_off).value,
6797 						    opcode, is_jmp32);
6798 			else if (!is_jmp32 &&
6799 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6800 				/* Comparing for equality, we can combine knowledge */
6801 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6802 						    &other_branch_regs[insn->dst_reg],
6803 						    src_reg, dst_reg, opcode);
6804 		}
6805 	} else if (dst_reg->type == SCALAR_VALUE) {
6806 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6807 					dst_reg, insn->imm, (u32)insn->imm,
6808 					opcode, is_jmp32);
6809 	}
6810 
6811 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6812 	 * NOTE: these optimizations below are related with pointer comparison
6813 	 *       which will never be JMP32.
6814 	 */
6815 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6816 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6817 	    reg_type_may_be_null(dst_reg->type)) {
6818 		/* Mark all identical registers in each branch as either
6819 		 * safe or unknown depending R == 0 or R != 0 conditional.
6820 		 */
6821 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6822 				      opcode == BPF_JNE);
6823 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6824 				      opcode == BPF_JEQ);
6825 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6826 					   this_branch, other_branch) &&
6827 		   is_pointer_value(env, insn->dst_reg)) {
6828 		verbose(env, "R%d pointer comparison prohibited\n",
6829 			insn->dst_reg);
6830 		return -EACCES;
6831 	}
6832 	if (env->log.level & BPF_LOG_LEVEL)
6833 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6834 	return 0;
6835 }
6836 
6837 /* verify BPF_LD_IMM64 instruction */
6838 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6839 {
6840 	struct bpf_insn_aux_data *aux = cur_aux(env);
6841 	struct bpf_reg_state *regs = cur_regs(env);
6842 	struct bpf_map *map;
6843 	int err;
6844 
6845 	if (BPF_SIZE(insn->code) != BPF_DW) {
6846 		verbose(env, "invalid BPF_LD_IMM insn\n");
6847 		return -EINVAL;
6848 	}
6849 	if (insn->off != 0) {
6850 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6851 		return -EINVAL;
6852 	}
6853 
6854 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6855 	if (err)
6856 		return err;
6857 
6858 	if (insn->src_reg == 0) {
6859 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6860 
6861 		regs[insn->dst_reg].type = SCALAR_VALUE;
6862 		__mark_reg_known(&regs[insn->dst_reg], imm);
6863 		return 0;
6864 	}
6865 
6866 	map = env->used_maps[aux->map_index];
6867 	mark_reg_known_zero(env, regs, insn->dst_reg);
6868 	regs[insn->dst_reg].map_ptr = map;
6869 
6870 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6871 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6872 		regs[insn->dst_reg].off = aux->map_off;
6873 		if (map_value_has_spin_lock(map))
6874 			regs[insn->dst_reg].id = ++env->id_gen;
6875 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6876 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6877 	} else {
6878 		verbose(env, "bpf verifier is misconfigured\n");
6879 		return -EINVAL;
6880 	}
6881 
6882 	return 0;
6883 }
6884 
6885 static bool may_access_skb(enum bpf_prog_type type)
6886 {
6887 	switch (type) {
6888 	case BPF_PROG_TYPE_SOCKET_FILTER:
6889 	case BPF_PROG_TYPE_SCHED_CLS:
6890 	case BPF_PROG_TYPE_SCHED_ACT:
6891 		return true;
6892 	default:
6893 		return false;
6894 	}
6895 }
6896 
6897 /* verify safety of LD_ABS|LD_IND instructions:
6898  * - they can only appear in the programs where ctx == skb
6899  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6900  *   preserve R6-R9, and store return value into R0
6901  *
6902  * Implicit input:
6903  *   ctx == skb == R6 == CTX
6904  *
6905  * Explicit input:
6906  *   SRC == any register
6907  *   IMM == 32-bit immediate
6908  *
6909  * Output:
6910  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6911  */
6912 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6913 {
6914 	struct bpf_reg_state *regs = cur_regs(env);
6915 	static const int ctx_reg = BPF_REG_6;
6916 	u8 mode = BPF_MODE(insn->code);
6917 	int i, err;
6918 
6919 	if (!may_access_skb(env->prog->type)) {
6920 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6921 		return -EINVAL;
6922 	}
6923 
6924 	if (!env->ops->gen_ld_abs) {
6925 		verbose(env, "bpf verifier is misconfigured\n");
6926 		return -EINVAL;
6927 	}
6928 
6929 	if (env->subprog_cnt > 1) {
6930 		/* when program has LD_ABS insn JITs and interpreter assume
6931 		 * that r1 == ctx == skb which is not the case for callees
6932 		 * that can have arbitrary arguments. It's problematic
6933 		 * for main prog as well since JITs would need to analyze
6934 		 * all functions in order to make proper register save/restore
6935 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6936 		 */
6937 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6938 		return -EINVAL;
6939 	}
6940 
6941 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6942 	    BPF_SIZE(insn->code) == BPF_DW ||
6943 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6944 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6945 		return -EINVAL;
6946 	}
6947 
6948 	/* check whether implicit source operand (register R6) is readable */
6949 	err = check_reg_arg(env, ctx_reg, SRC_OP);
6950 	if (err)
6951 		return err;
6952 
6953 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6954 	 * gen_ld_abs() may terminate the program at runtime, leading to
6955 	 * reference leak.
6956 	 */
6957 	err = check_reference_leak(env);
6958 	if (err) {
6959 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6960 		return err;
6961 	}
6962 
6963 	if (env->cur_state->active_spin_lock) {
6964 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6965 		return -EINVAL;
6966 	}
6967 
6968 	if (regs[ctx_reg].type != PTR_TO_CTX) {
6969 		verbose(env,
6970 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6971 		return -EINVAL;
6972 	}
6973 
6974 	if (mode == BPF_IND) {
6975 		/* check explicit source operand */
6976 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6977 		if (err)
6978 			return err;
6979 	}
6980 
6981 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
6982 	if (err < 0)
6983 		return err;
6984 
6985 	/* reset caller saved regs to unreadable */
6986 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6987 		mark_reg_not_init(env, regs, caller_saved[i]);
6988 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6989 	}
6990 
6991 	/* mark destination R0 register as readable, since it contains
6992 	 * the value fetched from the packet.
6993 	 * Already marked as written above.
6994 	 */
6995 	mark_reg_unknown(env, regs, BPF_REG_0);
6996 	/* ld_abs load up to 32-bit skb data. */
6997 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6998 	return 0;
6999 }
7000 
7001 static int check_return_code(struct bpf_verifier_env *env)
7002 {
7003 	struct tnum enforce_attach_type_range = tnum_unknown;
7004 	const struct bpf_prog *prog = env->prog;
7005 	struct bpf_reg_state *reg;
7006 	struct tnum range = tnum_range(0, 1);
7007 	int err;
7008 
7009 	/* LSM and struct_ops func-ptr's return type could be "void" */
7010 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7011 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
7012 	    !prog->aux->attach_func_proto->type)
7013 		return 0;
7014 
7015 	/* eBPF calling convetion is such that R0 is used
7016 	 * to return the value from eBPF program.
7017 	 * Make sure that it's readable at this time
7018 	 * of bpf_exit, which means that program wrote
7019 	 * something into it earlier
7020 	 */
7021 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7022 	if (err)
7023 		return err;
7024 
7025 	if (is_pointer_value(env, BPF_REG_0)) {
7026 		verbose(env, "R0 leaks addr as return value\n");
7027 		return -EACCES;
7028 	}
7029 
7030 	switch (env->prog->type) {
7031 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7032 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7033 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
7034 			range = tnum_range(1, 1);
7035 		break;
7036 	case BPF_PROG_TYPE_CGROUP_SKB:
7037 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7038 			range = tnum_range(0, 3);
7039 			enforce_attach_type_range = tnum_range(2, 3);
7040 		}
7041 		break;
7042 	case BPF_PROG_TYPE_CGROUP_SOCK:
7043 	case BPF_PROG_TYPE_SOCK_OPS:
7044 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7045 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7046 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7047 		break;
7048 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7049 		if (!env->prog->aux->attach_btf_id)
7050 			return 0;
7051 		range = tnum_const(0);
7052 		break;
7053 	default:
7054 		return 0;
7055 	}
7056 
7057 	reg = cur_regs(env) + BPF_REG_0;
7058 	if (reg->type != SCALAR_VALUE) {
7059 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7060 			reg_type_str[reg->type]);
7061 		return -EINVAL;
7062 	}
7063 
7064 	if (!tnum_in(range, reg->var_off)) {
7065 		char tn_buf[48];
7066 
7067 		verbose(env, "At program exit the register R0 ");
7068 		if (!tnum_is_unknown(reg->var_off)) {
7069 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7070 			verbose(env, "has value %s", tn_buf);
7071 		} else {
7072 			verbose(env, "has unknown scalar value");
7073 		}
7074 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7075 		verbose(env, " should have been in %s\n", tn_buf);
7076 		return -EINVAL;
7077 	}
7078 
7079 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7080 	    tnum_in(enforce_attach_type_range, reg->var_off))
7081 		env->prog->enforce_expected_attach_type = 1;
7082 	return 0;
7083 }
7084 
7085 /* non-recursive DFS pseudo code
7086  * 1  procedure DFS-iterative(G,v):
7087  * 2      label v as discovered
7088  * 3      let S be a stack
7089  * 4      S.push(v)
7090  * 5      while S is not empty
7091  * 6            t <- S.pop()
7092  * 7            if t is what we're looking for:
7093  * 8                return t
7094  * 9            for all edges e in G.adjacentEdges(t) do
7095  * 10               if edge e is already labelled
7096  * 11                   continue with the next edge
7097  * 12               w <- G.adjacentVertex(t,e)
7098  * 13               if vertex w is not discovered and not explored
7099  * 14                   label e as tree-edge
7100  * 15                   label w as discovered
7101  * 16                   S.push(w)
7102  * 17                   continue at 5
7103  * 18               else if vertex w is discovered
7104  * 19                   label e as back-edge
7105  * 20               else
7106  * 21                   // vertex w is explored
7107  * 22                   label e as forward- or cross-edge
7108  * 23           label t as explored
7109  * 24           S.pop()
7110  *
7111  * convention:
7112  * 0x10 - discovered
7113  * 0x11 - discovered and fall-through edge labelled
7114  * 0x12 - discovered and fall-through and branch edges labelled
7115  * 0x20 - explored
7116  */
7117 
7118 enum {
7119 	DISCOVERED = 0x10,
7120 	EXPLORED = 0x20,
7121 	FALLTHROUGH = 1,
7122 	BRANCH = 2,
7123 };
7124 
7125 static u32 state_htab_size(struct bpf_verifier_env *env)
7126 {
7127 	return env->prog->len;
7128 }
7129 
7130 static struct bpf_verifier_state_list **explored_state(
7131 					struct bpf_verifier_env *env,
7132 					int idx)
7133 {
7134 	struct bpf_verifier_state *cur = env->cur_state;
7135 	struct bpf_func_state *state = cur->frame[cur->curframe];
7136 
7137 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7138 }
7139 
7140 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7141 {
7142 	env->insn_aux_data[idx].prune_point = true;
7143 }
7144 
7145 /* t, w, e - match pseudo-code above:
7146  * t - index of current instruction
7147  * w - next instruction
7148  * e - edge
7149  */
7150 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7151 		     bool loop_ok)
7152 {
7153 	int *insn_stack = env->cfg.insn_stack;
7154 	int *insn_state = env->cfg.insn_state;
7155 
7156 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7157 		return 0;
7158 
7159 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7160 		return 0;
7161 
7162 	if (w < 0 || w >= env->prog->len) {
7163 		verbose_linfo(env, t, "%d: ", t);
7164 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7165 		return -EINVAL;
7166 	}
7167 
7168 	if (e == BRANCH)
7169 		/* mark branch target for state pruning */
7170 		init_explored_state(env, w);
7171 
7172 	if (insn_state[w] == 0) {
7173 		/* tree-edge */
7174 		insn_state[t] = DISCOVERED | e;
7175 		insn_state[w] = DISCOVERED;
7176 		if (env->cfg.cur_stack >= env->prog->len)
7177 			return -E2BIG;
7178 		insn_stack[env->cfg.cur_stack++] = w;
7179 		return 1;
7180 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7181 		if (loop_ok && env->allow_ptr_leaks)
7182 			return 0;
7183 		verbose_linfo(env, t, "%d: ", t);
7184 		verbose_linfo(env, w, "%d: ", w);
7185 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7186 		return -EINVAL;
7187 	} else if (insn_state[w] == EXPLORED) {
7188 		/* forward- or cross-edge */
7189 		insn_state[t] = DISCOVERED | e;
7190 	} else {
7191 		verbose(env, "insn state internal bug\n");
7192 		return -EFAULT;
7193 	}
7194 	return 0;
7195 }
7196 
7197 /* non-recursive depth-first-search to detect loops in BPF program
7198  * loop == back-edge in directed graph
7199  */
7200 static int check_cfg(struct bpf_verifier_env *env)
7201 {
7202 	struct bpf_insn *insns = env->prog->insnsi;
7203 	int insn_cnt = env->prog->len;
7204 	int *insn_stack, *insn_state;
7205 	int ret = 0;
7206 	int i, t;
7207 
7208 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7209 	if (!insn_state)
7210 		return -ENOMEM;
7211 
7212 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7213 	if (!insn_stack) {
7214 		kvfree(insn_state);
7215 		return -ENOMEM;
7216 	}
7217 
7218 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7219 	insn_stack[0] = 0; /* 0 is the first instruction */
7220 	env->cfg.cur_stack = 1;
7221 
7222 peek_stack:
7223 	if (env->cfg.cur_stack == 0)
7224 		goto check_state;
7225 	t = insn_stack[env->cfg.cur_stack - 1];
7226 
7227 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7228 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7229 		u8 opcode = BPF_OP(insns[t].code);
7230 
7231 		if (opcode == BPF_EXIT) {
7232 			goto mark_explored;
7233 		} else if (opcode == BPF_CALL) {
7234 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7235 			if (ret == 1)
7236 				goto peek_stack;
7237 			else if (ret < 0)
7238 				goto err_free;
7239 			if (t + 1 < insn_cnt)
7240 				init_explored_state(env, t + 1);
7241 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7242 				init_explored_state(env, t);
7243 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7244 						env, false);
7245 				if (ret == 1)
7246 					goto peek_stack;
7247 				else if (ret < 0)
7248 					goto err_free;
7249 			}
7250 		} else if (opcode == BPF_JA) {
7251 			if (BPF_SRC(insns[t].code) != BPF_K) {
7252 				ret = -EINVAL;
7253 				goto err_free;
7254 			}
7255 			/* unconditional jump with single edge */
7256 			ret = push_insn(t, t + insns[t].off + 1,
7257 					FALLTHROUGH, env, true);
7258 			if (ret == 1)
7259 				goto peek_stack;
7260 			else if (ret < 0)
7261 				goto err_free;
7262 			/* unconditional jmp is not a good pruning point,
7263 			 * but it's marked, since backtracking needs
7264 			 * to record jmp history in is_state_visited().
7265 			 */
7266 			init_explored_state(env, t + insns[t].off + 1);
7267 			/* tell verifier to check for equivalent states
7268 			 * after every call and jump
7269 			 */
7270 			if (t + 1 < insn_cnt)
7271 				init_explored_state(env, t + 1);
7272 		} else {
7273 			/* conditional jump with two edges */
7274 			init_explored_state(env, t);
7275 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7276 			if (ret == 1)
7277 				goto peek_stack;
7278 			else if (ret < 0)
7279 				goto err_free;
7280 
7281 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7282 			if (ret == 1)
7283 				goto peek_stack;
7284 			else if (ret < 0)
7285 				goto err_free;
7286 		}
7287 	} else {
7288 		/* all other non-branch instructions with single
7289 		 * fall-through edge
7290 		 */
7291 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7292 		if (ret == 1)
7293 			goto peek_stack;
7294 		else if (ret < 0)
7295 			goto err_free;
7296 	}
7297 
7298 mark_explored:
7299 	insn_state[t] = EXPLORED;
7300 	if (env->cfg.cur_stack-- <= 0) {
7301 		verbose(env, "pop stack internal bug\n");
7302 		ret = -EFAULT;
7303 		goto err_free;
7304 	}
7305 	goto peek_stack;
7306 
7307 check_state:
7308 	for (i = 0; i < insn_cnt; i++) {
7309 		if (insn_state[i] != EXPLORED) {
7310 			verbose(env, "unreachable insn %d\n", i);
7311 			ret = -EINVAL;
7312 			goto err_free;
7313 		}
7314 	}
7315 	ret = 0; /* cfg looks good */
7316 
7317 err_free:
7318 	kvfree(insn_state);
7319 	kvfree(insn_stack);
7320 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7321 	return ret;
7322 }
7323 
7324 /* The minimum supported BTF func info size */
7325 #define MIN_BPF_FUNCINFO_SIZE	8
7326 #define MAX_FUNCINFO_REC_SIZE	252
7327 
7328 static int check_btf_func(struct bpf_verifier_env *env,
7329 			  const union bpf_attr *attr,
7330 			  union bpf_attr __user *uattr)
7331 {
7332 	u32 i, nfuncs, urec_size, min_size;
7333 	u32 krec_size = sizeof(struct bpf_func_info);
7334 	struct bpf_func_info *krecord;
7335 	struct bpf_func_info_aux *info_aux = NULL;
7336 	const struct btf_type *type;
7337 	struct bpf_prog *prog;
7338 	const struct btf *btf;
7339 	void __user *urecord;
7340 	u32 prev_offset = 0;
7341 	int ret = 0;
7342 
7343 	nfuncs = attr->func_info_cnt;
7344 	if (!nfuncs)
7345 		return 0;
7346 
7347 	if (nfuncs != env->subprog_cnt) {
7348 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7349 		return -EINVAL;
7350 	}
7351 
7352 	urec_size = attr->func_info_rec_size;
7353 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7354 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
7355 	    urec_size % sizeof(u32)) {
7356 		verbose(env, "invalid func info rec size %u\n", urec_size);
7357 		return -EINVAL;
7358 	}
7359 
7360 	prog = env->prog;
7361 	btf = prog->aux->btf;
7362 
7363 	urecord = u64_to_user_ptr(attr->func_info);
7364 	min_size = min_t(u32, krec_size, urec_size);
7365 
7366 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7367 	if (!krecord)
7368 		return -ENOMEM;
7369 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7370 	if (!info_aux)
7371 		goto err_free;
7372 
7373 	for (i = 0; i < nfuncs; i++) {
7374 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7375 		if (ret) {
7376 			if (ret == -E2BIG) {
7377 				verbose(env, "nonzero tailing record in func info");
7378 				/* set the size kernel expects so loader can zero
7379 				 * out the rest of the record.
7380 				 */
7381 				if (put_user(min_size, &uattr->func_info_rec_size))
7382 					ret = -EFAULT;
7383 			}
7384 			goto err_free;
7385 		}
7386 
7387 		if (copy_from_user(&krecord[i], urecord, min_size)) {
7388 			ret = -EFAULT;
7389 			goto err_free;
7390 		}
7391 
7392 		/* check insn_off */
7393 		if (i == 0) {
7394 			if (krecord[i].insn_off) {
7395 				verbose(env,
7396 					"nonzero insn_off %u for the first func info record",
7397 					krecord[i].insn_off);
7398 				ret = -EINVAL;
7399 				goto err_free;
7400 			}
7401 		} else if (krecord[i].insn_off <= prev_offset) {
7402 			verbose(env,
7403 				"same or smaller insn offset (%u) than previous func info record (%u)",
7404 				krecord[i].insn_off, prev_offset);
7405 			ret = -EINVAL;
7406 			goto err_free;
7407 		}
7408 
7409 		if (env->subprog_info[i].start != krecord[i].insn_off) {
7410 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7411 			ret = -EINVAL;
7412 			goto err_free;
7413 		}
7414 
7415 		/* check type_id */
7416 		type = btf_type_by_id(btf, krecord[i].type_id);
7417 		if (!type || !btf_type_is_func(type)) {
7418 			verbose(env, "invalid type id %d in func info",
7419 				krecord[i].type_id);
7420 			ret = -EINVAL;
7421 			goto err_free;
7422 		}
7423 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7424 		prev_offset = krecord[i].insn_off;
7425 		urecord += urec_size;
7426 	}
7427 
7428 	prog->aux->func_info = krecord;
7429 	prog->aux->func_info_cnt = nfuncs;
7430 	prog->aux->func_info_aux = info_aux;
7431 	return 0;
7432 
7433 err_free:
7434 	kvfree(krecord);
7435 	kfree(info_aux);
7436 	return ret;
7437 }
7438 
7439 static void adjust_btf_func(struct bpf_verifier_env *env)
7440 {
7441 	struct bpf_prog_aux *aux = env->prog->aux;
7442 	int i;
7443 
7444 	if (!aux->func_info)
7445 		return;
7446 
7447 	for (i = 0; i < env->subprog_cnt; i++)
7448 		aux->func_info[i].insn_off = env->subprog_info[i].start;
7449 }
7450 
7451 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
7452 		sizeof(((struct bpf_line_info *)(0))->line_col))
7453 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
7454 
7455 static int check_btf_line(struct bpf_verifier_env *env,
7456 			  const union bpf_attr *attr,
7457 			  union bpf_attr __user *uattr)
7458 {
7459 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7460 	struct bpf_subprog_info *sub;
7461 	struct bpf_line_info *linfo;
7462 	struct bpf_prog *prog;
7463 	const struct btf *btf;
7464 	void __user *ulinfo;
7465 	int err;
7466 
7467 	nr_linfo = attr->line_info_cnt;
7468 	if (!nr_linfo)
7469 		return 0;
7470 
7471 	rec_size = attr->line_info_rec_size;
7472 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7473 	    rec_size > MAX_LINEINFO_REC_SIZE ||
7474 	    rec_size & (sizeof(u32) - 1))
7475 		return -EINVAL;
7476 
7477 	/* Need to zero it in case the userspace may
7478 	 * pass in a smaller bpf_line_info object.
7479 	 */
7480 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7481 			 GFP_KERNEL | __GFP_NOWARN);
7482 	if (!linfo)
7483 		return -ENOMEM;
7484 
7485 	prog = env->prog;
7486 	btf = prog->aux->btf;
7487 
7488 	s = 0;
7489 	sub = env->subprog_info;
7490 	ulinfo = u64_to_user_ptr(attr->line_info);
7491 	expected_size = sizeof(struct bpf_line_info);
7492 	ncopy = min_t(u32, expected_size, rec_size);
7493 	for (i = 0; i < nr_linfo; i++) {
7494 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7495 		if (err) {
7496 			if (err == -E2BIG) {
7497 				verbose(env, "nonzero tailing record in line_info");
7498 				if (put_user(expected_size,
7499 					     &uattr->line_info_rec_size))
7500 					err = -EFAULT;
7501 			}
7502 			goto err_free;
7503 		}
7504 
7505 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7506 			err = -EFAULT;
7507 			goto err_free;
7508 		}
7509 
7510 		/*
7511 		 * Check insn_off to ensure
7512 		 * 1) strictly increasing AND
7513 		 * 2) bounded by prog->len
7514 		 *
7515 		 * The linfo[0].insn_off == 0 check logically falls into
7516 		 * the later "missing bpf_line_info for func..." case
7517 		 * because the first linfo[0].insn_off must be the
7518 		 * first sub also and the first sub must have
7519 		 * subprog_info[0].start == 0.
7520 		 */
7521 		if ((i && linfo[i].insn_off <= prev_offset) ||
7522 		    linfo[i].insn_off >= prog->len) {
7523 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7524 				i, linfo[i].insn_off, prev_offset,
7525 				prog->len);
7526 			err = -EINVAL;
7527 			goto err_free;
7528 		}
7529 
7530 		if (!prog->insnsi[linfo[i].insn_off].code) {
7531 			verbose(env,
7532 				"Invalid insn code at line_info[%u].insn_off\n",
7533 				i);
7534 			err = -EINVAL;
7535 			goto err_free;
7536 		}
7537 
7538 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7539 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7540 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7541 			err = -EINVAL;
7542 			goto err_free;
7543 		}
7544 
7545 		if (s != env->subprog_cnt) {
7546 			if (linfo[i].insn_off == sub[s].start) {
7547 				sub[s].linfo_idx = i;
7548 				s++;
7549 			} else if (sub[s].start < linfo[i].insn_off) {
7550 				verbose(env, "missing bpf_line_info for func#%u\n", s);
7551 				err = -EINVAL;
7552 				goto err_free;
7553 			}
7554 		}
7555 
7556 		prev_offset = linfo[i].insn_off;
7557 		ulinfo += rec_size;
7558 	}
7559 
7560 	if (s != env->subprog_cnt) {
7561 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7562 			env->subprog_cnt - s, s);
7563 		err = -EINVAL;
7564 		goto err_free;
7565 	}
7566 
7567 	prog->aux->linfo = linfo;
7568 	prog->aux->nr_linfo = nr_linfo;
7569 
7570 	return 0;
7571 
7572 err_free:
7573 	kvfree(linfo);
7574 	return err;
7575 }
7576 
7577 static int check_btf_info(struct bpf_verifier_env *env,
7578 			  const union bpf_attr *attr,
7579 			  union bpf_attr __user *uattr)
7580 {
7581 	struct btf *btf;
7582 	int err;
7583 
7584 	if (!attr->func_info_cnt && !attr->line_info_cnt)
7585 		return 0;
7586 
7587 	btf = btf_get_by_fd(attr->prog_btf_fd);
7588 	if (IS_ERR(btf))
7589 		return PTR_ERR(btf);
7590 	env->prog->aux->btf = btf;
7591 
7592 	err = check_btf_func(env, attr, uattr);
7593 	if (err)
7594 		return err;
7595 
7596 	err = check_btf_line(env, attr, uattr);
7597 	if (err)
7598 		return err;
7599 
7600 	return 0;
7601 }
7602 
7603 /* check %cur's range satisfies %old's */
7604 static bool range_within(struct bpf_reg_state *old,
7605 			 struct bpf_reg_state *cur)
7606 {
7607 	return old->umin_value <= cur->umin_value &&
7608 	       old->umax_value >= cur->umax_value &&
7609 	       old->smin_value <= cur->smin_value &&
7610 	       old->smax_value >= cur->smax_value;
7611 }
7612 
7613 /* Maximum number of register states that can exist at once */
7614 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7615 struct idpair {
7616 	u32 old;
7617 	u32 cur;
7618 };
7619 
7620 /* If in the old state two registers had the same id, then they need to have
7621  * the same id in the new state as well.  But that id could be different from
7622  * the old state, so we need to track the mapping from old to new ids.
7623  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7624  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7625  * regs with a different old id could still have new id 9, we don't care about
7626  * that.
7627  * So we look through our idmap to see if this old id has been seen before.  If
7628  * so, we require the new id to match; otherwise, we add the id pair to the map.
7629  */
7630 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7631 {
7632 	unsigned int i;
7633 
7634 	for (i = 0; i < ID_MAP_SIZE; i++) {
7635 		if (!idmap[i].old) {
7636 			/* Reached an empty slot; haven't seen this id before */
7637 			idmap[i].old = old_id;
7638 			idmap[i].cur = cur_id;
7639 			return true;
7640 		}
7641 		if (idmap[i].old == old_id)
7642 			return idmap[i].cur == cur_id;
7643 	}
7644 	/* We ran out of idmap slots, which should be impossible */
7645 	WARN_ON_ONCE(1);
7646 	return false;
7647 }
7648 
7649 static void clean_func_state(struct bpf_verifier_env *env,
7650 			     struct bpf_func_state *st)
7651 {
7652 	enum bpf_reg_liveness live;
7653 	int i, j;
7654 
7655 	for (i = 0; i < BPF_REG_FP; i++) {
7656 		live = st->regs[i].live;
7657 		/* liveness must not touch this register anymore */
7658 		st->regs[i].live |= REG_LIVE_DONE;
7659 		if (!(live & REG_LIVE_READ))
7660 			/* since the register is unused, clear its state
7661 			 * to make further comparison simpler
7662 			 */
7663 			__mark_reg_not_init(env, &st->regs[i]);
7664 	}
7665 
7666 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7667 		live = st->stack[i].spilled_ptr.live;
7668 		/* liveness must not touch this stack slot anymore */
7669 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7670 		if (!(live & REG_LIVE_READ)) {
7671 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7672 			for (j = 0; j < BPF_REG_SIZE; j++)
7673 				st->stack[i].slot_type[j] = STACK_INVALID;
7674 		}
7675 	}
7676 }
7677 
7678 static void clean_verifier_state(struct bpf_verifier_env *env,
7679 				 struct bpf_verifier_state *st)
7680 {
7681 	int i;
7682 
7683 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7684 		/* all regs in this state in all frames were already marked */
7685 		return;
7686 
7687 	for (i = 0; i <= st->curframe; i++)
7688 		clean_func_state(env, st->frame[i]);
7689 }
7690 
7691 /* the parentage chains form a tree.
7692  * the verifier states are added to state lists at given insn and
7693  * pushed into state stack for future exploration.
7694  * when the verifier reaches bpf_exit insn some of the verifer states
7695  * stored in the state lists have their final liveness state already,
7696  * but a lot of states will get revised from liveness point of view when
7697  * the verifier explores other branches.
7698  * Example:
7699  * 1: r0 = 1
7700  * 2: if r1 == 100 goto pc+1
7701  * 3: r0 = 2
7702  * 4: exit
7703  * when the verifier reaches exit insn the register r0 in the state list of
7704  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7705  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7706  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7707  *
7708  * Since the verifier pushes the branch states as it sees them while exploring
7709  * the program the condition of walking the branch instruction for the second
7710  * time means that all states below this branch were already explored and
7711  * their final liveness markes are already propagated.
7712  * Hence when the verifier completes the search of state list in is_state_visited()
7713  * we can call this clean_live_states() function to mark all liveness states
7714  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7715  * will not be used.
7716  * This function also clears the registers and stack for states that !READ
7717  * to simplify state merging.
7718  *
7719  * Important note here that walking the same branch instruction in the callee
7720  * doesn't meant that the states are DONE. The verifier has to compare
7721  * the callsites
7722  */
7723 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7724 			      struct bpf_verifier_state *cur)
7725 {
7726 	struct bpf_verifier_state_list *sl;
7727 	int i;
7728 
7729 	sl = *explored_state(env, insn);
7730 	while (sl) {
7731 		if (sl->state.branches)
7732 			goto next;
7733 		if (sl->state.insn_idx != insn ||
7734 		    sl->state.curframe != cur->curframe)
7735 			goto next;
7736 		for (i = 0; i <= cur->curframe; i++)
7737 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7738 				goto next;
7739 		clean_verifier_state(env, &sl->state);
7740 next:
7741 		sl = sl->next;
7742 	}
7743 }
7744 
7745 /* Returns true if (rold safe implies rcur safe) */
7746 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7747 		    struct idpair *idmap)
7748 {
7749 	bool equal;
7750 
7751 	if (!(rold->live & REG_LIVE_READ))
7752 		/* explored state didn't use this */
7753 		return true;
7754 
7755 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7756 
7757 	if (rold->type == PTR_TO_STACK)
7758 		/* two stack pointers are equal only if they're pointing to
7759 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7760 		 */
7761 		return equal && rold->frameno == rcur->frameno;
7762 
7763 	if (equal)
7764 		return true;
7765 
7766 	if (rold->type == NOT_INIT)
7767 		/* explored state can't have used this */
7768 		return true;
7769 	if (rcur->type == NOT_INIT)
7770 		return false;
7771 	switch (rold->type) {
7772 	case SCALAR_VALUE:
7773 		if (rcur->type == SCALAR_VALUE) {
7774 			if (!rold->precise && !rcur->precise)
7775 				return true;
7776 			/* new val must satisfy old val knowledge */
7777 			return range_within(rold, rcur) &&
7778 			       tnum_in(rold->var_off, rcur->var_off);
7779 		} else {
7780 			/* We're trying to use a pointer in place of a scalar.
7781 			 * Even if the scalar was unbounded, this could lead to
7782 			 * pointer leaks because scalars are allowed to leak
7783 			 * while pointers are not. We could make this safe in
7784 			 * special cases if root is calling us, but it's
7785 			 * probably not worth the hassle.
7786 			 */
7787 			return false;
7788 		}
7789 	case PTR_TO_MAP_VALUE:
7790 		/* If the new min/max/var_off satisfy the old ones and
7791 		 * everything else matches, we are OK.
7792 		 * 'id' is not compared, since it's only used for maps with
7793 		 * bpf_spin_lock inside map element and in such cases if
7794 		 * the rest of the prog is valid for one map element then
7795 		 * it's valid for all map elements regardless of the key
7796 		 * used in bpf_map_lookup()
7797 		 */
7798 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7799 		       range_within(rold, rcur) &&
7800 		       tnum_in(rold->var_off, rcur->var_off);
7801 	case PTR_TO_MAP_VALUE_OR_NULL:
7802 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7803 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7804 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7805 		 * checked, doing so could have affected others with the same
7806 		 * id, and we can't check for that because we lost the id when
7807 		 * we converted to a PTR_TO_MAP_VALUE.
7808 		 */
7809 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7810 			return false;
7811 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7812 			return false;
7813 		/* Check our ids match any regs they're supposed to */
7814 		return check_ids(rold->id, rcur->id, idmap);
7815 	case PTR_TO_PACKET_META:
7816 	case PTR_TO_PACKET:
7817 		if (rcur->type != rold->type)
7818 			return false;
7819 		/* We must have at least as much range as the old ptr
7820 		 * did, so that any accesses which were safe before are
7821 		 * still safe.  This is true even if old range < old off,
7822 		 * since someone could have accessed through (ptr - k), or
7823 		 * even done ptr -= k in a register, to get a safe access.
7824 		 */
7825 		if (rold->range > rcur->range)
7826 			return false;
7827 		/* If the offsets don't match, we can't trust our alignment;
7828 		 * nor can we be sure that we won't fall out of range.
7829 		 */
7830 		if (rold->off != rcur->off)
7831 			return false;
7832 		/* id relations must be preserved */
7833 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7834 			return false;
7835 		/* new val must satisfy old val knowledge */
7836 		return range_within(rold, rcur) &&
7837 		       tnum_in(rold->var_off, rcur->var_off);
7838 	case PTR_TO_CTX:
7839 	case CONST_PTR_TO_MAP:
7840 	case PTR_TO_PACKET_END:
7841 	case PTR_TO_FLOW_KEYS:
7842 	case PTR_TO_SOCKET:
7843 	case PTR_TO_SOCKET_OR_NULL:
7844 	case PTR_TO_SOCK_COMMON:
7845 	case PTR_TO_SOCK_COMMON_OR_NULL:
7846 	case PTR_TO_TCP_SOCK:
7847 	case PTR_TO_TCP_SOCK_OR_NULL:
7848 	case PTR_TO_XDP_SOCK:
7849 		/* Only valid matches are exact, which memcmp() above
7850 		 * would have accepted
7851 		 */
7852 	default:
7853 		/* Don't know what's going on, just say it's not safe */
7854 		return false;
7855 	}
7856 
7857 	/* Shouldn't get here; if we do, say it's not safe */
7858 	WARN_ON_ONCE(1);
7859 	return false;
7860 }
7861 
7862 static bool stacksafe(struct bpf_func_state *old,
7863 		      struct bpf_func_state *cur,
7864 		      struct idpair *idmap)
7865 {
7866 	int i, spi;
7867 
7868 	/* walk slots of the explored stack and ignore any additional
7869 	 * slots in the current stack, since explored(safe) state
7870 	 * didn't use them
7871 	 */
7872 	for (i = 0; i < old->allocated_stack; i++) {
7873 		spi = i / BPF_REG_SIZE;
7874 
7875 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7876 			i += BPF_REG_SIZE - 1;
7877 			/* explored state didn't use this */
7878 			continue;
7879 		}
7880 
7881 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7882 			continue;
7883 
7884 		/* explored stack has more populated slots than current stack
7885 		 * and these slots were used
7886 		 */
7887 		if (i >= cur->allocated_stack)
7888 			return false;
7889 
7890 		/* if old state was safe with misc data in the stack
7891 		 * it will be safe with zero-initialized stack.
7892 		 * The opposite is not true
7893 		 */
7894 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7895 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7896 			continue;
7897 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7898 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7899 			/* Ex: old explored (safe) state has STACK_SPILL in
7900 			 * this stack slot, but current has has STACK_MISC ->
7901 			 * this verifier states are not equivalent,
7902 			 * return false to continue verification of this path
7903 			 */
7904 			return false;
7905 		if (i % BPF_REG_SIZE)
7906 			continue;
7907 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7908 			continue;
7909 		if (!regsafe(&old->stack[spi].spilled_ptr,
7910 			     &cur->stack[spi].spilled_ptr,
7911 			     idmap))
7912 			/* when explored and current stack slot are both storing
7913 			 * spilled registers, check that stored pointers types
7914 			 * are the same as well.
7915 			 * Ex: explored safe path could have stored
7916 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7917 			 * but current path has stored:
7918 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7919 			 * such verifier states are not equivalent.
7920 			 * return false to continue verification of this path
7921 			 */
7922 			return false;
7923 	}
7924 	return true;
7925 }
7926 
7927 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7928 {
7929 	if (old->acquired_refs != cur->acquired_refs)
7930 		return false;
7931 	return !memcmp(old->refs, cur->refs,
7932 		       sizeof(*old->refs) * old->acquired_refs);
7933 }
7934 
7935 /* compare two verifier states
7936  *
7937  * all states stored in state_list are known to be valid, since
7938  * verifier reached 'bpf_exit' instruction through them
7939  *
7940  * this function is called when verifier exploring different branches of
7941  * execution popped from the state stack. If it sees an old state that has
7942  * more strict register state and more strict stack state then this execution
7943  * branch doesn't need to be explored further, since verifier already
7944  * concluded that more strict state leads to valid finish.
7945  *
7946  * Therefore two states are equivalent if register state is more conservative
7947  * and explored stack state is more conservative than the current one.
7948  * Example:
7949  *       explored                   current
7950  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7951  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7952  *
7953  * In other words if current stack state (one being explored) has more
7954  * valid slots than old one that already passed validation, it means
7955  * the verifier can stop exploring and conclude that current state is valid too
7956  *
7957  * Similarly with registers. If explored state has register type as invalid
7958  * whereas register type in current state is meaningful, it means that
7959  * the current state will reach 'bpf_exit' instruction safely
7960  */
7961 static bool func_states_equal(struct bpf_func_state *old,
7962 			      struct bpf_func_state *cur)
7963 {
7964 	struct idpair *idmap;
7965 	bool ret = false;
7966 	int i;
7967 
7968 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7969 	/* If we failed to allocate the idmap, just say it's not safe */
7970 	if (!idmap)
7971 		return false;
7972 
7973 	for (i = 0; i < MAX_BPF_REG; i++) {
7974 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7975 			goto out_free;
7976 	}
7977 
7978 	if (!stacksafe(old, cur, idmap))
7979 		goto out_free;
7980 
7981 	if (!refsafe(old, cur))
7982 		goto out_free;
7983 	ret = true;
7984 out_free:
7985 	kfree(idmap);
7986 	return ret;
7987 }
7988 
7989 static bool states_equal(struct bpf_verifier_env *env,
7990 			 struct bpf_verifier_state *old,
7991 			 struct bpf_verifier_state *cur)
7992 {
7993 	int i;
7994 
7995 	if (old->curframe != cur->curframe)
7996 		return false;
7997 
7998 	/* Verification state from speculative execution simulation
7999 	 * must never prune a non-speculative execution one.
8000 	 */
8001 	if (old->speculative && !cur->speculative)
8002 		return false;
8003 
8004 	if (old->active_spin_lock != cur->active_spin_lock)
8005 		return false;
8006 
8007 	/* for states to be equal callsites have to be the same
8008 	 * and all frame states need to be equivalent
8009 	 */
8010 	for (i = 0; i <= old->curframe; i++) {
8011 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8012 			return false;
8013 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8014 			return false;
8015 	}
8016 	return true;
8017 }
8018 
8019 /* Return 0 if no propagation happened. Return negative error code if error
8020  * happened. Otherwise, return the propagated bit.
8021  */
8022 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8023 				  struct bpf_reg_state *reg,
8024 				  struct bpf_reg_state *parent_reg)
8025 {
8026 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8027 	u8 flag = reg->live & REG_LIVE_READ;
8028 	int err;
8029 
8030 	/* When comes here, read flags of PARENT_REG or REG could be any of
8031 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8032 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8033 	 */
8034 	if (parent_flag == REG_LIVE_READ64 ||
8035 	    /* Or if there is no read flag from REG. */
8036 	    !flag ||
8037 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8038 	    parent_flag == flag)
8039 		return 0;
8040 
8041 	err = mark_reg_read(env, reg, parent_reg, flag);
8042 	if (err)
8043 		return err;
8044 
8045 	return flag;
8046 }
8047 
8048 /* A write screens off any subsequent reads; but write marks come from the
8049  * straight-line code between a state and its parent.  When we arrive at an
8050  * equivalent state (jump target or such) we didn't arrive by the straight-line
8051  * code, so read marks in the state must propagate to the parent regardless
8052  * of the state's write marks. That's what 'parent == state->parent' comparison
8053  * in mark_reg_read() is for.
8054  */
8055 static int propagate_liveness(struct bpf_verifier_env *env,
8056 			      const struct bpf_verifier_state *vstate,
8057 			      struct bpf_verifier_state *vparent)
8058 {
8059 	struct bpf_reg_state *state_reg, *parent_reg;
8060 	struct bpf_func_state *state, *parent;
8061 	int i, frame, err = 0;
8062 
8063 	if (vparent->curframe != vstate->curframe) {
8064 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8065 		     vparent->curframe, vstate->curframe);
8066 		return -EFAULT;
8067 	}
8068 	/* Propagate read liveness of registers... */
8069 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8070 	for (frame = 0; frame <= vstate->curframe; frame++) {
8071 		parent = vparent->frame[frame];
8072 		state = vstate->frame[frame];
8073 		parent_reg = parent->regs;
8074 		state_reg = state->regs;
8075 		/* We don't need to worry about FP liveness, it's read-only */
8076 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8077 			err = propagate_liveness_reg(env, &state_reg[i],
8078 						     &parent_reg[i]);
8079 			if (err < 0)
8080 				return err;
8081 			if (err == REG_LIVE_READ64)
8082 				mark_insn_zext(env, &parent_reg[i]);
8083 		}
8084 
8085 		/* Propagate stack slots. */
8086 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8087 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8088 			parent_reg = &parent->stack[i].spilled_ptr;
8089 			state_reg = &state->stack[i].spilled_ptr;
8090 			err = propagate_liveness_reg(env, state_reg,
8091 						     parent_reg);
8092 			if (err < 0)
8093 				return err;
8094 		}
8095 	}
8096 	return 0;
8097 }
8098 
8099 /* find precise scalars in the previous equivalent state and
8100  * propagate them into the current state
8101  */
8102 static int propagate_precision(struct bpf_verifier_env *env,
8103 			       const struct bpf_verifier_state *old)
8104 {
8105 	struct bpf_reg_state *state_reg;
8106 	struct bpf_func_state *state;
8107 	int i, err = 0;
8108 
8109 	state = old->frame[old->curframe];
8110 	state_reg = state->regs;
8111 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8112 		if (state_reg->type != SCALAR_VALUE ||
8113 		    !state_reg->precise)
8114 			continue;
8115 		if (env->log.level & BPF_LOG_LEVEL2)
8116 			verbose(env, "propagating r%d\n", i);
8117 		err = mark_chain_precision(env, i);
8118 		if (err < 0)
8119 			return err;
8120 	}
8121 
8122 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8123 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8124 			continue;
8125 		state_reg = &state->stack[i].spilled_ptr;
8126 		if (state_reg->type != SCALAR_VALUE ||
8127 		    !state_reg->precise)
8128 			continue;
8129 		if (env->log.level & BPF_LOG_LEVEL2)
8130 			verbose(env, "propagating fp%d\n",
8131 				(-i - 1) * BPF_REG_SIZE);
8132 		err = mark_chain_precision_stack(env, i);
8133 		if (err < 0)
8134 			return err;
8135 	}
8136 	return 0;
8137 }
8138 
8139 static bool states_maybe_looping(struct bpf_verifier_state *old,
8140 				 struct bpf_verifier_state *cur)
8141 {
8142 	struct bpf_func_state *fold, *fcur;
8143 	int i, fr = cur->curframe;
8144 
8145 	if (old->curframe != fr)
8146 		return false;
8147 
8148 	fold = old->frame[fr];
8149 	fcur = cur->frame[fr];
8150 	for (i = 0; i < MAX_BPF_REG; i++)
8151 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8152 			   offsetof(struct bpf_reg_state, parent)))
8153 			return false;
8154 	return true;
8155 }
8156 
8157 
8158 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8159 {
8160 	struct bpf_verifier_state_list *new_sl;
8161 	struct bpf_verifier_state_list *sl, **pprev;
8162 	struct bpf_verifier_state *cur = env->cur_state, *new;
8163 	int i, j, err, states_cnt = 0;
8164 	bool add_new_state = env->test_state_freq ? true : false;
8165 
8166 	cur->last_insn_idx = env->prev_insn_idx;
8167 	if (!env->insn_aux_data[insn_idx].prune_point)
8168 		/* this 'insn_idx' instruction wasn't marked, so we will not
8169 		 * be doing state search here
8170 		 */
8171 		return 0;
8172 
8173 	/* bpf progs typically have pruning point every 4 instructions
8174 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8175 	 * Do not add new state for future pruning if the verifier hasn't seen
8176 	 * at least 2 jumps and at least 8 instructions.
8177 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8178 	 * In tests that amounts to up to 50% reduction into total verifier
8179 	 * memory consumption and 20% verifier time speedup.
8180 	 */
8181 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8182 	    env->insn_processed - env->prev_insn_processed >= 8)
8183 		add_new_state = true;
8184 
8185 	pprev = explored_state(env, insn_idx);
8186 	sl = *pprev;
8187 
8188 	clean_live_states(env, insn_idx, cur);
8189 
8190 	while (sl) {
8191 		states_cnt++;
8192 		if (sl->state.insn_idx != insn_idx)
8193 			goto next;
8194 		if (sl->state.branches) {
8195 			if (states_maybe_looping(&sl->state, cur) &&
8196 			    states_equal(env, &sl->state, cur)) {
8197 				verbose_linfo(env, insn_idx, "; ");
8198 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8199 				return -EINVAL;
8200 			}
8201 			/* if the verifier is processing a loop, avoid adding new state
8202 			 * too often, since different loop iterations have distinct
8203 			 * states and may not help future pruning.
8204 			 * This threshold shouldn't be too low to make sure that
8205 			 * a loop with large bound will be rejected quickly.
8206 			 * The most abusive loop will be:
8207 			 * r1 += 1
8208 			 * if r1 < 1000000 goto pc-2
8209 			 * 1M insn_procssed limit / 100 == 10k peak states.
8210 			 * This threshold shouldn't be too high either, since states
8211 			 * at the end of the loop are likely to be useful in pruning.
8212 			 */
8213 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8214 			    env->insn_processed - env->prev_insn_processed < 100)
8215 				add_new_state = false;
8216 			goto miss;
8217 		}
8218 		if (states_equal(env, &sl->state, cur)) {
8219 			sl->hit_cnt++;
8220 			/* reached equivalent register/stack state,
8221 			 * prune the search.
8222 			 * Registers read by the continuation are read by us.
8223 			 * If we have any write marks in env->cur_state, they
8224 			 * will prevent corresponding reads in the continuation
8225 			 * from reaching our parent (an explored_state).  Our
8226 			 * own state will get the read marks recorded, but
8227 			 * they'll be immediately forgotten as we're pruning
8228 			 * this state and will pop a new one.
8229 			 */
8230 			err = propagate_liveness(env, &sl->state, cur);
8231 
8232 			/* if previous state reached the exit with precision and
8233 			 * current state is equivalent to it (except precsion marks)
8234 			 * the precision needs to be propagated back in
8235 			 * the current state.
8236 			 */
8237 			err = err ? : push_jmp_history(env, cur);
8238 			err = err ? : propagate_precision(env, &sl->state);
8239 			if (err)
8240 				return err;
8241 			return 1;
8242 		}
8243 miss:
8244 		/* when new state is not going to be added do not increase miss count.
8245 		 * Otherwise several loop iterations will remove the state
8246 		 * recorded earlier. The goal of these heuristics is to have
8247 		 * states from some iterations of the loop (some in the beginning
8248 		 * and some at the end) to help pruning.
8249 		 */
8250 		if (add_new_state)
8251 			sl->miss_cnt++;
8252 		/* heuristic to determine whether this state is beneficial
8253 		 * to keep checking from state equivalence point of view.
8254 		 * Higher numbers increase max_states_per_insn and verification time,
8255 		 * but do not meaningfully decrease insn_processed.
8256 		 */
8257 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8258 			/* the state is unlikely to be useful. Remove it to
8259 			 * speed up verification
8260 			 */
8261 			*pprev = sl->next;
8262 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8263 				u32 br = sl->state.branches;
8264 
8265 				WARN_ONCE(br,
8266 					  "BUG live_done but branches_to_explore %d\n",
8267 					  br);
8268 				free_verifier_state(&sl->state, false);
8269 				kfree(sl);
8270 				env->peak_states--;
8271 			} else {
8272 				/* cannot free this state, since parentage chain may
8273 				 * walk it later. Add it for free_list instead to
8274 				 * be freed at the end of verification
8275 				 */
8276 				sl->next = env->free_list;
8277 				env->free_list = sl;
8278 			}
8279 			sl = *pprev;
8280 			continue;
8281 		}
8282 next:
8283 		pprev = &sl->next;
8284 		sl = *pprev;
8285 	}
8286 
8287 	if (env->max_states_per_insn < states_cnt)
8288 		env->max_states_per_insn = states_cnt;
8289 
8290 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8291 		return push_jmp_history(env, cur);
8292 
8293 	if (!add_new_state)
8294 		return push_jmp_history(env, cur);
8295 
8296 	/* There were no equivalent states, remember the current one.
8297 	 * Technically the current state is not proven to be safe yet,
8298 	 * but it will either reach outer most bpf_exit (which means it's safe)
8299 	 * or it will be rejected. When there are no loops the verifier won't be
8300 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8301 	 * again on the way to bpf_exit.
8302 	 * When looping the sl->state.branches will be > 0 and this state
8303 	 * will not be considered for equivalence until branches == 0.
8304 	 */
8305 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8306 	if (!new_sl)
8307 		return -ENOMEM;
8308 	env->total_states++;
8309 	env->peak_states++;
8310 	env->prev_jmps_processed = env->jmps_processed;
8311 	env->prev_insn_processed = env->insn_processed;
8312 
8313 	/* add new state to the head of linked list */
8314 	new = &new_sl->state;
8315 	err = copy_verifier_state(new, cur);
8316 	if (err) {
8317 		free_verifier_state(new, false);
8318 		kfree(new_sl);
8319 		return err;
8320 	}
8321 	new->insn_idx = insn_idx;
8322 	WARN_ONCE(new->branches != 1,
8323 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8324 
8325 	cur->parent = new;
8326 	cur->first_insn_idx = insn_idx;
8327 	clear_jmp_history(cur);
8328 	new_sl->next = *explored_state(env, insn_idx);
8329 	*explored_state(env, insn_idx) = new_sl;
8330 	/* connect new state to parentage chain. Current frame needs all
8331 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
8332 	 * to the stack implicitly by JITs) so in callers' frames connect just
8333 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8334 	 * the state of the call instruction (with WRITTEN set), and r0 comes
8335 	 * from callee with its full parentage chain, anyway.
8336 	 */
8337 	/* clear write marks in current state: the writes we did are not writes
8338 	 * our child did, so they don't screen off its reads from us.
8339 	 * (There are no read marks in current state, because reads always mark
8340 	 * their parent and current state never has children yet.  Only
8341 	 * explored_states can get read marks.)
8342 	 */
8343 	for (j = 0; j <= cur->curframe; j++) {
8344 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8345 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8346 		for (i = 0; i < BPF_REG_FP; i++)
8347 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8348 	}
8349 
8350 	/* all stack frames are accessible from callee, clear them all */
8351 	for (j = 0; j <= cur->curframe; j++) {
8352 		struct bpf_func_state *frame = cur->frame[j];
8353 		struct bpf_func_state *newframe = new->frame[j];
8354 
8355 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8356 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8357 			frame->stack[i].spilled_ptr.parent =
8358 						&newframe->stack[i].spilled_ptr;
8359 		}
8360 	}
8361 	return 0;
8362 }
8363 
8364 /* Return true if it's OK to have the same insn return a different type. */
8365 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8366 {
8367 	switch (type) {
8368 	case PTR_TO_CTX:
8369 	case PTR_TO_SOCKET:
8370 	case PTR_TO_SOCKET_OR_NULL:
8371 	case PTR_TO_SOCK_COMMON:
8372 	case PTR_TO_SOCK_COMMON_OR_NULL:
8373 	case PTR_TO_TCP_SOCK:
8374 	case PTR_TO_TCP_SOCK_OR_NULL:
8375 	case PTR_TO_XDP_SOCK:
8376 	case PTR_TO_BTF_ID:
8377 		return false;
8378 	default:
8379 		return true;
8380 	}
8381 }
8382 
8383 /* If an instruction was previously used with particular pointer types, then we
8384  * need to be careful to avoid cases such as the below, where it may be ok
8385  * for one branch accessing the pointer, but not ok for the other branch:
8386  *
8387  * R1 = sock_ptr
8388  * goto X;
8389  * ...
8390  * R1 = some_other_valid_ptr;
8391  * goto X;
8392  * ...
8393  * R2 = *(u32 *)(R1 + 0);
8394  */
8395 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8396 {
8397 	return src != prev && (!reg_type_mismatch_ok(src) ||
8398 			       !reg_type_mismatch_ok(prev));
8399 }
8400 
8401 static int do_check(struct bpf_verifier_env *env)
8402 {
8403 	struct bpf_verifier_state *state = env->cur_state;
8404 	struct bpf_insn *insns = env->prog->insnsi;
8405 	struct bpf_reg_state *regs;
8406 	int insn_cnt = env->prog->len;
8407 	bool do_print_state = false;
8408 	int prev_insn_idx = -1;
8409 
8410 	for (;;) {
8411 		struct bpf_insn *insn;
8412 		u8 class;
8413 		int err;
8414 
8415 		env->prev_insn_idx = prev_insn_idx;
8416 		if (env->insn_idx >= insn_cnt) {
8417 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
8418 				env->insn_idx, insn_cnt);
8419 			return -EFAULT;
8420 		}
8421 
8422 		insn = &insns[env->insn_idx];
8423 		class = BPF_CLASS(insn->code);
8424 
8425 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8426 			verbose(env,
8427 				"BPF program is too large. Processed %d insn\n",
8428 				env->insn_processed);
8429 			return -E2BIG;
8430 		}
8431 
8432 		err = is_state_visited(env, env->insn_idx);
8433 		if (err < 0)
8434 			return err;
8435 		if (err == 1) {
8436 			/* found equivalent state, can prune the search */
8437 			if (env->log.level & BPF_LOG_LEVEL) {
8438 				if (do_print_state)
8439 					verbose(env, "\nfrom %d to %d%s: safe\n",
8440 						env->prev_insn_idx, env->insn_idx,
8441 						env->cur_state->speculative ?
8442 						" (speculative execution)" : "");
8443 				else
8444 					verbose(env, "%d: safe\n", env->insn_idx);
8445 			}
8446 			goto process_bpf_exit;
8447 		}
8448 
8449 		if (signal_pending(current))
8450 			return -EAGAIN;
8451 
8452 		if (need_resched())
8453 			cond_resched();
8454 
8455 		if (env->log.level & BPF_LOG_LEVEL2 ||
8456 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8457 			if (env->log.level & BPF_LOG_LEVEL2)
8458 				verbose(env, "%d:", env->insn_idx);
8459 			else
8460 				verbose(env, "\nfrom %d to %d%s:",
8461 					env->prev_insn_idx, env->insn_idx,
8462 					env->cur_state->speculative ?
8463 					" (speculative execution)" : "");
8464 			print_verifier_state(env, state->frame[state->curframe]);
8465 			do_print_state = false;
8466 		}
8467 
8468 		if (env->log.level & BPF_LOG_LEVEL) {
8469 			const struct bpf_insn_cbs cbs = {
8470 				.cb_print	= verbose,
8471 				.private_data	= env,
8472 			};
8473 
8474 			verbose_linfo(env, env->insn_idx, "; ");
8475 			verbose(env, "%d: ", env->insn_idx);
8476 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8477 		}
8478 
8479 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
8480 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8481 							   env->prev_insn_idx);
8482 			if (err)
8483 				return err;
8484 		}
8485 
8486 		regs = cur_regs(env);
8487 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8488 		prev_insn_idx = env->insn_idx;
8489 
8490 		if (class == BPF_ALU || class == BPF_ALU64) {
8491 			err = check_alu_op(env, insn);
8492 			if (err)
8493 				return err;
8494 
8495 		} else if (class == BPF_LDX) {
8496 			enum bpf_reg_type *prev_src_type, src_reg_type;
8497 
8498 			/* check for reserved fields is already done */
8499 
8500 			/* check src operand */
8501 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8502 			if (err)
8503 				return err;
8504 
8505 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8506 			if (err)
8507 				return err;
8508 
8509 			src_reg_type = regs[insn->src_reg].type;
8510 
8511 			/* check that memory (src_reg + off) is readable,
8512 			 * the state of dst_reg will be updated by this func
8513 			 */
8514 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
8515 					       insn->off, BPF_SIZE(insn->code),
8516 					       BPF_READ, insn->dst_reg, false);
8517 			if (err)
8518 				return err;
8519 
8520 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8521 
8522 			if (*prev_src_type == NOT_INIT) {
8523 				/* saw a valid insn
8524 				 * dst_reg = *(u32 *)(src_reg + off)
8525 				 * save type to validate intersecting paths
8526 				 */
8527 				*prev_src_type = src_reg_type;
8528 
8529 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8530 				/* ABuser program is trying to use the same insn
8531 				 * dst_reg = *(u32*) (src_reg + off)
8532 				 * with different pointer types:
8533 				 * src_reg == ctx in one branch and
8534 				 * src_reg == stack|map in some other branch.
8535 				 * Reject it.
8536 				 */
8537 				verbose(env, "same insn cannot be used with different pointers\n");
8538 				return -EINVAL;
8539 			}
8540 
8541 		} else if (class == BPF_STX) {
8542 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
8543 
8544 			if (BPF_MODE(insn->code) == BPF_XADD) {
8545 				err = check_xadd(env, env->insn_idx, insn);
8546 				if (err)
8547 					return err;
8548 				env->insn_idx++;
8549 				continue;
8550 			}
8551 
8552 			/* check src1 operand */
8553 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8554 			if (err)
8555 				return err;
8556 			/* check src2 operand */
8557 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8558 			if (err)
8559 				return err;
8560 
8561 			dst_reg_type = regs[insn->dst_reg].type;
8562 
8563 			/* check that memory (dst_reg + off) is writeable */
8564 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8565 					       insn->off, BPF_SIZE(insn->code),
8566 					       BPF_WRITE, insn->src_reg, false);
8567 			if (err)
8568 				return err;
8569 
8570 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8571 
8572 			if (*prev_dst_type == NOT_INIT) {
8573 				*prev_dst_type = dst_reg_type;
8574 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8575 				verbose(env, "same insn cannot be used with different pointers\n");
8576 				return -EINVAL;
8577 			}
8578 
8579 		} else if (class == BPF_ST) {
8580 			if (BPF_MODE(insn->code) != BPF_MEM ||
8581 			    insn->src_reg != BPF_REG_0) {
8582 				verbose(env, "BPF_ST uses reserved fields\n");
8583 				return -EINVAL;
8584 			}
8585 			/* check src operand */
8586 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8587 			if (err)
8588 				return err;
8589 
8590 			if (is_ctx_reg(env, insn->dst_reg)) {
8591 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8592 					insn->dst_reg,
8593 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
8594 				return -EACCES;
8595 			}
8596 
8597 			/* check that memory (dst_reg + off) is writeable */
8598 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8599 					       insn->off, BPF_SIZE(insn->code),
8600 					       BPF_WRITE, -1, false);
8601 			if (err)
8602 				return err;
8603 
8604 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8605 			u8 opcode = BPF_OP(insn->code);
8606 
8607 			env->jmps_processed++;
8608 			if (opcode == BPF_CALL) {
8609 				if (BPF_SRC(insn->code) != BPF_K ||
8610 				    insn->off != 0 ||
8611 				    (insn->src_reg != BPF_REG_0 &&
8612 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8613 				    insn->dst_reg != BPF_REG_0 ||
8614 				    class == BPF_JMP32) {
8615 					verbose(env, "BPF_CALL uses reserved fields\n");
8616 					return -EINVAL;
8617 				}
8618 
8619 				if (env->cur_state->active_spin_lock &&
8620 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8621 				     insn->imm != BPF_FUNC_spin_unlock)) {
8622 					verbose(env, "function calls are not allowed while holding a lock\n");
8623 					return -EINVAL;
8624 				}
8625 				if (insn->src_reg == BPF_PSEUDO_CALL)
8626 					err = check_func_call(env, insn, &env->insn_idx);
8627 				else
8628 					err = check_helper_call(env, insn->imm, env->insn_idx);
8629 				if (err)
8630 					return err;
8631 
8632 			} else if (opcode == BPF_JA) {
8633 				if (BPF_SRC(insn->code) != BPF_K ||
8634 				    insn->imm != 0 ||
8635 				    insn->src_reg != BPF_REG_0 ||
8636 				    insn->dst_reg != BPF_REG_0 ||
8637 				    class == BPF_JMP32) {
8638 					verbose(env, "BPF_JA uses reserved fields\n");
8639 					return -EINVAL;
8640 				}
8641 
8642 				env->insn_idx += insn->off + 1;
8643 				continue;
8644 
8645 			} else if (opcode == BPF_EXIT) {
8646 				if (BPF_SRC(insn->code) != BPF_K ||
8647 				    insn->imm != 0 ||
8648 				    insn->src_reg != BPF_REG_0 ||
8649 				    insn->dst_reg != BPF_REG_0 ||
8650 				    class == BPF_JMP32) {
8651 					verbose(env, "BPF_EXIT uses reserved fields\n");
8652 					return -EINVAL;
8653 				}
8654 
8655 				if (env->cur_state->active_spin_lock) {
8656 					verbose(env, "bpf_spin_unlock is missing\n");
8657 					return -EINVAL;
8658 				}
8659 
8660 				if (state->curframe) {
8661 					/* exit from nested function */
8662 					err = prepare_func_exit(env, &env->insn_idx);
8663 					if (err)
8664 						return err;
8665 					do_print_state = true;
8666 					continue;
8667 				}
8668 
8669 				err = check_reference_leak(env);
8670 				if (err)
8671 					return err;
8672 
8673 				err = check_return_code(env);
8674 				if (err)
8675 					return err;
8676 process_bpf_exit:
8677 				update_branch_counts(env, env->cur_state);
8678 				err = pop_stack(env, &prev_insn_idx,
8679 						&env->insn_idx);
8680 				if (err < 0) {
8681 					if (err != -ENOENT)
8682 						return err;
8683 					break;
8684 				} else {
8685 					do_print_state = true;
8686 					continue;
8687 				}
8688 			} else {
8689 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8690 				if (err)
8691 					return err;
8692 			}
8693 		} else if (class == BPF_LD) {
8694 			u8 mode = BPF_MODE(insn->code);
8695 
8696 			if (mode == BPF_ABS || mode == BPF_IND) {
8697 				err = check_ld_abs(env, insn);
8698 				if (err)
8699 					return err;
8700 
8701 			} else if (mode == BPF_IMM) {
8702 				err = check_ld_imm(env, insn);
8703 				if (err)
8704 					return err;
8705 
8706 				env->insn_idx++;
8707 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8708 			} else {
8709 				verbose(env, "invalid BPF_LD mode\n");
8710 				return -EINVAL;
8711 			}
8712 		} else {
8713 			verbose(env, "unknown insn class %d\n", class);
8714 			return -EINVAL;
8715 		}
8716 
8717 		env->insn_idx++;
8718 	}
8719 
8720 	return 0;
8721 }
8722 
8723 static int check_map_prealloc(struct bpf_map *map)
8724 {
8725 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8726 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8727 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8728 		!(map->map_flags & BPF_F_NO_PREALLOC);
8729 }
8730 
8731 static bool is_tracing_prog_type(enum bpf_prog_type type)
8732 {
8733 	switch (type) {
8734 	case BPF_PROG_TYPE_KPROBE:
8735 	case BPF_PROG_TYPE_TRACEPOINT:
8736 	case BPF_PROG_TYPE_PERF_EVENT:
8737 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8738 		return true;
8739 	default:
8740 		return false;
8741 	}
8742 }
8743 
8744 static bool is_preallocated_map(struct bpf_map *map)
8745 {
8746 	if (!check_map_prealloc(map))
8747 		return false;
8748 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
8749 		return false;
8750 	return true;
8751 }
8752 
8753 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8754 					struct bpf_map *map,
8755 					struct bpf_prog *prog)
8756 
8757 {
8758 	/*
8759 	 * Validate that trace type programs use preallocated hash maps.
8760 	 *
8761 	 * For programs attached to PERF events this is mandatory as the
8762 	 * perf NMI can hit any arbitrary code sequence.
8763 	 *
8764 	 * All other trace types using preallocated hash maps are unsafe as
8765 	 * well because tracepoint or kprobes can be inside locked regions
8766 	 * of the memory allocator or at a place where a recursion into the
8767 	 * memory allocator would see inconsistent state.
8768 	 *
8769 	 * On RT enabled kernels run-time allocation of all trace type
8770 	 * programs is strictly prohibited due to lock type constraints. On
8771 	 * !RT kernels it is allowed for backwards compatibility reasons for
8772 	 * now, but warnings are emitted so developers are made aware of
8773 	 * the unsafety and can fix their programs before this is enforced.
8774 	 */
8775 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
8776 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8777 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8778 			return -EINVAL;
8779 		}
8780 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8781 			verbose(env, "trace type programs can only use preallocated hash map\n");
8782 			return -EINVAL;
8783 		}
8784 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
8785 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
8786 	}
8787 
8788 	if ((is_tracing_prog_type(prog->type) ||
8789 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8790 	    map_value_has_spin_lock(map)) {
8791 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8792 		return -EINVAL;
8793 	}
8794 
8795 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8796 	    !bpf_offload_prog_map_match(prog, map)) {
8797 		verbose(env, "offload device mismatch between prog and map\n");
8798 		return -EINVAL;
8799 	}
8800 
8801 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8802 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8803 		return -EINVAL;
8804 	}
8805 
8806 	return 0;
8807 }
8808 
8809 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8810 {
8811 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8812 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8813 }
8814 
8815 /* look for pseudo eBPF instructions that access map FDs and
8816  * replace them with actual map pointers
8817  */
8818 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8819 {
8820 	struct bpf_insn *insn = env->prog->insnsi;
8821 	int insn_cnt = env->prog->len;
8822 	int i, j, err;
8823 
8824 	err = bpf_prog_calc_tag(env->prog);
8825 	if (err)
8826 		return err;
8827 
8828 	for (i = 0; i < insn_cnt; i++, insn++) {
8829 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8830 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8831 			verbose(env, "BPF_LDX uses reserved fields\n");
8832 			return -EINVAL;
8833 		}
8834 
8835 		if (BPF_CLASS(insn->code) == BPF_STX &&
8836 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8837 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8838 			verbose(env, "BPF_STX uses reserved fields\n");
8839 			return -EINVAL;
8840 		}
8841 
8842 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8843 			struct bpf_insn_aux_data *aux;
8844 			struct bpf_map *map;
8845 			struct fd f;
8846 			u64 addr;
8847 
8848 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8849 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8850 			    insn[1].off != 0) {
8851 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8852 				return -EINVAL;
8853 			}
8854 
8855 			if (insn[0].src_reg == 0)
8856 				/* valid generic load 64-bit imm */
8857 				goto next_insn;
8858 
8859 			/* In final convert_pseudo_ld_imm64() step, this is
8860 			 * converted into regular 64-bit imm load insn.
8861 			 */
8862 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8863 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8864 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8865 			     insn[1].imm != 0)) {
8866 				verbose(env,
8867 					"unrecognized bpf_ld_imm64 insn\n");
8868 				return -EINVAL;
8869 			}
8870 
8871 			f = fdget(insn[0].imm);
8872 			map = __bpf_map_get(f);
8873 			if (IS_ERR(map)) {
8874 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8875 					insn[0].imm);
8876 				return PTR_ERR(map);
8877 			}
8878 
8879 			err = check_map_prog_compatibility(env, map, env->prog);
8880 			if (err) {
8881 				fdput(f);
8882 				return err;
8883 			}
8884 
8885 			aux = &env->insn_aux_data[i];
8886 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8887 				addr = (unsigned long)map;
8888 			} else {
8889 				u32 off = insn[1].imm;
8890 
8891 				if (off >= BPF_MAX_VAR_OFF) {
8892 					verbose(env, "direct value offset of %u is not allowed\n", off);
8893 					fdput(f);
8894 					return -EINVAL;
8895 				}
8896 
8897 				if (!map->ops->map_direct_value_addr) {
8898 					verbose(env, "no direct value access support for this map type\n");
8899 					fdput(f);
8900 					return -EINVAL;
8901 				}
8902 
8903 				err = map->ops->map_direct_value_addr(map, &addr, off);
8904 				if (err) {
8905 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8906 						map->value_size, off);
8907 					fdput(f);
8908 					return err;
8909 				}
8910 
8911 				aux->map_off = off;
8912 				addr += off;
8913 			}
8914 
8915 			insn[0].imm = (u32)addr;
8916 			insn[1].imm = addr >> 32;
8917 
8918 			/* check whether we recorded this map already */
8919 			for (j = 0; j < env->used_map_cnt; j++) {
8920 				if (env->used_maps[j] == map) {
8921 					aux->map_index = j;
8922 					fdput(f);
8923 					goto next_insn;
8924 				}
8925 			}
8926 
8927 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8928 				fdput(f);
8929 				return -E2BIG;
8930 			}
8931 
8932 			/* hold the map. If the program is rejected by verifier,
8933 			 * the map will be released by release_maps() or it
8934 			 * will be used by the valid program until it's unloaded
8935 			 * and all maps are released in free_used_maps()
8936 			 */
8937 			bpf_map_inc(map);
8938 
8939 			aux->map_index = env->used_map_cnt;
8940 			env->used_maps[env->used_map_cnt++] = map;
8941 
8942 			if (bpf_map_is_cgroup_storage(map) &&
8943 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
8944 				verbose(env, "only one cgroup storage of each type is allowed\n");
8945 				fdput(f);
8946 				return -EBUSY;
8947 			}
8948 
8949 			fdput(f);
8950 next_insn:
8951 			insn++;
8952 			i++;
8953 			continue;
8954 		}
8955 
8956 		/* Basic sanity check before we invest more work here. */
8957 		if (!bpf_opcode_in_insntable(insn->code)) {
8958 			verbose(env, "unknown opcode %02x\n", insn->code);
8959 			return -EINVAL;
8960 		}
8961 	}
8962 
8963 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8964 	 * 'struct bpf_map *' into a register instead of user map_fd.
8965 	 * These pointers will be used later by verifier to validate map access.
8966 	 */
8967 	return 0;
8968 }
8969 
8970 /* drop refcnt of maps used by the rejected program */
8971 static void release_maps(struct bpf_verifier_env *env)
8972 {
8973 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
8974 			     env->used_map_cnt);
8975 }
8976 
8977 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8978 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8979 {
8980 	struct bpf_insn *insn = env->prog->insnsi;
8981 	int insn_cnt = env->prog->len;
8982 	int i;
8983 
8984 	for (i = 0; i < insn_cnt; i++, insn++)
8985 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8986 			insn->src_reg = 0;
8987 }
8988 
8989 /* single env->prog->insni[off] instruction was replaced with the range
8990  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8991  * [0, off) and [off, end) to new locations, so the patched range stays zero
8992  */
8993 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8994 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8995 {
8996 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8997 	struct bpf_insn *insn = new_prog->insnsi;
8998 	u32 prog_len;
8999 	int i;
9000 
9001 	/* aux info at OFF always needs adjustment, no matter fast path
9002 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9003 	 * original insn at old prog.
9004 	 */
9005 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9006 
9007 	if (cnt == 1)
9008 		return 0;
9009 	prog_len = new_prog->len;
9010 	new_data = vzalloc(array_size(prog_len,
9011 				      sizeof(struct bpf_insn_aux_data)));
9012 	if (!new_data)
9013 		return -ENOMEM;
9014 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9015 	memcpy(new_data + off + cnt - 1, old_data + off,
9016 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9017 	for (i = off; i < off + cnt - 1; i++) {
9018 		new_data[i].seen = env->pass_cnt;
9019 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9020 	}
9021 	env->insn_aux_data = new_data;
9022 	vfree(old_data);
9023 	return 0;
9024 }
9025 
9026 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9027 {
9028 	int i;
9029 
9030 	if (len == 1)
9031 		return;
9032 	/* NOTE: fake 'exit' subprog should be updated as well. */
9033 	for (i = 0; i <= env->subprog_cnt; i++) {
9034 		if (env->subprog_info[i].start <= off)
9035 			continue;
9036 		env->subprog_info[i].start += len - 1;
9037 	}
9038 }
9039 
9040 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9041 					    const struct bpf_insn *patch, u32 len)
9042 {
9043 	struct bpf_prog *new_prog;
9044 
9045 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9046 	if (IS_ERR(new_prog)) {
9047 		if (PTR_ERR(new_prog) == -ERANGE)
9048 			verbose(env,
9049 				"insn %d cannot be patched due to 16-bit range\n",
9050 				env->insn_aux_data[off].orig_idx);
9051 		return NULL;
9052 	}
9053 	if (adjust_insn_aux_data(env, new_prog, off, len))
9054 		return NULL;
9055 	adjust_subprog_starts(env, off, len);
9056 	return new_prog;
9057 }
9058 
9059 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9060 					      u32 off, u32 cnt)
9061 {
9062 	int i, j;
9063 
9064 	/* find first prog starting at or after off (first to remove) */
9065 	for (i = 0; i < env->subprog_cnt; i++)
9066 		if (env->subprog_info[i].start >= off)
9067 			break;
9068 	/* find first prog starting at or after off + cnt (first to stay) */
9069 	for (j = i; j < env->subprog_cnt; j++)
9070 		if (env->subprog_info[j].start >= off + cnt)
9071 			break;
9072 	/* if j doesn't start exactly at off + cnt, we are just removing
9073 	 * the front of previous prog
9074 	 */
9075 	if (env->subprog_info[j].start != off + cnt)
9076 		j--;
9077 
9078 	if (j > i) {
9079 		struct bpf_prog_aux *aux = env->prog->aux;
9080 		int move;
9081 
9082 		/* move fake 'exit' subprog as well */
9083 		move = env->subprog_cnt + 1 - j;
9084 
9085 		memmove(env->subprog_info + i,
9086 			env->subprog_info + j,
9087 			sizeof(*env->subprog_info) * move);
9088 		env->subprog_cnt -= j - i;
9089 
9090 		/* remove func_info */
9091 		if (aux->func_info) {
9092 			move = aux->func_info_cnt - j;
9093 
9094 			memmove(aux->func_info + i,
9095 				aux->func_info + j,
9096 				sizeof(*aux->func_info) * move);
9097 			aux->func_info_cnt -= j - i;
9098 			/* func_info->insn_off is set after all code rewrites,
9099 			 * in adjust_btf_func() - no need to adjust
9100 			 */
9101 		}
9102 	} else {
9103 		/* convert i from "first prog to remove" to "first to adjust" */
9104 		if (env->subprog_info[i].start == off)
9105 			i++;
9106 	}
9107 
9108 	/* update fake 'exit' subprog as well */
9109 	for (; i <= env->subprog_cnt; i++)
9110 		env->subprog_info[i].start -= cnt;
9111 
9112 	return 0;
9113 }
9114 
9115 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9116 				      u32 cnt)
9117 {
9118 	struct bpf_prog *prog = env->prog;
9119 	u32 i, l_off, l_cnt, nr_linfo;
9120 	struct bpf_line_info *linfo;
9121 
9122 	nr_linfo = prog->aux->nr_linfo;
9123 	if (!nr_linfo)
9124 		return 0;
9125 
9126 	linfo = prog->aux->linfo;
9127 
9128 	/* find first line info to remove, count lines to be removed */
9129 	for (i = 0; i < nr_linfo; i++)
9130 		if (linfo[i].insn_off >= off)
9131 			break;
9132 
9133 	l_off = i;
9134 	l_cnt = 0;
9135 	for (; i < nr_linfo; i++)
9136 		if (linfo[i].insn_off < off + cnt)
9137 			l_cnt++;
9138 		else
9139 			break;
9140 
9141 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9142 	 * last removed linfo.  prog is already modified, so prog->len == off
9143 	 * means no live instructions after (tail of the program was removed).
9144 	 */
9145 	if (prog->len != off && l_cnt &&
9146 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9147 		l_cnt--;
9148 		linfo[--i].insn_off = off + cnt;
9149 	}
9150 
9151 	/* remove the line info which refer to the removed instructions */
9152 	if (l_cnt) {
9153 		memmove(linfo + l_off, linfo + i,
9154 			sizeof(*linfo) * (nr_linfo - i));
9155 
9156 		prog->aux->nr_linfo -= l_cnt;
9157 		nr_linfo = prog->aux->nr_linfo;
9158 	}
9159 
9160 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9161 	for (i = l_off; i < nr_linfo; i++)
9162 		linfo[i].insn_off -= cnt;
9163 
9164 	/* fix up all subprogs (incl. 'exit') which start >= off */
9165 	for (i = 0; i <= env->subprog_cnt; i++)
9166 		if (env->subprog_info[i].linfo_idx > l_off) {
9167 			/* program may have started in the removed region but
9168 			 * may not be fully removed
9169 			 */
9170 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9171 				env->subprog_info[i].linfo_idx -= l_cnt;
9172 			else
9173 				env->subprog_info[i].linfo_idx = l_off;
9174 		}
9175 
9176 	return 0;
9177 }
9178 
9179 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9180 {
9181 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9182 	unsigned int orig_prog_len = env->prog->len;
9183 	int err;
9184 
9185 	if (bpf_prog_is_dev_bound(env->prog->aux))
9186 		bpf_prog_offload_remove_insns(env, off, cnt);
9187 
9188 	err = bpf_remove_insns(env->prog, off, cnt);
9189 	if (err)
9190 		return err;
9191 
9192 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9193 	if (err)
9194 		return err;
9195 
9196 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9197 	if (err)
9198 		return err;
9199 
9200 	memmove(aux_data + off,	aux_data + off + cnt,
9201 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9202 
9203 	return 0;
9204 }
9205 
9206 /* The verifier does more data flow analysis than llvm and will not
9207  * explore branches that are dead at run time. Malicious programs can
9208  * have dead code too. Therefore replace all dead at-run-time code
9209  * with 'ja -1'.
9210  *
9211  * Just nops are not optimal, e.g. if they would sit at the end of the
9212  * program and through another bug we would manage to jump there, then
9213  * we'd execute beyond program memory otherwise. Returning exception
9214  * code also wouldn't work since we can have subprogs where the dead
9215  * code could be located.
9216  */
9217 static void sanitize_dead_code(struct bpf_verifier_env *env)
9218 {
9219 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9220 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9221 	struct bpf_insn *insn = env->prog->insnsi;
9222 	const int insn_cnt = env->prog->len;
9223 	int i;
9224 
9225 	for (i = 0; i < insn_cnt; i++) {
9226 		if (aux_data[i].seen)
9227 			continue;
9228 		memcpy(insn + i, &trap, sizeof(trap));
9229 	}
9230 }
9231 
9232 static bool insn_is_cond_jump(u8 code)
9233 {
9234 	u8 op;
9235 
9236 	if (BPF_CLASS(code) == BPF_JMP32)
9237 		return true;
9238 
9239 	if (BPF_CLASS(code) != BPF_JMP)
9240 		return false;
9241 
9242 	op = BPF_OP(code);
9243 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9244 }
9245 
9246 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9247 {
9248 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9249 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9250 	struct bpf_insn *insn = env->prog->insnsi;
9251 	const int insn_cnt = env->prog->len;
9252 	int i;
9253 
9254 	for (i = 0; i < insn_cnt; i++, insn++) {
9255 		if (!insn_is_cond_jump(insn->code))
9256 			continue;
9257 
9258 		if (!aux_data[i + 1].seen)
9259 			ja.off = insn->off;
9260 		else if (!aux_data[i + 1 + insn->off].seen)
9261 			ja.off = 0;
9262 		else
9263 			continue;
9264 
9265 		if (bpf_prog_is_dev_bound(env->prog->aux))
9266 			bpf_prog_offload_replace_insn(env, i, &ja);
9267 
9268 		memcpy(insn, &ja, sizeof(ja));
9269 	}
9270 }
9271 
9272 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9273 {
9274 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9275 	int insn_cnt = env->prog->len;
9276 	int i, err;
9277 
9278 	for (i = 0; i < insn_cnt; i++) {
9279 		int j;
9280 
9281 		j = 0;
9282 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9283 			j++;
9284 		if (!j)
9285 			continue;
9286 
9287 		err = verifier_remove_insns(env, i, j);
9288 		if (err)
9289 			return err;
9290 		insn_cnt = env->prog->len;
9291 	}
9292 
9293 	return 0;
9294 }
9295 
9296 static int opt_remove_nops(struct bpf_verifier_env *env)
9297 {
9298 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9299 	struct bpf_insn *insn = env->prog->insnsi;
9300 	int insn_cnt = env->prog->len;
9301 	int i, err;
9302 
9303 	for (i = 0; i < insn_cnt; i++) {
9304 		if (memcmp(&insn[i], &ja, sizeof(ja)))
9305 			continue;
9306 
9307 		err = verifier_remove_insns(env, i, 1);
9308 		if (err)
9309 			return err;
9310 		insn_cnt--;
9311 		i--;
9312 	}
9313 
9314 	return 0;
9315 }
9316 
9317 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9318 					 const union bpf_attr *attr)
9319 {
9320 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9321 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
9322 	int i, patch_len, delta = 0, len = env->prog->len;
9323 	struct bpf_insn *insns = env->prog->insnsi;
9324 	struct bpf_prog *new_prog;
9325 	bool rnd_hi32;
9326 
9327 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9328 	zext_patch[1] = BPF_ZEXT_REG(0);
9329 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9330 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9331 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9332 	for (i = 0; i < len; i++) {
9333 		int adj_idx = i + delta;
9334 		struct bpf_insn insn;
9335 
9336 		insn = insns[adj_idx];
9337 		if (!aux[adj_idx].zext_dst) {
9338 			u8 code, class;
9339 			u32 imm_rnd;
9340 
9341 			if (!rnd_hi32)
9342 				continue;
9343 
9344 			code = insn.code;
9345 			class = BPF_CLASS(code);
9346 			if (insn_no_def(&insn))
9347 				continue;
9348 
9349 			/* NOTE: arg "reg" (the fourth one) is only used for
9350 			 *       BPF_STX which has been ruled out in above
9351 			 *       check, it is safe to pass NULL here.
9352 			 */
9353 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9354 				if (class == BPF_LD &&
9355 				    BPF_MODE(code) == BPF_IMM)
9356 					i++;
9357 				continue;
9358 			}
9359 
9360 			/* ctx load could be transformed into wider load. */
9361 			if (class == BPF_LDX &&
9362 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
9363 				continue;
9364 
9365 			imm_rnd = get_random_int();
9366 			rnd_hi32_patch[0] = insn;
9367 			rnd_hi32_patch[1].imm = imm_rnd;
9368 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9369 			patch = rnd_hi32_patch;
9370 			patch_len = 4;
9371 			goto apply_patch_buffer;
9372 		}
9373 
9374 		if (!bpf_jit_needs_zext())
9375 			continue;
9376 
9377 		zext_patch[0] = insn;
9378 		zext_patch[1].dst_reg = insn.dst_reg;
9379 		zext_patch[1].src_reg = insn.dst_reg;
9380 		patch = zext_patch;
9381 		patch_len = 2;
9382 apply_patch_buffer:
9383 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9384 		if (!new_prog)
9385 			return -ENOMEM;
9386 		env->prog = new_prog;
9387 		insns = new_prog->insnsi;
9388 		aux = env->insn_aux_data;
9389 		delta += patch_len - 1;
9390 	}
9391 
9392 	return 0;
9393 }
9394 
9395 /* convert load instructions that access fields of a context type into a
9396  * sequence of instructions that access fields of the underlying structure:
9397  *     struct __sk_buff    -> struct sk_buff
9398  *     struct bpf_sock_ops -> struct sock
9399  */
9400 static int convert_ctx_accesses(struct bpf_verifier_env *env)
9401 {
9402 	const struct bpf_verifier_ops *ops = env->ops;
9403 	int i, cnt, size, ctx_field_size, delta = 0;
9404 	const int insn_cnt = env->prog->len;
9405 	struct bpf_insn insn_buf[16], *insn;
9406 	u32 target_size, size_default, off;
9407 	struct bpf_prog *new_prog;
9408 	enum bpf_access_type type;
9409 	bool is_narrower_load;
9410 
9411 	if (ops->gen_prologue || env->seen_direct_write) {
9412 		if (!ops->gen_prologue) {
9413 			verbose(env, "bpf verifier is misconfigured\n");
9414 			return -EINVAL;
9415 		}
9416 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9417 					env->prog);
9418 		if (cnt >= ARRAY_SIZE(insn_buf)) {
9419 			verbose(env, "bpf verifier is misconfigured\n");
9420 			return -EINVAL;
9421 		} else if (cnt) {
9422 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9423 			if (!new_prog)
9424 				return -ENOMEM;
9425 
9426 			env->prog = new_prog;
9427 			delta += cnt - 1;
9428 		}
9429 	}
9430 
9431 	if (bpf_prog_is_dev_bound(env->prog->aux))
9432 		return 0;
9433 
9434 	insn = env->prog->insnsi + delta;
9435 
9436 	for (i = 0; i < insn_cnt; i++, insn++) {
9437 		bpf_convert_ctx_access_t convert_ctx_access;
9438 
9439 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9440 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9441 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9442 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9443 			type = BPF_READ;
9444 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9445 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9446 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9447 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9448 			type = BPF_WRITE;
9449 		else
9450 			continue;
9451 
9452 		if (type == BPF_WRITE &&
9453 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
9454 			struct bpf_insn patch[] = {
9455 				/* Sanitize suspicious stack slot with zero.
9456 				 * There are no memory dependencies for this store,
9457 				 * since it's only using frame pointer and immediate
9458 				 * constant of zero
9459 				 */
9460 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9461 					   env->insn_aux_data[i + delta].sanitize_stack_off,
9462 					   0),
9463 				/* the original STX instruction will immediately
9464 				 * overwrite the same stack slot with appropriate value
9465 				 */
9466 				*insn,
9467 			};
9468 
9469 			cnt = ARRAY_SIZE(patch);
9470 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9471 			if (!new_prog)
9472 				return -ENOMEM;
9473 
9474 			delta    += cnt - 1;
9475 			env->prog = new_prog;
9476 			insn      = new_prog->insnsi + i + delta;
9477 			continue;
9478 		}
9479 
9480 		switch (env->insn_aux_data[i + delta].ptr_type) {
9481 		case PTR_TO_CTX:
9482 			if (!ops->convert_ctx_access)
9483 				continue;
9484 			convert_ctx_access = ops->convert_ctx_access;
9485 			break;
9486 		case PTR_TO_SOCKET:
9487 		case PTR_TO_SOCK_COMMON:
9488 			convert_ctx_access = bpf_sock_convert_ctx_access;
9489 			break;
9490 		case PTR_TO_TCP_SOCK:
9491 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9492 			break;
9493 		case PTR_TO_XDP_SOCK:
9494 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9495 			break;
9496 		case PTR_TO_BTF_ID:
9497 			if (type == BPF_READ) {
9498 				insn->code = BPF_LDX | BPF_PROBE_MEM |
9499 					BPF_SIZE((insn)->code);
9500 				env->prog->aux->num_exentries++;
9501 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9502 				verbose(env, "Writes through BTF pointers are not allowed\n");
9503 				return -EINVAL;
9504 			}
9505 			continue;
9506 		default:
9507 			continue;
9508 		}
9509 
9510 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9511 		size = BPF_LDST_BYTES(insn);
9512 
9513 		/* If the read access is a narrower load of the field,
9514 		 * convert to a 4/8-byte load, to minimum program type specific
9515 		 * convert_ctx_access changes. If conversion is successful,
9516 		 * we will apply proper mask to the result.
9517 		 */
9518 		is_narrower_load = size < ctx_field_size;
9519 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9520 		off = insn->off;
9521 		if (is_narrower_load) {
9522 			u8 size_code;
9523 
9524 			if (type == BPF_WRITE) {
9525 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9526 				return -EINVAL;
9527 			}
9528 
9529 			size_code = BPF_H;
9530 			if (ctx_field_size == 4)
9531 				size_code = BPF_W;
9532 			else if (ctx_field_size == 8)
9533 				size_code = BPF_DW;
9534 
9535 			insn->off = off & ~(size_default - 1);
9536 			insn->code = BPF_LDX | BPF_MEM | size_code;
9537 		}
9538 
9539 		target_size = 0;
9540 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9541 					 &target_size);
9542 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9543 		    (ctx_field_size && !target_size)) {
9544 			verbose(env, "bpf verifier is misconfigured\n");
9545 			return -EINVAL;
9546 		}
9547 
9548 		if (is_narrower_load && size < target_size) {
9549 			u8 shift = bpf_ctx_narrow_access_offset(
9550 				off, size, size_default) * 8;
9551 			if (ctx_field_size <= 4) {
9552 				if (shift)
9553 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9554 									insn->dst_reg,
9555 									shift);
9556 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9557 								(1 << size * 8) - 1);
9558 			} else {
9559 				if (shift)
9560 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9561 									insn->dst_reg,
9562 									shift);
9563 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9564 								(1ULL << size * 8) - 1);
9565 			}
9566 		}
9567 
9568 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9569 		if (!new_prog)
9570 			return -ENOMEM;
9571 
9572 		delta += cnt - 1;
9573 
9574 		/* keep walking new program and skip insns we just inserted */
9575 		env->prog = new_prog;
9576 		insn      = new_prog->insnsi + i + delta;
9577 	}
9578 
9579 	return 0;
9580 }
9581 
9582 static int jit_subprogs(struct bpf_verifier_env *env)
9583 {
9584 	struct bpf_prog *prog = env->prog, **func, *tmp;
9585 	int i, j, subprog_start, subprog_end = 0, len, subprog;
9586 	struct bpf_insn *insn;
9587 	void *old_bpf_func;
9588 	int err;
9589 
9590 	if (env->subprog_cnt <= 1)
9591 		return 0;
9592 
9593 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9594 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9595 		    insn->src_reg != BPF_PSEUDO_CALL)
9596 			continue;
9597 		/* Upon error here we cannot fall back to interpreter but
9598 		 * need a hard reject of the program. Thus -EFAULT is
9599 		 * propagated in any case.
9600 		 */
9601 		subprog = find_subprog(env, i + insn->imm + 1);
9602 		if (subprog < 0) {
9603 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9604 				  i + insn->imm + 1);
9605 			return -EFAULT;
9606 		}
9607 		/* temporarily remember subprog id inside insn instead of
9608 		 * aux_data, since next loop will split up all insns into funcs
9609 		 */
9610 		insn->off = subprog;
9611 		/* remember original imm in case JIT fails and fallback
9612 		 * to interpreter will be needed
9613 		 */
9614 		env->insn_aux_data[i].call_imm = insn->imm;
9615 		/* point imm to __bpf_call_base+1 from JITs point of view */
9616 		insn->imm = 1;
9617 	}
9618 
9619 	err = bpf_prog_alloc_jited_linfo(prog);
9620 	if (err)
9621 		goto out_undo_insn;
9622 
9623 	err = -ENOMEM;
9624 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9625 	if (!func)
9626 		goto out_undo_insn;
9627 
9628 	for (i = 0; i < env->subprog_cnt; i++) {
9629 		subprog_start = subprog_end;
9630 		subprog_end = env->subprog_info[i + 1].start;
9631 
9632 		len = subprog_end - subprog_start;
9633 		/* BPF_PROG_RUN doesn't call subprogs directly,
9634 		 * hence main prog stats include the runtime of subprogs.
9635 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9636 		 * func[i]->aux->stats will never be accessed and stays NULL
9637 		 */
9638 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9639 		if (!func[i])
9640 			goto out_free;
9641 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9642 		       len * sizeof(struct bpf_insn));
9643 		func[i]->type = prog->type;
9644 		func[i]->len = len;
9645 		if (bpf_prog_calc_tag(func[i]))
9646 			goto out_free;
9647 		func[i]->is_func = 1;
9648 		func[i]->aux->func_idx = i;
9649 		/* the btf and func_info will be freed only at prog->aux */
9650 		func[i]->aux->btf = prog->aux->btf;
9651 		func[i]->aux->func_info = prog->aux->func_info;
9652 
9653 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9654 		 * Long term would need debug info to populate names
9655 		 */
9656 		func[i]->aux->name[0] = 'F';
9657 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9658 		func[i]->jit_requested = 1;
9659 		func[i]->aux->linfo = prog->aux->linfo;
9660 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9661 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9662 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9663 		func[i] = bpf_int_jit_compile(func[i]);
9664 		if (!func[i]->jited) {
9665 			err = -ENOTSUPP;
9666 			goto out_free;
9667 		}
9668 		cond_resched();
9669 	}
9670 	/* at this point all bpf functions were successfully JITed
9671 	 * now populate all bpf_calls with correct addresses and
9672 	 * run last pass of JIT
9673 	 */
9674 	for (i = 0; i < env->subprog_cnt; i++) {
9675 		insn = func[i]->insnsi;
9676 		for (j = 0; j < func[i]->len; j++, insn++) {
9677 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9678 			    insn->src_reg != BPF_PSEUDO_CALL)
9679 				continue;
9680 			subprog = insn->off;
9681 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9682 				    __bpf_call_base;
9683 		}
9684 
9685 		/* we use the aux data to keep a list of the start addresses
9686 		 * of the JITed images for each function in the program
9687 		 *
9688 		 * for some architectures, such as powerpc64, the imm field
9689 		 * might not be large enough to hold the offset of the start
9690 		 * address of the callee's JITed image from __bpf_call_base
9691 		 *
9692 		 * in such cases, we can lookup the start address of a callee
9693 		 * by using its subprog id, available from the off field of
9694 		 * the call instruction, as an index for this list
9695 		 */
9696 		func[i]->aux->func = func;
9697 		func[i]->aux->func_cnt = env->subprog_cnt;
9698 	}
9699 	for (i = 0; i < env->subprog_cnt; i++) {
9700 		old_bpf_func = func[i]->bpf_func;
9701 		tmp = bpf_int_jit_compile(func[i]);
9702 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9703 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9704 			err = -ENOTSUPP;
9705 			goto out_free;
9706 		}
9707 		cond_resched();
9708 	}
9709 
9710 	/* finally lock prog and jit images for all functions and
9711 	 * populate kallsysm
9712 	 */
9713 	for (i = 0; i < env->subprog_cnt; i++) {
9714 		bpf_prog_lock_ro(func[i]);
9715 		bpf_prog_kallsyms_add(func[i]);
9716 	}
9717 
9718 	/* Last step: make now unused interpreter insns from main
9719 	 * prog consistent for later dump requests, so they can
9720 	 * later look the same as if they were interpreted only.
9721 	 */
9722 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9723 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9724 		    insn->src_reg != BPF_PSEUDO_CALL)
9725 			continue;
9726 		insn->off = env->insn_aux_data[i].call_imm;
9727 		subprog = find_subprog(env, i + insn->off + 1);
9728 		insn->imm = subprog;
9729 	}
9730 
9731 	prog->jited = 1;
9732 	prog->bpf_func = func[0]->bpf_func;
9733 	prog->aux->func = func;
9734 	prog->aux->func_cnt = env->subprog_cnt;
9735 	bpf_prog_free_unused_jited_linfo(prog);
9736 	return 0;
9737 out_free:
9738 	for (i = 0; i < env->subprog_cnt; i++)
9739 		if (func[i])
9740 			bpf_jit_free(func[i]);
9741 	kfree(func);
9742 out_undo_insn:
9743 	/* cleanup main prog to be interpreted */
9744 	prog->jit_requested = 0;
9745 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9746 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9747 		    insn->src_reg != BPF_PSEUDO_CALL)
9748 			continue;
9749 		insn->off = 0;
9750 		insn->imm = env->insn_aux_data[i].call_imm;
9751 	}
9752 	bpf_prog_free_jited_linfo(prog);
9753 	return err;
9754 }
9755 
9756 static int fixup_call_args(struct bpf_verifier_env *env)
9757 {
9758 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9759 	struct bpf_prog *prog = env->prog;
9760 	struct bpf_insn *insn = prog->insnsi;
9761 	int i, depth;
9762 #endif
9763 	int err = 0;
9764 
9765 	if (env->prog->jit_requested &&
9766 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9767 		err = jit_subprogs(env);
9768 		if (err == 0)
9769 			return 0;
9770 		if (err == -EFAULT)
9771 			return err;
9772 	}
9773 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9774 	for (i = 0; i < prog->len; i++, insn++) {
9775 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9776 		    insn->src_reg != BPF_PSEUDO_CALL)
9777 			continue;
9778 		depth = get_callee_stack_depth(env, insn, i);
9779 		if (depth < 0)
9780 			return depth;
9781 		bpf_patch_call_args(insn, depth);
9782 	}
9783 	err = 0;
9784 #endif
9785 	return err;
9786 }
9787 
9788 /* fixup insn->imm field of bpf_call instructions
9789  * and inline eligible helpers as explicit sequence of BPF instructions
9790  *
9791  * this function is called after eBPF program passed verification
9792  */
9793 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9794 {
9795 	struct bpf_prog *prog = env->prog;
9796 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
9797 	struct bpf_insn *insn = prog->insnsi;
9798 	const struct bpf_func_proto *fn;
9799 	const int insn_cnt = prog->len;
9800 	const struct bpf_map_ops *ops;
9801 	struct bpf_insn_aux_data *aux;
9802 	struct bpf_insn insn_buf[16];
9803 	struct bpf_prog *new_prog;
9804 	struct bpf_map *map_ptr;
9805 	int i, ret, cnt, delta = 0;
9806 
9807 	for (i = 0; i < insn_cnt; i++, insn++) {
9808 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9809 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9810 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9811 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9812 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9813 			struct bpf_insn mask_and_div[] = {
9814 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9815 				/* Rx div 0 -> 0 */
9816 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9817 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9818 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9819 				*insn,
9820 			};
9821 			struct bpf_insn mask_and_mod[] = {
9822 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9823 				/* Rx mod 0 -> Rx */
9824 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9825 				*insn,
9826 			};
9827 			struct bpf_insn *patchlet;
9828 
9829 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9830 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9831 				patchlet = mask_and_div + (is64 ? 1 : 0);
9832 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9833 			} else {
9834 				patchlet = mask_and_mod + (is64 ? 1 : 0);
9835 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9836 			}
9837 
9838 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9839 			if (!new_prog)
9840 				return -ENOMEM;
9841 
9842 			delta    += cnt - 1;
9843 			env->prog = prog = new_prog;
9844 			insn      = new_prog->insnsi + i + delta;
9845 			continue;
9846 		}
9847 
9848 		if (BPF_CLASS(insn->code) == BPF_LD &&
9849 		    (BPF_MODE(insn->code) == BPF_ABS ||
9850 		     BPF_MODE(insn->code) == BPF_IND)) {
9851 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9852 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9853 				verbose(env, "bpf verifier is misconfigured\n");
9854 				return -EINVAL;
9855 			}
9856 
9857 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9858 			if (!new_prog)
9859 				return -ENOMEM;
9860 
9861 			delta    += cnt - 1;
9862 			env->prog = prog = new_prog;
9863 			insn      = new_prog->insnsi + i + delta;
9864 			continue;
9865 		}
9866 
9867 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9868 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9869 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9870 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9871 			struct bpf_insn insn_buf[16];
9872 			struct bpf_insn *patch = &insn_buf[0];
9873 			bool issrc, isneg;
9874 			u32 off_reg;
9875 
9876 			aux = &env->insn_aux_data[i + delta];
9877 			if (!aux->alu_state ||
9878 			    aux->alu_state == BPF_ALU_NON_POINTER)
9879 				continue;
9880 
9881 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9882 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9883 				BPF_ALU_SANITIZE_SRC;
9884 
9885 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9886 			if (isneg)
9887 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9888 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9889 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9890 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9891 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9892 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9893 			if (issrc) {
9894 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9895 							 off_reg);
9896 				insn->src_reg = BPF_REG_AX;
9897 			} else {
9898 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9899 							 BPF_REG_AX);
9900 			}
9901 			if (isneg)
9902 				insn->code = insn->code == code_add ?
9903 					     code_sub : code_add;
9904 			*patch++ = *insn;
9905 			if (issrc && isneg)
9906 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9907 			cnt = patch - insn_buf;
9908 
9909 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9910 			if (!new_prog)
9911 				return -ENOMEM;
9912 
9913 			delta    += cnt - 1;
9914 			env->prog = prog = new_prog;
9915 			insn      = new_prog->insnsi + i + delta;
9916 			continue;
9917 		}
9918 
9919 		if (insn->code != (BPF_JMP | BPF_CALL))
9920 			continue;
9921 		if (insn->src_reg == BPF_PSEUDO_CALL)
9922 			continue;
9923 
9924 		if (insn->imm == BPF_FUNC_get_route_realm)
9925 			prog->dst_needed = 1;
9926 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9927 			bpf_user_rnd_init_once();
9928 		if (insn->imm == BPF_FUNC_override_return)
9929 			prog->kprobe_override = 1;
9930 		if (insn->imm == BPF_FUNC_tail_call) {
9931 			/* If we tail call into other programs, we
9932 			 * cannot make any assumptions since they can
9933 			 * be replaced dynamically during runtime in
9934 			 * the program array.
9935 			 */
9936 			prog->cb_access = 1;
9937 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9938 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9939 
9940 			/* mark bpf_tail_call as different opcode to avoid
9941 			 * conditional branch in the interpeter for every normal
9942 			 * call and to prevent accidental JITing by JIT compiler
9943 			 * that doesn't support bpf_tail_call yet
9944 			 */
9945 			insn->imm = 0;
9946 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9947 
9948 			aux = &env->insn_aux_data[i + delta];
9949 			if (env->allow_ptr_leaks && !expect_blinding &&
9950 			    prog->jit_requested &&
9951 			    !bpf_map_key_poisoned(aux) &&
9952 			    !bpf_map_ptr_poisoned(aux) &&
9953 			    !bpf_map_ptr_unpriv(aux)) {
9954 				struct bpf_jit_poke_descriptor desc = {
9955 					.reason = BPF_POKE_REASON_TAIL_CALL,
9956 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9957 					.tail_call.key = bpf_map_key_immediate(aux),
9958 				};
9959 
9960 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
9961 				if (ret < 0) {
9962 					verbose(env, "adding tail call poke descriptor failed\n");
9963 					return ret;
9964 				}
9965 
9966 				insn->imm = ret + 1;
9967 				continue;
9968 			}
9969 
9970 			if (!bpf_map_ptr_unpriv(aux))
9971 				continue;
9972 
9973 			/* instead of changing every JIT dealing with tail_call
9974 			 * emit two extra insns:
9975 			 * if (index >= max_entries) goto out;
9976 			 * index &= array->index_mask;
9977 			 * to avoid out-of-bounds cpu speculation
9978 			 */
9979 			if (bpf_map_ptr_poisoned(aux)) {
9980 				verbose(env, "tail_call abusing map_ptr\n");
9981 				return -EINVAL;
9982 			}
9983 
9984 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9985 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9986 						  map_ptr->max_entries, 2);
9987 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9988 						    container_of(map_ptr,
9989 								 struct bpf_array,
9990 								 map)->index_mask);
9991 			insn_buf[2] = *insn;
9992 			cnt = 3;
9993 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9994 			if (!new_prog)
9995 				return -ENOMEM;
9996 
9997 			delta    += cnt - 1;
9998 			env->prog = prog = new_prog;
9999 			insn      = new_prog->insnsi + i + delta;
10000 			continue;
10001 		}
10002 
10003 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10004 		 * and other inlining handlers are currently limited to 64 bit
10005 		 * only.
10006 		 */
10007 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10008 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10009 		     insn->imm == BPF_FUNC_map_update_elem ||
10010 		     insn->imm == BPF_FUNC_map_delete_elem ||
10011 		     insn->imm == BPF_FUNC_map_push_elem   ||
10012 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10013 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10014 			aux = &env->insn_aux_data[i + delta];
10015 			if (bpf_map_ptr_poisoned(aux))
10016 				goto patch_call_imm;
10017 
10018 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10019 			ops = map_ptr->ops;
10020 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10021 			    ops->map_gen_lookup) {
10022 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10023 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10024 					verbose(env, "bpf verifier is misconfigured\n");
10025 					return -EINVAL;
10026 				}
10027 
10028 				new_prog = bpf_patch_insn_data(env, i + delta,
10029 							       insn_buf, cnt);
10030 				if (!new_prog)
10031 					return -ENOMEM;
10032 
10033 				delta    += cnt - 1;
10034 				env->prog = prog = new_prog;
10035 				insn      = new_prog->insnsi + i + delta;
10036 				continue;
10037 			}
10038 
10039 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10040 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10041 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10042 				     (int (*)(struct bpf_map *map, void *key))NULL));
10043 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10044 				     (int (*)(struct bpf_map *map, void *key, void *value,
10045 					      u64 flags))NULL));
10046 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10047 				     (int (*)(struct bpf_map *map, void *value,
10048 					      u64 flags))NULL));
10049 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10050 				     (int (*)(struct bpf_map *map, void *value))NULL));
10051 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10052 				     (int (*)(struct bpf_map *map, void *value))NULL));
10053 
10054 			switch (insn->imm) {
10055 			case BPF_FUNC_map_lookup_elem:
10056 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10057 					    __bpf_call_base;
10058 				continue;
10059 			case BPF_FUNC_map_update_elem:
10060 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10061 					    __bpf_call_base;
10062 				continue;
10063 			case BPF_FUNC_map_delete_elem:
10064 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10065 					    __bpf_call_base;
10066 				continue;
10067 			case BPF_FUNC_map_push_elem:
10068 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10069 					    __bpf_call_base;
10070 				continue;
10071 			case BPF_FUNC_map_pop_elem:
10072 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10073 					    __bpf_call_base;
10074 				continue;
10075 			case BPF_FUNC_map_peek_elem:
10076 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10077 					    __bpf_call_base;
10078 				continue;
10079 			}
10080 
10081 			goto patch_call_imm;
10082 		}
10083 
10084 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10085 		    insn->imm == BPF_FUNC_jiffies64) {
10086 			struct bpf_insn ld_jiffies_addr[2] = {
10087 				BPF_LD_IMM64(BPF_REG_0,
10088 					     (unsigned long)&jiffies),
10089 			};
10090 
10091 			insn_buf[0] = ld_jiffies_addr[0];
10092 			insn_buf[1] = ld_jiffies_addr[1];
10093 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10094 						  BPF_REG_0, 0);
10095 			cnt = 3;
10096 
10097 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10098 						       cnt);
10099 			if (!new_prog)
10100 				return -ENOMEM;
10101 
10102 			delta    += cnt - 1;
10103 			env->prog = prog = new_prog;
10104 			insn      = new_prog->insnsi + i + delta;
10105 			continue;
10106 		}
10107 
10108 patch_call_imm:
10109 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10110 		/* all functions that have prototype and verifier allowed
10111 		 * programs to call them, must be real in-kernel functions
10112 		 */
10113 		if (!fn->func) {
10114 			verbose(env,
10115 				"kernel subsystem misconfigured func %s#%d\n",
10116 				func_id_name(insn->imm), insn->imm);
10117 			return -EFAULT;
10118 		}
10119 		insn->imm = fn->func - __bpf_call_base;
10120 	}
10121 
10122 	/* Since poke tab is now finalized, publish aux to tracker. */
10123 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10124 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10125 		if (!map_ptr->ops->map_poke_track ||
10126 		    !map_ptr->ops->map_poke_untrack ||
10127 		    !map_ptr->ops->map_poke_run) {
10128 			verbose(env, "bpf verifier is misconfigured\n");
10129 			return -EINVAL;
10130 		}
10131 
10132 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10133 		if (ret < 0) {
10134 			verbose(env, "tracking tail call prog failed\n");
10135 			return ret;
10136 		}
10137 	}
10138 
10139 	return 0;
10140 }
10141 
10142 static void free_states(struct bpf_verifier_env *env)
10143 {
10144 	struct bpf_verifier_state_list *sl, *sln;
10145 	int i;
10146 
10147 	sl = env->free_list;
10148 	while (sl) {
10149 		sln = sl->next;
10150 		free_verifier_state(&sl->state, false);
10151 		kfree(sl);
10152 		sl = sln;
10153 	}
10154 	env->free_list = NULL;
10155 
10156 	if (!env->explored_states)
10157 		return;
10158 
10159 	for (i = 0; i < state_htab_size(env); i++) {
10160 		sl = env->explored_states[i];
10161 
10162 		while (sl) {
10163 			sln = sl->next;
10164 			free_verifier_state(&sl->state, false);
10165 			kfree(sl);
10166 			sl = sln;
10167 		}
10168 		env->explored_states[i] = NULL;
10169 	}
10170 }
10171 
10172 /* The verifier is using insn_aux_data[] to store temporary data during
10173  * verification and to store information for passes that run after the
10174  * verification like dead code sanitization. do_check_common() for subprogram N
10175  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10176  * temporary data after do_check_common() finds that subprogram N cannot be
10177  * verified independently. pass_cnt counts the number of times
10178  * do_check_common() was run and insn->aux->seen tells the pass number
10179  * insn_aux_data was touched. These variables are compared to clear temporary
10180  * data from failed pass. For testing and experiments do_check_common() can be
10181  * run multiple times even when prior attempt to verify is unsuccessful.
10182  */
10183 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10184 {
10185 	struct bpf_insn *insn = env->prog->insnsi;
10186 	struct bpf_insn_aux_data *aux;
10187 	int i, class;
10188 
10189 	for (i = 0; i < env->prog->len; i++) {
10190 		class = BPF_CLASS(insn[i].code);
10191 		if (class != BPF_LDX && class != BPF_STX)
10192 			continue;
10193 		aux = &env->insn_aux_data[i];
10194 		if (aux->seen != env->pass_cnt)
10195 			continue;
10196 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10197 	}
10198 }
10199 
10200 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10201 {
10202 	struct bpf_verifier_state *state;
10203 	struct bpf_reg_state *regs;
10204 	int ret, i;
10205 
10206 	env->prev_linfo = NULL;
10207 	env->pass_cnt++;
10208 
10209 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10210 	if (!state)
10211 		return -ENOMEM;
10212 	state->curframe = 0;
10213 	state->speculative = false;
10214 	state->branches = 1;
10215 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10216 	if (!state->frame[0]) {
10217 		kfree(state);
10218 		return -ENOMEM;
10219 	}
10220 	env->cur_state = state;
10221 	init_func_state(env, state->frame[0],
10222 			BPF_MAIN_FUNC /* callsite */,
10223 			0 /* frameno */,
10224 			subprog);
10225 
10226 	regs = state->frame[state->curframe]->regs;
10227 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10228 		ret = btf_prepare_func_args(env, subprog, regs);
10229 		if (ret)
10230 			goto out;
10231 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10232 			if (regs[i].type == PTR_TO_CTX)
10233 				mark_reg_known_zero(env, regs, i);
10234 			else if (regs[i].type == SCALAR_VALUE)
10235 				mark_reg_unknown(env, regs, i);
10236 		}
10237 	} else {
10238 		/* 1st arg to a function */
10239 		regs[BPF_REG_1].type = PTR_TO_CTX;
10240 		mark_reg_known_zero(env, regs, BPF_REG_1);
10241 		ret = btf_check_func_arg_match(env, subprog, regs);
10242 		if (ret == -EFAULT)
10243 			/* unlikely verifier bug. abort.
10244 			 * ret == 0 and ret < 0 are sadly acceptable for
10245 			 * main() function due to backward compatibility.
10246 			 * Like socket filter program may be written as:
10247 			 * int bpf_prog(struct pt_regs *ctx)
10248 			 * and never dereference that ctx in the program.
10249 			 * 'struct pt_regs' is a type mismatch for socket
10250 			 * filter that should be using 'struct __sk_buff'.
10251 			 */
10252 			goto out;
10253 	}
10254 
10255 	ret = do_check(env);
10256 out:
10257 	/* check for NULL is necessary, since cur_state can be freed inside
10258 	 * do_check() under memory pressure.
10259 	 */
10260 	if (env->cur_state) {
10261 		free_verifier_state(env->cur_state, true);
10262 		env->cur_state = NULL;
10263 	}
10264 	while (!pop_stack(env, NULL, NULL));
10265 	free_states(env);
10266 	if (ret)
10267 		/* clean aux data in case subprog was rejected */
10268 		sanitize_insn_aux_data(env);
10269 	return ret;
10270 }
10271 
10272 /* Verify all global functions in a BPF program one by one based on their BTF.
10273  * All global functions must pass verification. Otherwise the whole program is rejected.
10274  * Consider:
10275  * int bar(int);
10276  * int foo(int f)
10277  * {
10278  *    return bar(f);
10279  * }
10280  * int bar(int b)
10281  * {
10282  *    ...
10283  * }
10284  * foo() will be verified first for R1=any_scalar_value. During verification it
10285  * will be assumed that bar() already verified successfully and call to bar()
10286  * from foo() will be checked for type match only. Later bar() will be verified
10287  * independently to check that it's safe for R1=any_scalar_value.
10288  */
10289 static int do_check_subprogs(struct bpf_verifier_env *env)
10290 {
10291 	struct bpf_prog_aux *aux = env->prog->aux;
10292 	int i, ret;
10293 
10294 	if (!aux->func_info)
10295 		return 0;
10296 
10297 	for (i = 1; i < env->subprog_cnt; i++) {
10298 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10299 			continue;
10300 		env->insn_idx = env->subprog_info[i].start;
10301 		WARN_ON_ONCE(env->insn_idx == 0);
10302 		ret = do_check_common(env, i);
10303 		if (ret) {
10304 			return ret;
10305 		} else if (env->log.level & BPF_LOG_LEVEL) {
10306 			verbose(env,
10307 				"Func#%d is safe for any args that match its prototype\n",
10308 				i);
10309 		}
10310 	}
10311 	return 0;
10312 }
10313 
10314 static int do_check_main(struct bpf_verifier_env *env)
10315 {
10316 	int ret;
10317 
10318 	env->insn_idx = 0;
10319 	ret = do_check_common(env, 0);
10320 	if (!ret)
10321 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10322 	return ret;
10323 }
10324 
10325 
10326 static void print_verification_stats(struct bpf_verifier_env *env)
10327 {
10328 	int i;
10329 
10330 	if (env->log.level & BPF_LOG_STATS) {
10331 		verbose(env, "verification time %lld usec\n",
10332 			div_u64(env->verification_time, 1000));
10333 		verbose(env, "stack depth ");
10334 		for (i = 0; i < env->subprog_cnt; i++) {
10335 			u32 depth = env->subprog_info[i].stack_depth;
10336 
10337 			verbose(env, "%d", depth);
10338 			if (i + 1 < env->subprog_cnt)
10339 				verbose(env, "+");
10340 		}
10341 		verbose(env, "\n");
10342 	}
10343 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10344 		"total_states %d peak_states %d mark_read %d\n",
10345 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10346 		env->max_states_per_insn, env->total_states,
10347 		env->peak_states, env->longest_mark_read_walk);
10348 }
10349 
10350 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10351 {
10352 	const struct btf_type *t, *func_proto;
10353 	const struct bpf_struct_ops *st_ops;
10354 	const struct btf_member *member;
10355 	struct bpf_prog *prog = env->prog;
10356 	u32 btf_id, member_idx;
10357 	const char *mname;
10358 
10359 	btf_id = prog->aux->attach_btf_id;
10360 	st_ops = bpf_struct_ops_find(btf_id);
10361 	if (!st_ops) {
10362 		verbose(env, "attach_btf_id %u is not a supported struct\n",
10363 			btf_id);
10364 		return -ENOTSUPP;
10365 	}
10366 
10367 	t = st_ops->type;
10368 	member_idx = prog->expected_attach_type;
10369 	if (member_idx >= btf_type_vlen(t)) {
10370 		verbose(env, "attach to invalid member idx %u of struct %s\n",
10371 			member_idx, st_ops->name);
10372 		return -EINVAL;
10373 	}
10374 
10375 	member = &btf_type_member(t)[member_idx];
10376 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10377 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10378 					       NULL);
10379 	if (!func_proto) {
10380 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10381 			mname, member_idx, st_ops->name);
10382 		return -EINVAL;
10383 	}
10384 
10385 	if (st_ops->check_member) {
10386 		int err = st_ops->check_member(t, member);
10387 
10388 		if (err) {
10389 			verbose(env, "attach to unsupported member %s of struct %s\n",
10390 				mname, st_ops->name);
10391 			return err;
10392 		}
10393 	}
10394 
10395 	prog->aux->attach_func_proto = func_proto;
10396 	prog->aux->attach_func_name = mname;
10397 	env->ops = st_ops->verifier_ops;
10398 
10399 	return 0;
10400 }
10401 #define SECURITY_PREFIX "security_"
10402 
10403 static int check_attach_modify_return(struct bpf_verifier_env *env)
10404 {
10405 	struct bpf_prog *prog = env->prog;
10406 	unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr;
10407 
10408 	/* This is expected to be cleaned up in the future with the KRSI effort
10409 	 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h.
10410 	 */
10411 	if (within_error_injection_list(addr) ||
10412 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10413 		     sizeof(SECURITY_PREFIX) - 1))
10414 		return 0;
10415 
10416 	verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n",
10417 		prog->aux->attach_btf_id, prog->aux->attach_func_name);
10418 
10419 	return -EINVAL;
10420 }
10421 
10422 static int check_attach_btf_id(struct bpf_verifier_env *env)
10423 {
10424 	struct bpf_prog *prog = env->prog;
10425 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10426 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10427 	u32 btf_id = prog->aux->attach_btf_id;
10428 	const char prefix[] = "btf_trace_";
10429 	int ret = 0, subprog = -1, i;
10430 	struct bpf_trampoline *tr;
10431 	const struct btf_type *t;
10432 	bool conservative = true;
10433 	const char *tname;
10434 	struct btf *btf;
10435 	long addr;
10436 	u64 key;
10437 
10438 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10439 		return check_struct_ops_btf_id(env);
10440 
10441 	if (prog->type != BPF_PROG_TYPE_TRACING &&
10442 	    prog->type != BPF_PROG_TYPE_LSM &&
10443 	    !prog_extension)
10444 		return 0;
10445 
10446 	if (!btf_id) {
10447 		verbose(env, "Tracing programs must provide btf_id\n");
10448 		return -EINVAL;
10449 	}
10450 	btf = bpf_prog_get_target_btf(prog);
10451 	if (!btf) {
10452 		verbose(env,
10453 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10454 		return -EINVAL;
10455 	}
10456 	t = btf_type_by_id(btf, btf_id);
10457 	if (!t) {
10458 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10459 		return -EINVAL;
10460 	}
10461 	tname = btf_name_by_offset(btf, t->name_off);
10462 	if (!tname) {
10463 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10464 		return -EINVAL;
10465 	}
10466 	if (tgt_prog) {
10467 		struct bpf_prog_aux *aux = tgt_prog->aux;
10468 
10469 		for (i = 0; i < aux->func_info_cnt; i++)
10470 			if (aux->func_info[i].type_id == btf_id) {
10471 				subprog = i;
10472 				break;
10473 			}
10474 		if (subprog == -1) {
10475 			verbose(env, "Subprog %s doesn't exist\n", tname);
10476 			return -EINVAL;
10477 		}
10478 		conservative = aux->func_info_aux[subprog].unreliable;
10479 		if (prog_extension) {
10480 			if (conservative) {
10481 				verbose(env,
10482 					"Cannot replace static functions\n");
10483 				return -EINVAL;
10484 			}
10485 			if (!prog->jit_requested) {
10486 				verbose(env,
10487 					"Extension programs should be JITed\n");
10488 				return -EINVAL;
10489 			}
10490 			env->ops = bpf_verifier_ops[tgt_prog->type];
10491 		}
10492 		if (!tgt_prog->jited) {
10493 			verbose(env, "Can attach to only JITed progs\n");
10494 			return -EINVAL;
10495 		}
10496 		if (tgt_prog->type == prog->type) {
10497 			/* Cannot fentry/fexit another fentry/fexit program.
10498 			 * Cannot attach program extension to another extension.
10499 			 * It's ok to attach fentry/fexit to extension program.
10500 			 */
10501 			verbose(env, "Cannot recursively attach\n");
10502 			return -EINVAL;
10503 		}
10504 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10505 		    prog_extension &&
10506 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10507 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10508 			/* Program extensions can extend all program types
10509 			 * except fentry/fexit. The reason is the following.
10510 			 * The fentry/fexit programs are used for performance
10511 			 * analysis, stats and can be attached to any program
10512 			 * type except themselves. When extension program is
10513 			 * replacing XDP function it is necessary to allow
10514 			 * performance analysis of all functions. Both original
10515 			 * XDP program and its program extension. Hence
10516 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10517 			 * allowed. If extending of fentry/fexit was allowed it
10518 			 * would be possible to create long call chain
10519 			 * fentry->extension->fentry->extension beyond
10520 			 * reasonable stack size. Hence extending fentry is not
10521 			 * allowed.
10522 			 */
10523 			verbose(env, "Cannot extend fentry/fexit\n");
10524 			return -EINVAL;
10525 		}
10526 		key = ((u64)aux->id) << 32 | btf_id;
10527 	} else {
10528 		if (prog_extension) {
10529 			verbose(env, "Cannot replace kernel functions\n");
10530 			return -EINVAL;
10531 		}
10532 		key = btf_id;
10533 	}
10534 
10535 	switch (prog->expected_attach_type) {
10536 	case BPF_TRACE_RAW_TP:
10537 		if (tgt_prog) {
10538 			verbose(env,
10539 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10540 			return -EINVAL;
10541 		}
10542 		if (!btf_type_is_typedef(t)) {
10543 			verbose(env, "attach_btf_id %u is not a typedef\n",
10544 				btf_id);
10545 			return -EINVAL;
10546 		}
10547 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10548 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10549 				btf_id, tname);
10550 			return -EINVAL;
10551 		}
10552 		tname += sizeof(prefix) - 1;
10553 		t = btf_type_by_id(btf, t->type);
10554 		if (!btf_type_is_ptr(t))
10555 			/* should never happen in valid vmlinux build */
10556 			return -EINVAL;
10557 		t = btf_type_by_id(btf, t->type);
10558 		if (!btf_type_is_func_proto(t))
10559 			/* should never happen in valid vmlinux build */
10560 			return -EINVAL;
10561 
10562 		/* remember two read only pointers that are valid for
10563 		 * the life time of the kernel
10564 		 */
10565 		prog->aux->attach_func_name = tname;
10566 		prog->aux->attach_func_proto = t;
10567 		prog->aux->attach_btf_trace = true;
10568 		return 0;
10569 	default:
10570 		if (!prog_extension)
10571 			return -EINVAL;
10572 		/* fallthrough */
10573 	case BPF_MODIFY_RETURN:
10574 	case BPF_LSM_MAC:
10575 	case BPF_TRACE_FENTRY:
10576 	case BPF_TRACE_FEXIT:
10577 		prog->aux->attach_func_name = tname;
10578 		if (prog->type == BPF_PROG_TYPE_LSM) {
10579 			ret = bpf_lsm_verify_prog(&env->log, prog);
10580 			if (ret < 0)
10581 				return ret;
10582 		}
10583 
10584 		if (!btf_type_is_func(t)) {
10585 			verbose(env, "attach_btf_id %u is not a function\n",
10586 				btf_id);
10587 			return -EINVAL;
10588 		}
10589 		if (prog_extension &&
10590 		    btf_check_type_match(env, prog, btf, t))
10591 			return -EINVAL;
10592 		t = btf_type_by_id(btf, t->type);
10593 		if (!btf_type_is_func_proto(t))
10594 			return -EINVAL;
10595 		tr = bpf_trampoline_lookup(key);
10596 		if (!tr)
10597 			return -ENOMEM;
10598 		/* t is either vmlinux type or another program's type */
10599 		prog->aux->attach_func_proto = t;
10600 		mutex_lock(&tr->mutex);
10601 		if (tr->func.addr) {
10602 			prog->aux->trampoline = tr;
10603 			goto out;
10604 		}
10605 		if (tgt_prog && conservative) {
10606 			prog->aux->attach_func_proto = NULL;
10607 			t = NULL;
10608 		}
10609 		ret = btf_distill_func_proto(&env->log, btf, t,
10610 					     tname, &tr->func.model);
10611 		if (ret < 0)
10612 			goto out;
10613 		if (tgt_prog) {
10614 			if (subprog == 0)
10615 				addr = (long) tgt_prog->bpf_func;
10616 			else
10617 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
10618 		} else {
10619 			addr = kallsyms_lookup_name(tname);
10620 			if (!addr) {
10621 				verbose(env,
10622 					"The address of function %s cannot be found\n",
10623 					tname);
10624 				ret = -ENOENT;
10625 				goto out;
10626 			}
10627 		}
10628 		tr->func.addr = (void *)addr;
10629 		prog->aux->trampoline = tr;
10630 
10631 		if (prog->expected_attach_type == BPF_MODIFY_RETURN)
10632 			ret = check_attach_modify_return(env);
10633 out:
10634 		mutex_unlock(&tr->mutex);
10635 		if (ret)
10636 			bpf_trampoline_put(tr);
10637 		return ret;
10638 	}
10639 }
10640 
10641 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10642 	      union bpf_attr __user *uattr)
10643 {
10644 	u64 start_time = ktime_get_ns();
10645 	struct bpf_verifier_env *env;
10646 	struct bpf_verifier_log *log;
10647 	int i, len, ret = -EINVAL;
10648 	bool is_priv;
10649 
10650 	/* no program is valid */
10651 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10652 		return -EINVAL;
10653 
10654 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
10655 	 * allocate/free it every time bpf_check() is called
10656 	 */
10657 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10658 	if (!env)
10659 		return -ENOMEM;
10660 	log = &env->log;
10661 
10662 	len = (*prog)->len;
10663 	env->insn_aux_data =
10664 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10665 	ret = -ENOMEM;
10666 	if (!env->insn_aux_data)
10667 		goto err_free_env;
10668 	for (i = 0; i < len; i++)
10669 		env->insn_aux_data[i].orig_idx = i;
10670 	env->prog = *prog;
10671 	env->ops = bpf_verifier_ops[env->prog->type];
10672 	is_priv = capable(CAP_SYS_ADMIN);
10673 
10674 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10675 		mutex_lock(&bpf_verifier_lock);
10676 		if (!btf_vmlinux)
10677 			btf_vmlinux = btf_parse_vmlinux();
10678 		mutex_unlock(&bpf_verifier_lock);
10679 	}
10680 
10681 	/* grab the mutex to protect few globals used by verifier */
10682 	if (!is_priv)
10683 		mutex_lock(&bpf_verifier_lock);
10684 
10685 	if (attr->log_level || attr->log_buf || attr->log_size) {
10686 		/* user requested verbose verifier output
10687 		 * and supplied buffer to store the verification trace
10688 		 */
10689 		log->level = attr->log_level;
10690 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10691 		log->len_total = attr->log_size;
10692 
10693 		ret = -EINVAL;
10694 		/* log attributes have to be sane */
10695 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10696 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10697 			goto err_unlock;
10698 	}
10699 
10700 	if (IS_ERR(btf_vmlinux)) {
10701 		/* Either gcc or pahole or kernel are broken. */
10702 		verbose(env, "in-kernel BTF is malformed\n");
10703 		ret = PTR_ERR(btf_vmlinux);
10704 		goto skip_full_check;
10705 	}
10706 
10707 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10708 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10709 		env->strict_alignment = true;
10710 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10711 		env->strict_alignment = false;
10712 
10713 	env->allow_ptr_leaks = is_priv;
10714 
10715 	if (is_priv)
10716 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10717 
10718 	ret = replace_map_fd_with_map_ptr(env);
10719 	if (ret < 0)
10720 		goto skip_full_check;
10721 
10722 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
10723 		ret = bpf_prog_offload_verifier_prep(env->prog);
10724 		if (ret)
10725 			goto skip_full_check;
10726 	}
10727 
10728 	env->explored_states = kvcalloc(state_htab_size(env),
10729 				       sizeof(struct bpf_verifier_state_list *),
10730 				       GFP_USER);
10731 	ret = -ENOMEM;
10732 	if (!env->explored_states)
10733 		goto skip_full_check;
10734 
10735 	ret = check_subprogs(env);
10736 	if (ret < 0)
10737 		goto skip_full_check;
10738 
10739 	ret = check_btf_info(env, attr, uattr);
10740 	if (ret < 0)
10741 		goto skip_full_check;
10742 
10743 	ret = check_attach_btf_id(env);
10744 	if (ret)
10745 		goto skip_full_check;
10746 
10747 	ret = check_cfg(env);
10748 	if (ret < 0)
10749 		goto skip_full_check;
10750 
10751 	ret = do_check_subprogs(env);
10752 	ret = ret ?: do_check_main(env);
10753 
10754 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10755 		ret = bpf_prog_offload_finalize(env);
10756 
10757 skip_full_check:
10758 	kvfree(env->explored_states);
10759 
10760 	if (ret == 0)
10761 		ret = check_max_stack_depth(env);
10762 
10763 	/* instruction rewrites happen after this point */
10764 	if (is_priv) {
10765 		if (ret == 0)
10766 			opt_hard_wire_dead_code_branches(env);
10767 		if (ret == 0)
10768 			ret = opt_remove_dead_code(env);
10769 		if (ret == 0)
10770 			ret = opt_remove_nops(env);
10771 	} else {
10772 		if (ret == 0)
10773 			sanitize_dead_code(env);
10774 	}
10775 
10776 	if (ret == 0)
10777 		/* program is valid, convert *(u32*)(ctx + off) accesses */
10778 		ret = convert_ctx_accesses(env);
10779 
10780 	if (ret == 0)
10781 		ret = fixup_bpf_calls(env);
10782 
10783 	/* do 32-bit optimization after insn patching has done so those patched
10784 	 * insns could be handled correctly.
10785 	 */
10786 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10787 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10788 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10789 								     : false;
10790 	}
10791 
10792 	if (ret == 0)
10793 		ret = fixup_call_args(env);
10794 
10795 	env->verification_time = ktime_get_ns() - start_time;
10796 	print_verification_stats(env);
10797 
10798 	if (log->level && bpf_verifier_log_full(log))
10799 		ret = -ENOSPC;
10800 	if (log->level && !log->ubuf) {
10801 		ret = -EFAULT;
10802 		goto err_release_maps;
10803 	}
10804 
10805 	if (ret == 0 && env->used_map_cnt) {
10806 		/* if program passed verifier, update used_maps in bpf_prog_info */
10807 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10808 							  sizeof(env->used_maps[0]),
10809 							  GFP_KERNEL);
10810 
10811 		if (!env->prog->aux->used_maps) {
10812 			ret = -ENOMEM;
10813 			goto err_release_maps;
10814 		}
10815 
10816 		memcpy(env->prog->aux->used_maps, env->used_maps,
10817 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
10818 		env->prog->aux->used_map_cnt = env->used_map_cnt;
10819 
10820 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
10821 		 * bpf_ld_imm64 instructions
10822 		 */
10823 		convert_pseudo_ld_imm64(env);
10824 	}
10825 
10826 	if (ret == 0)
10827 		adjust_btf_func(env);
10828 
10829 err_release_maps:
10830 	if (!env->prog->aux->used_maps)
10831 		/* if we didn't copy map pointers into bpf_prog_info, release
10832 		 * them now. Otherwise free_used_maps() will release them.
10833 		 */
10834 		release_maps(env);
10835 	*prog = env->prog;
10836 err_unlock:
10837 	if (!is_priv)
10838 		mutex_unlock(&bpf_verifier_lock);
10839 	vfree(env->insn_aux_data);
10840 err_free_env:
10841 	kfree(env);
10842 	return ret;
10843 }
10844