xref: /openbmc/linux/kernel/bpf/verifier.c (revision 1e12d3ef47d228e4e7d30f9bc5e6744ede90319c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int dynptr_id;
259 	int map_uid;
260 	int func_id;
261 	struct btf *btf;
262 	u32 btf_id;
263 	struct btf *ret_btf;
264 	u32 ret_btf_id;
265 	u32 subprogno;
266 	struct btf_field *kptr_field;
267 	u8 uninit_dynptr_regno;
268 };
269 
270 struct btf *btf_vmlinux;
271 
272 static DEFINE_MUTEX(bpf_verifier_lock);
273 
274 static const struct bpf_line_info *
275 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
276 {
277 	const struct bpf_line_info *linfo;
278 	const struct bpf_prog *prog;
279 	u32 i, nr_linfo;
280 
281 	prog = env->prog;
282 	nr_linfo = prog->aux->nr_linfo;
283 
284 	if (!nr_linfo || insn_off >= prog->len)
285 		return NULL;
286 
287 	linfo = prog->aux->linfo;
288 	for (i = 1; i < nr_linfo; i++)
289 		if (insn_off < linfo[i].insn_off)
290 			break;
291 
292 	return &linfo[i - 1];
293 }
294 
295 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
296 		       va_list args)
297 {
298 	unsigned int n;
299 
300 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
301 
302 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
303 		  "verifier log line truncated - local buffer too short\n");
304 
305 	if (log->level == BPF_LOG_KERNEL) {
306 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
307 
308 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
309 		return;
310 	}
311 
312 	n = min(log->len_total - log->len_used - 1, n);
313 	log->kbuf[n] = '\0';
314 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
315 		log->len_used += n;
316 	else
317 		log->ubuf = NULL;
318 }
319 
320 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
321 {
322 	char zero = 0;
323 
324 	if (!bpf_verifier_log_needed(log))
325 		return;
326 
327 	log->len_used = new_pos;
328 	if (put_user(zero, log->ubuf + new_pos))
329 		log->ubuf = NULL;
330 }
331 
332 /* log_level controls verbosity level of eBPF verifier.
333  * bpf_verifier_log_write() is used to dump the verification trace to the log,
334  * so the user can figure out what's wrong with the program
335  */
336 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
337 					   const char *fmt, ...)
338 {
339 	va_list args;
340 
341 	if (!bpf_verifier_log_needed(&env->log))
342 		return;
343 
344 	va_start(args, fmt);
345 	bpf_verifier_vlog(&env->log, fmt, args);
346 	va_end(args);
347 }
348 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
349 
350 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
351 {
352 	struct bpf_verifier_env *env = private_data;
353 	va_list args;
354 
355 	if (!bpf_verifier_log_needed(&env->log))
356 		return;
357 
358 	va_start(args, fmt);
359 	bpf_verifier_vlog(&env->log, fmt, args);
360 	va_end(args);
361 }
362 
363 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
364 			    const char *fmt, ...)
365 {
366 	va_list args;
367 
368 	if (!bpf_verifier_log_needed(log))
369 		return;
370 
371 	va_start(args, fmt);
372 	bpf_verifier_vlog(log, fmt, args);
373 	va_end(args);
374 }
375 EXPORT_SYMBOL_GPL(bpf_log);
376 
377 static const char *ltrim(const char *s)
378 {
379 	while (isspace(*s))
380 		s++;
381 
382 	return s;
383 }
384 
385 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
386 					 u32 insn_off,
387 					 const char *prefix_fmt, ...)
388 {
389 	const struct bpf_line_info *linfo;
390 
391 	if (!bpf_verifier_log_needed(&env->log))
392 		return;
393 
394 	linfo = find_linfo(env, insn_off);
395 	if (!linfo || linfo == env->prev_linfo)
396 		return;
397 
398 	if (prefix_fmt) {
399 		va_list args;
400 
401 		va_start(args, prefix_fmt);
402 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
403 		va_end(args);
404 	}
405 
406 	verbose(env, "%s\n",
407 		ltrim(btf_name_by_offset(env->prog->aux->btf,
408 					 linfo->line_off)));
409 
410 	env->prev_linfo = linfo;
411 }
412 
413 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
414 				   struct bpf_reg_state *reg,
415 				   struct tnum *range, const char *ctx,
416 				   const char *reg_name)
417 {
418 	char tn_buf[48];
419 
420 	verbose(env, "At %s the register %s ", ctx, reg_name);
421 	if (!tnum_is_unknown(reg->var_off)) {
422 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
423 		verbose(env, "has value %s", tn_buf);
424 	} else {
425 		verbose(env, "has unknown scalar value");
426 	}
427 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
428 	verbose(env, " should have been in %s\n", tn_buf);
429 }
430 
431 static bool type_is_pkt_pointer(enum bpf_reg_type type)
432 {
433 	type = base_type(type);
434 	return type == PTR_TO_PACKET ||
435 	       type == PTR_TO_PACKET_META;
436 }
437 
438 static bool type_is_sk_pointer(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_SOCK_COMMON ||
442 		type == PTR_TO_TCP_SOCK ||
443 		type == PTR_TO_XDP_SOCK;
444 }
445 
446 static bool reg_type_not_null(enum bpf_reg_type type)
447 {
448 	return type == PTR_TO_SOCKET ||
449 		type == PTR_TO_TCP_SOCK ||
450 		type == PTR_TO_MAP_VALUE ||
451 		type == PTR_TO_MAP_KEY ||
452 		type == PTR_TO_SOCK_COMMON;
453 }
454 
455 static bool type_is_ptr_alloc_obj(u32 type)
456 {
457 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
458 }
459 
460 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
461 {
462 	struct btf_record *rec = NULL;
463 	struct btf_struct_meta *meta;
464 
465 	if (reg->type == PTR_TO_MAP_VALUE) {
466 		rec = reg->map_ptr->record;
467 	} else if (type_is_ptr_alloc_obj(reg->type)) {
468 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
469 		if (meta)
470 			rec = meta->record;
471 	}
472 	return rec;
473 }
474 
475 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
476 {
477 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
478 }
479 
480 static bool type_is_rdonly_mem(u32 type)
481 {
482 	return type & MEM_RDONLY;
483 }
484 
485 static bool type_may_be_null(u32 type)
486 {
487 	return type & PTR_MAYBE_NULL;
488 }
489 
490 static bool is_acquire_function(enum bpf_func_id func_id,
491 				const struct bpf_map *map)
492 {
493 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
494 
495 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
496 	    func_id == BPF_FUNC_sk_lookup_udp ||
497 	    func_id == BPF_FUNC_skc_lookup_tcp ||
498 	    func_id == BPF_FUNC_ringbuf_reserve ||
499 	    func_id == BPF_FUNC_kptr_xchg)
500 		return true;
501 
502 	if (func_id == BPF_FUNC_map_lookup_elem &&
503 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
504 	     map_type == BPF_MAP_TYPE_SOCKHASH))
505 		return true;
506 
507 	return false;
508 }
509 
510 static bool is_ptr_cast_function(enum bpf_func_id func_id)
511 {
512 	return func_id == BPF_FUNC_tcp_sock ||
513 		func_id == BPF_FUNC_sk_fullsock ||
514 		func_id == BPF_FUNC_skc_to_tcp_sock ||
515 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
516 		func_id == BPF_FUNC_skc_to_udp6_sock ||
517 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
519 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
520 }
521 
522 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
523 {
524 	return func_id == BPF_FUNC_dynptr_data;
525 }
526 
527 static bool is_callback_calling_function(enum bpf_func_id func_id)
528 {
529 	return func_id == BPF_FUNC_for_each_map_elem ||
530 	       func_id == BPF_FUNC_timer_set_callback ||
531 	       func_id == BPF_FUNC_find_vma ||
532 	       func_id == BPF_FUNC_loop ||
533 	       func_id == BPF_FUNC_user_ringbuf_drain;
534 }
535 
536 static bool is_storage_get_function(enum bpf_func_id func_id)
537 {
538 	return func_id == BPF_FUNC_sk_storage_get ||
539 	       func_id == BPF_FUNC_inode_storage_get ||
540 	       func_id == BPF_FUNC_task_storage_get ||
541 	       func_id == BPF_FUNC_cgrp_storage_get;
542 }
543 
544 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
545 					const struct bpf_map *map)
546 {
547 	int ref_obj_uses = 0;
548 
549 	if (is_ptr_cast_function(func_id))
550 		ref_obj_uses++;
551 	if (is_acquire_function(func_id, map))
552 		ref_obj_uses++;
553 	if (is_dynptr_ref_function(func_id))
554 		ref_obj_uses++;
555 
556 	return ref_obj_uses > 1;
557 }
558 
559 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
560 {
561 	return BPF_CLASS(insn->code) == BPF_STX &&
562 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
563 	       insn->imm == BPF_CMPXCHG;
564 }
565 
566 /* string representation of 'enum bpf_reg_type'
567  *
568  * Note that reg_type_str() can not appear more than once in a single verbose()
569  * statement.
570  */
571 static const char *reg_type_str(struct bpf_verifier_env *env,
572 				enum bpf_reg_type type)
573 {
574 	char postfix[16] = {0}, prefix[64] = {0};
575 	static const char * const str[] = {
576 		[NOT_INIT]		= "?",
577 		[SCALAR_VALUE]		= "scalar",
578 		[PTR_TO_CTX]		= "ctx",
579 		[CONST_PTR_TO_MAP]	= "map_ptr",
580 		[PTR_TO_MAP_VALUE]	= "map_value",
581 		[PTR_TO_STACK]		= "fp",
582 		[PTR_TO_PACKET]		= "pkt",
583 		[PTR_TO_PACKET_META]	= "pkt_meta",
584 		[PTR_TO_PACKET_END]	= "pkt_end",
585 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
586 		[PTR_TO_SOCKET]		= "sock",
587 		[PTR_TO_SOCK_COMMON]	= "sock_common",
588 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
589 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
590 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
591 		[PTR_TO_BTF_ID]		= "ptr_",
592 		[PTR_TO_MEM]		= "mem",
593 		[PTR_TO_BUF]		= "buf",
594 		[PTR_TO_FUNC]		= "func",
595 		[PTR_TO_MAP_KEY]	= "map_key",
596 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
597 	};
598 
599 	if (type & PTR_MAYBE_NULL) {
600 		if (base_type(type) == PTR_TO_BTF_ID)
601 			strncpy(postfix, "or_null_", 16);
602 		else
603 			strncpy(postfix, "_or_null", 16);
604 	}
605 
606 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
607 		 type & MEM_RDONLY ? "rdonly_" : "",
608 		 type & MEM_RINGBUF ? "ringbuf_" : "",
609 		 type & MEM_USER ? "user_" : "",
610 		 type & MEM_PERCPU ? "percpu_" : "",
611 		 type & MEM_RCU ? "rcu_" : "",
612 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
613 		 type & PTR_TRUSTED ? "trusted_" : ""
614 	);
615 
616 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
617 		 prefix, str[base_type(type)], postfix);
618 	return env->type_str_buf;
619 }
620 
621 static char slot_type_char[] = {
622 	[STACK_INVALID]	= '?',
623 	[STACK_SPILL]	= 'r',
624 	[STACK_MISC]	= 'm',
625 	[STACK_ZERO]	= '0',
626 	[STACK_DYNPTR]	= 'd',
627 };
628 
629 static void print_liveness(struct bpf_verifier_env *env,
630 			   enum bpf_reg_liveness live)
631 {
632 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
633 	    verbose(env, "_");
634 	if (live & REG_LIVE_READ)
635 		verbose(env, "r");
636 	if (live & REG_LIVE_WRITTEN)
637 		verbose(env, "w");
638 	if (live & REG_LIVE_DONE)
639 		verbose(env, "D");
640 }
641 
642 static int __get_spi(s32 off)
643 {
644 	return (-off - 1) / BPF_REG_SIZE;
645 }
646 
647 static struct bpf_func_state *func(struct bpf_verifier_env *env,
648 				   const struct bpf_reg_state *reg)
649 {
650 	struct bpf_verifier_state *cur = env->cur_state;
651 
652 	return cur->frame[reg->frameno];
653 }
654 
655 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
656 {
657        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
658 
659        /* We need to check that slots between [spi - nr_slots + 1, spi] are
660 	* within [0, allocated_stack).
661 	*
662 	* Please note that the spi grows downwards. For example, a dynptr
663 	* takes the size of two stack slots; the first slot will be at
664 	* spi and the second slot will be at spi - 1.
665 	*/
666        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
667 }
668 
669 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
670 {
671 	int off, spi;
672 
673 	if (!tnum_is_const(reg->var_off)) {
674 		verbose(env, "dynptr has to be at a constant offset\n");
675 		return -EINVAL;
676 	}
677 
678 	off = reg->off + reg->var_off.value;
679 	if (off % BPF_REG_SIZE) {
680 		verbose(env, "cannot pass in dynptr at an offset=%d\n", off);
681 		return -EINVAL;
682 	}
683 
684 	spi = __get_spi(off);
685 	if (spi < 1) {
686 		verbose(env, "cannot pass in dynptr at an offset=%d\n", off);
687 		return -EINVAL;
688 	}
689 
690 	if (!is_spi_bounds_valid(func(env, reg), spi, BPF_DYNPTR_NR_SLOTS))
691 		return -ERANGE;
692 	return spi;
693 }
694 
695 static const char *kernel_type_name(const struct btf* btf, u32 id)
696 {
697 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
698 }
699 
700 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
701 {
702 	env->scratched_regs |= 1U << regno;
703 }
704 
705 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
706 {
707 	env->scratched_stack_slots |= 1ULL << spi;
708 }
709 
710 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
711 {
712 	return (env->scratched_regs >> regno) & 1;
713 }
714 
715 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
716 {
717 	return (env->scratched_stack_slots >> regno) & 1;
718 }
719 
720 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
721 {
722 	return env->scratched_regs || env->scratched_stack_slots;
723 }
724 
725 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
726 {
727 	env->scratched_regs = 0U;
728 	env->scratched_stack_slots = 0ULL;
729 }
730 
731 /* Used for printing the entire verifier state. */
732 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
733 {
734 	env->scratched_regs = ~0U;
735 	env->scratched_stack_slots = ~0ULL;
736 }
737 
738 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
739 {
740 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
741 	case DYNPTR_TYPE_LOCAL:
742 		return BPF_DYNPTR_TYPE_LOCAL;
743 	case DYNPTR_TYPE_RINGBUF:
744 		return BPF_DYNPTR_TYPE_RINGBUF;
745 	default:
746 		return BPF_DYNPTR_TYPE_INVALID;
747 	}
748 }
749 
750 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
751 {
752 	return type == BPF_DYNPTR_TYPE_RINGBUF;
753 }
754 
755 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
756 			      enum bpf_dynptr_type type,
757 			      bool first_slot, int dynptr_id);
758 
759 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
760 				struct bpf_reg_state *reg);
761 
762 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
763 				   struct bpf_reg_state *sreg1,
764 				   struct bpf_reg_state *sreg2,
765 				   enum bpf_dynptr_type type)
766 {
767 	int id = ++env->id_gen;
768 
769 	__mark_dynptr_reg(sreg1, type, true, id);
770 	__mark_dynptr_reg(sreg2, type, false, id);
771 }
772 
773 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
774 			       struct bpf_reg_state *reg,
775 			       enum bpf_dynptr_type type)
776 {
777 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
778 }
779 
780 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
781 				        struct bpf_func_state *state, int spi);
782 
783 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
784 				   enum bpf_arg_type arg_type, int insn_idx)
785 {
786 	struct bpf_func_state *state = func(env, reg);
787 	enum bpf_dynptr_type type;
788 	int spi, i, id, err;
789 
790 	spi = dynptr_get_spi(env, reg);
791 	if (spi < 0)
792 		return spi;
793 
794 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
795 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
796 	 * to ensure that for the following example:
797 	 *	[d1][d1][d2][d2]
798 	 * spi    3   2   1   0
799 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
800 	 * case they do belong to same dynptr, second call won't see slot_type
801 	 * as STACK_DYNPTR and will simply skip destruction.
802 	 */
803 	err = destroy_if_dynptr_stack_slot(env, state, spi);
804 	if (err)
805 		return err;
806 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
807 	if (err)
808 		return err;
809 
810 	for (i = 0; i < BPF_REG_SIZE; i++) {
811 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
812 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
813 	}
814 
815 	type = arg_to_dynptr_type(arg_type);
816 	if (type == BPF_DYNPTR_TYPE_INVALID)
817 		return -EINVAL;
818 
819 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
820 			       &state->stack[spi - 1].spilled_ptr, type);
821 
822 	if (dynptr_type_refcounted(type)) {
823 		/* The id is used to track proper releasing */
824 		id = acquire_reference_state(env, insn_idx);
825 		if (id < 0)
826 			return id;
827 
828 		state->stack[spi].spilled_ptr.ref_obj_id = id;
829 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
830 	}
831 
832 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
833 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
834 
835 	return 0;
836 }
837 
838 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
839 {
840 	struct bpf_func_state *state = func(env, reg);
841 	int spi, i;
842 
843 	spi = dynptr_get_spi(env, reg);
844 	if (spi < 0)
845 		return spi;
846 
847 	for (i = 0; i < BPF_REG_SIZE; i++) {
848 		state->stack[spi].slot_type[i] = STACK_INVALID;
849 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
850 	}
851 
852 	/* Invalidate any slices associated with this dynptr */
853 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
854 		WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
855 
856 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
857 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
858 
859 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
860 	 *
861 	 * While we don't allow reading STACK_INVALID, it is still possible to
862 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
863 	 * helpers or insns can do partial read of that part without failing,
864 	 * but check_stack_range_initialized, check_stack_read_var_off, and
865 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
866 	 * the slot conservatively. Hence we need to prevent those liveness
867 	 * marking walks.
868 	 *
869 	 * This was not a problem before because STACK_INVALID is only set by
870 	 * default (where the default reg state has its reg->parent as NULL), or
871 	 * in clean_live_states after REG_LIVE_DONE (at which point
872 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
873 	 * verifier state exploration (like we did above). Hence, for our case
874 	 * parentage chain will still be live (i.e. reg->parent may be
875 	 * non-NULL), while earlier reg->parent was NULL, so we need
876 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
877 	 * done later on reads or by mark_dynptr_read as well to unnecessary
878 	 * mark registers in verifier state.
879 	 */
880 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
881 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
882 
883 	return 0;
884 }
885 
886 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
887 			       struct bpf_reg_state *reg);
888 
889 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
890 				        struct bpf_func_state *state, int spi)
891 {
892 	struct bpf_func_state *fstate;
893 	struct bpf_reg_state *dreg;
894 	int i, dynptr_id;
895 
896 	/* We always ensure that STACK_DYNPTR is never set partially,
897 	 * hence just checking for slot_type[0] is enough. This is
898 	 * different for STACK_SPILL, where it may be only set for
899 	 * 1 byte, so code has to use is_spilled_reg.
900 	 */
901 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
902 		return 0;
903 
904 	/* Reposition spi to first slot */
905 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
906 		spi = spi + 1;
907 
908 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
909 		verbose(env, "cannot overwrite referenced dynptr\n");
910 		return -EINVAL;
911 	}
912 
913 	mark_stack_slot_scratched(env, spi);
914 	mark_stack_slot_scratched(env, spi - 1);
915 
916 	/* Writing partially to one dynptr stack slot destroys both. */
917 	for (i = 0; i < BPF_REG_SIZE; i++) {
918 		state->stack[spi].slot_type[i] = STACK_INVALID;
919 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
920 	}
921 
922 	dynptr_id = state->stack[spi].spilled_ptr.id;
923 	/* Invalidate any slices associated with this dynptr */
924 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
925 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
926 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
927 			continue;
928 		if (dreg->dynptr_id == dynptr_id) {
929 			if (!env->allow_ptr_leaks)
930 				__mark_reg_not_init(env, dreg);
931 			else
932 				__mark_reg_unknown(env, dreg);
933 		}
934 	}));
935 
936 	/* Do not release reference state, we are destroying dynptr on stack,
937 	 * not using some helper to release it. Just reset register.
938 	 */
939 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
940 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
941 
942 	/* Same reason as unmark_stack_slots_dynptr above */
943 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
944 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
945 
946 	return 0;
947 }
948 
949 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
950 				       int spi)
951 {
952 	if (reg->type == CONST_PTR_TO_DYNPTR)
953 		return false;
954 
955 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
956 	 * will do check_mem_access to check and update stack bounds later, so
957 	 * return true for that case.
958 	 */
959 	if (spi < 0)
960 		return spi == -ERANGE;
961 	/* We allow overwriting existing unreferenced STACK_DYNPTR slots, see
962 	 * mark_stack_slots_dynptr which calls destroy_if_dynptr_stack_slot to
963 	 * ensure dynptr objects at the slots we are touching are completely
964 	 * destructed before we reinitialize them for a new one. For referenced
965 	 * ones, destroy_if_dynptr_stack_slot returns an error early instead of
966 	 * delaying it until the end where the user will get "Unreleased
967 	 * reference" error.
968 	 */
969 	return true;
970 }
971 
972 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
973 				     int spi)
974 {
975 	struct bpf_func_state *state = func(env, reg);
976 	int i;
977 
978 	/* This already represents first slot of initialized bpf_dynptr */
979 	if (reg->type == CONST_PTR_TO_DYNPTR)
980 		return true;
981 
982 	if (spi < 0)
983 		return false;
984 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
985 		return false;
986 
987 	for (i = 0; i < BPF_REG_SIZE; i++) {
988 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
989 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
990 			return false;
991 	}
992 
993 	return true;
994 }
995 
996 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
997 				    enum bpf_arg_type arg_type)
998 {
999 	struct bpf_func_state *state = func(env, reg);
1000 	enum bpf_dynptr_type dynptr_type;
1001 	int spi;
1002 
1003 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1004 	if (arg_type == ARG_PTR_TO_DYNPTR)
1005 		return true;
1006 
1007 	dynptr_type = arg_to_dynptr_type(arg_type);
1008 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1009 		return reg->dynptr.type == dynptr_type;
1010 	} else {
1011 		spi = dynptr_get_spi(env, reg);
1012 		if (spi < 0)
1013 			return false;
1014 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1015 	}
1016 }
1017 
1018 /* The reg state of a pointer or a bounded scalar was saved when
1019  * it was spilled to the stack.
1020  */
1021 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1022 {
1023 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1024 }
1025 
1026 static void scrub_spilled_slot(u8 *stype)
1027 {
1028 	if (*stype != STACK_INVALID)
1029 		*stype = STACK_MISC;
1030 }
1031 
1032 static void print_verifier_state(struct bpf_verifier_env *env,
1033 				 const struct bpf_func_state *state,
1034 				 bool print_all)
1035 {
1036 	const struct bpf_reg_state *reg;
1037 	enum bpf_reg_type t;
1038 	int i;
1039 
1040 	if (state->frameno)
1041 		verbose(env, " frame%d:", state->frameno);
1042 	for (i = 0; i < MAX_BPF_REG; i++) {
1043 		reg = &state->regs[i];
1044 		t = reg->type;
1045 		if (t == NOT_INIT)
1046 			continue;
1047 		if (!print_all && !reg_scratched(env, i))
1048 			continue;
1049 		verbose(env, " R%d", i);
1050 		print_liveness(env, reg->live);
1051 		verbose(env, "=");
1052 		if (t == SCALAR_VALUE && reg->precise)
1053 			verbose(env, "P");
1054 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1055 		    tnum_is_const(reg->var_off)) {
1056 			/* reg->off should be 0 for SCALAR_VALUE */
1057 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1058 			verbose(env, "%lld", reg->var_off.value + reg->off);
1059 		} else {
1060 			const char *sep = "";
1061 
1062 			verbose(env, "%s", reg_type_str(env, t));
1063 			if (base_type(t) == PTR_TO_BTF_ID)
1064 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
1065 			verbose(env, "(");
1066 /*
1067  * _a stands for append, was shortened to avoid multiline statements below.
1068  * This macro is used to output a comma separated list of attributes.
1069  */
1070 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1071 
1072 			if (reg->id)
1073 				verbose_a("id=%d", reg->id);
1074 			if (reg->ref_obj_id)
1075 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1076 			if (t != SCALAR_VALUE)
1077 				verbose_a("off=%d", reg->off);
1078 			if (type_is_pkt_pointer(t))
1079 				verbose_a("r=%d", reg->range);
1080 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1081 				 base_type(t) == PTR_TO_MAP_KEY ||
1082 				 base_type(t) == PTR_TO_MAP_VALUE)
1083 				verbose_a("ks=%d,vs=%d",
1084 					  reg->map_ptr->key_size,
1085 					  reg->map_ptr->value_size);
1086 			if (tnum_is_const(reg->var_off)) {
1087 				/* Typically an immediate SCALAR_VALUE, but
1088 				 * could be a pointer whose offset is too big
1089 				 * for reg->off
1090 				 */
1091 				verbose_a("imm=%llx", reg->var_off.value);
1092 			} else {
1093 				if (reg->smin_value != reg->umin_value &&
1094 				    reg->smin_value != S64_MIN)
1095 					verbose_a("smin=%lld", (long long)reg->smin_value);
1096 				if (reg->smax_value != reg->umax_value &&
1097 				    reg->smax_value != S64_MAX)
1098 					verbose_a("smax=%lld", (long long)reg->smax_value);
1099 				if (reg->umin_value != 0)
1100 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1101 				if (reg->umax_value != U64_MAX)
1102 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1103 				if (!tnum_is_unknown(reg->var_off)) {
1104 					char tn_buf[48];
1105 
1106 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1107 					verbose_a("var_off=%s", tn_buf);
1108 				}
1109 				if (reg->s32_min_value != reg->smin_value &&
1110 				    reg->s32_min_value != S32_MIN)
1111 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1112 				if (reg->s32_max_value != reg->smax_value &&
1113 				    reg->s32_max_value != S32_MAX)
1114 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1115 				if (reg->u32_min_value != reg->umin_value &&
1116 				    reg->u32_min_value != U32_MIN)
1117 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1118 				if (reg->u32_max_value != reg->umax_value &&
1119 				    reg->u32_max_value != U32_MAX)
1120 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1121 			}
1122 #undef verbose_a
1123 
1124 			verbose(env, ")");
1125 		}
1126 	}
1127 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1128 		char types_buf[BPF_REG_SIZE + 1];
1129 		bool valid = false;
1130 		int j;
1131 
1132 		for (j = 0; j < BPF_REG_SIZE; j++) {
1133 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1134 				valid = true;
1135 			types_buf[j] = slot_type_char[
1136 					state->stack[i].slot_type[j]];
1137 		}
1138 		types_buf[BPF_REG_SIZE] = 0;
1139 		if (!valid)
1140 			continue;
1141 		if (!print_all && !stack_slot_scratched(env, i))
1142 			continue;
1143 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1144 		print_liveness(env, state->stack[i].spilled_ptr.live);
1145 		if (is_spilled_reg(&state->stack[i])) {
1146 			reg = &state->stack[i].spilled_ptr;
1147 			t = reg->type;
1148 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1149 			if (t == SCALAR_VALUE && reg->precise)
1150 				verbose(env, "P");
1151 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1152 				verbose(env, "%lld", reg->var_off.value + reg->off);
1153 		} else {
1154 			verbose(env, "=%s", types_buf);
1155 		}
1156 	}
1157 	if (state->acquired_refs && state->refs[0].id) {
1158 		verbose(env, " refs=%d", state->refs[0].id);
1159 		for (i = 1; i < state->acquired_refs; i++)
1160 			if (state->refs[i].id)
1161 				verbose(env, ",%d", state->refs[i].id);
1162 	}
1163 	if (state->in_callback_fn)
1164 		verbose(env, " cb");
1165 	if (state->in_async_callback_fn)
1166 		verbose(env, " async_cb");
1167 	verbose(env, "\n");
1168 	mark_verifier_state_clean(env);
1169 }
1170 
1171 static inline u32 vlog_alignment(u32 pos)
1172 {
1173 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1174 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1175 }
1176 
1177 static void print_insn_state(struct bpf_verifier_env *env,
1178 			     const struct bpf_func_state *state)
1179 {
1180 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1181 		/* remove new line character */
1182 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1183 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1184 	} else {
1185 		verbose(env, "%d:", env->insn_idx);
1186 	}
1187 	print_verifier_state(env, state, false);
1188 }
1189 
1190 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1191  * small to hold src. This is different from krealloc since we don't want to preserve
1192  * the contents of dst.
1193  *
1194  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1195  * not be allocated.
1196  */
1197 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1198 {
1199 	size_t alloc_bytes;
1200 	void *orig = dst;
1201 	size_t bytes;
1202 
1203 	if (ZERO_OR_NULL_PTR(src))
1204 		goto out;
1205 
1206 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1207 		return NULL;
1208 
1209 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1210 	dst = krealloc(orig, alloc_bytes, flags);
1211 	if (!dst) {
1212 		kfree(orig);
1213 		return NULL;
1214 	}
1215 
1216 	memcpy(dst, src, bytes);
1217 out:
1218 	return dst ? dst : ZERO_SIZE_PTR;
1219 }
1220 
1221 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1222  * small to hold new_n items. new items are zeroed out if the array grows.
1223  *
1224  * Contrary to krealloc_array, does not free arr if new_n is zero.
1225  */
1226 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1227 {
1228 	size_t alloc_size;
1229 	void *new_arr;
1230 
1231 	if (!new_n || old_n == new_n)
1232 		goto out;
1233 
1234 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1235 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1236 	if (!new_arr) {
1237 		kfree(arr);
1238 		return NULL;
1239 	}
1240 	arr = new_arr;
1241 
1242 	if (new_n > old_n)
1243 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1244 
1245 out:
1246 	return arr ? arr : ZERO_SIZE_PTR;
1247 }
1248 
1249 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1250 {
1251 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1252 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1253 	if (!dst->refs)
1254 		return -ENOMEM;
1255 
1256 	dst->acquired_refs = src->acquired_refs;
1257 	return 0;
1258 }
1259 
1260 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1261 {
1262 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1263 
1264 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1265 				GFP_KERNEL);
1266 	if (!dst->stack)
1267 		return -ENOMEM;
1268 
1269 	dst->allocated_stack = src->allocated_stack;
1270 	return 0;
1271 }
1272 
1273 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1274 {
1275 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1276 				    sizeof(struct bpf_reference_state));
1277 	if (!state->refs)
1278 		return -ENOMEM;
1279 
1280 	state->acquired_refs = n;
1281 	return 0;
1282 }
1283 
1284 static int grow_stack_state(struct bpf_func_state *state, int size)
1285 {
1286 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1287 
1288 	if (old_n >= n)
1289 		return 0;
1290 
1291 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1292 	if (!state->stack)
1293 		return -ENOMEM;
1294 
1295 	state->allocated_stack = size;
1296 	return 0;
1297 }
1298 
1299 /* Acquire a pointer id from the env and update the state->refs to include
1300  * this new pointer reference.
1301  * On success, returns a valid pointer id to associate with the register
1302  * On failure, returns a negative errno.
1303  */
1304 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1305 {
1306 	struct bpf_func_state *state = cur_func(env);
1307 	int new_ofs = state->acquired_refs;
1308 	int id, err;
1309 
1310 	err = resize_reference_state(state, state->acquired_refs + 1);
1311 	if (err)
1312 		return err;
1313 	id = ++env->id_gen;
1314 	state->refs[new_ofs].id = id;
1315 	state->refs[new_ofs].insn_idx = insn_idx;
1316 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1317 
1318 	return id;
1319 }
1320 
1321 /* release function corresponding to acquire_reference_state(). Idempotent. */
1322 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1323 {
1324 	int i, last_idx;
1325 
1326 	last_idx = state->acquired_refs - 1;
1327 	for (i = 0; i < state->acquired_refs; i++) {
1328 		if (state->refs[i].id == ptr_id) {
1329 			/* Cannot release caller references in callbacks */
1330 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1331 				return -EINVAL;
1332 			if (last_idx && i != last_idx)
1333 				memcpy(&state->refs[i], &state->refs[last_idx],
1334 				       sizeof(*state->refs));
1335 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1336 			state->acquired_refs--;
1337 			return 0;
1338 		}
1339 	}
1340 	return -EINVAL;
1341 }
1342 
1343 static void free_func_state(struct bpf_func_state *state)
1344 {
1345 	if (!state)
1346 		return;
1347 	kfree(state->refs);
1348 	kfree(state->stack);
1349 	kfree(state);
1350 }
1351 
1352 static void clear_jmp_history(struct bpf_verifier_state *state)
1353 {
1354 	kfree(state->jmp_history);
1355 	state->jmp_history = NULL;
1356 	state->jmp_history_cnt = 0;
1357 }
1358 
1359 static void free_verifier_state(struct bpf_verifier_state *state,
1360 				bool free_self)
1361 {
1362 	int i;
1363 
1364 	for (i = 0; i <= state->curframe; i++) {
1365 		free_func_state(state->frame[i]);
1366 		state->frame[i] = NULL;
1367 	}
1368 	clear_jmp_history(state);
1369 	if (free_self)
1370 		kfree(state);
1371 }
1372 
1373 /* copy verifier state from src to dst growing dst stack space
1374  * when necessary to accommodate larger src stack
1375  */
1376 static int copy_func_state(struct bpf_func_state *dst,
1377 			   const struct bpf_func_state *src)
1378 {
1379 	int err;
1380 
1381 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1382 	err = copy_reference_state(dst, src);
1383 	if (err)
1384 		return err;
1385 	return copy_stack_state(dst, src);
1386 }
1387 
1388 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1389 			       const struct bpf_verifier_state *src)
1390 {
1391 	struct bpf_func_state *dst;
1392 	int i, err;
1393 
1394 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1395 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1396 					    GFP_USER);
1397 	if (!dst_state->jmp_history)
1398 		return -ENOMEM;
1399 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1400 
1401 	/* if dst has more stack frames then src frame, free them */
1402 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1403 		free_func_state(dst_state->frame[i]);
1404 		dst_state->frame[i] = NULL;
1405 	}
1406 	dst_state->speculative = src->speculative;
1407 	dst_state->active_rcu_lock = src->active_rcu_lock;
1408 	dst_state->curframe = src->curframe;
1409 	dst_state->active_lock.ptr = src->active_lock.ptr;
1410 	dst_state->active_lock.id = src->active_lock.id;
1411 	dst_state->branches = src->branches;
1412 	dst_state->parent = src->parent;
1413 	dst_state->first_insn_idx = src->first_insn_idx;
1414 	dst_state->last_insn_idx = src->last_insn_idx;
1415 	for (i = 0; i <= src->curframe; i++) {
1416 		dst = dst_state->frame[i];
1417 		if (!dst) {
1418 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1419 			if (!dst)
1420 				return -ENOMEM;
1421 			dst_state->frame[i] = dst;
1422 		}
1423 		err = copy_func_state(dst, src->frame[i]);
1424 		if (err)
1425 			return err;
1426 	}
1427 	return 0;
1428 }
1429 
1430 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1431 {
1432 	while (st) {
1433 		u32 br = --st->branches;
1434 
1435 		/* WARN_ON(br > 1) technically makes sense here,
1436 		 * but see comment in push_stack(), hence:
1437 		 */
1438 		WARN_ONCE((int)br < 0,
1439 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1440 			  br);
1441 		if (br)
1442 			break;
1443 		st = st->parent;
1444 	}
1445 }
1446 
1447 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1448 		     int *insn_idx, bool pop_log)
1449 {
1450 	struct bpf_verifier_state *cur = env->cur_state;
1451 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1452 	int err;
1453 
1454 	if (env->head == NULL)
1455 		return -ENOENT;
1456 
1457 	if (cur) {
1458 		err = copy_verifier_state(cur, &head->st);
1459 		if (err)
1460 			return err;
1461 	}
1462 	if (pop_log)
1463 		bpf_vlog_reset(&env->log, head->log_pos);
1464 	if (insn_idx)
1465 		*insn_idx = head->insn_idx;
1466 	if (prev_insn_idx)
1467 		*prev_insn_idx = head->prev_insn_idx;
1468 	elem = head->next;
1469 	free_verifier_state(&head->st, false);
1470 	kfree(head);
1471 	env->head = elem;
1472 	env->stack_size--;
1473 	return 0;
1474 }
1475 
1476 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1477 					     int insn_idx, int prev_insn_idx,
1478 					     bool speculative)
1479 {
1480 	struct bpf_verifier_state *cur = env->cur_state;
1481 	struct bpf_verifier_stack_elem *elem;
1482 	int err;
1483 
1484 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1485 	if (!elem)
1486 		goto err;
1487 
1488 	elem->insn_idx = insn_idx;
1489 	elem->prev_insn_idx = prev_insn_idx;
1490 	elem->next = env->head;
1491 	elem->log_pos = env->log.len_used;
1492 	env->head = elem;
1493 	env->stack_size++;
1494 	err = copy_verifier_state(&elem->st, cur);
1495 	if (err)
1496 		goto err;
1497 	elem->st.speculative |= speculative;
1498 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1499 		verbose(env, "The sequence of %d jumps is too complex.\n",
1500 			env->stack_size);
1501 		goto err;
1502 	}
1503 	if (elem->st.parent) {
1504 		++elem->st.parent->branches;
1505 		/* WARN_ON(branches > 2) technically makes sense here,
1506 		 * but
1507 		 * 1. speculative states will bump 'branches' for non-branch
1508 		 * instructions
1509 		 * 2. is_state_visited() heuristics may decide not to create
1510 		 * a new state for a sequence of branches and all such current
1511 		 * and cloned states will be pointing to a single parent state
1512 		 * which might have large 'branches' count.
1513 		 */
1514 	}
1515 	return &elem->st;
1516 err:
1517 	free_verifier_state(env->cur_state, true);
1518 	env->cur_state = NULL;
1519 	/* pop all elements and return */
1520 	while (!pop_stack(env, NULL, NULL, false));
1521 	return NULL;
1522 }
1523 
1524 #define CALLER_SAVED_REGS 6
1525 static const int caller_saved[CALLER_SAVED_REGS] = {
1526 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1527 };
1528 
1529 /* This helper doesn't clear reg->id */
1530 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1531 {
1532 	reg->var_off = tnum_const(imm);
1533 	reg->smin_value = (s64)imm;
1534 	reg->smax_value = (s64)imm;
1535 	reg->umin_value = imm;
1536 	reg->umax_value = imm;
1537 
1538 	reg->s32_min_value = (s32)imm;
1539 	reg->s32_max_value = (s32)imm;
1540 	reg->u32_min_value = (u32)imm;
1541 	reg->u32_max_value = (u32)imm;
1542 }
1543 
1544 /* Mark the unknown part of a register (variable offset or scalar value) as
1545  * known to have the value @imm.
1546  */
1547 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1548 {
1549 	/* Clear off and union(map_ptr, range) */
1550 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1551 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1552 	reg->id = 0;
1553 	reg->ref_obj_id = 0;
1554 	___mark_reg_known(reg, imm);
1555 }
1556 
1557 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1558 {
1559 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1560 	reg->s32_min_value = (s32)imm;
1561 	reg->s32_max_value = (s32)imm;
1562 	reg->u32_min_value = (u32)imm;
1563 	reg->u32_max_value = (u32)imm;
1564 }
1565 
1566 /* Mark the 'variable offset' part of a register as zero.  This should be
1567  * used only on registers holding a pointer type.
1568  */
1569 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1570 {
1571 	__mark_reg_known(reg, 0);
1572 }
1573 
1574 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1575 {
1576 	__mark_reg_known(reg, 0);
1577 	reg->type = SCALAR_VALUE;
1578 }
1579 
1580 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1581 				struct bpf_reg_state *regs, u32 regno)
1582 {
1583 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1584 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1585 		/* Something bad happened, let's kill all regs */
1586 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1587 			__mark_reg_not_init(env, regs + regno);
1588 		return;
1589 	}
1590 	__mark_reg_known_zero(regs + regno);
1591 }
1592 
1593 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1594 			      bool first_slot, int dynptr_id)
1595 {
1596 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1597 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1598 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1599 	 */
1600 	__mark_reg_known_zero(reg);
1601 	reg->type = CONST_PTR_TO_DYNPTR;
1602 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1603 	reg->id = dynptr_id;
1604 	reg->dynptr.type = type;
1605 	reg->dynptr.first_slot = first_slot;
1606 }
1607 
1608 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1609 {
1610 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1611 		const struct bpf_map *map = reg->map_ptr;
1612 
1613 		if (map->inner_map_meta) {
1614 			reg->type = CONST_PTR_TO_MAP;
1615 			reg->map_ptr = map->inner_map_meta;
1616 			/* transfer reg's id which is unique for every map_lookup_elem
1617 			 * as UID of the inner map.
1618 			 */
1619 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1620 				reg->map_uid = reg->id;
1621 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1622 			reg->type = PTR_TO_XDP_SOCK;
1623 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1624 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1625 			reg->type = PTR_TO_SOCKET;
1626 		} else {
1627 			reg->type = PTR_TO_MAP_VALUE;
1628 		}
1629 		return;
1630 	}
1631 
1632 	reg->type &= ~PTR_MAYBE_NULL;
1633 }
1634 
1635 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1636 {
1637 	return type_is_pkt_pointer(reg->type);
1638 }
1639 
1640 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1641 {
1642 	return reg_is_pkt_pointer(reg) ||
1643 	       reg->type == PTR_TO_PACKET_END;
1644 }
1645 
1646 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1647 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1648 				    enum bpf_reg_type which)
1649 {
1650 	/* The register can already have a range from prior markings.
1651 	 * This is fine as long as it hasn't been advanced from its
1652 	 * origin.
1653 	 */
1654 	return reg->type == which &&
1655 	       reg->id == 0 &&
1656 	       reg->off == 0 &&
1657 	       tnum_equals_const(reg->var_off, 0);
1658 }
1659 
1660 /* Reset the min/max bounds of a register */
1661 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1662 {
1663 	reg->smin_value = S64_MIN;
1664 	reg->smax_value = S64_MAX;
1665 	reg->umin_value = 0;
1666 	reg->umax_value = U64_MAX;
1667 
1668 	reg->s32_min_value = S32_MIN;
1669 	reg->s32_max_value = S32_MAX;
1670 	reg->u32_min_value = 0;
1671 	reg->u32_max_value = U32_MAX;
1672 }
1673 
1674 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1675 {
1676 	reg->smin_value = S64_MIN;
1677 	reg->smax_value = S64_MAX;
1678 	reg->umin_value = 0;
1679 	reg->umax_value = U64_MAX;
1680 }
1681 
1682 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1683 {
1684 	reg->s32_min_value = S32_MIN;
1685 	reg->s32_max_value = S32_MAX;
1686 	reg->u32_min_value = 0;
1687 	reg->u32_max_value = U32_MAX;
1688 }
1689 
1690 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1691 {
1692 	struct tnum var32_off = tnum_subreg(reg->var_off);
1693 
1694 	/* min signed is max(sign bit) | min(other bits) */
1695 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1696 			var32_off.value | (var32_off.mask & S32_MIN));
1697 	/* max signed is min(sign bit) | max(other bits) */
1698 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1699 			var32_off.value | (var32_off.mask & S32_MAX));
1700 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1701 	reg->u32_max_value = min(reg->u32_max_value,
1702 				 (u32)(var32_off.value | var32_off.mask));
1703 }
1704 
1705 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1706 {
1707 	/* min signed is max(sign bit) | min(other bits) */
1708 	reg->smin_value = max_t(s64, reg->smin_value,
1709 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1710 	/* max signed is min(sign bit) | max(other bits) */
1711 	reg->smax_value = min_t(s64, reg->smax_value,
1712 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1713 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1714 	reg->umax_value = min(reg->umax_value,
1715 			      reg->var_off.value | reg->var_off.mask);
1716 }
1717 
1718 static void __update_reg_bounds(struct bpf_reg_state *reg)
1719 {
1720 	__update_reg32_bounds(reg);
1721 	__update_reg64_bounds(reg);
1722 }
1723 
1724 /* Uses signed min/max values to inform unsigned, and vice-versa */
1725 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1726 {
1727 	/* Learn sign from signed bounds.
1728 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1729 	 * are the same, so combine.  This works even in the negative case, e.g.
1730 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1731 	 */
1732 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1733 		reg->s32_min_value = reg->u32_min_value =
1734 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1735 		reg->s32_max_value = reg->u32_max_value =
1736 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1737 		return;
1738 	}
1739 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1740 	 * boundary, so we must be careful.
1741 	 */
1742 	if ((s32)reg->u32_max_value >= 0) {
1743 		/* Positive.  We can't learn anything from the smin, but smax
1744 		 * is positive, hence safe.
1745 		 */
1746 		reg->s32_min_value = reg->u32_min_value;
1747 		reg->s32_max_value = reg->u32_max_value =
1748 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1749 	} else if ((s32)reg->u32_min_value < 0) {
1750 		/* Negative.  We can't learn anything from the smax, but smin
1751 		 * is negative, hence safe.
1752 		 */
1753 		reg->s32_min_value = reg->u32_min_value =
1754 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1755 		reg->s32_max_value = reg->u32_max_value;
1756 	}
1757 }
1758 
1759 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1760 {
1761 	/* Learn sign from signed bounds.
1762 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1763 	 * are the same, so combine.  This works even in the negative case, e.g.
1764 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1765 	 */
1766 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1767 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1768 							  reg->umin_value);
1769 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1770 							  reg->umax_value);
1771 		return;
1772 	}
1773 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1774 	 * boundary, so we must be careful.
1775 	 */
1776 	if ((s64)reg->umax_value >= 0) {
1777 		/* Positive.  We can't learn anything from the smin, but smax
1778 		 * is positive, hence safe.
1779 		 */
1780 		reg->smin_value = reg->umin_value;
1781 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1782 							  reg->umax_value);
1783 	} else if ((s64)reg->umin_value < 0) {
1784 		/* Negative.  We can't learn anything from the smax, but smin
1785 		 * is negative, hence safe.
1786 		 */
1787 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1788 							  reg->umin_value);
1789 		reg->smax_value = reg->umax_value;
1790 	}
1791 }
1792 
1793 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1794 {
1795 	__reg32_deduce_bounds(reg);
1796 	__reg64_deduce_bounds(reg);
1797 }
1798 
1799 /* Attempts to improve var_off based on unsigned min/max information */
1800 static void __reg_bound_offset(struct bpf_reg_state *reg)
1801 {
1802 	struct tnum var64_off = tnum_intersect(reg->var_off,
1803 					       tnum_range(reg->umin_value,
1804 							  reg->umax_value));
1805 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1806 						tnum_range(reg->u32_min_value,
1807 							   reg->u32_max_value));
1808 
1809 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1810 }
1811 
1812 static void reg_bounds_sync(struct bpf_reg_state *reg)
1813 {
1814 	/* We might have learned new bounds from the var_off. */
1815 	__update_reg_bounds(reg);
1816 	/* We might have learned something about the sign bit. */
1817 	__reg_deduce_bounds(reg);
1818 	/* We might have learned some bits from the bounds. */
1819 	__reg_bound_offset(reg);
1820 	/* Intersecting with the old var_off might have improved our bounds
1821 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1822 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1823 	 */
1824 	__update_reg_bounds(reg);
1825 }
1826 
1827 static bool __reg32_bound_s64(s32 a)
1828 {
1829 	return a >= 0 && a <= S32_MAX;
1830 }
1831 
1832 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1833 {
1834 	reg->umin_value = reg->u32_min_value;
1835 	reg->umax_value = reg->u32_max_value;
1836 
1837 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1838 	 * be positive otherwise set to worse case bounds and refine later
1839 	 * from tnum.
1840 	 */
1841 	if (__reg32_bound_s64(reg->s32_min_value) &&
1842 	    __reg32_bound_s64(reg->s32_max_value)) {
1843 		reg->smin_value = reg->s32_min_value;
1844 		reg->smax_value = reg->s32_max_value;
1845 	} else {
1846 		reg->smin_value = 0;
1847 		reg->smax_value = U32_MAX;
1848 	}
1849 }
1850 
1851 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1852 {
1853 	/* special case when 64-bit register has upper 32-bit register
1854 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1855 	 * allowing us to use 32-bit bounds directly,
1856 	 */
1857 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1858 		__reg_assign_32_into_64(reg);
1859 	} else {
1860 		/* Otherwise the best we can do is push lower 32bit known and
1861 		 * unknown bits into register (var_off set from jmp logic)
1862 		 * then learn as much as possible from the 64-bit tnum
1863 		 * known and unknown bits. The previous smin/smax bounds are
1864 		 * invalid here because of jmp32 compare so mark them unknown
1865 		 * so they do not impact tnum bounds calculation.
1866 		 */
1867 		__mark_reg64_unbounded(reg);
1868 	}
1869 	reg_bounds_sync(reg);
1870 }
1871 
1872 static bool __reg64_bound_s32(s64 a)
1873 {
1874 	return a >= S32_MIN && a <= S32_MAX;
1875 }
1876 
1877 static bool __reg64_bound_u32(u64 a)
1878 {
1879 	return a >= U32_MIN && a <= U32_MAX;
1880 }
1881 
1882 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1883 {
1884 	__mark_reg32_unbounded(reg);
1885 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1886 		reg->s32_min_value = (s32)reg->smin_value;
1887 		reg->s32_max_value = (s32)reg->smax_value;
1888 	}
1889 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1890 		reg->u32_min_value = (u32)reg->umin_value;
1891 		reg->u32_max_value = (u32)reg->umax_value;
1892 	}
1893 	reg_bounds_sync(reg);
1894 }
1895 
1896 /* Mark a register as having a completely unknown (scalar) value. */
1897 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1898 			       struct bpf_reg_state *reg)
1899 {
1900 	/*
1901 	 * Clear type, off, and union(map_ptr, range) and
1902 	 * padding between 'type' and union
1903 	 */
1904 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1905 	reg->type = SCALAR_VALUE;
1906 	reg->id = 0;
1907 	reg->ref_obj_id = 0;
1908 	reg->var_off = tnum_unknown;
1909 	reg->frameno = 0;
1910 	reg->precise = !env->bpf_capable;
1911 	__mark_reg_unbounded(reg);
1912 }
1913 
1914 static void mark_reg_unknown(struct bpf_verifier_env *env,
1915 			     struct bpf_reg_state *regs, u32 regno)
1916 {
1917 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1918 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1919 		/* Something bad happened, let's kill all regs except FP */
1920 		for (regno = 0; regno < BPF_REG_FP; regno++)
1921 			__mark_reg_not_init(env, regs + regno);
1922 		return;
1923 	}
1924 	__mark_reg_unknown(env, regs + regno);
1925 }
1926 
1927 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1928 				struct bpf_reg_state *reg)
1929 {
1930 	__mark_reg_unknown(env, reg);
1931 	reg->type = NOT_INIT;
1932 }
1933 
1934 static void mark_reg_not_init(struct bpf_verifier_env *env,
1935 			      struct bpf_reg_state *regs, u32 regno)
1936 {
1937 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1938 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1939 		/* Something bad happened, let's kill all regs except FP */
1940 		for (regno = 0; regno < BPF_REG_FP; regno++)
1941 			__mark_reg_not_init(env, regs + regno);
1942 		return;
1943 	}
1944 	__mark_reg_not_init(env, regs + regno);
1945 }
1946 
1947 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1948 			    struct bpf_reg_state *regs, u32 regno,
1949 			    enum bpf_reg_type reg_type,
1950 			    struct btf *btf, u32 btf_id,
1951 			    enum bpf_type_flag flag)
1952 {
1953 	if (reg_type == SCALAR_VALUE) {
1954 		mark_reg_unknown(env, regs, regno);
1955 		return;
1956 	}
1957 	mark_reg_known_zero(env, regs, regno);
1958 	regs[regno].type = PTR_TO_BTF_ID | flag;
1959 	regs[regno].btf = btf;
1960 	regs[regno].btf_id = btf_id;
1961 }
1962 
1963 #define DEF_NOT_SUBREG	(0)
1964 static void init_reg_state(struct bpf_verifier_env *env,
1965 			   struct bpf_func_state *state)
1966 {
1967 	struct bpf_reg_state *regs = state->regs;
1968 	int i;
1969 
1970 	for (i = 0; i < MAX_BPF_REG; i++) {
1971 		mark_reg_not_init(env, regs, i);
1972 		regs[i].live = REG_LIVE_NONE;
1973 		regs[i].parent = NULL;
1974 		regs[i].subreg_def = DEF_NOT_SUBREG;
1975 	}
1976 
1977 	/* frame pointer */
1978 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1979 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1980 	regs[BPF_REG_FP].frameno = state->frameno;
1981 }
1982 
1983 #define BPF_MAIN_FUNC (-1)
1984 static void init_func_state(struct bpf_verifier_env *env,
1985 			    struct bpf_func_state *state,
1986 			    int callsite, int frameno, int subprogno)
1987 {
1988 	state->callsite = callsite;
1989 	state->frameno = frameno;
1990 	state->subprogno = subprogno;
1991 	state->callback_ret_range = tnum_range(0, 0);
1992 	init_reg_state(env, state);
1993 	mark_verifier_state_scratched(env);
1994 }
1995 
1996 /* Similar to push_stack(), but for async callbacks */
1997 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1998 						int insn_idx, int prev_insn_idx,
1999 						int subprog)
2000 {
2001 	struct bpf_verifier_stack_elem *elem;
2002 	struct bpf_func_state *frame;
2003 
2004 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2005 	if (!elem)
2006 		goto err;
2007 
2008 	elem->insn_idx = insn_idx;
2009 	elem->prev_insn_idx = prev_insn_idx;
2010 	elem->next = env->head;
2011 	elem->log_pos = env->log.len_used;
2012 	env->head = elem;
2013 	env->stack_size++;
2014 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2015 		verbose(env,
2016 			"The sequence of %d jumps is too complex for async cb.\n",
2017 			env->stack_size);
2018 		goto err;
2019 	}
2020 	/* Unlike push_stack() do not copy_verifier_state().
2021 	 * The caller state doesn't matter.
2022 	 * This is async callback. It starts in a fresh stack.
2023 	 * Initialize it similar to do_check_common().
2024 	 */
2025 	elem->st.branches = 1;
2026 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2027 	if (!frame)
2028 		goto err;
2029 	init_func_state(env, frame,
2030 			BPF_MAIN_FUNC /* callsite */,
2031 			0 /* frameno within this callchain */,
2032 			subprog /* subprog number within this prog */);
2033 	elem->st.frame[0] = frame;
2034 	return &elem->st;
2035 err:
2036 	free_verifier_state(env->cur_state, true);
2037 	env->cur_state = NULL;
2038 	/* pop all elements and return */
2039 	while (!pop_stack(env, NULL, NULL, false));
2040 	return NULL;
2041 }
2042 
2043 
2044 enum reg_arg_type {
2045 	SRC_OP,		/* register is used as source operand */
2046 	DST_OP,		/* register is used as destination operand */
2047 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2048 };
2049 
2050 static int cmp_subprogs(const void *a, const void *b)
2051 {
2052 	return ((struct bpf_subprog_info *)a)->start -
2053 	       ((struct bpf_subprog_info *)b)->start;
2054 }
2055 
2056 static int find_subprog(struct bpf_verifier_env *env, int off)
2057 {
2058 	struct bpf_subprog_info *p;
2059 
2060 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2061 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2062 	if (!p)
2063 		return -ENOENT;
2064 	return p - env->subprog_info;
2065 
2066 }
2067 
2068 static int add_subprog(struct bpf_verifier_env *env, int off)
2069 {
2070 	int insn_cnt = env->prog->len;
2071 	int ret;
2072 
2073 	if (off >= insn_cnt || off < 0) {
2074 		verbose(env, "call to invalid destination\n");
2075 		return -EINVAL;
2076 	}
2077 	ret = find_subprog(env, off);
2078 	if (ret >= 0)
2079 		return ret;
2080 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2081 		verbose(env, "too many subprograms\n");
2082 		return -E2BIG;
2083 	}
2084 	/* determine subprog starts. The end is one before the next starts */
2085 	env->subprog_info[env->subprog_cnt++].start = off;
2086 	sort(env->subprog_info, env->subprog_cnt,
2087 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2088 	return env->subprog_cnt - 1;
2089 }
2090 
2091 #define MAX_KFUNC_DESCS 256
2092 #define MAX_KFUNC_BTFS	256
2093 
2094 struct bpf_kfunc_desc {
2095 	struct btf_func_model func_model;
2096 	u32 func_id;
2097 	s32 imm;
2098 	u16 offset;
2099 };
2100 
2101 struct bpf_kfunc_btf {
2102 	struct btf *btf;
2103 	struct module *module;
2104 	u16 offset;
2105 };
2106 
2107 struct bpf_kfunc_desc_tab {
2108 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2109 	u32 nr_descs;
2110 };
2111 
2112 struct bpf_kfunc_btf_tab {
2113 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2114 	u32 nr_descs;
2115 };
2116 
2117 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2118 {
2119 	const struct bpf_kfunc_desc *d0 = a;
2120 	const struct bpf_kfunc_desc *d1 = b;
2121 
2122 	/* func_id is not greater than BTF_MAX_TYPE */
2123 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2124 }
2125 
2126 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2127 {
2128 	const struct bpf_kfunc_btf *d0 = a;
2129 	const struct bpf_kfunc_btf *d1 = b;
2130 
2131 	return d0->offset - d1->offset;
2132 }
2133 
2134 static const struct bpf_kfunc_desc *
2135 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2136 {
2137 	struct bpf_kfunc_desc desc = {
2138 		.func_id = func_id,
2139 		.offset = offset,
2140 	};
2141 	struct bpf_kfunc_desc_tab *tab;
2142 
2143 	tab = prog->aux->kfunc_tab;
2144 	return bsearch(&desc, tab->descs, tab->nr_descs,
2145 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2146 }
2147 
2148 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2149 					 s16 offset)
2150 {
2151 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2152 	struct bpf_kfunc_btf_tab *tab;
2153 	struct bpf_kfunc_btf *b;
2154 	struct module *mod;
2155 	struct btf *btf;
2156 	int btf_fd;
2157 
2158 	tab = env->prog->aux->kfunc_btf_tab;
2159 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2160 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2161 	if (!b) {
2162 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2163 			verbose(env, "too many different module BTFs\n");
2164 			return ERR_PTR(-E2BIG);
2165 		}
2166 
2167 		if (bpfptr_is_null(env->fd_array)) {
2168 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2169 			return ERR_PTR(-EPROTO);
2170 		}
2171 
2172 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2173 					    offset * sizeof(btf_fd),
2174 					    sizeof(btf_fd)))
2175 			return ERR_PTR(-EFAULT);
2176 
2177 		btf = btf_get_by_fd(btf_fd);
2178 		if (IS_ERR(btf)) {
2179 			verbose(env, "invalid module BTF fd specified\n");
2180 			return btf;
2181 		}
2182 
2183 		if (!btf_is_module(btf)) {
2184 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2185 			btf_put(btf);
2186 			return ERR_PTR(-EINVAL);
2187 		}
2188 
2189 		mod = btf_try_get_module(btf);
2190 		if (!mod) {
2191 			btf_put(btf);
2192 			return ERR_PTR(-ENXIO);
2193 		}
2194 
2195 		b = &tab->descs[tab->nr_descs++];
2196 		b->btf = btf;
2197 		b->module = mod;
2198 		b->offset = offset;
2199 
2200 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2201 		     kfunc_btf_cmp_by_off, NULL);
2202 	}
2203 	return b->btf;
2204 }
2205 
2206 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2207 {
2208 	if (!tab)
2209 		return;
2210 
2211 	while (tab->nr_descs--) {
2212 		module_put(tab->descs[tab->nr_descs].module);
2213 		btf_put(tab->descs[tab->nr_descs].btf);
2214 	}
2215 	kfree(tab);
2216 }
2217 
2218 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2219 {
2220 	if (offset) {
2221 		if (offset < 0) {
2222 			/* In the future, this can be allowed to increase limit
2223 			 * of fd index into fd_array, interpreted as u16.
2224 			 */
2225 			verbose(env, "negative offset disallowed for kernel module function call\n");
2226 			return ERR_PTR(-EINVAL);
2227 		}
2228 
2229 		return __find_kfunc_desc_btf(env, offset);
2230 	}
2231 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2232 }
2233 
2234 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2235 {
2236 	const struct btf_type *func, *func_proto;
2237 	struct bpf_kfunc_btf_tab *btf_tab;
2238 	struct bpf_kfunc_desc_tab *tab;
2239 	struct bpf_prog_aux *prog_aux;
2240 	struct bpf_kfunc_desc *desc;
2241 	const char *func_name;
2242 	struct btf *desc_btf;
2243 	unsigned long call_imm;
2244 	unsigned long addr;
2245 	int err;
2246 
2247 	prog_aux = env->prog->aux;
2248 	tab = prog_aux->kfunc_tab;
2249 	btf_tab = prog_aux->kfunc_btf_tab;
2250 	if (!tab) {
2251 		if (!btf_vmlinux) {
2252 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2253 			return -ENOTSUPP;
2254 		}
2255 
2256 		if (!env->prog->jit_requested) {
2257 			verbose(env, "JIT is required for calling kernel function\n");
2258 			return -ENOTSUPP;
2259 		}
2260 
2261 		if (!bpf_jit_supports_kfunc_call()) {
2262 			verbose(env, "JIT does not support calling kernel function\n");
2263 			return -ENOTSUPP;
2264 		}
2265 
2266 		if (!env->prog->gpl_compatible) {
2267 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2268 			return -EINVAL;
2269 		}
2270 
2271 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2272 		if (!tab)
2273 			return -ENOMEM;
2274 		prog_aux->kfunc_tab = tab;
2275 	}
2276 
2277 	/* func_id == 0 is always invalid, but instead of returning an error, be
2278 	 * conservative and wait until the code elimination pass before returning
2279 	 * error, so that invalid calls that get pruned out can be in BPF programs
2280 	 * loaded from userspace.  It is also required that offset be untouched
2281 	 * for such calls.
2282 	 */
2283 	if (!func_id && !offset)
2284 		return 0;
2285 
2286 	if (!btf_tab && offset) {
2287 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2288 		if (!btf_tab)
2289 			return -ENOMEM;
2290 		prog_aux->kfunc_btf_tab = btf_tab;
2291 	}
2292 
2293 	desc_btf = find_kfunc_desc_btf(env, offset);
2294 	if (IS_ERR(desc_btf)) {
2295 		verbose(env, "failed to find BTF for kernel function\n");
2296 		return PTR_ERR(desc_btf);
2297 	}
2298 
2299 	if (find_kfunc_desc(env->prog, func_id, offset))
2300 		return 0;
2301 
2302 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2303 		verbose(env, "too many different kernel function calls\n");
2304 		return -E2BIG;
2305 	}
2306 
2307 	func = btf_type_by_id(desc_btf, func_id);
2308 	if (!func || !btf_type_is_func(func)) {
2309 		verbose(env, "kernel btf_id %u is not a function\n",
2310 			func_id);
2311 		return -EINVAL;
2312 	}
2313 	func_proto = btf_type_by_id(desc_btf, func->type);
2314 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2315 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2316 			func_id);
2317 		return -EINVAL;
2318 	}
2319 
2320 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2321 	addr = kallsyms_lookup_name(func_name);
2322 	if (!addr) {
2323 		verbose(env, "cannot find address for kernel function %s\n",
2324 			func_name);
2325 		return -EINVAL;
2326 	}
2327 
2328 	call_imm = BPF_CALL_IMM(addr);
2329 	/* Check whether or not the relative offset overflows desc->imm */
2330 	if ((unsigned long)(s32)call_imm != call_imm) {
2331 		verbose(env, "address of kernel function %s is out of range\n",
2332 			func_name);
2333 		return -EINVAL;
2334 	}
2335 
2336 	if (bpf_dev_bound_kfunc_id(func_id)) {
2337 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2338 		if (err)
2339 			return err;
2340 	}
2341 
2342 	desc = &tab->descs[tab->nr_descs++];
2343 	desc->func_id = func_id;
2344 	desc->imm = call_imm;
2345 	desc->offset = offset;
2346 	err = btf_distill_func_proto(&env->log, desc_btf,
2347 				     func_proto, func_name,
2348 				     &desc->func_model);
2349 	if (!err)
2350 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2351 		     kfunc_desc_cmp_by_id_off, NULL);
2352 	return err;
2353 }
2354 
2355 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2356 {
2357 	const struct bpf_kfunc_desc *d0 = a;
2358 	const struct bpf_kfunc_desc *d1 = b;
2359 
2360 	if (d0->imm > d1->imm)
2361 		return 1;
2362 	else if (d0->imm < d1->imm)
2363 		return -1;
2364 	return 0;
2365 }
2366 
2367 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2368 {
2369 	struct bpf_kfunc_desc_tab *tab;
2370 
2371 	tab = prog->aux->kfunc_tab;
2372 	if (!tab)
2373 		return;
2374 
2375 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2376 	     kfunc_desc_cmp_by_imm, NULL);
2377 }
2378 
2379 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2380 {
2381 	return !!prog->aux->kfunc_tab;
2382 }
2383 
2384 const struct btf_func_model *
2385 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2386 			 const struct bpf_insn *insn)
2387 {
2388 	const struct bpf_kfunc_desc desc = {
2389 		.imm = insn->imm,
2390 	};
2391 	const struct bpf_kfunc_desc *res;
2392 	struct bpf_kfunc_desc_tab *tab;
2393 
2394 	tab = prog->aux->kfunc_tab;
2395 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2396 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2397 
2398 	return res ? &res->func_model : NULL;
2399 }
2400 
2401 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2402 {
2403 	struct bpf_subprog_info *subprog = env->subprog_info;
2404 	struct bpf_insn *insn = env->prog->insnsi;
2405 	int i, ret, insn_cnt = env->prog->len;
2406 
2407 	/* Add entry function. */
2408 	ret = add_subprog(env, 0);
2409 	if (ret)
2410 		return ret;
2411 
2412 	for (i = 0; i < insn_cnt; i++, insn++) {
2413 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2414 		    !bpf_pseudo_kfunc_call(insn))
2415 			continue;
2416 
2417 		if (!env->bpf_capable) {
2418 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2419 			return -EPERM;
2420 		}
2421 
2422 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2423 			ret = add_subprog(env, i + insn->imm + 1);
2424 		else
2425 			ret = add_kfunc_call(env, insn->imm, insn->off);
2426 
2427 		if (ret < 0)
2428 			return ret;
2429 	}
2430 
2431 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2432 	 * logic. 'subprog_cnt' should not be increased.
2433 	 */
2434 	subprog[env->subprog_cnt].start = insn_cnt;
2435 
2436 	if (env->log.level & BPF_LOG_LEVEL2)
2437 		for (i = 0; i < env->subprog_cnt; i++)
2438 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2439 
2440 	return 0;
2441 }
2442 
2443 static int check_subprogs(struct bpf_verifier_env *env)
2444 {
2445 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2446 	struct bpf_subprog_info *subprog = env->subprog_info;
2447 	struct bpf_insn *insn = env->prog->insnsi;
2448 	int insn_cnt = env->prog->len;
2449 
2450 	/* now check that all jumps are within the same subprog */
2451 	subprog_start = subprog[cur_subprog].start;
2452 	subprog_end = subprog[cur_subprog + 1].start;
2453 	for (i = 0; i < insn_cnt; i++) {
2454 		u8 code = insn[i].code;
2455 
2456 		if (code == (BPF_JMP | BPF_CALL) &&
2457 		    insn[i].imm == BPF_FUNC_tail_call &&
2458 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2459 			subprog[cur_subprog].has_tail_call = true;
2460 		if (BPF_CLASS(code) == BPF_LD &&
2461 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2462 			subprog[cur_subprog].has_ld_abs = true;
2463 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2464 			goto next;
2465 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2466 			goto next;
2467 		off = i + insn[i].off + 1;
2468 		if (off < subprog_start || off >= subprog_end) {
2469 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2470 			return -EINVAL;
2471 		}
2472 next:
2473 		if (i == subprog_end - 1) {
2474 			/* to avoid fall-through from one subprog into another
2475 			 * the last insn of the subprog should be either exit
2476 			 * or unconditional jump back
2477 			 */
2478 			if (code != (BPF_JMP | BPF_EXIT) &&
2479 			    code != (BPF_JMP | BPF_JA)) {
2480 				verbose(env, "last insn is not an exit or jmp\n");
2481 				return -EINVAL;
2482 			}
2483 			subprog_start = subprog_end;
2484 			cur_subprog++;
2485 			if (cur_subprog < env->subprog_cnt)
2486 				subprog_end = subprog[cur_subprog + 1].start;
2487 		}
2488 	}
2489 	return 0;
2490 }
2491 
2492 /* Parentage chain of this register (or stack slot) should take care of all
2493  * issues like callee-saved registers, stack slot allocation time, etc.
2494  */
2495 static int mark_reg_read(struct bpf_verifier_env *env,
2496 			 const struct bpf_reg_state *state,
2497 			 struct bpf_reg_state *parent, u8 flag)
2498 {
2499 	bool writes = parent == state->parent; /* Observe write marks */
2500 	int cnt = 0;
2501 
2502 	while (parent) {
2503 		/* if read wasn't screened by an earlier write ... */
2504 		if (writes && state->live & REG_LIVE_WRITTEN)
2505 			break;
2506 		if (parent->live & REG_LIVE_DONE) {
2507 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2508 				reg_type_str(env, parent->type),
2509 				parent->var_off.value, parent->off);
2510 			return -EFAULT;
2511 		}
2512 		/* The first condition is more likely to be true than the
2513 		 * second, checked it first.
2514 		 */
2515 		if ((parent->live & REG_LIVE_READ) == flag ||
2516 		    parent->live & REG_LIVE_READ64)
2517 			/* The parentage chain never changes and
2518 			 * this parent was already marked as LIVE_READ.
2519 			 * There is no need to keep walking the chain again and
2520 			 * keep re-marking all parents as LIVE_READ.
2521 			 * This case happens when the same register is read
2522 			 * multiple times without writes into it in-between.
2523 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2524 			 * then no need to set the weak REG_LIVE_READ32.
2525 			 */
2526 			break;
2527 		/* ... then we depend on parent's value */
2528 		parent->live |= flag;
2529 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2530 		if (flag == REG_LIVE_READ64)
2531 			parent->live &= ~REG_LIVE_READ32;
2532 		state = parent;
2533 		parent = state->parent;
2534 		writes = true;
2535 		cnt++;
2536 	}
2537 
2538 	if (env->longest_mark_read_walk < cnt)
2539 		env->longest_mark_read_walk = cnt;
2540 	return 0;
2541 }
2542 
2543 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2544 {
2545 	struct bpf_func_state *state = func(env, reg);
2546 	int spi, ret;
2547 
2548 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2549 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2550 	 * check_kfunc_call.
2551 	 */
2552 	if (reg->type == CONST_PTR_TO_DYNPTR)
2553 		return 0;
2554 	spi = dynptr_get_spi(env, reg);
2555 	if (spi < 0)
2556 		return spi;
2557 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2558 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2559 	 * read.
2560 	 */
2561 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2562 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2563 	if (ret)
2564 		return ret;
2565 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2566 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2567 }
2568 
2569 /* This function is supposed to be used by the following 32-bit optimization
2570  * code only. It returns TRUE if the source or destination register operates
2571  * on 64-bit, otherwise return FALSE.
2572  */
2573 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2574 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2575 {
2576 	u8 code, class, op;
2577 
2578 	code = insn->code;
2579 	class = BPF_CLASS(code);
2580 	op = BPF_OP(code);
2581 	if (class == BPF_JMP) {
2582 		/* BPF_EXIT for "main" will reach here. Return TRUE
2583 		 * conservatively.
2584 		 */
2585 		if (op == BPF_EXIT)
2586 			return true;
2587 		if (op == BPF_CALL) {
2588 			/* BPF to BPF call will reach here because of marking
2589 			 * caller saved clobber with DST_OP_NO_MARK for which we
2590 			 * don't care the register def because they are anyway
2591 			 * marked as NOT_INIT already.
2592 			 */
2593 			if (insn->src_reg == BPF_PSEUDO_CALL)
2594 				return false;
2595 			/* Helper call will reach here because of arg type
2596 			 * check, conservatively return TRUE.
2597 			 */
2598 			if (t == SRC_OP)
2599 				return true;
2600 
2601 			return false;
2602 		}
2603 	}
2604 
2605 	if (class == BPF_ALU64 || class == BPF_JMP ||
2606 	    /* BPF_END always use BPF_ALU class. */
2607 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2608 		return true;
2609 
2610 	if (class == BPF_ALU || class == BPF_JMP32)
2611 		return false;
2612 
2613 	if (class == BPF_LDX) {
2614 		if (t != SRC_OP)
2615 			return BPF_SIZE(code) == BPF_DW;
2616 		/* LDX source must be ptr. */
2617 		return true;
2618 	}
2619 
2620 	if (class == BPF_STX) {
2621 		/* BPF_STX (including atomic variants) has multiple source
2622 		 * operands, one of which is a ptr. Check whether the caller is
2623 		 * asking about it.
2624 		 */
2625 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2626 			return true;
2627 		return BPF_SIZE(code) == BPF_DW;
2628 	}
2629 
2630 	if (class == BPF_LD) {
2631 		u8 mode = BPF_MODE(code);
2632 
2633 		/* LD_IMM64 */
2634 		if (mode == BPF_IMM)
2635 			return true;
2636 
2637 		/* Both LD_IND and LD_ABS return 32-bit data. */
2638 		if (t != SRC_OP)
2639 			return  false;
2640 
2641 		/* Implicit ctx ptr. */
2642 		if (regno == BPF_REG_6)
2643 			return true;
2644 
2645 		/* Explicit source could be any width. */
2646 		return true;
2647 	}
2648 
2649 	if (class == BPF_ST)
2650 		/* The only source register for BPF_ST is a ptr. */
2651 		return true;
2652 
2653 	/* Conservatively return true at default. */
2654 	return true;
2655 }
2656 
2657 /* Return the regno defined by the insn, or -1. */
2658 static int insn_def_regno(const struct bpf_insn *insn)
2659 {
2660 	switch (BPF_CLASS(insn->code)) {
2661 	case BPF_JMP:
2662 	case BPF_JMP32:
2663 	case BPF_ST:
2664 		return -1;
2665 	case BPF_STX:
2666 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2667 		    (insn->imm & BPF_FETCH)) {
2668 			if (insn->imm == BPF_CMPXCHG)
2669 				return BPF_REG_0;
2670 			else
2671 				return insn->src_reg;
2672 		} else {
2673 			return -1;
2674 		}
2675 	default:
2676 		return insn->dst_reg;
2677 	}
2678 }
2679 
2680 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2681 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2682 {
2683 	int dst_reg = insn_def_regno(insn);
2684 
2685 	if (dst_reg == -1)
2686 		return false;
2687 
2688 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2689 }
2690 
2691 static void mark_insn_zext(struct bpf_verifier_env *env,
2692 			   struct bpf_reg_state *reg)
2693 {
2694 	s32 def_idx = reg->subreg_def;
2695 
2696 	if (def_idx == DEF_NOT_SUBREG)
2697 		return;
2698 
2699 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2700 	/* The dst will be zero extended, so won't be sub-register anymore. */
2701 	reg->subreg_def = DEF_NOT_SUBREG;
2702 }
2703 
2704 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2705 			 enum reg_arg_type t)
2706 {
2707 	struct bpf_verifier_state *vstate = env->cur_state;
2708 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2709 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2710 	struct bpf_reg_state *reg, *regs = state->regs;
2711 	bool rw64;
2712 
2713 	if (regno >= MAX_BPF_REG) {
2714 		verbose(env, "R%d is invalid\n", regno);
2715 		return -EINVAL;
2716 	}
2717 
2718 	mark_reg_scratched(env, regno);
2719 
2720 	reg = &regs[regno];
2721 	rw64 = is_reg64(env, insn, regno, reg, t);
2722 	if (t == SRC_OP) {
2723 		/* check whether register used as source operand can be read */
2724 		if (reg->type == NOT_INIT) {
2725 			verbose(env, "R%d !read_ok\n", regno);
2726 			return -EACCES;
2727 		}
2728 		/* We don't need to worry about FP liveness because it's read-only */
2729 		if (regno == BPF_REG_FP)
2730 			return 0;
2731 
2732 		if (rw64)
2733 			mark_insn_zext(env, reg);
2734 
2735 		return mark_reg_read(env, reg, reg->parent,
2736 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2737 	} else {
2738 		/* check whether register used as dest operand can be written to */
2739 		if (regno == BPF_REG_FP) {
2740 			verbose(env, "frame pointer is read only\n");
2741 			return -EACCES;
2742 		}
2743 		reg->live |= REG_LIVE_WRITTEN;
2744 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2745 		if (t == DST_OP)
2746 			mark_reg_unknown(env, regs, regno);
2747 	}
2748 	return 0;
2749 }
2750 
2751 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
2752 {
2753 	env->insn_aux_data[idx].jmp_point = true;
2754 }
2755 
2756 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
2757 {
2758 	return env->insn_aux_data[insn_idx].jmp_point;
2759 }
2760 
2761 /* for any branch, call, exit record the history of jmps in the given state */
2762 static int push_jmp_history(struct bpf_verifier_env *env,
2763 			    struct bpf_verifier_state *cur)
2764 {
2765 	u32 cnt = cur->jmp_history_cnt;
2766 	struct bpf_idx_pair *p;
2767 	size_t alloc_size;
2768 
2769 	if (!is_jmp_point(env, env->insn_idx))
2770 		return 0;
2771 
2772 	cnt++;
2773 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2774 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2775 	if (!p)
2776 		return -ENOMEM;
2777 	p[cnt - 1].idx = env->insn_idx;
2778 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2779 	cur->jmp_history = p;
2780 	cur->jmp_history_cnt = cnt;
2781 	return 0;
2782 }
2783 
2784 /* Backtrack one insn at a time. If idx is not at the top of recorded
2785  * history then previous instruction came from straight line execution.
2786  */
2787 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2788 			     u32 *history)
2789 {
2790 	u32 cnt = *history;
2791 
2792 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2793 		i = st->jmp_history[cnt - 1].prev_idx;
2794 		(*history)--;
2795 	} else {
2796 		i--;
2797 	}
2798 	return i;
2799 }
2800 
2801 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2802 {
2803 	const struct btf_type *func;
2804 	struct btf *desc_btf;
2805 
2806 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2807 		return NULL;
2808 
2809 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2810 	if (IS_ERR(desc_btf))
2811 		return "<error>";
2812 
2813 	func = btf_type_by_id(desc_btf, insn->imm);
2814 	return btf_name_by_offset(desc_btf, func->name_off);
2815 }
2816 
2817 /* For given verifier state backtrack_insn() is called from the last insn to
2818  * the first insn. Its purpose is to compute a bitmask of registers and
2819  * stack slots that needs precision in the parent verifier state.
2820  */
2821 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2822 			  u32 *reg_mask, u64 *stack_mask)
2823 {
2824 	const struct bpf_insn_cbs cbs = {
2825 		.cb_call	= disasm_kfunc_name,
2826 		.cb_print	= verbose,
2827 		.private_data	= env,
2828 	};
2829 	struct bpf_insn *insn = env->prog->insnsi + idx;
2830 	u8 class = BPF_CLASS(insn->code);
2831 	u8 opcode = BPF_OP(insn->code);
2832 	u8 mode = BPF_MODE(insn->code);
2833 	u32 dreg = 1u << insn->dst_reg;
2834 	u32 sreg = 1u << insn->src_reg;
2835 	u32 spi;
2836 
2837 	if (insn->code == 0)
2838 		return 0;
2839 	if (env->log.level & BPF_LOG_LEVEL2) {
2840 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2841 		verbose(env, "%d: ", idx);
2842 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2843 	}
2844 
2845 	if (class == BPF_ALU || class == BPF_ALU64) {
2846 		if (!(*reg_mask & dreg))
2847 			return 0;
2848 		if (opcode == BPF_MOV) {
2849 			if (BPF_SRC(insn->code) == BPF_X) {
2850 				/* dreg = sreg
2851 				 * dreg needs precision after this insn
2852 				 * sreg needs precision before this insn
2853 				 */
2854 				*reg_mask &= ~dreg;
2855 				*reg_mask |= sreg;
2856 			} else {
2857 				/* dreg = K
2858 				 * dreg needs precision after this insn.
2859 				 * Corresponding register is already marked
2860 				 * as precise=true in this verifier state.
2861 				 * No further markings in parent are necessary
2862 				 */
2863 				*reg_mask &= ~dreg;
2864 			}
2865 		} else {
2866 			if (BPF_SRC(insn->code) == BPF_X) {
2867 				/* dreg += sreg
2868 				 * both dreg and sreg need precision
2869 				 * before this insn
2870 				 */
2871 				*reg_mask |= sreg;
2872 			} /* else dreg += K
2873 			   * dreg still needs precision before this insn
2874 			   */
2875 		}
2876 	} else if (class == BPF_LDX) {
2877 		if (!(*reg_mask & dreg))
2878 			return 0;
2879 		*reg_mask &= ~dreg;
2880 
2881 		/* scalars can only be spilled into stack w/o losing precision.
2882 		 * Load from any other memory can be zero extended.
2883 		 * The desire to keep that precision is already indicated
2884 		 * by 'precise' mark in corresponding register of this state.
2885 		 * No further tracking necessary.
2886 		 */
2887 		if (insn->src_reg != BPF_REG_FP)
2888 			return 0;
2889 
2890 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2891 		 * that [fp - off] slot contains scalar that needs to be
2892 		 * tracked with precision
2893 		 */
2894 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2895 		if (spi >= 64) {
2896 			verbose(env, "BUG spi %d\n", spi);
2897 			WARN_ONCE(1, "verifier backtracking bug");
2898 			return -EFAULT;
2899 		}
2900 		*stack_mask |= 1ull << spi;
2901 	} else if (class == BPF_STX || class == BPF_ST) {
2902 		if (*reg_mask & dreg)
2903 			/* stx & st shouldn't be using _scalar_ dst_reg
2904 			 * to access memory. It means backtracking
2905 			 * encountered a case of pointer subtraction.
2906 			 */
2907 			return -ENOTSUPP;
2908 		/* scalars can only be spilled into stack */
2909 		if (insn->dst_reg != BPF_REG_FP)
2910 			return 0;
2911 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2912 		if (spi >= 64) {
2913 			verbose(env, "BUG spi %d\n", spi);
2914 			WARN_ONCE(1, "verifier backtracking bug");
2915 			return -EFAULT;
2916 		}
2917 		if (!(*stack_mask & (1ull << spi)))
2918 			return 0;
2919 		*stack_mask &= ~(1ull << spi);
2920 		if (class == BPF_STX)
2921 			*reg_mask |= sreg;
2922 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2923 		if (opcode == BPF_CALL) {
2924 			if (insn->src_reg == BPF_PSEUDO_CALL)
2925 				return -ENOTSUPP;
2926 			/* BPF helpers that invoke callback subprogs are
2927 			 * equivalent to BPF_PSEUDO_CALL above
2928 			 */
2929 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2930 				return -ENOTSUPP;
2931 			/* regular helper call sets R0 */
2932 			*reg_mask &= ~1;
2933 			if (*reg_mask & 0x3f) {
2934 				/* if backtracing was looking for registers R1-R5
2935 				 * they should have been found already.
2936 				 */
2937 				verbose(env, "BUG regs %x\n", *reg_mask);
2938 				WARN_ONCE(1, "verifier backtracking bug");
2939 				return -EFAULT;
2940 			}
2941 		} else if (opcode == BPF_EXIT) {
2942 			return -ENOTSUPP;
2943 		}
2944 	} else if (class == BPF_LD) {
2945 		if (!(*reg_mask & dreg))
2946 			return 0;
2947 		*reg_mask &= ~dreg;
2948 		/* It's ld_imm64 or ld_abs or ld_ind.
2949 		 * For ld_imm64 no further tracking of precision
2950 		 * into parent is necessary
2951 		 */
2952 		if (mode == BPF_IND || mode == BPF_ABS)
2953 			/* to be analyzed */
2954 			return -ENOTSUPP;
2955 	}
2956 	return 0;
2957 }
2958 
2959 /* the scalar precision tracking algorithm:
2960  * . at the start all registers have precise=false.
2961  * . scalar ranges are tracked as normal through alu and jmp insns.
2962  * . once precise value of the scalar register is used in:
2963  *   .  ptr + scalar alu
2964  *   . if (scalar cond K|scalar)
2965  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2966  *   backtrack through the verifier states and mark all registers and
2967  *   stack slots with spilled constants that these scalar regisers
2968  *   should be precise.
2969  * . during state pruning two registers (or spilled stack slots)
2970  *   are equivalent if both are not precise.
2971  *
2972  * Note the verifier cannot simply walk register parentage chain,
2973  * since many different registers and stack slots could have been
2974  * used to compute single precise scalar.
2975  *
2976  * The approach of starting with precise=true for all registers and then
2977  * backtrack to mark a register as not precise when the verifier detects
2978  * that program doesn't care about specific value (e.g., when helper
2979  * takes register as ARG_ANYTHING parameter) is not safe.
2980  *
2981  * It's ok to walk single parentage chain of the verifier states.
2982  * It's possible that this backtracking will go all the way till 1st insn.
2983  * All other branches will be explored for needing precision later.
2984  *
2985  * The backtracking needs to deal with cases like:
2986  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2987  * r9 -= r8
2988  * r5 = r9
2989  * if r5 > 0x79f goto pc+7
2990  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2991  * r5 += 1
2992  * ...
2993  * call bpf_perf_event_output#25
2994  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2995  *
2996  * and this case:
2997  * r6 = 1
2998  * call foo // uses callee's r6 inside to compute r0
2999  * r0 += r6
3000  * if r0 == 0 goto
3001  *
3002  * to track above reg_mask/stack_mask needs to be independent for each frame.
3003  *
3004  * Also if parent's curframe > frame where backtracking started,
3005  * the verifier need to mark registers in both frames, otherwise callees
3006  * may incorrectly prune callers. This is similar to
3007  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3008  *
3009  * For now backtracking falls back into conservative marking.
3010  */
3011 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3012 				     struct bpf_verifier_state *st)
3013 {
3014 	struct bpf_func_state *func;
3015 	struct bpf_reg_state *reg;
3016 	int i, j;
3017 
3018 	/* big hammer: mark all scalars precise in this path.
3019 	 * pop_stack may still get !precise scalars.
3020 	 * We also skip current state and go straight to first parent state,
3021 	 * because precision markings in current non-checkpointed state are
3022 	 * not needed. See why in the comment in __mark_chain_precision below.
3023 	 */
3024 	for (st = st->parent; st; st = st->parent) {
3025 		for (i = 0; i <= st->curframe; i++) {
3026 			func = st->frame[i];
3027 			for (j = 0; j < BPF_REG_FP; j++) {
3028 				reg = &func->regs[j];
3029 				if (reg->type != SCALAR_VALUE)
3030 					continue;
3031 				reg->precise = true;
3032 			}
3033 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3034 				if (!is_spilled_reg(&func->stack[j]))
3035 					continue;
3036 				reg = &func->stack[j].spilled_ptr;
3037 				if (reg->type != SCALAR_VALUE)
3038 					continue;
3039 				reg->precise = true;
3040 			}
3041 		}
3042 	}
3043 }
3044 
3045 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3046 {
3047 	struct bpf_func_state *func;
3048 	struct bpf_reg_state *reg;
3049 	int i, j;
3050 
3051 	for (i = 0; i <= st->curframe; i++) {
3052 		func = st->frame[i];
3053 		for (j = 0; j < BPF_REG_FP; j++) {
3054 			reg = &func->regs[j];
3055 			if (reg->type != SCALAR_VALUE)
3056 				continue;
3057 			reg->precise = false;
3058 		}
3059 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3060 			if (!is_spilled_reg(&func->stack[j]))
3061 				continue;
3062 			reg = &func->stack[j].spilled_ptr;
3063 			if (reg->type != SCALAR_VALUE)
3064 				continue;
3065 			reg->precise = false;
3066 		}
3067 	}
3068 }
3069 
3070 /*
3071  * __mark_chain_precision() backtracks BPF program instruction sequence and
3072  * chain of verifier states making sure that register *regno* (if regno >= 0)
3073  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3074  * SCALARS, as well as any other registers and slots that contribute to
3075  * a tracked state of given registers/stack slots, depending on specific BPF
3076  * assembly instructions (see backtrack_insns() for exact instruction handling
3077  * logic). This backtracking relies on recorded jmp_history and is able to
3078  * traverse entire chain of parent states. This process ends only when all the
3079  * necessary registers/slots and their transitive dependencies are marked as
3080  * precise.
3081  *
3082  * One important and subtle aspect is that precise marks *do not matter* in
3083  * the currently verified state (current state). It is important to understand
3084  * why this is the case.
3085  *
3086  * First, note that current state is the state that is not yet "checkpointed",
3087  * i.e., it is not yet put into env->explored_states, and it has no children
3088  * states as well. It's ephemeral, and can end up either a) being discarded if
3089  * compatible explored state is found at some point or BPF_EXIT instruction is
3090  * reached or b) checkpointed and put into env->explored_states, branching out
3091  * into one or more children states.
3092  *
3093  * In the former case, precise markings in current state are completely
3094  * ignored by state comparison code (see regsafe() for details). Only
3095  * checkpointed ("old") state precise markings are important, and if old
3096  * state's register/slot is precise, regsafe() assumes current state's
3097  * register/slot as precise and checks value ranges exactly and precisely. If
3098  * states turn out to be compatible, current state's necessary precise
3099  * markings and any required parent states' precise markings are enforced
3100  * after the fact with propagate_precision() logic, after the fact. But it's
3101  * important to realize that in this case, even after marking current state
3102  * registers/slots as precise, we immediately discard current state. So what
3103  * actually matters is any of the precise markings propagated into current
3104  * state's parent states, which are always checkpointed (due to b) case above).
3105  * As such, for scenario a) it doesn't matter if current state has precise
3106  * markings set or not.
3107  *
3108  * Now, for the scenario b), checkpointing and forking into child(ren)
3109  * state(s). Note that before current state gets to checkpointing step, any
3110  * processed instruction always assumes precise SCALAR register/slot
3111  * knowledge: if precise value or range is useful to prune jump branch, BPF
3112  * verifier takes this opportunity enthusiastically. Similarly, when
3113  * register's value is used to calculate offset or memory address, exact
3114  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3115  * what we mentioned above about state comparison ignoring precise markings
3116  * during state comparison, BPF verifier ignores and also assumes precise
3117  * markings *at will* during instruction verification process. But as verifier
3118  * assumes precision, it also propagates any precision dependencies across
3119  * parent states, which are not yet finalized, so can be further restricted
3120  * based on new knowledge gained from restrictions enforced by their children
3121  * states. This is so that once those parent states are finalized, i.e., when
3122  * they have no more active children state, state comparison logic in
3123  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3124  * required for correctness.
3125  *
3126  * To build a bit more intuition, note also that once a state is checkpointed,
3127  * the path we took to get to that state is not important. This is crucial
3128  * property for state pruning. When state is checkpointed and finalized at
3129  * some instruction index, it can be correctly and safely used to "short
3130  * circuit" any *compatible* state that reaches exactly the same instruction
3131  * index. I.e., if we jumped to that instruction from a completely different
3132  * code path than original finalized state was derived from, it doesn't
3133  * matter, current state can be discarded because from that instruction
3134  * forward having a compatible state will ensure we will safely reach the
3135  * exit. States describe preconditions for further exploration, but completely
3136  * forget the history of how we got here.
3137  *
3138  * This also means that even if we needed precise SCALAR range to get to
3139  * finalized state, but from that point forward *that same* SCALAR register is
3140  * never used in a precise context (i.e., it's precise value is not needed for
3141  * correctness), it's correct and safe to mark such register as "imprecise"
3142  * (i.e., precise marking set to false). This is what we rely on when we do
3143  * not set precise marking in current state. If no child state requires
3144  * precision for any given SCALAR register, it's safe to dictate that it can
3145  * be imprecise. If any child state does require this register to be precise,
3146  * we'll mark it precise later retroactively during precise markings
3147  * propagation from child state to parent states.
3148  *
3149  * Skipping precise marking setting in current state is a mild version of
3150  * relying on the above observation. But we can utilize this property even
3151  * more aggressively by proactively forgetting any precise marking in the
3152  * current state (which we inherited from the parent state), right before we
3153  * checkpoint it and branch off into new child state. This is done by
3154  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3155  * finalized states which help in short circuiting more future states.
3156  */
3157 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
3158 				  int spi)
3159 {
3160 	struct bpf_verifier_state *st = env->cur_state;
3161 	int first_idx = st->first_insn_idx;
3162 	int last_idx = env->insn_idx;
3163 	struct bpf_func_state *func;
3164 	struct bpf_reg_state *reg;
3165 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
3166 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
3167 	bool skip_first = true;
3168 	bool new_marks = false;
3169 	int i, err;
3170 
3171 	if (!env->bpf_capable)
3172 		return 0;
3173 
3174 	/* Do sanity checks against current state of register and/or stack
3175 	 * slot, but don't set precise flag in current state, as precision
3176 	 * tracking in the current state is unnecessary.
3177 	 */
3178 	func = st->frame[frame];
3179 	if (regno >= 0) {
3180 		reg = &func->regs[regno];
3181 		if (reg->type != SCALAR_VALUE) {
3182 			WARN_ONCE(1, "backtracing misuse");
3183 			return -EFAULT;
3184 		}
3185 		new_marks = true;
3186 	}
3187 
3188 	while (spi >= 0) {
3189 		if (!is_spilled_reg(&func->stack[spi])) {
3190 			stack_mask = 0;
3191 			break;
3192 		}
3193 		reg = &func->stack[spi].spilled_ptr;
3194 		if (reg->type != SCALAR_VALUE) {
3195 			stack_mask = 0;
3196 			break;
3197 		}
3198 		new_marks = true;
3199 		break;
3200 	}
3201 
3202 	if (!new_marks)
3203 		return 0;
3204 	if (!reg_mask && !stack_mask)
3205 		return 0;
3206 
3207 	for (;;) {
3208 		DECLARE_BITMAP(mask, 64);
3209 		u32 history = st->jmp_history_cnt;
3210 
3211 		if (env->log.level & BPF_LOG_LEVEL2)
3212 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
3213 
3214 		if (last_idx < 0) {
3215 			/* we are at the entry into subprog, which
3216 			 * is expected for global funcs, but only if
3217 			 * requested precise registers are R1-R5
3218 			 * (which are global func's input arguments)
3219 			 */
3220 			if (st->curframe == 0 &&
3221 			    st->frame[0]->subprogno > 0 &&
3222 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3223 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3224 				bitmap_from_u64(mask, reg_mask);
3225 				for_each_set_bit(i, mask, 32) {
3226 					reg = &st->frame[0]->regs[i];
3227 					if (reg->type != SCALAR_VALUE) {
3228 						reg_mask &= ~(1u << i);
3229 						continue;
3230 					}
3231 					reg->precise = true;
3232 				}
3233 				return 0;
3234 			}
3235 
3236 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3237 				st->frame[0]->subprogno, reg_mask, stack_mask);
3238 			WARN_ONCE(1, "verifier backtracking bug");
3239 			return -EFAULT;
3240 		}
3241 
3242 		for (i = last_idx;;) {
3243 			if (skip_first) {
3244 				err = 0;
3245 				skip_first = false;
3246 			} else {
3247 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3248 			}
3249 			if (err == -ENOTSUPP) {
3250 				mark_all_scalars_precise(env, st);
3251 				return 0;
3252 			} else if (err) {
3253 				return err;
3254 			}
3255 			if (!reg_mask && !stack_mask)
3256 				/* Found assignment(s) into tracked register in this state.
3257 				 * Since this state is already marked, just return.
3258 				 * Nothing to be tracked further in the parent state.
3259 				 */
3260 				return 0;
3261 			if (i == first_idx)
3262 				break;
3263 			i = get_prev_insn_idx(st, i, &history);
3264 			if (i >= env->prog->len) {
3265 				/* This can happen if backtracking reached insn 0
3266 				 * and there are still reg_mask or stack_mask
3267 				 * to backtrack.
3268 				 * It means the backtracking missed the spot where
3269 				 * particular register was initialized with a constant.
3270 				 */
3271 				verbose(env, "BUG backtracking idx %d\n", i);
3272 				WARN_ONCE(1, "verifier backtracking bug");
3273 				return -EFAULT;
3274 			}
3275 		}
3276 		st = st->parent;
3277 		if (!st)
3278 			break;
3279 
3280 		new_marks = false;
3281 		func = st->frame[frame];
3282 		bitmap_from_u64(mask, reg_mask);
3283 		for_each_set_bit(i, mask, 32) {
3284 			reg = &func->regs[i];
3285 			if (reg->type != SCALAR_VALUE) {
3286 				reg_mask &= ~(1u << i);
3287 				continue;
3288 			}
3289 			if (!reg->precise)
3290 				new_marks = true;
3291 			reg->precise = true;
3292 		}
3293 
3294 		bitmap_from_u64(mask, stack_mask);
3295 		for_each_set_bit(i, mask, 64) {
3296 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3297 				/* the sequence of instructions:
3298 				 * 2: (bf) r3 = r10
3299 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3300 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3301 				 * doesn't contain jmps. It's backtracked
3302 				 * as a single block.
3303 				 * During backtracking insn 3 is not recognized as
3304 				 * stack access, so at the end of backtracking
3305 				 * stack slot fp-8 is still marked in stack_mask.
3306 				 * However the parent state may not have accessed
3307 				 * fp-8 and it's "unallocated" stack space.
3308 				 * In such case fallback to conservative.
3309 				 */
3310 				mark_all_scalars_precise(env, st);
3311 				return 0;
3312 			}
3313 
3314 			if (!is_spilled_reg(&func->stack[i])) {
3315 				stack_mask &= ~(1ull << i);
3316 				continue;
3317 			}
3318 			reg = &func->stack[i].spilled_ptr;
3319 			if (reg->type != SCALAR_VALUE) {
3320 				stack_mask &= ~(1ull << i);
3321 				continue;
3322 			}
3323 			if (!reg->precise)
3324 				new_marks = true;
3325 			reg->precise = true;
3326 		}
3327 		if (env->log.level & BPF_LOG_LEVEL2) {
3328 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3329 				new_marks ? "didn't have" : "already had",
3330 				reg_mask, stack_mask);
3331 			print_verifier_state(env, func, true);
3332 		}
3333 
3334 		if (!reg_mask && !stack_mask)
3335 			break;
3336 		if (!new_marks)
3337 			break;
3338 
3339 		last_idx = st->last_insn_idx;
3340 		first_idx = st->first_insn_idx;
3341 	}
3342 	return 0;
3343 }
3344 
3345 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3346 {
3347 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3348 }
3349 
3350 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3351 {
3352 	return __mark_chain_precision(env, frame, regno, -1);
3353 }
3354 
3355 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3356 {
3357 	return __mark_chain_precision(env, frame, -1, spi);
3358 }
3359 
3360 static bool is_spillable_regtype(enum bpf_reg_type type)
3361 {
3362 	switch (base_type(type)) {
3363 	case PTR_TO_MAP_VALUE:
3364 	case PTR_TO_STACK:
3365 	case PTR_TO_CTX:
3366 	case PTR_TO_PACKET:
3367 	case PTR_TO_PACKET_META:
3368 	case PTR_TO_PACKET_END:
3369 	case PTR_TO_FLOW_KEYS:
3370 	case CONST_PTR_TO_MAP:
3371 	case PTR_TO_SOCKET:
3372 	case PTR_TO_SOCK_COMMON:
3373 	case PTR_TO_TCP_SOCK:
3374 	case PTR_TO_XDP_SOCK:
3375 	case PTR_TO_BTF_ID:
3376 	case PTR_TO_BUF:
3377 	case PTR_TO_MEM:
3378 	case PTR_TO_FUNC:
3379 	case PTR_TO_MAP_KEY:
3380 		return true;
3381 	default:
3382 		return false;
3383 	}
3384 }
3385 
3386 /* Does this register contain a constant zero? */
3387 static bool register_is_null(struct bpf_reg_state *reg)
3388 {
3389 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3390 }
3391 
3392 static bool register_is_const(struct bpf_reg_state *reg)
3393 {
3394 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3395 }
3396 
3397 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3398 {
3399 	return tnum_is_unknown(reg->var_off) &&
3400 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3401 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3402 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3403 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3404 }
3405 
3406 static bool register_is_bounded(struct bpf_reg_state *reg)
3407 {
3408 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3409 }
3410 
3411 static bool __is_pointer_value(bool allow_ptr_leaks,
3412 			       const struct bpf_reg_state *reg)
3413 {
3414 	if (allow_ptr_leaks)
3415 		return false;
3416 
3417 	return reg->type != SCALAR_VALUE;
3418 }
3419 
3420 static void save_register_state(struct bpf_func_state *state,
3421 				int spi, struct bpf_reg_state *reg,
3422 				int size)
3423 {
3424 	int i;
3425 
3426 	state->stack[spi].spilled_ptr = *reg;
3427 	if (size == BPF_REG_SIZE)
3428 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3429 
3430 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3431 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3432 
3433 	/* size < 8 bytes spill */
3434 	for (; i; i--)
3435 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3436 }
3437 
3438 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3439  * stack boundary and alignment are checked in check_mem_access()
3440  */
3441 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3442 				       /* stack frame we're writing to */
3443 				       struct bpf_func_state *state,
3444 				       int off, int size, int value_regno,
3445 				       int insn_idx)
3446 {
3447 	struct bpf_func_state *cur; /* state of the current function */
3448 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3449 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3450 	struct bpf_reg_state *reg = NULL;
3451 
3452 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3453 	if (err)
3454 		return err;
3455 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3456 	 * so it's aligned access and [off, off + size) are within stack limits
3457 	 */
3458 	if (!env->allow_ptr_leaks &&
3459 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3460 	    size != BPF_REG_SIZE) {
3461 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3462 		return -EACCES;
3463 	}
3464 
3465 	cur = env->cur_state->frame[env->cur_state->curframe];
3466 	if (value_regno >= 0)
3467 		reg = &cur->regs[value_regno];
3468 	if (!env->bypass_spec_v4) {
3469 		bool sanitize = reg && is_spillable_regtype(reg->type);
3470 
3471 		for (i = 0; i < size; i++) {
3472 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3473 				sanitize = true;
3474 				break;
3475 			}
3476 		}
3477 
3478 		if (sanitize)
3479 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3480 	}
3481 
3482 	err = destroy_if_dynptr_stack_slot(env, state, spi);
3483 	if (err)
3484 		return err;
3485 
3486 	mark_stack_slot_scratched(env, spi);
3487 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3488 	    !register_is_null(reg) && env->bpf_capable) {
3489 		if (dst_reg != BPF_REG_FP) {
3490 			/* The backtracking logic can only recognize explicit
3491 			 * stack slot address like [fp - 8]. Other spill of
3492 			 * scalar via different register has to be conservative.
3493 			 * Backtrack from here and mark all registers as precise
3494 			 * that contributed into 'reg' being a constant.
3495 			 */
3496 			err = mark_chain_precision(env, value_regno);
3497 			if (err)
3498 				return err;
3499 		}
3500 		save_register_state(state, spi, reg, size);
3501 	} else if (reg && is_spillable_regtype(reg->type)) {
3502 		/* register containing pointer is being spilled into stack */
3503 		if (size != BPF_REG_SIZE) {
3504 			verbose_linfo(env, insn_idx, "; ");
3505 			verbose(env, "invalid size of register spill\n");
3506 			return -EACCES;
3507 		}
3508 		if (state != cur && reg->type == PTR_TO_STACK) {
3509 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3510 			return -EINVAL;
3511 		}
3512 		save_register_state(state, spi, reg, size);
3513 	} else {
3514 		u8 type = STACK_MISC;
3515 
3516 		/* regular write of data into stack destroys any spilled ptr */
3517 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3518 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3519 		if (is_spilled_reg(&state->stack[spi]))
3520 			for (i = 0; i < BPF_REG_SIZE; i++)
3521 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3522 
3523 		/* only mark the slot as written if all 8 bytes were written
3524 		 * otherwise read propagation may incorrectly stop too soon
3525 		 * when stack slots are partially written.
3526 		 * This heuristic means that read propagation will be
3527 		 * conservative, since it will add reg_live_read marks
3528 		 * to stack slots all the way to first state when programs
3529 		 * writes+reads less than 8 bytes
3530 		 */
3531 		if (size == BPF_REG_SIZE)
3532 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3533 
3534 		/* when we zero initialize stack slots mark them as such */
3535 		if (reg && register_is_null(reg)) {
3536 			/* backtracking doesn't work for STACK_ZERO yet. */
3537 			err = mark_chain_precision(env, value_regno);
3538 			if (err)
3539 				return err;
3540 			type = STACK_ZERO;
3541 		}
3542 
3543 		/* Mark slots affected by this stack write. */
3544 		for (i = 0; i < size; i++)
3545 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3546 				type;
3547 	}
3548 	return 0;
3549 }
3550 
3551 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3552  * known to contain a variable offset.
3553  * This function checks whether the write is permitted and conservatively
3554  * tracks the effects of the write, considering that each stack slot in the
3555  * dynamic range is potentially written to.
3556  *
3557  * 'off' includes 'regno->off'.
3558  * 'value_regno' can be -1, meaning that an unknown value is being written to
3559  * the stack.
3560  *
3561  * Spilled pointers in range are not marked as written because we don't know
3562  * what's going to be actually written. This means that read propagation for
3563  * future reads cannot be terminated by this write.
3564  *
3565  * For privileged programs, uninitialized stack slots are considered
3566  * initialized by this write (even though we don't know exactly what offsets
3567  * are going to be written to). The idea is that we don't want the verifier to
3568  * reject future reads that access slots written to through variable offsets.
3569  */
3570 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3571 				     /* func where register points to */
3572 				     struct bpf_func_state *state,
3573 				     int ptr_regno, int off, int size,
3574 				     int value_regno, int insn_idx)
3575 {
3576 	struct bpf_func_state *cur; /* state of the current function */
3577 	int min_off, max_off;
3578 	int i, err;
3579 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3580 	bool writing_zero = false;
3581 	/* set if the fact that we're writing a zero is used to let any
3582 	 * stack slots remain STACK_ZERO
3583 	 */
3584 	bool zero_used = false;
3585 
3586 	cur = env->cur_state->frame[env->cur_state->curframe];
3587 	ptr_reg = &cur->regs[ptr_regno];
3588 	min_off = ptr_reg->smin_value + off;
3589 	max_off = ptr_reg->smax_value + off + size;
3590 	if (value_regno >= 0)
3591 		value_reg = &cur->regs[value_regno];
3592 	if (value_reg && register_is_null(value_reg))
3593 		writing_zero = true;
3594 
3595 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3596 	if (err)
3597 		return err;
3598 
3599 	for (i = min_off; i < max_off; i++) {
3600 		int spi;
3601 
3602 		spi = __get_spi(i);
3603 		err = destroy_if_dynptr_stack_slot(env, state, spi);
3604 		if (err)
3605 			return err;
3606 	}
3607 
3608 	/* Variable offset writes destroy any spilled pointers in range. */
3609 	for (i = min_off; i < max_off; i++) {
3610 		u8 new_type, *stype;
3611 		int slot, spi;
3612 
3613 		slot = -i - 1;
3614 		spi = slot / BPF_REG_SIZE;
3615 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3616 		mark_stack_slot_scratched(env, spi);
3617 
3618 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3619 			/* Reject the write if range we may write to has not
3620 			 * been initialized beforehand. If we didn't reject
3621 			 * here, the ptr status would be erased below (even
3622 			 * though not all slots are actually overwritten),
3623 			 * possibly opening the door to leaks.
3624 			 *
3625 			 * We do however catch STACK_INVALID case below, and
3626 			 * only allow reading possibly uninitialized memory
3627 			 * later for CAP_PERFMON, as the write may not happen to
3628 			 * that slot.
3629 			 */
3630 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3631 				insn_idx, i);
3632 			return -EINVAL;
3633 		}
3634 
3635 		/* Erase all spilled pointers. */
3636 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3637 
3638 		/* Update the slot type. */
3639 		new_type = STACK_MISC;
3640 		if (writing_zero && *stype == STACK_ZERO) {
3641 			new_type = STACK_ZERO;
3642 			zero_used = true;
3643 		}
3644 		/* If the slot is STACK_INVALID, we check whether it's OK to
3645 		 * pretend that it will be initialized by this write. The slot
3646 		 * might not actually be written to, and so if we mark it as
3647 		 * initialized future reads might leak uninitialized memory.
3648 		 * For privileged programs, we will accept such reads to slots
3649 		 * that may or may not be written because, if we're reject
3650 		 * them, the error would be too confusing.
3651 		 */
3652 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3653 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3654 					insn_idx, i);
3655 			return -EINVAL;
3656 		}
3657 		*stype = new_type;
3658 	}
3659 	if (zero_used) {
3660 		/* backtracking doesn't work for STACK_ZERO yet. */
3661 		err = mark_chain_precision(env, value_regno);
3662 		if (err)
3663 			return err;
3664 	}
3665 	return 0;
3666 }
3667 
3668 /* When register 'dst_regno' is assigned some values from stack[min_off,
3669  * max_off), we set the register's type according to the types of the
3670  * respective stack slots. If all the stack values are known to be zeros, then
3671  * so is the destination reg. Otherwise, the register is considered to be
3672  * SCALAR. This function does not deal with register filling; the caller must
3673  * ensure that all spilled registers in the stack range have been marked as
3674  * read.
3675  */
3676 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3677 				/* func where src register points to */
3678 				struct bpf_func_state *ptr_state,
3679 				int min_off, int max_off, int dst_regno)
3680 {
3681 	struct bpf_verifier_state *vstate = env->cur_state;
3682 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3683 	int i, slot, spi;
3684 	u8 *stype;
3685 	int zeros = 0;
3686 
3687 	for (i = min_off; i < max_off; i++) {
3688 		slot = -i - 1;
3689 		spi = slot / BPF_REG_SIZE;
3690 		stype = ptr_state->stack[spi].slot_type;
3691 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3692 			break;
3693 		zeros++;
3694 	}
3695 	if (zeros == max_off - min_off) {
3696 		/* any access_size read into register is zero extended,
3697 		 * so the whole register == const_zero
3698 		 */
3699 		__mark_reg_const_zero(&state->regs[dst_regno]);
3700 		/* backtracking doesn't support STACK_ZERO yet,
3701 		 * so mark it precise here, so that later
3702 		 * backtracking can stop here.
3703 		 * Backtracking may not need this if this register
3704 		 * doesn't participate in pointer adjustment.
3705 		 * Forward propagation of precise flag is not
3706 		 * necessary either. This mark is only to stop
3707 		 * backtracking. Any register that contributed
3708 		 * to const 0 was marked precise before spill.
3709 		 */
3710 		state->regs[dst_regno].precise = true;
3711 	} else {
3712 		/* have read misc data from the stack */
3713 		mark_reg_unknown(env, state->regs, dst_regno);
3714 	}
3715 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3716 }
3717 
3718 /* Read the stack at 'off' and put the results into the register indicated by
3719  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3720  * spilled reg.
3721  *
3722  * 'dst_regno' can be -1, meaning that the read value is not going to a
3723  * register.
3724  *
3725  * The access is assumed to be within the current stack bounds.
3726  */
3727 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3728 				      /* func where src register points to */
3729 				      struct bpf_func_state *reg_state,
3730 				      int off, int size, int dst_regno)
3731 {
3732 	struct bpf_verifier_state *vstate = env->cur_state;
3733 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3734 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3735 	struct bpf_reg_state *reg;
3736 	u8 *stype, type;
3737 
3738 	stype = reg_state->stack[spi].slot_type;
3739 	reg = &reg_state->stack[spi].spilled_ptr;
3740 
3741 	if (is_spilled_reg(&reg_state->stack[spi])) {
3742 		u8 spill_size = 1;
3743 
3744 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3745 			spill_size++;
3746 
3747 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3748 			if (reg->type != SCALAR_VALUE) {
3749 				verbose_linfo(env, env->insn_idx, "; ");
3750 				verbose(env, "invalid size of register fill\n");
3751 				return -EACCES;
3752 			}
3753 
3754 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3755 			if (dst_regno < 0)
3756 				return 0;
3757 
3758 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3759 				/* The earlier check_reg_arg() has decided the
3760 				 * subreg_def for this insn.  Save it first.
3761 				 */
3762 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3763 
3764 				state->regs[dst_regno] = *reg;
3765 				state->regs[dst_regno].subreg_def = subreg_def;
3766 			} else {
3767 				for (i = 0; i < size; i++) {
3768 					type = stype[(slot - i) % BPF_REG_SIZE];
3769 					if (type == STACK_SPILL)
3770 						continue;
3771 					if (type == STACK_MISC)
3772 						continue;
3773 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3774 						off, i, size);
3775 					return -EACCES;
3776 				}
3777 				mark_reg_unknown(env, state->regs, dst_regno);
3778 			}
3779 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3780 			return 0;
3781 		}
3782 
3783 		if (dst_regno >= 0) {
3784 			/* restore register state from stack */
3785 			state->regs[dst_regno] = *reg;
3786 			/* mark reg as written since spilled pointer state likely
3787 			 * has its liveness marks cleared by is_state_visited()
3788 			 * which resets stack/reg liveness for state transitions
3789 			 */
3790 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3791 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3792 			/* If dst_regno==-1, the caller is asking us whether
3793 			 * it is acceptable to use this value as a SCALAR_VALUE
3794 			 * (e.g. for XADD).
3795 			 * We must not allow unprivileged callers to do that
3796 			 * with spilled pointers.
3797 			 */
3798 			verbose(env, "leaking pointer from stack off %d\n",
3799 				off);
3800 			return -EACCES;
3801 		}
3802 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3803 	} else {
3804 		for (i = 0; i < size; i++) {
3805 			type = stype[(slot - i) % BPF_REG_SIZE];
3806 			if (type == STACK_MISC)
3807 				continue;
3808 			if (type == STACK_ZERO)
3809 				continue;
3810 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3811 				off, i, size);
3812 			return -EACCES;
3813 		}
3814 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3815 		if (dst_regno >= 0)
3816 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3817 	}
3818 	return 0;
3819 }
3820 
3821 enum bpf_access_src {
3822 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3823 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3824 };
3825 
3826 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3827 					 int regno, int off, int access_size,
3828 					 bool zero_size_allowed,
3829 					 enum bpf_access_src type,
3830 					 struct bpf_call_arg_meta *meta);
3831 
3832 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3833 {
3834 	return cur_regs(env) + regno;
3835 }
3836 
3837 /* Read the stack at 'ptr_regno + off' and put the result into the register
3838  * 'dst_regno'.
3839  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3840  * but not its variable offset.
3841  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3842  *
3843  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3844  * filling registers (i.e. reads of spilled register cannot be detected when
3845  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3846  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3847  * offset; for a fixed offset check_stack_read_fixed_off should be used
3848  * instead.
3849  */
3850 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3851 				    int ptr_regno, int off, int size, int dst_regno)
3852 {
3853 	/* The state of the source register. */
3854 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3855 	struct bpf_func_state *ptr_state = func(env, reg);
3856 	int err;
3857 	int min_off, max_off;
3858 
3859 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3860 	 */
3861 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3862 					    false, ACCESS_DIRECT, NULL);
3863 	if (err)
3864 		return err;
3865 
3866 	min_off = reg->smin_value + off;
3867 	max_off = reg->smax_value + off;
3868 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3869 	return 0;
3870 }
3871 
3872 /* check_stack_read dispatches to check_stack_read_fixed_off or
3873  * check_stack_read_var_off.
3874  *
3875  * The caller must ensure that the offset falls within the allocated stack
3876  * bounds.
3877  *
3878  * 'dst_regno' is a register which will receive the value from the stack. It
3879  * can be -1, meaning that the read value is not going to a register.
3880  */
3881 static int check_stack_read(struct bpf_verifier_env *env,
3882 			    int ptr_regno, int off, int size,
3883 			    int dst_regno)
3884 {
3885 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3886 	struct bpf_func_state *state = func(env, reg);
3887 	int err;
3888 	/* Some accesses are only permitted with a static offset. */
3889 	bool var_off = !tnum_is_const(reg->var_off);
3890 
3891 	/* The offset is required to be static when reads don't go to a
3892 	 * register, in order to not leak pointers (see
3893 	 * check_stack_read_fixed_off).
3894 	 */
3895 	if (dst_regno < 0 && var_off) {
3896 		char tn_buf[48];
3897 
3898 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3899 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3900 			tn_buf, off, size);
3901 		return -EACCES;
3902 	}
3903 	/* Variable offset is prohibited for unprivileged mode for simplicity
3904 	 * since it requires corresponding support in Spectre masking for stack
3905 	 * ALU. See also retrieve_ptr_limit().
3906 	 */
3907 	if (!env->bypass_spec_v1 && var_off) {
3908 		char tn_buf[48];
3909 
3910 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3911 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3912 				ptr_regno, tn_buf);
3913 		return -EACCES;
3914 	}
3915 
3916 	if (!var_off) {
3917 		off += reg->var_off.value;
3918 		err = check_stack_read_fixed_off(env, state, off, size,
3919 						 dst_regno);
3920 	} else {
3921 		/* Variable offset stack reads need more conservative handling
3922 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3923 		 * branch.
3924 		 */
3925 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3926 					       dst_regno);
3927 	}
3928 	return err;
3929 }
3930 
3931 
3932 /* check_stack_write dispatches to check_stack_write_fixed_off or
3933  * check_stack_write_var_off.
3934  *
3935  * 'ptr_regno' is the register used as a pointer into the stack.
3936  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3937  * 'value_regno' is the register whose value we're writing to the stack. It can
3938  * be -1, meaning that we're not writing from a register.
3939  *
3940  * The caller must ensure that the offset falls within the maximum stack size.
3941  */
3942 static int check_stack_write(struct bpf_verifier_env *env,
3943 			     int ptr_regno, int off, int size,
3944 			     int value_regno, int insn_idx)
3945 {
3946 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3947 	struct bpf_func_state *state = func(env, reg);
3948 	int err;
3949 
3950 	if (tnum_is_const(reg->var_off)) {
3951 		off += reg->var_off.value;
3952 		err = check_stack_write_fixed_off(env, state, off, size,
3953 						  value_regno, insn_idx);
3954 	} else {
3955 		/* Variable offset stack reads need more conservative handling
3956 		 * than fixed offset ones.
3957 		 */
3958 		err = check_stack_write_var_off(env, state,
3959 						ptr_regno, off, size,
3960 						value_regno, insn_idx);
3961 	}
3962 	return err;
3963 }
3964 
3965 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3966 				 int off, int size, enum bpf_access_type type)
3967 {
3968 	struct bpf_reg_state *regs = cur_regs(env);
3969 	struct bpf_map *map = regs[regno].map_ptr;
3970 	u32 cap = bpf_map_flags_to_cap(map);
3971 
3972 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3973 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3974 			map->value_size, off, size);
3975 		return -EACCES;
3976 	}
3977 
3978 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3979 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3980 			map->value_size, off, size);
3981 		return -EACCES;
3982 	}
3983 
3984 	return 0;
3985 }
3986 
3987 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3988 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3989 			      int off, int size, u32 mem_size,
3990 			      bool zero_size_allowed)
3991 {
3992 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3993 	struct bpf_reg_state *reg;
3994 
3995 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3996 		return 0;
3997 
3998 	reg = &cur_regs(env)[regno];
3999 	switch (reg->type) {
4000 	case PTR_TO_MAP_KEY:
4001 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4002 			mem_size, off, size);
4003 		break;
4004 	case PTR_TO_MAP_VALUE:
4005 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4006 			mem_size, off, size);
4007 		break;
4008 	case PTR_TO_PACKET:
4009 	case PTR_TO_PACKET_META:
4010 	case PTR_TO_PACKET_END:
4011 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4012 			off, size, regno, reg->id, off, mem_size);
4013 		break;
4014 	case PTR_TO_MEM:
4015 	default:
4016 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4017 			mem_size, off, size);
4018 	}
4019 
4020 	return -EACCES;
4021 }
4022 
4023 /* check read/write into a memory region with possible variable offset */
4024 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4025 				   int off, int size, u32 mem_size,
4026 				   bool zero_size_allowed)
4027 {
4028 	struct bpf_verifier_state *vstate = env->cur_state;
4029 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4030 	struct bpf_reg_state *reg = &state->regs[regno];
4031 	int err;
4032 
4033 	/* We may have adjusted the register pointing to memory region, so we
4034 	 * need to try adding each of min_value and max_value to off
4035 	 * to make sure our theoretical access will be safe.
4036 	 *
4037 	 * The minimum value is only important with signed
4038 	 * comparisons where we can't assume the floor of a
4039 	 * value is 0.  If we are using signed variables for our
4040 	 * index'es we need to make sure that whatever we use
4041 	 * will have a set floor within our range.
4042 	 */
4043 	if (reg->smin_value < 0 &&
4044 	    (reg->smin_value == S64_MIN ||
4045 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4046 	      reg->smin_value + off < 0)) {
4047 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4048 			regno);
4049 		return -EACCES;
4050 	}
4051 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4052 				 mem_size, zero_size_allowed);
4053 	if (err) {
4054 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4055 			regno);
4056 		return err;
4057 	}
4058 
4059 	/* If we haven't set a max value then we need to bail since we can't be
4060 	 * sure we won't do bad things.
4061 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4062 	 */
4063 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4064 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4065 			regno);
4066 		return -EACCES;
4067 	}
4068 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4069 				 mem_size, zero_size_allowed);
4070 	if (err) {
4071 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4072 			regno);
4073 		return err;
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4080 			       const struct bpf_reg_state *reg, int regno,
4081 			       bool fixed_off_ok)
4082 {
4083 	/* Access to this pointer-typed register or passing it to a helper
4084 	 * is only allowed in its original, unmodified form.
4085 	 */
4086 
4087 	if (reg->off < 0) {
4088 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4089 			reg_type_str(env, reg->type), regno, reg->off);
4090 		return -EACCES;
4091 	}
4092 
4093 	if (!fixed_off_ok && reg->off) {
4094 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4095 			reg_type_str(env, reg->type), regno, reg->off);
4096 		return -EACCES;
4097 	}
4098 
4099 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4100 		char tn_buf[48];
4101 
4102 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4103 		verbose(env, "variable %s access var_off=%s disallowed\n",
4104 			reg_type_str(env, reg->type), tn_buf);
4105 		return -EACCES;
4106 	}
4107 
4108 	return 0;
4109 }
4110 
4111 int check_ptr_off_reg(struct bpf_verifier_env *env,
4112 		      const struct bpf_reg_state *reg, int regno)
4113 {
4114 	return __check_ptr_off_reg(env, reg, regno, false);
4115 }
4116 
4117 static int map_kptr_match_type(struct bpf_verifier_env *env,
4118 			       struct btf_field *kptr_field,
4119 			       struct bpf_reg_state *reg, u32 regno)
4120 {
4121 	const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4122 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
4123 	const char *reg_name = "";
4124 
4125 	/* Only unreferenced case accepts untrusted pointers */
4126 	if (kptr_field->type == BPF_KPTR_UNREF)
4127 		perm_flags |= PTR_UNTRUSTED;
4128 
4129 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
4130 		goto bad_type;
4131 
4132 	if (!btf_is_kernel(reg->btf)) {
4133 		verbose(env, "R%d must point to kernel BTF\n", regno);
4134 		return -EINVAL;
4135 	}
4136 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
4137 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
4138 
4139 	/* For ref_ptr case, release function check should ensure we get one
4140 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4141 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
4142 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4143 	 * reg->off and reg->ref_obj_id are not needed here.
4144 	 */
4145 	if (__check_ptr_off_reg(env, reg, regno, true))
4146 		return -EACCES;
4147 
4148 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
4149 	 * we also need to take into account the reg->off.
4150 	 *
4151 	 * We want to support cases like:
4152 	 *
4153 	 * struct foo {
4154 	 *         struct bar br;
4155 	 *         struct baz bz;
4156 	 * };
4157 	 *
4158 	 * struct foo *v;
4159 	 * v = func();	      // PTR_TO_BTF_ID
4160 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
4161 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4162 	 *                    // first member type of struct after comparison fails
4163 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4164 	 *                    // to match type
4165 	 *
4166 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
4167 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
4168 	 * the struct to match type against first member of struct, i.e. reject
4169 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4170 	 * strict mode to true for type match.
4171 	 */
4172 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4173 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4174 				  kptr_field->type == BPF_KPTR_REF))
4175 		goto bad_type;
4176 	return 0;
4177 bad_type:
4178 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4179 		reg_type_str(env, reg->type), reg_name);
4180 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
4181 	if (kptr_field->type == BPF_KPTR_UNREF)
4182 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4183 			targ_name);
4184 	else
4185 		verbose(env, "\n");
4186 	return -EINVAL;
4187 }
4188 
4189 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4190 				 int value_regno, int insn_idx,
4191 				 struct btf_field *kptr_field)
4192 {
4193 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4194 	int class = BPF_CLASS(insn->code);
4195 	struct bpf_reg_state *val_reg;
4196 
4197 	/* Things we already checked for in check_map_access and caller:
4198 	 *  - Reject cases where variable offset may touch kptr
4199 	 *  - size of access (must be BPF_DW)
4200 	 *  - tnum_is_const(reg->var_off)
4201 	 *  - kptr_field->offset == off + reg->var_off.value
4202 	 */
4203 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4204 	if (BPF_MODE(insn->code) != BPF_MEM) {
4205 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4206 		return -EACCES;
4207 	}
4208 
4209 	/* We only allow loading referenced kptr, since it will be marked as
4210 	 * untrusted, similar to unreferenced kptr.
4211 	 */
4212 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
4213 		verbose(env, "store to referenced kptr disallowed\n");
4214 		return -EACCES;
4215 	}
4216 
4217 	if (class == BPF_LDX) {
4218 		val_reg = reg_state(env, value_regno);
4219 		/* We can simply mark the value_regno receiving the pointer
4220 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4221 		 */
4222 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
4223 				kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
4224 		/* For mark_ptr_or_null_reg */
4225 		val_reg->id = ++env->id_gen;
4226 	} else if (class == BPF_STX) {
4227 		val_reg = reg_state(env, value_regno);
4228 		if (!register_is_null(val_reg) &&
4229 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4230 			return -EACCES;
4231 	} else if (class == BPF_ST) {
4232 		if (insn->imm) {
4233 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4234 				kptr_field->offset);
4235 			return -EACCES;
4236 		}
4237 	} else {
4238 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4239 		return -EACCES;
4240 	}
4241 	return 0;
4242 }
4243 
4244 /* check read/write into a map element with possible variable offset */
4245 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4246 			    int off, int size, bool zero_size_allowed,
4247 			    enum bpf_access_src src)
4248 {
4249 	struct bpf_verifier_state *vstate = env->cur_state;
4250 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4251 	struct bpf_reg_state *reg = &state->regs[regno];
4252 	struct bpf_map *map = reg->map_ptr;
4253 	struct btf_record *rec;
4254 	int err, i;
4255 
4256 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4257 				      zero_size_allowed);
4258 	if (err)
4259 		return err;
4260 
4261 	if (IS_ERR_OR_NULL(map->record))
4262 		return 0;
4263 	rec = map->record;
4264 	for (i = 0; i < rec->cnt; i++) {
4265 		struct btf_field *field = &rec->fields[i];
4266 		u32 p = field->offset;
4267 
4268 		/* If any part of a field  can be touched by load/store, reject
4269 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4270 		 * it is sufficient to check x1 < y2 && y1 < x2.
4271 		 */
4272 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4273 		    p < reg->umax_value + off + size) {
4274 			switch (field->type) {
4275 			case BPF_KPTR_UNREF:
4276 			case BPF_KPTR_REF:
4277 				if (src != ACCESS_DIRECT) {
4278 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4279 					return -EACCES;
4280 				}
4281 				if (!tnum_is_const(reg->var_off)) {
4282 					verbose(env, "kptr access cannot have variable offset\n");
4283 					return -EACCES;
4284 				}
4285 				if (p != off + reg->var_off.value) {
4286 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4287 						p, off + reg->var_off.value);
4288 					return -EACCES;
4289 				}
4290 				if (size != bpf_size_to_bytes(BPF_DW)) {
4291 					verbose(env, "kptr access size must be BPF_DW\n");
4292 					return -EACCES;
4293 				}
4294 				break;
4295 			default:
4296 				verbose(env, "%s cannot be accessed directly by load/store\n",
4297 					btf_field_type_name(field->type));
4298 				return -EACCES;
4299 			}
4300 		}
4301 	}
4302 	return 0;
4303 }
4304 
4305 #define MAX_PACKET_OFF 0xffff
4306 
4307 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4308 				       const struct bpf_call_arg_meta *meta,
4309 				       enum bpf_access_type t)
4310 {
4311 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4312 
4313 	switch (prog_type) {
4314 	/* Program types only with direct read access go here! */
4315 	case BPF_PROG_TYPE_LWT_IN:
4316 	case BPF_PROG_TYPE_LWT_OUT:
4317 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4318 	case BPF_PROG_TYPE_SK_REUSEPORT:
4319 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4320 	case BPF_PROG_TYPE_CGROUP_SKB:
4321 		if (t == BPF_WRITE)
4322 			return false;
4323 		fallthrough;
4324 
4325 	/* Program types with direct read + write access go here! */
4326 	case BPF_PROG_TYPE_SCHED_CLS:
4327 	case BPF_PROG_TYPE_SCHED_ACT:
4328 	case BPF_PROG_TYPE_XDP:
4329 	case BPF_PROG_TYPE_LWT_XMIT:
4330 	case BPF_PROG_TYPE_SK_SKB:
4331 	case BPF_PROG_TYPE_SK_MSG:
4332 		if (meta)
4333 			return meta->pkt_access;
4334 
4335 		env->seen_direct_write = true;
4336 		return true;
4337 
4338 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4339 		if (t == BPF_WRITE)
4340 			env->seen_direct_write = true;
4341 
4342 		return true;
4343 
4344 	default:
4345 		return false;
4346 	}
4347 }
4348 
4349 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4350 			       int size, bool zero_size_allowed)
4351 {
4352 	struct bpf_reg_state *regs = cur_regs(env);
4353 	struct bpf_reg_state *reg = &regs[regno];
4354 	int err;
4355 
4356 	/* We may have added a variable offset to the packet pointer; but any
4357 	 * reg->range we have comes after that.  We are only checking the fixed
4358 	 * offset.
4359 	 */
4360 
4361 	/* We don't allow negative numbers, because we aren't tracking enough
4362 	 * detail to prove they're safe.
4363 	 */
4364 	if (reg->smin_value < 0) {
4365 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4366 			regno);
4367 		return -EACCES;
4368 	}
4369 
4370 	err = reg->range < 0 ? -EINVAL :
4371 	      __check_mem_access(env, regno, off, size, reg->range,
4372 				 zero_size_allowed);
4373 	if (err) {
4374 		verbose(env, "R%d offset is outside of the packet\n", regno);
4375 		return err;
4376 	}
4377 
4378 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4379 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4380 	 * otherwise find_good_pkt_pointers would have refused to set range info
4381 	 * that __check_mem_access would have rejected this pkt access.
4382 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4383 	 */
4384 	env->prog->aux->max_pkt_offset =
4385 		max_t(u32, env->prog->aux->max_pkt_offset,
4386 		      off + reg->umax_value + size - 1);
4387 
4388 	return err;
4389 }
4390 
4391 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4392 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4393 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4394 			    struct btf **btf, u32 *btf_id)
4395 {
4396 	struct bpf_insn_access_aux info = {
4397 		.reg_type = *reg_type,
4398 		.log = &env->log,
4399 	};
4400 
4401 	if (env->ops->is_valid_access &&
4402 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4403 		/* A non zero info.ctx_field_size indicates that this field is a
4404 		 * candidate for later verifier transformation to load the whole
4405 		 * field and then apply a mask when accessed with a narrower
4406 		 * access than actual ctx access size. A zero info.ctx_field_size
4407 		 * will only allow for whole field access and rejects any other
4408 		 * type of narrower access.
4409 		 */
4410 		*reg_type = info.reg_type;
4411 
4412 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4413 			*btf = info.btf;
4414 			*btf_id = info.btf_id;
4415 		} else {
4416 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4417 		}
4418 		/* remember the offset of last byte accessed in ctx */
4419 		if (env->prog->aux->max_ctx_offset < off + size)
4420 			env->prog->aux->max_ctx_offset = off + size;
4421 		return 0;
4422 	}
4423 
4424 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4425 	return -EACCES;
4426 }
4427 
4428 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4429 				  int size)
4430 {
4431 	if (size < 0 || off < 0 ||
4432 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4433 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4434 			off, size);
4435 		return -EACCES;
4436 	}
4437 	return 0;
4438 }
4439 
4440 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4441 			     u32 regno, int off, int size,
4442 			     enum bpf_access_type t)
4443 {
4444 	struct bpf_reg_state *regs = cur_regs(env);
4445 	struct bpf_reg_state *reg = &regs[regno];
4446 	struct bpf_insn_access_aux info = {};
4447 	bool valid;
4448 
4449 	if (reg->smin_value < 0) {
4450 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4451 			regno);
4452 		return -EACCES;
4453 	}
4454 
4455 	switch (reg->type) {
4456 	case PTR_TO_SOCK_COMMON:
4457 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4458 		break;
4459 	case PTR_TO_SOCKET:
4460 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4461 		break;
4462 	case PTR_TO_TCP_SOCK:
4463 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4464 		break;
4465 	case PTR_TO_XDP_SOCK:
4466 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4467 		break;
4468 	default:
4469 		valid = false;
4470 	}
4471 
4472 
4473 	if (valid) {
4474 		env->insn_aux_data[insn_idx].ctx_field_size =
4475 			info.ctx_field_size;
4476 		return 0;
4477 	}
4478 
4479 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4480 		regno, reg_type_str(env, reg->type), off, size);
4481 
4482 	return -EACCES;
4483 }
4484 
4485 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4486 {
4487 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4488 }
4489 
4490 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4491 {
4492 	const struct bpf_reg_state *reg = reg_state(env, regno);
4493 
4494 	return reg->type == PTR_TO_CTX;
4495 }
4496 
4497 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4498 {
4499 	const struct bpf_reg_state *reg = reg_state(env, regno);
4500 
4501 	return type_is_sk_pointer(reg->type);
4502 }
4503 
4504 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4505 {
4506 	const struct bpf_reg_state *reg = reg_state(env, regno);
4507 
4508 	return type_is_pkt_pointer(reg->type);
4509 }
4510 
4511 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4512 {
4513 	const struct bpf_reg_state *reg = reg_state(env, regno);
4514 
4515 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4516 	return reg->type == PTR_TO_FLOW_KEYS;
4517 }
4518 
4519 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4520 {
4521 	/* A referenced register is always trusted. */
4522 	if (reg->ref_obj_id)
4523 		return true;
4524 
4525 	/* If a register is not referenced, it is trusted if it has the
4526 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4527 	 * other type modifiers may be safe, but we elect to take an opt-in
4528 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4529 	 * not.
4530 	 *
4531 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4532 	 * for whether a register is trusted.
4533 	 */
4534 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4535 	       !bpf_type_has_unsafe_modifiers(reg->type);
4536 }
4537 
4538 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4539 {
4540 	return reg->type & MEM_RCU;
4541 }
4542 
4543 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4544 				   const struct bpf_reg_state *reg,
4545 				   int off, int size, bool strict)
4546 {
4547 	struct tnum reg_off;
4548 	int ip_align;
4549 
4550 	/* Byte size accesses are always allowed. */
4551 	if (!strict || size == 1)
4552 		return 0;
4553 
4554 	/* For platforms that do not have a Kconfig enabling
4555 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4556 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4557 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4558 	 * to this code only in strict mode where we want to emulate
4559 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4560 	 * unconditional IP align value of '2'.
4561 	 */
4562 	ip_align = 2;
4563 
4564 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4565 	if (!tnum_is_aligned(reg_off, size)) {
4566 		char tn_buf[48];
4567 
4568 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4569 		verbose(env,
4570 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4571 			ip_align, tn_buf, reg->off, off, size);
4572 		return -EACCES;
4573 	}
4574 
4575 	return 0;
4576 }
4577 
4578 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4579 				       const struct bpf_reg_state *reg,
4580 				       const char *pointer_desc,
4581 				       int off, int size, bool strict)
4582 {
4583 	struct tnum reg_off;
4584 
4585 	/* Byte size accesses are always allowed. */
4586 	if (!strict || size == 1)
4587 		return 0;
4588 
4589 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4590 	if (!tnum_is_aligned(reg_off, size)) {
4591 		char tn_buf[48];
4592 
4593 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4594 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4595 			pointer_desc, tn_buf, reg->off, off, size);
4596 		return -EACCES;
4597 	}
4598 
4599 	return 0;
4600 }
4601 
4602 static int check_ptr_alignment(struct bpf_verifier_env *env,
4603 			       const struct bpf_reg_state *reg, int off,
4604 			       int size, bool strict_alignment_once)
4605 {
4606 	bool strict = env->strict_alignment || strict_alignment_once;
4607 	const char *pointer_desc = "";
4608 
4609 	switch (reg->type) {
4610 	case PTR_TO_PACKET:
4611 	case PTR_TO_PACKET_META:
4612 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4613 		 * right in front, treat it the very same way.
4614 		 */
4615 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4616 	case PTR_TO_FLOW_KEYS:
4617 		pointer_desc = "flow keys ";
4618 		break;
4619 	case PTR_TO_MAP_KEY:
4620 		pointer_desc = "key ";
4621 		break;
4622 	case PTR_TO_MAP_VALUE:
4623 		pointer_desc = "value ";
4624 		break;
4625 	case PTR_TO_CTX:
4626 		pointer_desc = "context ";
4627 		break;
4628 	case PTR_TO_STACK:
4629 		pointer_desc = "stack ";
4630 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4631 		 * and check_stack_read_fixed_off() relies on stack accesses being
4632 		 * aligned.
4633 		 */
4634 		strict = true;
4635 		break;
4636 	case PTR_TO_SOCKET:
4637 		pointer_desc = "sock ";
4638 		break;
4639 	case PTR_TO_SOCK_COMMON:
4640 		pointer_desc = "sock_common ";
4641 		break;
4642 	case PTR_TO_TCP_SOCK:
4643 		pointer_desc = "tcp_sock ";
4644 		break;
4645 	case PTR_TO_XDP_SOCK:
4646 		pointer_desc = "xdp_sock ";
4647 		break;
4648 	default:
4649 		break;
4650 	}
4651 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4652 					   strict);
4653 }
4654 
4655 static int update_stack_depth(struct bpf_verifier_env *env,
4656 			      const struct bpf_func_state *func,
4657 			      int off)
4658 {
4659 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4660 
4661 	if (stack >= -off)
4662 		return 0;
4663 
4664 	/* update known max for given subprogram */
4665 	env->subprog_info[func->subprogno].stack_depth = -off;
4666 	return 0;
4667 }
4668 
4669 /* starting from main bpf function walk all instructions of the function
4670  * and recursively walk all callees that given function can call.
4671  * Ignore jump and exit insns.
4672  * Since recursion is prevented by check_cfg() this algorithm
4673  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4674  */
4675 static int check_max_stack_depth(struct bpf_verifier_env *env)
4676 {
4677 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4678 	struct bpf_subprog_info *subprog = env->subprog_info;
4679 	struct bpf_insn *insn = env->prog->insnsi;
4680 	bool tail_call_reachable = false;
4681 	int ret_insn[MAX_CALL_FRAMES];
4682 	int ret_prog[MAX_CALL_FRAMES];
4683 	int j;
4684 
4685 process_func:
4686 	/* protect against potential stack overflow that might happen when
4687 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4688 	 * depth for such case down to 256 so that the worst case scenario
4689 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4690 	 * 8k).
4691 	 *
4692 	 * To get the idea what might happen, see an example:
4693 	 * func1 -> sub rsp, 128
4694 	 *  subfunc1 -> sub rsp, 256
4695 	 *  tailcall1 -> add rsp, 256
4696 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4697 	 *   subfunc2 -> sub rsp, 64
4698 	 *   subfunc22 -> sub rsp, 128
4699 	 *   tailcall2 -> add rsp, 128
4700 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4701 	 *
4702 	 * tailcall will unwind the current stack frame but it will not get rid
4703 	 * of caller's stack as shown on the example above.
4704 	 */
4705 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4706 		verbose(env,
4707 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4708 			depth);
4709 		return -EACCES;
4710 	}
4711 	/* round up to 32-bytes, since this is granularity
4712 	 * of interpreter stack size
4713 	 */
4714 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4715 	if (depth > MAX_BPF_STACK) {
4716 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4717 			frame + 1, depth);
4718 		return -EACCES;
4719 	}
4720 continue_func:
4721 	subprog_end = subprog[idx + 1].start;
4722 	for (; i < subprog_end; i++) {
4723 		int next_insn;
4724 
4725 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4726 			continue;
4727 		/* remember insn and function to return to */
4728 		ret_insn[frame] = i + 1;
4729 		ret_prog[frame] = idx;
4730 
4731 		/* find the callee */
4732 		next_insn = i + insn[i].imm + 1;
4733 		idx = find_subprog(env, next_insn);
4734 		if (idx < 0) {
4735 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4736 				  next_insn);
4737 			return -EFAULT;
4738 		}
4739 		if (subprog[idx].is_async_cb) {
4740 			if (subprog[idx].has_tail_call) {
4741 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4742 				return -EFAULT;
4743 			}
4744 			 /* async callbacks don't increase bpf prog stack size */
4745 			continue;
4746 		}
4747 		i = next_insn;
4748 
4749 		if (subprog[idx].has_tail_call)
4750 			tail_call_reachable = true;
4751 
4752 		frame++;
4753 		if (frame >= MAX_CALL_FRAMES) {
4754 			verbose(env, "the call stack of %d frames is too deep !\n",
4755 				frame);
4756 			return -E2BIG;
4757 		}
4758 		goto process_func;
4759 	}
4760 	/* if tail call got detected across bpf2bpf calls then mark each of the
4761 	 * currently present subprog frames as tail call reachable subprogs;
4762 	 * this info will be utilized by JIT so that we will be preserving the
4763 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4764 	 */
4765 	if (tail_call_reachable)
4766 		for (j = 0; j < frame; j++)
4767 			subprog[ret_prog[j]].tail_call_reachable = true;
4768 	if (subprog[0].tail_call_reachable)
4769 		env->prog->aux->tail_call_reachable = true;
4770 
4771 	/* end of for() loop means the last insn of the 'subprog'
4772 	 * was reached. Doesn't matter whether it was JA or EXIT
4773 	 */
4774 	if (frame == 0)
4775 		return 0;
4776 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4777 	frame--;
4778 	i = ret_insn[frame];
4779 	idx = ret_prog[frame];
4780 	goto continue_func;
4781 }
4782 
4783 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4784 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4785 				  const struct bpf_insn *insn, int idx)
4786 {
4787 	int start = idx + insn->imm + 1, subprog;
4788 
4789 	subprog = find_subprog(env, start);
4790 	if (subprog < 0) {
4791 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4792 			  start);
4793 		return -EFAULT;
4794 	}
4795 	return env->subprog_info[subprog].stack_depth;
4796 }
4797 #endif
4798 
4799 static int __check_buffer_access(struct bpf_verifier_env *env,
4800 				 const char *buf_info,
4801 				 const struct bpf_reg_state *reg,
4802 				 int regno, int off, int size)
4803 {
4804 	if (off < 0) {
4805 		verbose(env,
4806 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4807 			regno, buf_info, off, size);
4808 		return -EACCES;
4809 	}
4810 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4811 		char tn_buf[48];
4812 
4813 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4814 		verbose(env,
4815 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4816 			regno, off, tn_buf);
4817 		return -EACCES;
4818 	}
4819 
4820 	return 0;
4821 }
4822 
4823 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4824 				  const struct bpf_reg_state *reg,
4825 				  int regno, int off, int size)
4826 {
4827 	int err;
4828 
4829 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4830 	if (err)
4831 		return err;
4832 
4833 	if (off + size > env->prog->aux->max_tp_access)
4834 		env->prog->aux->max_tp_access = off + size;
4835 
4836 	return 0;
4837 }
4838 
4839 static int check_buffer_access(struct bpf_verifier_env *env,
4840 			       const struct bpf_reg_state *reg,
4841 			       int regno, int off, int size,
4842 			       bool zero_size_allowed,
4843 			       u32 *max_access)
4844 {
4845 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4846 	int err;
4847 
4848 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4849 	if (err)
4850 		return err;
4851 
4852 	if (off + size > *max_access)
4853 		*max_access = off + size;
4854 
4855 	return 0;
4856 }
4857 
4858 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4859 static void zext_32_to_64(struct bpf_reg_state *reg)
4860 {
4861 	reg->var_off = tnum_subreg(reg->var_off);
4862 	__reg_assign_32_into_64(reg);
4863 }
4864 
4865 /* truncate register to smaller size (in bytes)
4866  * must be called with size < BPF_REG_SIZE
4867  */
4868 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4869 {
4870 	u64 mask;
4871 
4872 	/* clear high bits in bit representation */
4873 	reg->var_off = tnum_cast(reg->var_off, size);
4874 
4875 	/* fix arithmetic bounds */
4876 	mask = ((u64)1 << (size * 8)) - 1;
4877 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4878 		reg->umin_value &= mask;
4879 		reg->umax_value &= mask;
4880 	} else {
4881 		reg->umin_value = 0;
4882 		reg->umax_value = mask;
4883 	}
4884 	reg->smin_value = reg->umin_value;
4885 	reg->smax_value = reg->umax_value;
4886 
4887 	/* If size is smaller than 32bit register the 32bit register
4888 	 * values are also truncated so we push 64-bit bounds into
4889 	 * 32-bit bounds. Above were truncated < 32-bits already.
4890 	 */
4891 	if (size >= 4)
4892 		return;
4893 	__reg_combine_64_into_32(reg);
4894 }
4895 
4896 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4897 {
4898 	/* A map is considered read-only if the following condition are true:
4899 	 *
4900 	 * 1) BPF program side cannot change any of the map content. The
4901 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4902 	 *    and was set at map creation time.
4903 	 * 2) The map value(s) have been initialized from user space by a
4904 	 *    loader and then "frozen", such that no new map update/delete
4905 	 *    operations from syscall side are possible for the rest of
4906 	 *    the map's lifetime from that point onwards.
4907 	 * 3) Any parallel/pending map update/delete operations from syscall
4908 	 *    side have been completed. Only after that point, it's safe to
4909 	 *    assume that map value(s) are immutable.
4910 	 */
4911 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4912 	       READ_ONCE(map->frozen) &&
4913 	       !bpf_map_write_active(map);
4914 }
4915 
4916 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4917 {
4918 	void *ptr;
4919 	u64 addr;
4920 	int err;
4921 
4922 	err = map->ops->map_direct_value_addr(map, &addr, off);
4923 	if (err)
4924 		return err;
4925 	ptr = (void *)(long)addr + off;
4926 
4927 	switch (size) {
4928 	case sizeof(u8):
4929 		*val = (u64)*(u8 *)ptr;
4930 		break;
4931 	case sizeof(u16):
4932 		*val = (u64)*(u16 *)ptr;
4933 		break;
4934 	case sizeof(u32):
4935 		*val = (u64)*(u32 *)ptr;
4936 		break;
4937 	case sizeof(u64):
4938 		*val = *(u64 *)ptr;
4939 		break;
4940 	default:
4941 		return -EINVAL;
4942 	}
4943 	return 0;
4944 }
4945 
4946 #define BTF_TYPE_SAFE_NESTED(__type)  __PASTE(__type, __safe_fields)
4947 
4948 BTF_TYPE_SAFE_NESTED(struct task_struct) {
4949 	const cpumask_t *cpus_ptr;
4950 };
4951 
4952 static bool nested_ptr_is_trusted(struct bpf_verifier_env *env,
4953 				  struct bpf_reg_state *reg,
4954 				  int off)
4955 {
4956 	/* If its parent is not trusted, it can't regain its trusted status. */
4957 	if (!is_trusted_reg(reg))
4958 		return false;
4959 
4960 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_NESTED(struct task_struct));
4961 
4962 	return btf_nested_type_is_trusted(&env->log, reg, off);
4963 }
4964 
4965 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4966 				   struct bpf_reg_state *regs,
4967 				   int regno, int off, int size,
4968 				   enum bpf_access_type atype,
4969 				   int value_regno)
4970 {
4971 	struct bpf_reg_state *reg = regs + regno;
4972 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4973 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4974 	enum bpf_type_flag flag = 0;
4975 	u32 btf_id;
4976 	int ret;
4977 
4978 	if (!env->allow_ptr_leaks) {
4979 		verbose(env,
4980 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4981 			tname);
4982 		return -EPERM;
4983 	}
4984 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
4985 		verbose(env,
4986 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
4987 			tname);
4988 		return -EINVAL;
4989 	}
4990 	if (off < 0) {
4991 		verbose(env,
4992 			"R%d is ptr_%s invalid negative access: off=%d\n",
4993 			regno, tname, off);
4994 		return -EACCES;
4995 	}
4996 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4997 		char tn_buf[48];
4998 
4999 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5000 		verbose(env,
5001 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
5002 			regno, tname, off, tn_buf);
5003 		return -EACCES;
5004 	}
5005 
5006 	if (reg->type & MEM_USER) {
5007 		verbose(env,
5008 			"R%d is ptr_%s access user memory: off=%d\n",
5009 			regno, tname, off);
5010 		return -EACCES;
5011 	}
5012 
5013 	if (reg->type & MEM_PERCPU) {
5014 		verbose(env,
5015 			"R%d is ptr_%s access percpu memory: off=%d\n",
5016 			regno, tname, off);
5017 		return -EACCES;
5018 	}
5019 
5020 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
5021 		if (!btf_is_kernel(reg->btf)) {
5022 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5023 			return -EFAULT;
5024 		}
5025 		ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
5026 	} else {
5027 		/* Writes are permitted with default btf_struct_access for
5028 		 * program allocated objects (which always have ref_obj_id > 0),
5029 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5030 		 */
5031 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
5032 			verbose(env, "only read is supported\n");
5033 			return -EACCES;
5034 		}
5035 
5036 		if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
5037 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5038 			return -EFAULT;
5039 		}
5040 
5041 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
5042 	}
5043 
5044 	if (ret < 0)
5045 		return ret;
5046 
5047 	/* If this is an untrusted pointer, all pointers formed by walking it
5048 	 * also inherit the untrusted flag.
5049 	 */
5050 	if (type_flag(reg->type) & PTR_UNTRUSTED)
5051 		flag |= PTR_UNTRUSTED;
5052 
5053 	/* By default any pointer obtained from walking a trusted pointer is no
5054 	 * longer trusted, unless the field being accessed has explicitly been
5055 	 * marked as inheriting its parent's state of trust.
5056 	 *
5057 	 * An RCU-protected pointer can also be deemed trusted if we are in an
5058 	 * RCU read region. This case is handled below.
5059 	 */
5060 	if (nested_ptr_is_trusted(env, reg, off))
5061 		flag |= PTR_TRUSTED;
5062 	else
5063 		flag &= ~PTR_TRUSTED;
5064 
5065 	if (flag & MEM_RCU) {
5066 		/* Mark value register as MEM_RCU only if it is protected by
5067 		 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU
5068 		 * itself can already indicate trustedness inside the rcu
5069 		 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since
5070 		 * it could be null in some cases.
5071 		 */
5072 		if (!env->cur_state->active_rcu_lock ||
5073 		    !(is_trusted_reg(reg) || is_rcu_reg(reg)))
5074 			flag &= ~MEM_RCU;
5075 		else
5076 			flag |= PTR_MAYBE_NULL;
5077 	} else if (reg->type & MEM_RCU) {
5078 		/* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged
5079 		 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively.
5080 		 */
5081 		flag |= PTR_UNTRUSTED;
5082 	}
5083 
5084 	if (atype == BPF_READ && value_regno >= 0)
5085 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
5086 
5087 	return 0;
5088 }
5089 
5090 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5091 				   struct bpf_reg_state *regs,
5092 				   int regno, int off, int size,
5093 				   enum bpf_access_type atype,
5094 				   int value_regno)
5095 {
5096 	struct bpf_reg_state *reg = regs + regno;
5097 	struct bpf_map *map = reg->map_ptr;
5098 	struct bpf_reg_state map_reg;
5099 	enum bpf_type_flag flag = 0;
5100 	const struct btf_type *t;
5101 	const char *tname;
5102 	u32 btf_id;
5103 	int ret;
5104 
5105 	if (!btf_vmlinux) {
5106 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5107 		return -ENOTSUPP;
5108 	}
5109 
5110 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5111 		verbose(env, "map_ptr access not supported for map type %d\n",
5112 			map->map_type);
5113 		return -ENOTSUPP;
5114 	}
5115 
5116 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5117 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5118 
5119 	if (!env->allow_ptr_leaks) {
5120 		verbose(env,
5121 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5122 			tname);
5123 		return -EPERM;
5124 	}
5125 
5126 	if (off < 0) {
5127 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
5128 			regno, tname, off);
5129 		return -EACCES;
5130 	}
5131 
5132 	if (atype != BPF_READ) {
5133 		verbose(env, "only read from %s is supported\n", tname);
5134 		return -EACCES;
5135 	}
5136 
5137 	/* Simulate access to a PTR_TO_BTF_ID */
5138 	memset(&map_reg, 0, sizeof(map_reg));
5139 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
5140 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
5141 	if (ret < 0)
5142 		return ret;
5143 
5144 	if (value_regno >= 0)
5145 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
5146 
5147 	return 0;
5148 }
5149 
5150 /* Check that the stack access at the given offset is within bounds. The
5151  * maximum valid offset is -1.
5152  *
5153  * The minimum valid offset is -MAX_BPF_STACK for writes, and
5154  * -state->allocated_stack for reads.
5155  */
5156 static int check_stack_slot_within_bounds(int off,
5157 					  struct bpf_func_state *state,
5158 					  enum bpf_access_type t)
5159 {
5160 	int min_valid_off;
5161 
5162 	if (t == BPF_WRITE)
5163 		min_valid_off = -MAX_BPF_STACK;
5164 	else
5165 		min_valid_off = -state->allocated_stack;
5166 
5167 	if (off < min_valid_off || off > -1)
5168 		return -EACCES;
5169 	return 0;
5170 }
5171 
5172 /* Check that the stack access at 'regno + off' falls within the maximum stack
5173  * bounds.
5174  *
5175  * 'off' includes `regno->offset`, but not its dynamic part (if any).
5176  */
5177 static int check_stack_access_within_bounds(
5178 		struct bpf_verifier_env *env,
5179 		int regno, int off, int access_size,
5180 		enum bpf_access_src src, enum bpf_access_type type)
5181 {
5182 	struct bpf_reg_state *regs = cur_regs(env);
5183 	struct bpf_reg_state *reg = regs + regno;
5184 	struct bpf_func_state *state = func(env, reg);
5185 	int min_off, max_off;
5186 	int err;
5187 	char *err_extra;
5188 
5189 	if (src == ACCESS_HELPER)
5190 		/* We don't know if helpers are reading or writing (or both). */
5191 		err_extra = " indirect access to";
5192 	else if (type == BPF_READ)
5193 		err_extra = " read from";
5194 	else
5195 		err_extra = " write to";
5196 
5197 	if (tnum_is_const(reg->var_off)) {
5198 		min_off = reg->var_off.value + off;
5199 		if (access_size > 0)
5200 			max_off = min_off + access_size - 1;
5201 		else
5202 			max_off = min_off;
5203 	} else {
5204 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
5205 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
5206 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
5207 				err_extra, regno);
5208 			return -EACCES;
5209 		}
5210 		min_off = reg->smin_value + off;
5211 		if (access_size > 0)
5212 			max_off = reg->smax_value + off + access_size - 1;
5213 		else
5214 			max_off = min_off;
5215 	}
5216 
5217 	err = check_stack_slot_within_bounds(min_off, state, type);
5218 	if (!err)
5219 		err = check_stack_slot_within_bounds(max_off, state, type);
5220 
5221 	if (err) {
5222 		if (tnum_is_const(reg->var_off)) {
5223 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5224 				err_extra, regno, off, access_size);
5225 		} else {
5226 			char tn_buf[48];
5227 
5228 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5229 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5230 				err_extra, regno, tn_buf, access_size);
5231 		}
5232 	}
5233 	return err;
5234 }
5235 
5236 /* check whether memory at (regno + off) is accessible for t = (read | write)
5237  * if t==write, value_regno is a register which value is stored into memory
5238  * if t==read, value_regno is a register which will receive the value from memory
5239  * if t==write && value_regno==-1, some unknown value is stored into memory
5240  * if t==read && value_regno==-1, don't care what we read from memory
5241  */
5242 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5243 			    int off, int bpf_size, enum bpf_access_type t,
5244 			    int value_regno, bool strict_alignment_once)
5245 {
5246 	struct bpf_reg_state *regs = cur_regs(env);
5247 	struct bpf_reg_state *reg = regs + regno;
5248 	struct bpf_func_state *state;
5249 	int size, err = 0;
5250 
5251 	size = bpf_size_to_bytes(bpf_size);
5252 	if (size < 0)
5253 		return size;
5254 
5255 	/* alignment checks will add in reg->off themselves */
5256 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
5257 	if (err)
5258 		return err;
5259 
5260 	/* for access checks, reg->off is just part of off */
5261 	off += reg->off;
5262 
5263 	if (reg->type == PTR_TO_MAP_KEY) {
5264 		if (t == BPF_WRITE) {
5265 			verbose(env, "write to change key R%d not allowed\n", regno);
5266 			return -EACCES;
5267 		}
5268 
5269 		err = check_mem_region_access(env, regno, off, size,
5270 					      reg->map_ptr->key_size, false);
5271 		if (err)
5272 			return err;
5273 		if (value_regno >= 0)
5274 			mark_reg_unknown(env, regs, value_regno);
5275 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5276 		struct btf_field *kptr_field = NULL;
5277 
5278 		if (t == BPF_WRITE && value_regno >= 0 &&
5279 		    is_pointer_value(env, value_regno)) {
5280 			verbose(env, "R%d leaks addr into map\n", value_regno);
5281 			return -EACCES;
5282 		}
5283 		err = check_map_access_type(env, regno, off, size, t);
5284 		if (err)
5285 			return err;
5286 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5287 		if (err)
5288 			return err;
5289 		if (tnum_is_const(reg->var_off))
5290 			kptr_field = btf_record_find(reg->map_ptr->record,
5291 						     off + reg->var_off.value, BPF_KPTR);
5292 		if (kptr_field) {
5293 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5294 		} else if (t == BPF_READ && value_regno >= 0) {
5295 			struct bpf_map *map = reg->map_ptr;
5296 
5297 			/* if map is read-only, track its contents as scalars */
5298 			if (tnum_is_const(reg->var_off) &&
5299 			    bpf_map_is_rdonly(map) &&
5300 			    map->ops->map_direct_value_addr) {
5301 				int map_off = off + reg->var_off.value;
5302 				u64 val = 0;
5303 
5304 				err = bpf_map_direct_read(map, map_off, size,
5305 							  &val);
5306 				if (err)
5307 					return err;
5308 
5309 				regs[value_regno].type = SCALAR_VALUE;
5310 				__mark_reg_known(&regs[value_regno], val);
5311 			} else {
5312 				mark_reg_unknown(env, regs, value_regno);
5313 			}
5314 		}
5315 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5316 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5317 
5318 		if (type_may_be_null(reg->type)) {
5319 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5320 				reg_type_str(env, reg->type));
5321 			return -EACCES;
5322 		}
5323 
5324 		if (t == BPF_WRITE && rdonly_mem) {
5325 			verbose(env, "R%d cannot write into %s\n",
5326 				regno, reg_type_str(env, reg->type));
5327 			return -EACCES;
5328 		}
5329 
5330 		if (t == BPF_WRITE && value_regno >= 0 &&
5331 		    is_pointer_value(env, value_regno)) {
5332 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5333 			return -EACCES;
5334 		}
5335 
5336 		err = check_mem_region_access(env, regno, off, size,
5337 					      reg->mem_size, false);
5338 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5339 			mark_reg_unknown(env, regs, value_regno);
5340 	} else if (reg->type == PTR_TO_CTX) {
5341 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5342 		struct btf *btf = NULL;
5343 		u32 btf_id = 0;
5344 
5345 		if (t == BPF_WRITE && value_regno >= 0 &&
5346 		    is_pointer_value(env, value_regno)) {
5347 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5348 			return -EACCES;
5349 		}
5350 
5351 		err = check_ptr_off_reg(env, reg, regno);
5352 		if (err < 0)
5353 			return err;
5354 
5355 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5356 				       &btf_id);
5357 		if (err)
5358 			verbose_linfo(env, insn_idx, "; ");
5359 		if (!err && t == BPF_READ && value_regno >= 0) {
5360 			/* ctx access returns either a scalar, or a
5361 			 * PTR_TO_PACKET[_META,_END]. In the latter
5362 			 * case, we know the offset is zero.
5363 			 */
5364 			if (reg_type == SCALAR_VALUE) {
5365 				mark_reg_unknown(env, regs, value_regno);
5366 			} else {
5367 				mark_reg_known_zero(env, regs,
5368 						    value_regno);
5369 				if (type_may_be_null(reg_type))
5370 					regs[value_regno].id = ++env->id_gen;
5371 				/* A load of ctx field could have different
5372 				 * actual load size with the one encoded in the
5373 				 * insn. When the dst is PTR, it is for sure not
5374 				 * a sub-register.
5375 				 */
5376 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5377 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5378 					regs[value_regno].btf = btf;
5379 					regs[value_regno].btf_id = btf_id;
5380 				}
5381 			}
5382 			regs[value_regno].type = reg_type;
5383 		}
5384 
5385 	} else if (reg->type == PTR_TO_STACK) {
5386 		/* Basic bounds checks. */
5387 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5388 		if (err)
5389 			return err;
5390 
5391 		state = func(env, reg);
5392 		err = update_stack_depth(env, state, off);
5393 		if (err)
5394 			return err;
5395 
5396 		if (t == BPF_READ)
5397 			err = check_stack_read(env, regno, off, size,
5398 					       value_regno);
5399 		else
5400 			err = check_stack_write(env, regno, off, size,
5401 						value_regno, insn_idx);
5402 	} else if (reg_is_pkt_pointer(reg)) {
5403 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5404 			verbose(env, "cannot write into packet\n");
5405 			return -EACCES;
5406 		}
5407 		if (t == BPF_WRITE && value_regno >= 0 &&
5408 		    is_pointer_value(env, value_regno)) {
5409 			verbose(env, "R%d leaks addr into packet\n",
5410 				value_regno);
5411 			return -EACCES;
5412 		}
5413 		err = check_packet_access(env, regno, off, size, false);
5414 		if (!err && t == BPF_READ && value_regno >= 0)
5415 			mark_reg_unknown(env, regs, value_regno);
5416 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5417 		if (t == BPF_WRITE && value_regno >= 0 &&
5418 		    is_pointer_value(env, value_regno)) {
5419 			verbose(env, "R%d leaks addr into flow keys\n",
5420 				value_regno);
5421 			return -EACCES;
5422 		}
5423 
5424 		err = check_flow_keys_access(env, off, size);
5425 		if (!err && t == BPF_READ && value_regno >= 0)
5426 			mark_reg_unknown(env, regs, value_regno);
5427 	} else if (type_is_sk_pointer(reg->type)) {
5428 		if (t == BPF_WRITE) {
5429 			verbose(env, "R%d cannot write into %s\n",
5430 				regno, reg_type_str(env, reg->type));
5431 			return -EACCES;
5432 		}
5433 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5434 		if (!err && value_regno >= 0)
5435 			mark_reg_unknown(env, regs, value_regno);
5436 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5437 		err = check_tp_buffer_access(env, reg, regno, off, size);
5438 		if (!err && t == BPF_READ && value_regno >= 0)
5439 			mark_reg_unknown(env, regs, value_regno);
5440 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5441 		   !type_may_be_null(reg->type)) {
5442 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5443 					      value_regno);
5444 	} else if (reg->type == CONST_PTR_TO_MAP) {
5445 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5446 					      value_regno);
5447 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5448 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5449 		u32 *max_access;
5450 
5451 		if (rdonly_mem) {
5452 			if (t == BPF_WRITE) {
5453 				verbose(env, "R%d cannot write into %s\n",
5454 					regno, reg_type_str(env, reg->type));
5455 				return -EACCES;
5456 			}
5457 			max_access = &env->prog->aux->max_rdonly_access;
5458 		} else {
5459 			max_access = &env->prog->aux->max_rdwr_access;
5460 		}
5461 
5462 		err = check_buffer_access(env, reg, regno, off, size, false,
5463 					  max_access);
5464 
5465 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5466 			mark_reg_unknown(env, regs, value_regno);
5467 	} else {
5468 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5469 			reg_type_str(env, reg->type));
5470 		return -EACCES;
5471 	}
5472 
5473 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5474 	    regs[value_regno].type == SCALAR_VALUE) {
5475 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5476 		coerce_reg_to_size(&regs[value_regno], size);
5477 	}
5478 	return err;
5479 }
5480 
5481 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5482 {
5483 	int load_reg;
5484 	int err;
5485 
5486 	switch (insn->imm) {
5487 	case BPF_ADD:
5488 	case BPF_ADD | BPF_FETCH:
5489 	case BPF_AND:
5490 	case BPF_AND | BPF_FETCH:
5491 	case BPF_OR:
5492 	case BPF_OR | BPF_FETCH:
5493 	case BPF_XOR:
5494 	case BPF_XOR | BPF_FETCH:
5495 	case BPF_XCHG:
5496 	case BPF_CMPXCHG:
5497 		break;
5498 	default:
5499 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5500 		return -EINVAL;
5501 	}
5502 
5503 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5504 		verbose(env, "invalid atomic operand size\n");
5505 		return -EINVAL;
5506 	}
5507 
5508 	/* check src1 operand */
5509 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
5510 	if (err)
5511 		return err;
5512 
5513 	/* check src2 operand */
5514 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5515 	if (err)
5516 		return err;
5517 
5518 	if (insn->imm == BPF_CMPXCHG) {
5519 		/* Check comparison of R0 with memory location */
5520 		const u32 aux_reg = BPF_REG_0;
5521 
5522 		err = check_reg_arg(env, aux_reg, SRC_OP);
5523 		if (err)
5524 			return err;
5525 
5526 		if (is_pointer_value(env, aux_reg)) {
5527 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5528 			return -EACCES;
5529 		}
5530 	}
5531 
5532 	if (is_pointer_value(env, insn->src_reg)) {
5533 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5534 		return -EACCES;
5535 	}
5536 
5537 	if (is_ctx_reg(env, insn->dst_reg) ||
5538 	    is_pkt_reg(env, insn->dst_reg) ||
5539 	    is_flow_key_reg(env, insn->dst_reg) ||
5540 	    is_sk_reg(env, insn->dst_reg)) {
5541 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5542 			insn->dst_reg,
5543 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5544 		return -EACCES;
5545 	}
5546 
5547 	if (insn->imm & BPF_FETCH) {
5548 		if (insn->imm == BPF_CMPXCHG)
5549 			load_reg = BPF_REG_0;
5550 		else
5551 			load_reg = insn->src_reg;
5552 
5553 		/* check and record load of old value */
5554 		err = check_reg_arg(env, load_reg, DST_OP);
5555 		if (err)
5556 			return err;
5557 	} else {
5558 		/* This instruction accesses a memory location but doesn't
5559 		 * actually load it into a register.
5560 		 */
5561 		load_reg = -1;
5562 	}
5563 
5564 	/* Check whether we can read the memory, with second call for fetch
5565 	 * case to simulate the register fill.
5566 	 */
5567 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5568 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5569 	if (!err && load_reg >= 0)
5570 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5571 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5572 				       true);
5573 	if (err)
5574 		return err;
5575 
5576 	/* Check whether we can write into the same memory. */
5577 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5578 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5579 	if (err)
5580 		return err;
5581 
5582 	return 0;
5583 }
5584 
5585 /* When register 'regno' is used to read the stack (either directly or through
5586  * a helper function) make sure that it's within stack boundary and, depending
5587  * on the access type, that all elements of the stack are initialized.
5588  *
5589  * 'off' includes 'regno->off', but not its dynamic part (if any).
5590  *
5591  * All registers that have been spilled on the stack in the slots within the
5592  * read offsets are marked as read.
5593  */
5594 static int check_stack_range_initialized(
5595 		struct bpf_verifier_env *env, int regno, int off,
5596 		int access_size, bool zero_size_allowed,
5597 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5598 {
5599 	struct bpf_reg_state *reg = reg_state(env, regno);
5600 	struct bpf_func_state *state = func(env, reg);
5601 	int err, min_off, max_off, i, j, slot, spi;
5602 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5603 	enum bpf_access_type bounds_check_type;
5604 	/* Some accesses can write anything into the stack, others are
5605 	 * read-only.
5606 	 */
5607 	bool clobber = false;
5608 
5609 	if (access_size == 0 && !zero_size_allowed) {
5610 		verbose(env, "invalid zero-sized read\n");
5611 		return -EACCES;
5612 	}
5613 
5614 	if (type == ACCESS_HELPER) {
5615 		/* The bounds checks for writes are more permissive than for
5616 		 * reads. However, if raw_mode is not set, we'll do extra
5617 		 * checks below.
5618 		 */
5619 		bounds_check_type = BPF_WRITE;
5620 		clobber = true;
5621 	} else {
5622 		bounds_check_type = BPF_READ;
5623 	}
5624 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5625 					       type, bounds_check_type);
5626 	if (err)
5627 		return err;
5628 
5629 
5630 	if (tnum_is_const(reg->var_off)) {
5631 		min_off = max_off = reg->var_off.value + off;
5632 	} else {
5633 		/* Variable offset is prohibited for unprivileged mode for
5634 		 * simplicity since it requires corresponding support in
5635 		 * Spectre masking for stack ALU.
5636 		 * See also retrieve_ptr_limit().
5637 		 */
5638 		if (!env->bypass_spec_v1) {
5639 			char tn_buf[48];
5640 
5641 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5642 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5643 				regno, err_extra, tn_buf);
5644 			return -EACCES;
5645 		}
5646 		/* Only initialized buffer on stack is allowed to be accessed
5647 		 * with variable offset. With uninitialized buffer it's hard to
5648 		 * guarantee that whole memory is marked as initialized on
5649 		 * helper return since specific bounds are unknown what may
5650 		 * cause uninitialized stack leaking.
5651 		 */
5652 		if (meta && meta->raw_mode)
5653 			meta = NULL;
5654 
5655 		min_off = reg->smin_value + off;
5656 		max_off = reg->smax_value + off;
5657 	}
5658 
5659 	if (meta && meta->raw_mode) {
5660 		/* Ensure we won't be overwriting dynptrs when simulating byte
5661 		 * by byte access in check_helper_call using meta.access_size.
5662 		 * This would be a problem if we have a helper in the future
5663 		 * which takes:
5664 		 *
5665 		 *	helper(uninit_mem, len, dynptr)
5666 		 *
5667 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
5668 		 * may end up writing to dynptr itself when touching memory from
5669 		 * arg 1. This can be relaxed on a case by case basis for known
5670 		 * safe cases, but reject due to the possibilitiy of aliasing by
5671 		 * default.
5672 		 */
5673 		for (i = min_off; i < max_off + access_size; i++) {
5674 			int stack_off = -i - 1;
5675 
5676 			spi = __get_spi(i);
5677 			/* raw_mode may write past allocated_stack */
5678 			if (state->allocated_stack <= stack_off)
5679 				continue;
5680 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
5681 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
5682 				return -EACCES;
5683 			}
5684 		}
5685 		meta->access_size = access_size;
5686 		meta->regno = regno;
5687 		return 0;
5688 	}
5689 
5690 	for (i = min_off; i < max_off + access_size; i++) {
5691 		u8 *stype;
5692 
5693 		slot = -i - 1;
5694 		spi = slot / BPF_REG_SIZE;
5695 		if (state->allocated_stack <= slot)
5696 			goto err;
5697 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5698 		if (*stype == STACK_MISC)
5699 			goto mark;
5700 		if (*stype == STACK_ZERO) {
5701 			if (clobber) {
5702 				/* helper can write anything into the stack */
5703 				*stype = STACK_MISC;
5704 			}
5705 			goto mark;
5706 		}
5707 
5708 		if (is_spilled_reg(&state->stack[spi]) &&
5709 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5710 		     env->allow_ptr_leaks)) {
5711 			if (clobber) {
5712 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5713 				for (j = 0; j < BPF_REG_SIZE; j++)
5714 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5715 			}
5716 			goto mark;
5717 		}
5718 
5719 err:
5720 		if (tnum_is_const(reg->var_off)) {
5721 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5722 				err_extra, regno, min_off, i - min_off, access_size);
5723 		} else {
5724 			char tn_buf[48];
5725 
5726 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5727 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5728 				err_extra, regno, tn_buf, i - min_off, access_size);
5729 		}
5730 		return -EACCES;
5731 mark:
5732 		/* reading any byte out of 8-byte 'spill_slot' will cause
5733 		 * the whole slot to be marked as 'read'
5734 		 */
5735 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5736 			      state->stack[spi].spilled_ptr.parent,
5737 			      REG_LIVE_READ64);
5738 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5739 		 * be sure that whether stack slot is written to or not. Hence,
5740 		 * we must still conservatively propagate reads upwards even if
5741 		 * helper may write to the entire memory range.
5742 		 */
5743 	}
5744 	return update_stack_depth(env, state, min_off);
5745 }
5746 
5747 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5748 				   int access_size, bool zero_size_allowed,
5749 				   struct bpf_call_arg_meta *meta)
5750 {
5751 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5752 	u32 *max_access;
5753 
5754 	switch (base_type(reg->type)) {
5755 	case PTR_TO_PACKET:
5756 	case PTR_TO_PACKET_META:
5757 		return check_packet_access(env, regno, reg->off, access_size,
5758 					   zero_size_allowed);
5759 	case PTR_TO_MAP_KEY:
5760 		if (meta && meta->raw_mode) {
5761 			verbose(env, "R%d cannot write into %s\n", regno,
5762 				reg_type_str(env, reg->type));
5763 			return -EACCES;
5764 		}
5765 		return check_mem_region_access(env, regno, reg->off, access_size,
5766 					       reg->map_ptr->key_size, false);
5767 	case PTR_TO_MAP_VALUE:
5768 		if (check_map_access_type(env, regno, reg->off, access_size,
5769 					  meta && meta->raw_mode ? BPF_WRITE :
5770 					  BPF_READ))
5771 			return -EACCES;
5772 		return check_map_access(env, regno, reg->off, access_size,
5773 					zero_size_allowed, ACCESS_HELPER);
5774 	case PTR_TO_MEM:
5775 		if (type_is_rdonly_mem(reg->type)) {
5776 			if (meta && meta->raw_mode) {
5777 				verbose(env, "R%d cannot write into %s\n", regno,
5778 					reg_type_str(env, reg->type));
5779 				return -EACCES;
5780 			}
5781 		}
5782 		return check_mem_region_access(env, regno, reg->off,
5783 					       access_size, reg->mem_size,
5784 					       zero_size_allowed);
5785 	case PTR_TO_BUF:
5786 		if (type_is_rdonly_mem(reg->type)) {
5787 			if (meta && meta->raw_mode) {
5788 				verbose(env, "R%d cannot write into %s\n", regno,
5789 					reg_type_str(env, reg->type));
5790 				return -EACCES;
5791 			}
5792 
5793 			max_access = &env->prog->aux->max_rdonly_access;
5794 		} else {
5795 			max_access = &env->prog->aux->max_rdwr_access;
5796 		}
5797 		return check_buffer_access(env, reg, regno, reg->off,
5798 					   access_size, zero_size_allowed,
5799 					   max_access);
5800 	case PTR_TO_STACK:
5801 		return check_stack_range_initialized(
5802 				env,
5803 				regno, reg->off, access_size,
5804 				zero_size_allowed, ACCESS_HELPER, meta);
5805 	case PTR_TO_CTX:
5806 		/* in case the function doesn't know how to access the context,
5807 		 * (because we are in a program of type SYSCALL for example), we
5808 		 * can not statically check its size.
5809 		 * Dynamically check it now.
5810 		 */
5811 		if (!env->ops->convert_ctx_access) {
5812 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5813 			int offset = access_size - 1;
5814 
5815 			/* Allow zero-byte read from PTR_TO_CTX */
5816 			if (access_size == 0)
5817 				return zero_size_allowed ? 0 : -EACCES;
5818 
5819 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5820 						atype, -1, false);
5821 		}
5822 
5823 		fallthrough;
5824 	default: /* scalar_value or invalid ptr */
5825 		/* Allow zero-byte read from NULL, regardless of pointer type */
5826 		if (zero_size_allowed && access_size == 0 &&
5827 		    register_is_null(reg))
5828 			return 0;
5829 
5830 		verbose(env, "R%d type=%s ", regno,
5831 			reg_type_str(env, reg->type));
5832 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5833 		return -EACCES;
5834 	}
5835 }
5836 
5837 static int check_mem_size_reg(struct bpf_verifier_env *env,
5838 			      struct bpf_reg_state *reg, u32 regno,
5839 			      bool zero_size_allowed,
5840 			      struct bpf_call_arg_meta *meta)
5841 {
5842 	int err;
5843 
5844 	/* This is used to refine r0 return value bounds for helpers
5845 	 * that enforce this value as an upper bound on return values.
5846 	 * See do_refine_retval_range() for helpers that can refine
5847 	 * the return value. C type of helper is u32 so we pull register
5848 	 * bound from umax_value however, if negative verifier errors
5849 	 * out. Only upper bounds can be learned because retval is an
5850 	 * int type and negative retvals are allowed.
5851 	 */
5852 	meta->msize_max_value = reg->umax_value;
5853 
5854 	/* The register is SCALAR_VALUE; the access check
5855 	 * happens using its boundaries.
5856 	 */
5857 	if (!tnum_is_const(reg->var_off))
5858 		/* For unprivileged variable accesses, disable raw
5859 		 * mode so that the program is required to
5860 		 * initialize all the memory that the helper could
5861 		 * just partially fill up.
5862 		 */
5863 		meta = NULL;
5864 
5865 	if (reg->smin_value < 0) {
5866 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5867 			regno);
5868 		return -EACCES;
5869 	}
5870 
5871 	if (reg->umin_value == 0) {
5872 		err = check_helper_mem_access(env, regno - 1, 0,
5873 					      zero_size_allowed,
5874 					      meta);
5875 		if (err)
5876 			return err;
5877 	}
5878 
5879 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5880 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5881 			regno);
5882 		return -EACCES;
5883 	}
5884 	err = check_helper_mem_access(env, regno - 1,
5885 				      reg->umax_value,
5886 				      zero_size_allowed, meta);
5887 	if (!err)
5888 		err = mark_chain_precision(env, regno);
5889 	return err;
5890 }
5891 
5892 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5893 		   u32 regno, u32 mem_size)
5894 {
5895 	bool may_be_null = type_may_be_null(reg->type);
5896 	struct bpf_reg_state saved_reg;
5897 	struct bpf_call_arg_meta meta;
5898 	int err;
5899 
5900 	if (register_is_null(reg))
5901 		return 0;
5902 
5903 	memset(&meta, 0, sizeof(meta));
5904 	/* Assuming that the register contains a value check if the memory
5905 	 * access is safe. Temporarily save and restore the register's state as
5906 	 * the conversion shouldn't be visible to a caller.
5907 	 */
5908 	if (may_be_null) {
5909 		saved_reg = *reg;
5910 		mark_ptr_not_null_reg(reg);
5911 	}
5912 
5913 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5914 	/* Check access for BPF_WRITE */
5915 	meta.raw_mode = true;
5916 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5917 
5918 	if (may_be_null)
5919 		*reg = saved_reg;
5920 
5921 	return err;
5922 }
5923 
5924 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5925 				    u32 regno)
5926 {
5927 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5928 	bool may_be_null = type_may_be_null(mem_reg->type);
5929 	struct bpf_reg_state saved_reg;
5930 	struct bpf_call_arg_meta meta;
5931 	int err;
5932 
5933 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5934 
5935 	memset(&meta, 0, sizeof(meta));
5936 
5937 	if (may_be_null) {
5938 		saved_reg = *mem_reg;
5939 		mark_ptr_not_null_reg(mem_reg);
5940 	}
5941 
5942 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5943 	/* Check access for BPF_WRITE */
5944 	meta.raw_mode = true;
5945 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5946 
5947 	if (may_be_null)
5948 		*mem_reg = saved_reg;
5949 	return err;
5950 }
5951 
5952 /* Implementation details:
5953  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5954  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
5955  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5956  * Two separate bpf_obj_new will also have different reg->id.
5957  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5958  * clears reg->id after value_or_null->value transition, since the verifier only
5959  * cares about the range of access to valid map value pointer and doesn't care
5960  * about actual address of the map element.
5961  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5962  * reg->id > 0 after value_or_null->value transition. By doing so
5963  * two bpf_map_lookups will be considered two different pointers that
5964  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5965  * returned from bpf_obj_new.
5966  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5967  * dead-locks.
5968  * Since only one bpf_spin_lock is allowed the checks are simpler than
5969  * reg_is_refcounted() logic. The verifier needs to remember only
5970  * one spin_lock instead of array of acquired_refs.
5971  * cur_state->active_lock remembers which map value element or allocated
5972  * object got locked and clears it after bpf_spin_unlock.
5973  */
5974 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5975 			     bool is_lock)
5976 {
5977 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5978 	struct bpf_verifier_state *cur = env->cur_state;
5979 	bool is_const = tnum_is_const(reg->var_off);
5980 	u64 val = reg->var_off.value;
5981 	struct bpf_map *map = NULL;
5982 	struct btf *btf = NULL;
5983 	struct btf_record *rec;
5984 
5985 	if (!is_const) {
5986 		verbose(env,
5987 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5988 			regno);
5989 		return -EINVAL;
5990 	}
5991 	if (reg->type == PTR_TO_MAP_VALUE) {
5992 		map = reg->map_ptr;
5993 		if (!map->btf) {
5994 			verbose(env,
5995 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5996 				map->name);
5997 			return -EINVAL;
5998 		}
5999 	} else {
6000 		btf = reg->btf;
6001 	}
6002 
6003 	rec = reg_btf_record(reg);
6004 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
6005 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
6006 			map ? map->name : "kptr");
6007 		return -EINVAL;
6008 	}
6009 	if (rec->spin_lock_off != val + reg->off) {
6010 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
6011 			val + reg->off, rec->spin_lock_off);
6012 		return -EINVAL;
6013 	}
6014 	if (is_lock) {
6015 		if (cur->active_lock.ptr) {
6016 			verbose(env,
6017 				"Locking two bpf_spin_locks are not allowed\n");
6018 			return -EINVAL;
6019 		}
6020 		if (map)
6021 			cur->active_lock.ptr = map;
6022 		else
6023 			cur->active_lock.ptr = btf;
6024 		cur->active_lock.id = reg->id;
6025 	} else {
6026 		struct bpf_func_state *fstate = cur_func(env);
6027 		void *ptr;
6028 		int i;
6029 
6030 		if (map)
6031 			ptr = map;
6032 		else
6033 			ptr = btf;
6034 
6035 		if (!cur->active_lock.ptr) {
6036 			verbose(env, "bpf_spin_unlock without taking a lock\n");
6037 			return -EINVAL;
6038 		}
6039 		if (cur->active_lock.ptr != ptr ||
6040 		    cur->active_lock.id != reg->id) {
6041 			verbose(env, "bpf_spin_unlock of different lock\n");
6042 			return -EINVAL;
6043 		}
6044 		cur->active_lock.ptr = NULL;
6045 		cur->active_lock.id = 0;
6046 
6047 		for (i = fstate->acquired_refs - 1; i >= 0; i--) {
6048 			int err;
6049 
6050 			/* Complain on error because this reference state cannot
6051 			 * be freed before this point, as bpf_spin_lock critical
6052 			 * section does not allow functions that release the
6053 			 * allocated object immediately.
6054 			 */
6055 			if (!fstate->refs[i].release_on_unlock)
6056 				continue;
6057 			err = release_reference(env, fstate->refs[i].id);
6058 			if (err) {
6059 				verbose(env, "failed to release release_on_unlock reference");
6060 				return err;
6061 			}
6062 		}
6063 	}
6064 	return 0;
6065 }
6066 
6067 static int process_timer_func(struct bpf_verifier_env *env, int regno,
6068 			      struct bpf_call_arg_meta *meta)
6069 {
6070 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6071 	bool is_const = tnum_is_const(reg->var_off);
6072 	struct bpf_map *map = reg->map_ptr;
6073 	u64 val = reg->var_off.value;
6074 
6075 	if (!is_const) {
6076 		verbose(env,
6077 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6078 			regno);
6079 		return -EINVAL;
6080 	}
6081 	if (!map->btf) {
6082 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6083 			map->name);
6084 		return -EINVAL;
6085 	}
6086 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
6087 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
6088 		return -EINVAL;
6089 	}
6090 	if (map->record->timer_off != val + reg->off) {
6091 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
6092 			val + reg->off, map->record->timer_off);
6093 		return -EINVAL;
6094 	}
6095 	if (meta->map_ptr) {
6096 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6097 		return -EFAULT;
6098 	}
6099 	meta->map_uid = reg->map_uid;
6100 	meta->map_ptr = map;
6101 	return 0;
6102 }
6103 
6104 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6105 			     struct bpf_call_arg_meta *meta)
6106 {
6107 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6108 	struct bpf_map *map_ptr = reg->map_ptr;
6109 	struct btf_field *kptr_field;
6110 	u32 kptr_off;
6111 
6112 	if (!tnum_is_const(reg->var_off)) {
6113 		verbose(env,
6114 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6115 			regno);
6116 		return -EINVAL;
6117 	}
6118 	if (!map_ptr->btf) {
6119 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6120 			map_ptr->name);
6121 		return -EINVAL;
6122 	}
6123 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6124 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
6125 		return -EINVAL;
6126 	}
6127 
6128 	meta->map_ptr = map_ptr;
6129 	kptr_off = reg->off + reg->var_off.value;
6130 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6131 	if (!kptr_field) {
6132 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6133 		return -EACCES;
6134 	}
6135 	if (kptr_field->type != BPF_KPTR_REF) {
6136 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
6137 		return -EACCES;
6138 	}
6139 	meta->kptr_field = kptr_field;
6140 	return 0;
6141 }
6142 
6143 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
6144  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
6145  *
6146  * In both cases we deal with the first 8 bytes, but need to mark the next 8
6147  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
6148  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
6149  *
6150  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
6151  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
6152  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
6153  * mutate the view of the dynptr and also possibly destroy it. In the latter
6154  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
6155  * memory that dynptr points to.
6156  *
6157  * The verifier will keep track both levels of mutation (bpf_dynptr's in
6158  * reg->type and the memory's in reg->dynptr.type), but there is no support for
6159  * readonly dynptr view yet, hence only the first case is tracked and checked.
6160  *
6161  * This is consistent with how C applies the const modifier to a struct object,
6162  * where the pointer itself inside bpf_dynptr becomes const but not what it
6163  * points to.
6164  *
6165  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
6166  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
6167  */
6168 int process_dynptr_func(struct bpf_verifier_env *env, int regno,
6169 			enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta)
6170 {
6171 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6172 	int spi = 0;
6173 
6174 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
6175 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
6176 	 */
6177 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
6178 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
6179 		return -EFAULT;
6180 	}
6181 	/* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
6182 	 * check_func_arg_reg_off's logic. We only need to check offset
6183 	 * and its alignment for PTR_TO_STACK.
6184 	 */
6185 	if (reg->type == PTR_TO_STACK) {
6186 		spi = dynptr_get_spi(env, reg);
6187 		if (spi < 0 && spi != -ERANGE)
6188 			return spi;
6189 	}
6190 
6191 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
6192 	 *		 constructing a mutable bpf_dynptr object.
6193 	 *
6194 	 *		 Currently, this is only possible with PTR_TO_STACK
6195 	 *		 pointing to a region of at least 16 bytes which doesn't
6196 	 *		 contain an existing bpf_dynptr.
6197 	 *
6198 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
6199 	 *		 mutated or destroyed. However, the memory it points to
6200 	 *		 may be mutated.
6201 	 *
6202 	 *  None       - Points to a initialized dynptr that can be mutated and
6203 	 *		 destroyed, including mutation of the memory it points
6204 	 *		 to.
6205 	 */
6206 	if (arg_type & MEM_UNINIT) {
6207 		if (!is_dynptr_reg_valid_uninit(env, reg, spi)) {
6208 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6209 			return -EINVAL;
6210 		}
6211 
6212 		/* We only support one dynptr being uninitialized at the moment,
6213 		 * which is sufficient for the helper functions we have right now.
6214 		 */
6215 		if (meta->uninit_dynptr_regno) {
6216 			verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6217 			return -EFAULT;
6218 		}
6219 
6220 		meta->uninit_dynptr_regno = regno;
6221 	} else /* MEM_RDONLY and None case from above */ {
6222 		int err;
6223 
6224 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
6225 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
6226 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
6227 			return -EINVAL;
6228 		}
6229 
6230 		if (!is_dynptr_reg_valid_init(env, reg, spi)) {
6231 			verbose(env,
6232 				"Expected an initialized dynptr as arg #%d\n",
6233 				regno);
6234 			return -EINVAL;
6235 		}
6236 
6237 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
6238 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6239 			const char *err_extra = "";
6240 
6241 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6242 			case DYNPTR_TYPE_LOCAL:
6243 				err_extra = "local";
6244 				break;
6245 			case DYNPTR_TYPE_RINGBUF:
6246 				err_extra = "ringbuf";
6247 				break;
6248 			default:
6249 				err_extra = "<unknown>";
6250 				break;
6251 			}
6252 			verbose(env,
6253 				"Expected a dynptr of type %s as arg #%d\n",
6254 				err_extra, regno);
6255 			return -EINVAL;
6256 		}
6257 
6258 		err = mark_dynptr_read(env, reg);
6259 		if (err)
6260 			return err;
6261 	}
6262 	return 0;
6263 }
6264 
6265 static bool arg_type_is_mem_size(enum bpf_arg_type type)
6266 {
6267 	return type == ARG_CONST_SIZE ||
6268 	       type == ARG_CONST_SIZE_OR_ZERO;
6269 }
6270 
6271 static bool arg_type_is_release(enum bpf_arg_type type)
6272 {
6273 	return type & OBJ_RELEASE;
6274 }
6275 
6276 static bool arg_type_is_dynptr(enum bpf_arg_type type)
6277 {
6278 	return base_type(type) == ARG_PTR_TO_DYNPTR;
6279 }
6280 
6281 static int int_ptr_type_to_size(enum bpf_arg_type type)
6282 {
6283 	if (type == ARG_PTR_TO_INT)
6284 		return sizeof(u32);
6285 	else if (type == ARG_PTR_TO_LONG)
6286 		return sizeof(u64);
6287 
6288 	return -EINVAL;
6289 }
6290 
6291 static int resolve_map_arg_type(struct bpf_verifier_env *env,
6292 				 const struct bpf_call_arg_meta *meta,
6293 				 enum bpf_arg_type *arg_type)
6294 {
6295 	if (!meta->map_ptr) {
6296 		/* kernel subsystem misconfigured verifier */
6297 		verbose(env, "invalid map_ptr to access map->type\n");
6298 		return -EACCES;
6299 	}
6300 
6301 	switch (meta->map_ptr->map_type) {
6302 	case BPF_MAP_TYPE_SOCKMAP:
6303 	case BPF_MAP_TYPE_SOCKHASH:
6304 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6305 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
6306 		} else {
6307 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
6308 			return -EINVAL;
6309 		}
6310 		break;
6311 	case BPF_MAP_TYPE_BLOOM_FILTER:
6312 		if (meta->func_id == BPF_FUNC_map_peek_elem)
6313 			*arg_type = ARG_PTR_TO_MAP_VALUE;
6314 		break;
6315 	default:
6316 		break;
6317 	}
6318 	return 0;
6319 }
6320 
6321 struct bpf_reg_types {
6322 	const enum bpf_reg_type types[10];
6323 	u32 *btf_id;
6324 };
6325 
6326 static const struct bpf_reg_types sock_types = {
6327 	.types = {
6328 		PTR_TO_SOCK_COMMON,
6329 		PTR_TO_SOCKET,
6330 		PTR_TO_TCP_SOCK,
6331 		PTR_TO_XDP_SOCK,
6332 	},
6333 };
6334 
6335 #ifdef CONFIG_NET
6336 static const struct bpf_reg_types btf_id_sock_common_types = {
6337 	.types = {
6338 		PTR_TO_SOCK_COMMON,
6339 		PTR_TO_SOCKET,
6340 		PTR_TO_TCP_SOCK,
6341 		PTR_TO_XDP_SOCK,
6342 		PTR_TO_BTF_ID,
6343 		PTR_TO_BTF_ID | PTR_TRUSTED,
6344 	},
6345 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6346 };
6347 #endif
6348 
6349 static const struct bpf_reg_types mem_types = {
6350 	.types = {
6351 		PTR_TO_STACK,
6352 		PTR_TO_PACKET,
6353 		PTR_TO_PACKET_META,
6354 		PTR_TO_MAP_KEY,
6355 		PTR_TO_MAP_VALUE,
6356 		PTR_TO_MEM,
6357 		PTR_TO_MEM | MEM_RINGBUF,
6358 		PTR_TO_BUF,
6359 	},
6360 };
6361 
6362 static const struct bpf_reg_types int_ptr_types = {
6363 	.types = {
6364 		PTR_TO_STACK,
6365 		PTR_TO_PACKET,
6366 		PTR_TO_PACKET_META,
6367 		PTR_TO_MAP_KEY,
6368 		PTR_TO_MAP_VALUE,
6369 	},
6370 };
6371 
6372 static const struct bpf_reg_types spin_lock_types = {
6373 	.types = {
6374 		PTR_TO_MAP_VALUE,
6375 		PTR_TO_BTF_ID | MEM_ALLOC,
6376 	}
6377 };
6378 
6379 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
6380 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
6381 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
6382 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
6383 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
6384 static const struct bpf_reg_types btf_ptr_types = {
6385 	.types = {
6386 		PTR_TO_BTF_ID,
6387 		PTR_TO_BTF_ID | PTR_TRUSTED,
6388 		PTR_TO_BTF_ID | MEM_RCU,
6389 	},
6390 };
6391 static const struct bpf_reg_types percpu_btf_ptr_types = {
6392 	.types = {
6393 		PTR_TO_BTF_ID | MEM_PERCPU,
6394 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
6395 	}
6396 };
6397 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
6398 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
6399 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
6400 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
6401 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
6402 static const struct bpf_reg_types dynptr_types = {
6403 	.types = {
6404 		PTR_TO_STACK,
6405 		CONST_PTR_TO_DYNPTR,
6406 	}
6407 };
6408 
6409 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
6410 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
6411 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
6412 	[ARG_CONST_SIZE]		= &scalar_types,
6413 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
6414 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
6415 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
6416 	[ARG_PTR_TO_CTX]		= &context_types,
6417 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
6418 #ifdef CONFIG_NET
6419 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
6420 #endif
6421 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
6422 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
6423 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
6424 	[ARG_PTR_TO_MEM]		= &mem_types,
6425 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
6426 	[ARG_PTR_TO_INT]		= &int_ptr_types,
6427 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
6428 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
6429 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
6430 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
6431 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
6432 	[ARG_PTR_TO_TIMER]		= &timer_types,
6433 	[ARG_PTR_TO_KPTR]		= &kptr_types,
6434 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
6435 };
6436 
6437 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
6438 			  enum bpf_arg_type arg_type,
6439 			  const u32 *arg_btf_id,
6440 			  struct bpf_call_arg_meta *meta)
6441 {
6442 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6443 	enum bpf_reg_type expected, type = reg->type;
6444 	const struct bpf_reg_types *compatible;
6445 	int i, j;
6446 
6447 	compatible = compatible_reg_types[base_type(arg_type)];
6448 	if (!compatible) {
6449 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6450 		return -EFAULT;
6451 	}
6452 
6453 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6454 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6455 	 *
6456 	 * Same for MAYBE_NULL:
6457 	 *
6458 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6459 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6460 	 *
6461 	 * Therefore we fold these flags depending on the arg_type before comparison.
6462 	 */
6463 	if (arg_type & MEM_RDONLY)
6464 		type &= ~MEM_RDONLY;
6465 	if (arg_type & PTR_MAYBE_NULL)
6466 		type &= ~PTR_MAYBE_NULL;
6467 
6468 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6469 		expected = compatible->types[i];
6470 		if (expected == NOT_INIT)
6471 			break;
6472 
6473 		if (type == expected)
6474 			goto found;
6475 	}
6476 
6477 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
6478 	for (j = 0; j + 1 < i; j++)
6479 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6480 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
6481 	return -EACCES;
6482 
6483 found:
6484 	if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
6485 		/* For bpf_sk_release, it needs to match against first member
6486 		 * 'struct sock_common', hence make an exception for it. This
6487 		 * allows bpf_sk_release to work for multiple socket types.
6488 		 */
6489 		bool strict_type_match = arg_type_is_release(arg_type) &&
6490 					 meta->func_id != BPF_FUNC_sk_release;
6491 
6492 		if (!arg_btf_id) {
6493 			if (!compatible->btf_id) {
6494 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6495 				return -EFAULT;
6496 			}
6497 			arg_btf_id = compatible->btf_id;
6498 		}
6499 
6500 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
6501 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
6502 				return -EACCES;
6503 		} else {
6504 			if (arg_btf_id == BPF_PTR_POISON) {
6505 				verbose(env, "verifier internal error:");
6506 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6507 					regno);
6508 				return -EACCES;
6509 			}
6510 
6511 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6512 						  btf_vmlinux, *arg_btf_id,
6513 						  strict_type_match)) {
6514 				verbose(env, "R%d is of type %s but %s is expected\n",
6515 					regno, kernel_type_name(reg->btf, reg->btf_id),
6516 					kernel_type_name(btf_vmlinux, *arg_btf_id));
6517 				return -EACCES;
6518 			}
6519 		}
6520 	} else if (type_is_alloc(reg->type)) {
6521 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6522 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6523 			return -EFAULT;
6524 		}
6525 	}
6526 
6527 	return 0;
6528 }
6529 
6530 int check_func_arg_reg_off(struct bpf_verifier_env *env,
6531 			   const struct bpf_reg_state *reg, int regno,
6532 			   enum bpf_arg_type arg_type)
6533 {
6534 	u32 type = reg->type;
6535 
6536 	/* When referenced register is passed to release function, its fixed
6537 	 * offset must be 0.
6538 	 *
6539 	 * We will check arg_type_is_release reg has ref_obj_id when storing
6540 	 * meta->release_regno.
6541 	 */
6542 	if (arg_type_is_release(arg_type)) {
6543 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
6544 		 * may not directly point to the object being released, but to
6545 		 * dynptr pointing to such object, which might be at some offset
6546 		 * on the stack. In that case, we simply to fallback to the
6547 		 * default handling.
6548 		 */
6549 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
6550 			return 0;
6551 		/* Doing check_ptr_off_reg check for the offset will catch this
6552 		 * because fixed_off_ok is false, but checking here allows us
6553 		 * to give the user a better error message.
6554 		 */
6555 		if (reg->off) {
6556 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
6557 				regno);
6558 			return -EINVAL;
6559 		}
6560 		return __check_ptr_off_reg(env, reg, regno, false);
6561 	}
6562 
6563 	switch (type) {
6564 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
6565 	case PTR_TO_STACK:
6566 	case PTR_TO_PACKET:
6567 	case PTR_TO_PACKET_META:
6568 	case PTR_TO_MAP_KEY:
6569 	case PTR_TO_MAP_VALUE:
6570 	case PTR_TO_MEM:
6571 	case PTR_TO_MEM | MEM_RDONLY:
6572 	case PTR_TO_MEM | MEM_RINGBUF:
6573 	case PTR_TO_BUF:
6574 	case PTR_TO_BUF | MEM_RDONLY:
6575 	case SCALAR_VALUE:
6576 		return 0;
6577 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6578 	 * fixed offset.
6579 	 */
6580 	case PTR_TO_BTF_ID:
6581 	case PTR_TO_BTF_ID | MEM_ALLOC:
6582 	case PTR_TO_BTF_ID | PTR_TRUSTED:
6583 	case PTR_TO_BTF_ID | MEM_RCU:
6584 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
6585 		/* When referenced PTR_TO_BTF_ID is passed to release function,
6586 		 * its fixed offset must be 0. In the other cases, fixed offset
6587 		 * can be non-zero. This was already checked above. So pass
6588 		 * fixed_off_ok as true to allow fixed offset for all other
6589 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
6590 		 * still need to do checks instead of returning.
6591 		 */
6592 		return __check_ptr_off_reg(env, reg, regno, true);
6593 	default:
6594 		return __check_ptr_off_reg(env, reg, regno, false);
6595 	}
6596 }
6597 
6598 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6599 {
6600 	struct bpf_func_state *state = func(env, reg);
6601 	int spi;
6602 
6603 	if (reg->type == CONST_PTR_TO_DYNPTR)
6604 		return reg->id;
6605 	spi = dynptr_get_spi(env, reg);
6606 	if (spi < 0)
6607 		return spi;
6608 	return state->stack[spi].spilled_ptr.id;
6609 }
6610 
6611 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6612 {
6613 	struct bpf_func_state *state = func(env, reg);
6614 	int spi;
6615 
6616 	if (reg->type == CONST_PTR_TO_DYNPTR)
6617 		return reg->ref_obj_id;
6618 	spi = dynptr_get_spi(env, reg);
6619 	if (spi < 0)
6620 		return spi;
6621 	return state->stack[spi].spilled_ptr.ref_obj_id;
6622 }
6623 
6624 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6625 			  struct bpf_call_arg_meta *meta,
6626 			  const struct bpf_func_proto *fn)
6627 {
6628 	u32 regno = BPF_REG_1 + arg;
6629 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6630 	enum bpf_arg_type arg_type = fn->arg_type[arg];
6631 	enum bpf_reg_type type = reg->type;
6632 	u32 *arg_btf_id = NULL;
6633 	int err = 0;
6634 
6635 	if (arg_type == ARG_DONTCARE)
6636 		return 0;
6637 
6638 	err = check_reg_arg(env, regno, SRC_OP);
6639 	if (err)
6640 		return err;
6641 
6642 	if (arg_type == ARG_ANYTHING) {
6643 		if (is_pointer_value(env, regno)) {
6644 			verbose(env, "R%d leaks addr into helper function\n",
6645 				regno);
6646 			return -EACCES;
6647 		}
6648 		return 0;
6649 	}
6650 
6651 	if (type_is_pkt_pointer(type) &&
6652 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
6653 		verbose(env, "helper access to the packet is not allowed\n");
6654 		return -EACCES;
6655 	}
6656 
6657 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
6658 		err = resolve_map_arg_type(env, meta, &arg_type);
6659 		if (err)
6660 			return err;
6661 	}
6662 
6663 	if (register_is_null(reg) && type_may_be_null(arg_type))
6664 		/* A NULL register has a SCALAR_VALUE type, so skip
6665 		 * type checking.
6666 		 */
6667 		goto skip_type_check;
6668 
6669 	/* arg_btf_id and arg_size are in a union. */
6670 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6671 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
6672 		arg_btf_id = fn->arg_btf_id[arg];
6673 
6674 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
6675 	if (err)
6676 		return err;
6677 
6678 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
6679 	if (err)
6680 		return err;
6681 
6682 skip_type_check:
6683 	if (arg_type_is_release(arg_type)) {
6684 		if (arg_type_is_dynptr(arg_type)) {
6685 			struct bpf_func_state *state = func(env, reg);
6686 			int spi;
6687 
6688 			/* Only dynptr created on stack can be released, thus
6689 			 * the get_spi and stack state checks for spilled_ptr
6690 			 * should only be done before process_dynptr_func for
6691 			 * PTR_TO_STACK.
6692 			 */
6693 			if (reg->type == PTR_TO_STACK) {
6694 				spi = dynptr_get_spi(env, reg);
6695 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
6696 					verbose(env, "arg %d is an unacquired reference\n", regno);
6697 					return -EINVAL;
6698 				}
6699 			} else {
6700 				verbose(env, "cannot release unowned const bpf_dynptr\n");
6701 				return -EINVAL;
6702 			}
6703 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
6704 			verbose(env, "R%d must be referenced when passed to release function\n",
6705 				regno);
6706 			return -EINVAL;
6707 		}
6708 		if (meta->release_regno) {
6709 			verbose(env, "verifier internal error: more than one release argument\n");
6710 			return -EFAULT;
6711 		}
6712 		meta->release_regno = regno;
6713 	}
6714 
6715 	if (reg->ref_obj_id) {
6716 		if (meta->ref_obj_id) {
6717 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6718 				regno, reg->ref_obj_id,
6719 				meta->ref_obj_id);
6720 			return -EFAULT;
6721 		}
6722 		meta->ref_obj_id = reg->ref_obj_id;
6723 	}
6724 
6725 	switch (base_type(arg_type)) {
6726 	case ARG_CONST_MAP_PTR:
6727 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6728 		if (meta->map_ptr) {
6729 			/* Use map_uid (which is unique id of inner map) to reject:
6730 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6731 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6732 			 * if (inner_map1 && inner_map2) {
6733 			 *     timer = bpf_map_lookup_elem(inner_map1);
6734 			 *     if (timer)
6735 			 *         // mismatch would have been allowed
6736 			 *         bpf_timer_init(timer, inner_map2);
6737 			 * }
6738 			 *
6739 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6740 			 */
6741 			if (meta->map_ptr != reg->map_ptr ||
6742 			    meta->map_uid != reg->map_uid) {
6743 				verbose(env,
6744 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6745 					meta->map_uid, reg->map_uid);
6746 				return -EINVAL;
6747 			}
6748 		}
6749 		meta->map_ptr = reg->map_ptr;
6750 		meta->map_uid = reg->map_uid;
6751 		break;
6752 	case ARG_PTR_TO_MAP_KEY:
6753 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6754 		 * check that [key, key + map->key_size) are within
6755 		 * stack limits and initialized
6756 		 */
6757 		if (!meta->map_ptr) {
6758 			/* in function declaration map_ptr must come before
6759 			 * map_key, so that it's verified and known before
6760 			 * we have to check map_key here. Otherwise it means
6761 			 * that kernel subsystem misconfigured verifier
6762 			 */
6763 			verbose(env, "invalid map_ptr to access map->key\n");
6764 			return -EACCES;
6765 		}
6766 		err = check_helper_mem_access(env, regno,
6767 					      meta->map_ptr->key_size, false,
6768 					      NULL);
6769 		break;
6770 	case ARG_PTR_TO_MAP_VALUE:
6771 		if (type_may_be_null(arg_type) && register_is_null(reg))
6772 			return 0;
6773 
6774 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6775 		 * check [value, value + map->value_size) validity
6776 		 */
6777 		if (!meta->map_ptr) {
6778 			/* kernel subsystem misconfigured verifier */
6779 			verbose(env, "invalid map_ptr to access map->value\n");
6780 			return -EACCES;
6781 		}
6782 		meta->raw_mode = arg_type & MEM_UNINIT;
6783 		err = check_helper_mem_access(env, regno,
6784 					      meta->map_ptr->value_size, false,
6785 					      meta);
6786 		break;
6787 	case ARG_PTR_TO_PERCPU_BTF_ID:
6788 		if (!reg->btf_id) {
6789 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6790 			return -EACCES;
6791 		}
6792 		meta->ret_btf = reg->btf;
6793 		meta->ret_btf_id = reg->btf_id;
6794 		break;
6795 	case ARG_PTR_TO_SPIN_LOCK:
6796 		if (meta->func_id == BPF_FUNC_spin_lock) {
6797 			err = process_spin_lock(env, regno, true);
6798 			if (err)
6799 				return err;
6800 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6801 			err = process_spin_lock(env, regno, false);
6802 			if (err)
6803 				return err;
6804 		} else {
6805 			verbose(env, "verifier internal error\n");
6806 			return -EFAULT;
6807 		}
6808 		break;
6809 	case ARG_PTR_TO_TIMER:
6810 		err = process_timer_func(env, regno, meta);
6811 		if (err)
6812 			return err;
6813 		break;
6814 	case ARG_PTR_TO_FUNC:
6815 		meta->subprogno = reg->subprogno;
6816 		break;
6817 	case ARG_PTR_TO_MEM:
6818 		/* The access to this pointer is only checked when we hit the
6819 		 * next is_mem_size argument below.
6820 		 */
6821 		meta->raw_mode = arg_type & MEM_UNINIT;
6822 		if (arg_type & MEM_FIXED_SIZE) {
6823 			err = check_helper_mem_access(env, regno,
6824 						      fn->arg_size[arg], false,
6825 						      meta);
6826 		}
6827 		break;
6828 	case ARG_CONST_SIZE:
6829 		err = check_mem_size_reg(env, reg, regno, false, meta);
6830 		break;
6831 	case ARG_CONST_SIZE_OR_ZERO:
6832 		err = check_mem_size_reg(env, reg, regno, true, meta);
6833 		break;
6834 	case ARG_PTR_TO_DYNPTR:
6835 		err = process_dynptr_func(env, regno, arg_type, meta);
6836 		if (err)
6837 			return err;
6838 		break;
6839 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6840 		if (!tnum_is_const(reg->var_off)) {
6841 			verbose(env, "R%d is not a known constant'\n",
6842 				regno);
6843 			return -EACCES;
6844 		}
6845 		meta->mem_size = reg->var_off.value;
6846 		err = mark_chain_precision(env, regno);
6847 		if (err)
6848 			return err;
6849 		break;
6850 	case ARG_PTR_TO_INT:
6851 	case ARG_PTR_TO_LONG:
6852 	{
6853 		int size = int_ptr_type_to_size(arg_type);
6854 
6855 		err = check_helper_mem_access(env, regno, size, false, meta);
6856 		if (err)
6857 			return err;
6858 		err = check_ptr_alignment(env, reg, 0, size, true);
6859 		break;
6860 	}
6861 	case ARG_PTR_TO_CONST_STR:
6862 	{
6863 		struct bpf_map *map = reg->map_ptr;
6864 		int map_off;
6865 		u64 map_addr;
6866 		char *str_ptr;
6867 
6868 		if (!bpf_map_is_rdonly(map)) {
6869 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6870 			return -EACCES;
6871 		}
6872 
6873 		if (!tnum_is_const(reg->var_off)) {
6874 			verbose(env, "R%d is not a constant address'\n", regno);
6875 			return -EACCES;
6876 		}
6877 
6878 		if (!map->ops->map_direct_value_addr) {
6879 			verbose(env, "no direct value access support for this map type\n");
6880 			return -EACCES;
6881 		}
6882 
6883 		err = check_map_access(env, regno, reg->off,
6884 				       map->value_size - reg->off, false,
6885 				       ACCESS_HELPER);
6886 		if (err)
6887 			return err;
6888 
6889 		map_off = reg->off + reg->var_off.value;
6890 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6891 		if (err) {
6892 			verbose(env, "direct value access on string failed\n");
6893 			return err;
6894 		}
6895 
6896 		str_ptr = (char *)(long)(map_addr);
6897 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6898 			verbose(env, "string is not zero-terminated\n");
6899 			return -EINVAL;
6900 		}
6901 		break;
6902 	}
6903 	case ARG_PTR_TO_KPTR:
6904 		err = process_kptr_func(env, regno, meta);
6905 		if (err)
6906 			return err;
6907 		break;
6908 	}
6909 
6910 	return err;
6911 }
6912 
6913 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6914 {
6915 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6916 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6917 
6918 	if (func_id != BPF_FUNC_map_update_elem)
6919 		return false;
6920 
6921 	/* It's not possible to get access to a locked struct sock in these
6922 	 * contexts, so updating is safe.
6923 	 */
6924 	switch (type) {
6925 	case BPF_PROG_TYPE_TRACING:
6926 		if (eatype == BPF_TRACE_ITER)
6927 			return true;
6928 		break;
6929 	case BPF_PROG_TYPE_SOCKET_FILTER:
6930 	case BPF_PROG_TYPE_SCHED_CLS:
6931 	case BPF_PROG_TYPE_SCHED_ACT:
6932 	case BPF_PROG_TYPE_XDP:
6933 	case BPF_PROG_TYPE_SK_REUSEPORT:
6934 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6935 	case BPF_PROG_TYPE_SK_LOOKUP:
6936 		return true;
6937 	default:
6938 		break;
6939 	}
6940 
6941 	verbose(env, "cannot update sockmap in this context\n");
6942 	return false;
6943 }
6944 
6945 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6946 {
6947 	return env->prog->jit_requested &&
6948 	       bpf_jit_supports_subprog_tailcalls();
6949 }
6950 
6951 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6952 					struct bpf_map *map, int func_id)
6953 {
6954 	if (!map)
6955 		return 0;
6956 
6957 	/* We need a two way check, first is from map perspective ... */
6958 	switch (map->map_type) {
6959 	case BPF_MAP_TYPE_PROG_ARRAY:
6960 		if (func_id != BPF_FUNC_tail_call)
6961 			goto error;
6962 		break;
6963 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6964 		if (func_id != BPF_FUNC_perf_event_read &&
6965 		    func_id != BPF_FUNC_perf_event_output &&
6966 		    func_id != BPF_FUNC_skb_output &&
6967 		    func_id != BPF_FUNC_perf_event_read_value &&
6968 		    func_id != BPF_FUNC_xdp_output)
6969 			goto error;
6970 		break;
6971 	case BPF_MAP_TYPE_RINGBUF:
6972 		if (func_id != BPF_FUNC_ringbuf_output &&
6973 		    func_id != BPF_FUNC_ringbuf_reserve &&
6974 		    func_id != BPF_FUNC_ringbuf_query &&
6975 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6976 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6977 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6978 			goto error;
6979 		break;
6980 	case BPF_MAP_TYPE_USER_RINGBUF:
6981 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6982 			goto error;
6983 		break;
6984 	case BPF_MAP_TYPE_STACK_TRACE:
6985 		if (func_id != BPF_FUNC_get_stackid)
6986 			goto error;
6987 		break;
6988 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6989 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6990 		    func_id != BPF_FUNC_current_task_under_cgroup)
6991 			goto error;
6992 		break;
6993 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6994 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6995 		if (func_id != BPF_FUNC_get_local_storage)
6996 			goto error;
6997 		break;
6998 	case BPF_MAP_TYPE_DEVMAP:
6999 	case BPF_MAP_TYPE_DEVMAP_HASH:
7000 		if (func_id != BPF_FUNC_redirect_map &&
7001 		    func_id != BPF_FUNC_map_lookup_elem)
7002 			goto error;
7003 		break;
7004 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
7005 	 * appear.
7006 	 */
7007 	case BPF_MAP_TYPE_CPUMAP:
7008 		if (func_id != BPF_FUNC_redirect_map)
7009 			goto error;
7010 		break;
7011 	case BPF_MAP_TYPE_XSKMAP:
7012 		if (func_id != BPF_FUNC_redirect_map &&
7013 		    func_id != BPF_FUNC_map_lookup_elem)
7014 			goto error;
7015 		break;
7016 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
7017 	case BPF_MAP_TYPE_HASH_OF_MAPS:
7018 		if (func_id != BPF_FUNC_map_lookup_elem)
7019 			goto error;
7020 		break;
7021 	case BPF_MAP_TYPE_SOCKMAP:
7022 		if (func_id != BPF_FUNC_sk_redirect_map &&
7023 		    func_id != BPF_FUNC_sock_map_update &&
7024 		    func_id != BPF_FUNC_map_delete_elem &&
7025 		    func_id != BPF_FUNC_msg_redirect_map &&
7026 		    func_id != BPF_FUNC_sk_select_reuseport &&
7027 		    func_id != BPF_FUNC_map_lookup_elem &&
7028 		    !may_update_sockmap(env, func_id))
7029 			goto error;
7030 		break;
7031 	case BPF_MAP_TYPE_SOCKHASH:
7032 		if (func_id != BPF_FUNC_sk_redirect_hash &&
7033 		    func_id != BPF_FUNC_sock_hash_update &&
7034 		    func_id != BPF_FUNC_map_delete_elem &&
7035 		    func_id != BPF_FUNC_msg_redirect_hash &&
7036 		    func_id != BPF_FUNC_sk_select_reuseport &&
7037 		    func_id != BPF_FUNC_map_lookup_elem &&
7038 		    !may_update_sockmap(env, func_id))
7039 			goto error;
7040 		break;
7041 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
7042 		if (func_id != BPF_FUNC_sk_select_reuseport)
7043 			goto error;
7044 		break;
7045 	case BPF_MAP_TYPE_QUEUE:
7046 	case BPF_MAP_TYPE_STACK:
7047 		if (func_id != BPF_FUNC_map_peek_elem &&
7048 		    func_id != BPF_FUNC_map_pop_elem &&
7049 		    func_id != BPF_FUNC_map_push_elem)
7050 			goto error;
7051 		break;
7052 	case BPF_MAP_TYPE_SK_STORAGE:
7053 		if (func_id != BPF_FUNC_sk_storage_get &&
7054 		    func_id != BPF_FUNC_sk_storage_delete)
7055 			goto error;
7056 		break;
7057 	case BPF_MAP_TYPE_INODE_STORAGE:
7058 		if (func_id != BPF_FUNC_inode_storage_get &&
7059 		    func_id != BPF_FUNC_inode_storage_delete)
7060 			goto error;
7061 		break;
7062 	case BPF_MAP_TYPE_TASK_STORAGE:
7063 		if (func_id != BPF_FUNC_task_storage_get &&
7064 		    func_id != BPF_FUNC_task_storage_delete)
7065 			goto error;
7066 		break;
7067 	case BPF_MAP_TYPE_CGRP_STORAGE:
7068 		if (func_id != BPF_FUNC_cgrp_storage_get &&
7069 		    func_id != BPF_FUNC_cgrp_storage_delete)
7070 			goto error;
7071 		break;
7072 	case BPF_MAP_TYPE_BLOOM_FILTER:
7073 		if (func_id != BPF_FUNC_map_peek_elem &&
7074 		    func_id != BPF_FUNC_map_push_elem)
7075 			goto error;
7076 		break;
7077 	default:
7078 		break;
7079 	}
7080 
7081 	/* ... and second from the function itself. */
7082 	switch (func_id) {
7083 	case BPF_FUNC_tail_call:
7084 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
7085 			goto error;
7086 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
7087 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
7088 			return -EINVAL;
7089 		}
7090 		break;
7091 	case BPF_FUNC_perf_event_read:
7092 	case BPF_FUNC_perf_event_output:
7093 	case BPF_FUNC_perf_event_read_value:
7094 	case BPF_FUNC_skb_output:
7095 	case BPF_FUNC_xdp_output:
7096 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
7097 			goto error;
7098 		break;
7099 	case BPF_FUNC_ringbuf_output:
7100 	case BPF_FUNC_ringbuf_reserve:
7101 	case BPF_FUNC_ringbuf_query:
7102 	case BPF_FUNC_ringbuf_reserve_dynptr:
7103 	case BPF_FUNC_ringbuf_submit_dynptr:
7104 	case BPF_FUNC_ringbuf_discard_dynptr:
7105 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
7106 			goto error;
7107 		break;
7108 	case BPF_FUNC_user_ringbuf_drain:
7109 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
7110 			goto error;
7111 		break;
7112 	case BPF_FUNC_get_stackid:
7113 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
7114 			goto error;
7115 		break;
7116 	case BPF_FUNC_current_task_under_cgroup:
7117 	case BPF_FUNC_skb_under_cgroup:
7118 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
7119 			goto error;
7120 		break;
7121 	case BPF_FUNC_redirect_map:
7122 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
7123 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
7124 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
7125 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
7126 			goto error;
7127 		break;
7128 	case BPF_FUNC_sk_redirect_map:
7129 	case BPF_FUNC_msg_redirect_map:
7130 	case BPF_FUNC_sock_map_update:
7131 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
7132 			goto error;
7133 		break;
7134 	case BPF_FUNC_sk_redirect_hash:
7135 	case BPF_FUNC_msg_redirect_hash:
7136 	case BPF_FUNC_sock_hash_update:
7137 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
7138 			goto error;
7139 		break;
7140 	case BPF_FUNC_get_local_storage:
7141 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
7142 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
7143 			goto error;
7144 		break;
7145 	case BPF_FUNC_sk_select_reuseport:
7146 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
7147 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
7148 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
7149 			goto error;
7150 		break;
7151 	case BPF_FUNC_map_pop_elem:
7152 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7153 		    map->map_type != BPF_MAP_TYPE_STACK)
7154 			goto error;
7155 		break;
7156 	case BPF_FUNC_map_peek_elem:
7157 	case BPF_FUNC_map_push_elem:
7158 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7159 		    map->map_type != BPF_MAP_TYPE_STACK &&
7160 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
7161 			goto error;
7162 		break;
7163 	case BPF_FUNC_map_lookup_percpu_elem:
7164 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
7165 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7166 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
7167 			goto error;
7168 		break;
7169 	case BPF_FUNC_sk_storage_get:
7170 	case BPF_FUNC_sk_storage_delete:
7171 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
7172 			goto error;
7173 		break;
7174 	case BPF_FUNC_inode_storage_get:
7175 	case BPF_FUNC_inode_storage_delete:
7176 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
7177 			goto error;
7178 		break;
7179 	case BPF_FUNC_task_storage_get:
7180 	case BPF_FUNC_task_storage_delete:
7181 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
7182 			goto error;
7183 		break;
7184 	case BPF_FUNC_cgrp_storage_get:
7185 	case BPF_FUNC_cgrp_storage_delete:
7186 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
7187 			goto error;
7188 		break;
7189 	default:
7190 		break;
7191 	}
7192 
7193 	return 0;
7194 error:
7195 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
7196 		map->map_type, func_id_name(func_id), func_id);
7197 	return -EINVAL;
7198 }
7199 
7200 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
7201 {
7202 	int count = 0;
7203 
7204 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
7205 		count++;
7206 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
7207 		count++;
7208 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
7209 		count++;
7210 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
7211 		count++;
7212 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
7213 		count++;
7214 
7215 	/* We only support one arg being in raw mode at the moment,
7216 	 * which is sufficient for the helper functions we have
7217 	 * right now.
7218 	 */
7219 	return count <= 1;
7220 }
7221 
7222 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
7223 {
7224 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
7225 	bool has_size = fn->arg_size[arg] != 0;
7226 	bool is_next_size = false;
7227 
7228 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
7229 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
7230 
7231 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
7232 		return is_next_size;
7233 
7234 	return has_size == is_next_size || is_next_size == is_fixed;
7235 }
7236 
7237 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
7238 {
7239 	/* bpf_xxx(..., buf, len) call will access 'len'
7240 	 * bytes from memory 'buf'. Both arg types need
7241 	 * to be paired, so make sure there's no buggy
7242 	 * helper function specification.
7243 	 */
7244 	if (arg_type_is_mem_size(fn->arg1_type) ||
7245 	    check_args_pair_invalid(fn, 0) ||
7246 	    check_args_pair_invalid(fn, 1) ||
7247 	    check_args_pair_invalid(fn, 2) ||
7248 	    check_args_pair_invalid(fn, 3) ||
7249 	    check_args_pair_invalid(fn, 4))
7250 		return false;
7251 
7252 	return true;
7253 }
7254 
7255 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
7256 {
7257 	int i;
7258 
7259 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
7260 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
7261 			return !!fn->arg_btf_id[i];
7262 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
7263 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
7264 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
7265 		    /* arg_btf_id and arg_size are in a union. */
7266 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
7267 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
7268 			return false;
7269 	}
7270 
7271 	return true;
7272 }
7273 
7274 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
7275 {
7276 	return check_raw_mode_ok(fn) &&
7277 	       check_arg_pair_ok(fn) &&
7278 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
7279 }
7280 
7281 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
7282  * are now invalid, so turn them into unknown SCALAR_VALUE.
7283  */
7284 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
7285 {
7286 	struct bpf_func_state *state;
7287 	struct bpf_reg_state *reg;
7288 
7289 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7290 		if (reg_is_pkt_pointer_any(reg))
7291 			__mark_reg_unknown(env, reg);
7292 	}));
7293 }
7294 
7295 enum {
7296 	AT_PKT_END = -1,
7297 	BEYOND_PKT_END = -2,
7298 };
7299 
7300 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
7301 {
7302 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7303 	struct bpf_reg_state *reg = &state->regs[regn];
7304 
7305 	if (reg->type != PTR_TO_PACKET)
7306 		/* PTR_TO_PACKET_META is not supported yet */
7307 		return;
7308 
7309 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
7310 	 * How far beyond pkt_end it goes is unknown.
7311 	 * if (!range_open) it's the case of pkt >= pkt_end
7312 	 * if (range_open) it's the case of pkt > pkt_end
7313 	 * hence this pointer is at least 1 byte bigger than pkt_end
7314 	 */
7315 	if (range_open)
7316 		reg->range = BEYOND_PKT_END;
7317 	else
7318 		reg->range = AT_PKT_END;
7319 }
7320 
7321 /* The pointer with the specified id has released its reference to kernel
7322  * resources. Identify all copies of the same pointer and clear the reference.
7323  */
7324 static int release_reference(struct bpf_verifier_env *env,
7325 			     int ref_obj_id)
7326 {
7327 	struct bpf_func_state *state;
7328 	struct bpf_reg_state *reg;
7329 	int err;
7330 
7331 	err = release_reference_state(cur_func(env), ref_obj_id);
7332 	if (err)
7333 		return err;
7334 
7335 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7336 		if (reg->ref_obj_id == ref_obj_id) {
7337 			if (!env->allow_ptr_leaks)
7338 				__mark_reg_not_init(env, reg);
7339 			else
7340 				__mark_reg_unknown(env, reg);
7341 		}
7342 	}));
7343 
7344 	return 0;
7345 }
7346 
7347 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
7348 				    struct bpf_reg_state *regs)
7349 {
7350 	int i;
7351 
7352 	/* after the call registers r0 - r5 were scratched */
7353 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7354 		mark_reg_not_init(env, regs, caller_saved[i]);
7355 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7356 	}
7357 }
7358 
7359 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
7360 				   struct bpf_func_state *caller,
7361 				   struct bpf_func_state *callee,
7362 				   int insn_idx);
7363 
7364 static int set_callee_state(struct bpf_verifier_env *env,
7365 			    struct bpf_func_state *caller,
7366 			    struct bpf_func_state *callee, int insn_idx);
7367 
7368 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7369 			     int *insn_idx, int subprog,
7370 			     set_callee_state_fn set_callee_state_cb)
7371 {
7372 	struct bpf_verifier_state *state = env->cur_state;
7373 	struct bpf_func_info_aux *func_info_aux;
7374 	struct bpf_func_state *caller, *callee;
7375 	int err;
7376 	bool is_global = false;
7377 
7378 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
7379 		verbose(env, "the call stack of %d frames is too deep\n",
7380 			state->curframe + 2);
7381 		return -E2BIG;
7382 	}
7383 
7384 	caller = state->frame[state->curframe];
7385 	if (state->frame[state->curframe + 1]) {
7386 		verbose(env, "verifier bug. Frame %d already allocated\n",
7387 			state->curframe + 1);
7388 		return -EFAULT;
7389 	}
7390 
7391 	func_info_aux = env->prog->aux->func_info_aux;
7392 	if (func_info_aux)
7393 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
7394 	err = btf_check_subprog_call(env, subprog, caller->regs);
7395 	if (err == -EFAULT)
7396 		return err;
7397 	if (is_global) {
7398 		if (err) {
7399 			verbose(env, "Caller passes invalid args into func#%d\n",
7400 				subprog);
7401 			return err;
7402 		} else {
7403 			if (env->log.level & BPF_LOG_LEVEL)
7404 				verbose(env,
7405 					"Func#%d is global and valid. Skipping.\n",
7406 					subprog);
7407 			clear_caller_saved_regs(env, caller->regs);
7408 
7409 			/* All global functions return a 64-bit SCALAR_VALUE */
7410 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
7411 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7412 
7413 			/* continue with next insn after call */
7414 			return 0;
7415 		}
7416 	}
7417 
7418 	/* set_callee_state is used for direct subprog calls, but we are
7419 	 * interested in validating only BPF helpers that can call subprogs as
7420 	 * callbacks
7421 	 */
7422 	if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
7423 		verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
7424 			func_id_name(insn->imm), insn->imm);
7425 		return -EFAULT;
7426 	}
7427 
7428 	if (insn->code == (BPF_JMP | BPF_CALL) &&
7429 	    insn->src_reg == 0 &&
7430 	    insn->imm == BPF_FUNC_timer_set_callback) {
7431 		struct bpf_verifier_state *async_cb;
7432 
7433 		/* there is no real recursion here. timer callbacks are async */
7434 		env->subprog_info[subprog].is_async_cb = true;
7435 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
7436 					 *insn_idx, subprog);
7437 		if (!async_cb)
7438 			return -EFAULT;
7439 		callee = async_cb->frame[0];
7440 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
7441 
7442 		/* Convert bpf_timer_set_callback() args into timer callback args */
7443 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
7444 		if (err)
7445 			return err;
7446 
7447 		clear_caller_saved_regs(env, caller->regs);
7448 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
7449 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7450 		/* continue with next insn after call */
7451 		return 0;
7452 	}
7453 
7454 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
7455 	if (!callee)
7456 		return -ENOMEM;
7457 	state->frame[state->curframe + 1] = callee;
7458 
7459 	/* callee cannot access r0, r6 - r9 for reading and has to write
7460 	 * into its own stack before reading from it.
7461 	 * callee can read/write into caller's stack
7462 	 */
7463 	init_func_state(env, callee,
7464 			/* remember the callsite, it will be used by bpf_exit */
7465 			*insn_idx /* callsite */,
7466 			state->curframe + 1 /* frameno within this callchain */,
7467 			subprog /* subprog number within this prog */);
7468 
7469 	/* Transfer references to the callee */
7470 	err = copy_reference_state(callee, caller);
7471 	if (err)
7472 		goto err_out;
7473 
7474 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
7475 	if (err)
7476 		goto err_out;
7477 
7478 	clear_caller_saved_regs(env, caller->regs);
7479 
7480 	/* only increment it after check_reg_arg() finished */
7481 	state->curframe++;
7482 
7483 	/* and go analyze first insn of the callee */
7484 	*insn_idx = env->subprog_info[subprog].start - 1;
7485 
7486 	if (env->log.level & BPF_LOG_LEVEL) {
7487 		verbose(env, "caller:\n");
7488 		print_verifier_state(env, caller, true);
7489 		verbose(env, "callee:\n");
7490 		print_verifier_state(env, callee, true);
7491 	}
7492 	return 0;
7493 
7494 err_out:
7495 	free_func_state(callee);
7496 	state->frame[state->curframe + 1] = NULL;
7497 	return err;
7498 }
7499 
7500 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7501 				   struct bpf_func_state *caller,
7502 				   struct bpf_func_state *callee)
7503 {
7504 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7505 	 *      void *callback_ctx, u64 flags);
7506 	 * callback_fn(struct bpf_map *map, void *key, void *value,
7507 	 *      void *callback_ctx);
7508 	 */
7509 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7510 
7511 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7512 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7513 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7514 
7515 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7516 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7517 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7518 
7519 	/* pointer to stack or null */
7520 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7521 
7522 	/* unused */
7523 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7524 	return 0;
7525 }
7526 
7527 static int set_callee_state(struct bpf_verifier_env *env,
7528 			    struct bpf_func_state *caller,
7529 			    struct bpf_func_state *callee, int insn_idx)
7530 {
7531 	int i;
7532 
7533 	/* copy r1 - r5 args that callee can access.  The copy includes parent
7534 	 * pointers, which connects us up to the liveness chain
7535 	 */
7536 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7537 		callee->regs[i] = caller->regs[i];
7538 	return 0;
7539 }
7540 
7541 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7542 			   int *insn_idx)
7543 {
7544 	int subprog, target_insn;
7545 
7546 	target_insn = *insn_idx + insn->imm + 1;
7547 	subprog = find_subprog(env, target_insn);
7548 	if (subprog < 0) {
7549 		verbose(env, "verifier bug. No program starts at insn %d\n",
7550 			target_insn);
7551 		return -EFAULT;
7552 	}
7553 
7554 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7555 }
7556 
7557 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7558 				       struct bpf_func_state *caller,
7559 				       struct bpf_func_state *callee,
7560 				       int insn_idx)
7561 {
7562 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7563 	struct bpf_map *map;
7564 	int err;
7565 
7566 	if (bpf_map_ptr_poisoned(insn_aux)) {
7567 		verbose(env, "tail_call abusing map_ptr\n");
7568 		return -EINVAL;
7569 	}
7570 
7571 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7572 	if (!map->ops->map_set_for_each_callback_args ||
7573 	    !map->ops->map_for_each_callback) {
7574 		verbose(env, "callback function not allowed for map\n");
7575 		return -ENOTSUPP;
7576 	}
7577 
7578 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7579 	if (err)
7580 		return err;
7581 
7582 	callee->in_callback_fn = true;
7583 	callee->callback_ret_range = tnum_range(0, 1);
7584 	return 0;
7585 }
7586 
7587 static int set_loop_callback_state(struct bpf_verifier_env *env,
7588 				   struct bpf_func_state *caller,
7589 				   struct bpf_func_state *callee,
7590 				   int insn_idx)
7591 {
7592 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7593 	 *	    u64 flags);
7594 	 * callback_fn(u32 index, void *callback_ctx);
7595 	 */
7596 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7597 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7598 
7599 	/* unused */
7600 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7601 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7602 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7603 
7604 	callee->in_callback_fn = true;
7605 	callee->callback_ret_range = tnum_range(0, 1);
7606 	return 0;
7607 }
7608 
7609 static int set_timer_callback_state(struct bpf_verifier_env *env,
7610 				    struct bpf_func_state *caller,
7611 				    struct bpf_func_state *callee,
7612 				    int insn_idx)
7613 {
7614 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7615 
7616 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7617 	 * callback_fn(struct bpf_map *map, void *key, void *value);
7618 	 */
7619 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7620 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7621 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
7622 
7623 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7624 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7625 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
7626 
7627 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7628 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7629 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
7630 
7631 	/* unused */
7632 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7633 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7634 	callee->in_async_callback_fn = true;
7635 	callee->callback_ret_range = tnum_range(0, 1);
7636 	return 0;
7637 }
7638 
7639 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7640 				       struct bpf_func_state *caller,
7641 				       struct bpf_func_state *callee,
7642 				       int insn_idx)
7643 {
7644 	/* bpf_find_vma(struct task_struct *task, u64 addr,
7645 	 *               void *callback_fn, void *callback_ctx, u64 flags)
7646 	 * (callback_fn)(struct task_struct *task,
7647 	 *               struct vm_area_struct *vma, void *callback_ctx);
7648 	 */
7649 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7650 
7651 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7652 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7653 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
7654 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7655 
7656 	/* pointer to stack or null */
7657 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7658 
7659 	/* unused */
7660 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7661 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7662 	callee->in_callback_fn = true;
7663 	callee->callback_ret_range = tnum_range(0, 1);
7664 	return 0;
7665 }
7666 
7667 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7668 					   struct bpf_func_state *caller,
7669 					   struct bpf_func_state *callee,
7670 					   int insn_idx)
7671 {
7672 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7673 	 *			  callback_ctx, u64 flags);
7674 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
7675 	 */
7676 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7677 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
7678 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7679 
7680 	/* unused */
7681 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7682 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7683 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7684 
7685 	callee->in_callback_fn = true;
7686 	callee->callback_ret_range = tnum_range(0, 1);
7687 	return 0;
7688 }
7689 
7690 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7691 {
7692 	struct bpf_verifier_state *state = env->cur_state;
7693 	struct bpf_func_state *caller, *callee;
7694 	struct bpf_reg_state *r0;
7695 	int err;
7696 
7697 	callee = state->frame[state->curframe];
7698 	r0 = &callee->regs[BPF_REG_0];
7699 	if (r0->type == PTR_TO_STACK) {
7700 		/* technically it's ok to return caller's stack pointer
7701 		 * (or caller's caller's pointer) back to the caller,
7702 		 * since these pointers are valid. Only current stack
7703 		 * pointer will be invalid as soon as function exits,
7704 		 * but let's be conservative
7705 		 */
7706 		verbose(env, "cannot return stack pointer to the caller\n");
7707 		return -EINVAL;
7708 	}
7709 
7710 	caller = state->frame[state->curframe - 1];
7711 	if (callee->in_callback_fn) {
7712 		/* enforce R0 return value range [0, 1]. */
7713 		struct tnum range = callee->callback_ret_range;
7714 
7715 		if (r0->type != SCALAR_VALUE) {
7716 			verbose(env, "R0 not a scalar value\n");
7717 			return -EACCES;
7718 		}
7719 		if (!tnum_in(range, r0->var_off)) {
7720 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7721 			return -EINVAL;
7722 		}
7723 	} else {
7724 		/* return to the caller whatever r0 had in the callee */
7725 		caller->regs[BPF_REG_0] = *r0;
7726 	}
7727 
7728 	/* callback_fn frame should have released its own additions to parent's
7729 	 * reference state at this point, or check_reference_leak would
7730 	 * complain, hence it must be the same as the caller. There is no need
7731 	 * to copy it back.
7732 	 */
7733 	if (!callee->in_callback_fn) {
7734 		/* Transfer references to the caller */
7735 		err = copy_reference_state(caller, callee);
7736 		if (err)
7737 			return err;
7738 	}
7739 
7740 	*insn_idx = callee->callsite + 1;
7741 	if (env->log.level & BPF_LOG_LEVEL) {
7742 		verbose(env, "returning from callee:\n");
7743 		print_verifier_state(env, callee, true);
7744 		verbose(env, "to caller at %d:\n", *insn_idx);
7745 		print_verifier_state(env, caller, true);
7746 	}
7747 	/* clear everything in the callee */
7748 	free_func_state(callee);
7749 	state->frame[state->curframe--] = NULL;
7750 	return 0;
7751 }
7752 
7753 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7754 				   int func_id,
7755 				   struct bpf_call_arg_meta *meta)
7756 {
7757 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7758 
7759 	if (ret_type != RET_INTEGER ||
7760 	    (func_id != BPF_FUNC_get_stack &&
7761 	     func_id != BPF_FUNC_get_task_stack &&
7762 	     func_id != BPF_FUNC_probe_read_str &&
7763 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7764 	     func_id != BPF_FUNC_probe_read_user_str))
7765 		return;
7766 
7767 	ret_reg->smax_value = meta->msize_max_value;
7768 	ret_reg->s32_max_value = meta->msize_max_value;
7769 	ret_reg->smin_value = -MAX_ERRNO;
7770 	ret_reg->s32_min_value = -MAX_ERRNO;
7771 	reg_bounds_sync(ret_reg);
7772 }
7773 
7774 static int
7775 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7776 		int func_id, int insn_idx)
7777 {
7778 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7779 	struct bpf_map *map = meta->map_ptr;
7780 
7781 	if (func_id != BPF_FUNC_tail_call &&
7782 	    func_id != BPF_FUNC_map_lookup_elem &&
7783 	    func_id != BPF_FUNC_map_update_elem &&
7784 	    func_id != BPF_FUNC_map_delete_elem &&
7785 	    func_id != BPF_FUNC_map_push_elem &&
7786 	    func_id != BPF_FUNC_map_pop_elem &&
7787 	    func_id != BPF_FUNC_map_peek_elem &&
7788 	    func_id != BPF_FUNC_for_each_map_elem &&
7789 	    func_id != BPF_FUNC_redirect_map &&
7790 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7791 		return 0;
7792 
7793 	if (map == NULL) {
7794 		verbose(env, "kernel subsystem misconfigured verifier\n");
7795 		return -EINVAL;
7796 	}
7797 
7798 	/* In case of read-only, some additional restrictions
7799 	 * need to be applied in order to prevent altering the
7800 	 * state of the map from program side.
7801 	 */
7802 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7803 	    (func_id == BPF_FUNC_map_delete_elem ||
7804 	     func_id == BPF_FUNC_map_update_elem ||
7805 	     func_id == BPF_FUNC_map_push_elem ||
7806 	     func_id == BPF_FUNC_map_pop_elem)) {
7807 		verbose(env, "write into map forbidden\n");
7808 		return -EACCES;
7809 	}
7810 
7811 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7812 		bpf_map_ptr_store(aux, meta->map_ptr,
7813 				  !meta->map_ptr->bypass_spec_v1);
7814 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7815 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7816 				  !meta->map_ptr->bypass_spec_v1);
7817 	return 0;
7818 }
7819 
7820 static int
7821 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7822 		int func_id, int insn_idx)
7823 {
7824 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7825 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7826 	struct bpf_map *map = meta->map_ptr;
7827 	u64 val, max;
7828 	int err;
7829 
7830 	if (func_id != BPF_FUNC_tail_call)
7831 		return 0;
7832 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7833 		verbose(env, "kernel subsystem misconfigured verifier\n");
7834 		return -EINVAL;
7835 	}
7836 
7837 	reg = &regs[BPF_REG_3];
7838 	val = reg->var_off.value;
7839 	max = map->max_entries;
7840 
7841 	if (!(register_is_const(reg) && val < max)) {
7842 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7843 		return 0;
7844 	}
7845 
7846 	err = mark_chain_precision(env, BPF_REG_3);
7847 	if (err)
7848 		return err;
7849 	if (bpf_map_key_unseen(aux))
7850 		bpf_map_key_store(aux, val);
7851 	else if (!bpf_map_key_poisoned(aux) &&
7852 		  bpf_map_key_immediate(aux) != val)
7853 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7854 	return 0;
7855 }
7856 
7857 static int check_reference_leak(struct bpf_verifier_env *env)
7858 {
7859 	struct bpf_func_state *state = cur_func(env);
7860 	bool refs_lingering = false;
7861 	int i;
7862 
7863 	if (state->frameno && !state->in_callback_fn)
7864 		return 0;
7865 
7866 	for (i = 0; i < state->acquired_refs; i++) {
7867 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7868 			continue;
7869 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7870 			state->refs[i].id, state->refs[i].insn_idx);
7871 		refs_lingering = true;
7872 	}
7873 	return refs_lingering ? -EINVAL : 0;
7874 }
7875 
7876 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7877 				   struct bpf_reg_state *regs)
7878 {
7879 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7880 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7881 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7882 	struct bpf_bprintf_data data = {};
7883 	int err, fmt_map_off, num_args;
7884 	u64 fmt_addr;
7885 	char *fmt;
7886 
7887 	/* data must be an array of u64 */
7888 	if (data_len_reg->var_off.value % 8)
7889 		return -EINVAL;
7890 	num_args = data_len_reg->var_off.value / 8;
7891 
7892 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7893 	 * and map_direct_value_addr is set.
7894 	 */
7895 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7896 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7897 						  fmt_map_off);
7898 	if (err) {
7899 		verbose(env, "verifier bug\n");
7900 		return -EFAULT;
7901 	}
7902 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7903 
7904 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7905 	 * can focus on validating the format specifiers.
7906 	 */
7907 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7908 	if (err < 0)
7909 		verbose(env, "Invalid format string\n");
7910 
7911 	return err;
7912 }
7913 
7914 static int check_get_func_ip(struct bpf_verifier_env *env)
7915 {
7916 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7917 	int func_id = BPF_FUNC_get_func_ip;
7918 
7919 	if (type == BPF_PROG_TYPE_TRACING) {
7920 		if (!bpf_prog_has_trampoline(env->prog)) {
7921 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7922 				func_id_name(func_id), func_id);
7923 			return -ENOTSUPP;
7924 		}
7925 		return 0;
7926 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7927 		return 0;
7928 	}
7929 
7930 	verbose(env, "func %s#%d not supported for program type %d\n",
7931 		func_id_name(func_id), func_id, type);
7932 	return -ENOTSUPP;
7933 }
7934 
7935 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7936 {
7937 	return &env->insn_aux_data[env->insn_idx];
7938 }
7939 
7940 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7941 {
7942 	struct bpf_reg_state *regs = cur_regs(env);
7943 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7944 	bool reg_is_null = register_is_null(reg);
7945 
7946 	if (reg_is_null)
7947 		mark_chain_precision(env, BPF_REG_4);
7948 
7949 	return reg_is_null;
7950 }
7951 
7952 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7953 {
7954 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7955 
7956 	if (!state->initialized) {
7957 		state->initialized = 1;
7958 		state->fit_for_inline = loop_flag_is_zero(env);
7959 		state->callback_subprogno = subprogno;
7960 		return;
7961 	}
7962 
7963 	if (!state->fit_for_inline)
7964 		return;
7965 
7966 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7967 				 state->callback_subprogno == subprogno);
7968 }
7969 
7970 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7971 			     int *insn_idx_p)
7972 {
7973 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7974 	const struct bpf_func_proto *fn = NULL;
7975 	enum bpf_return_type ret_type;
7976 	enum bpf_type_flag ret_flag;
7977 	struct bpf_reg_state *regs;
7978 	struct bpf_call_arg_meta meta;
7979 	int insn_idx = *insn_idx_p;
7980 	bool changes_data;
7981 	int i, err, func_id;
7982 
7983 	/* find function prototype */
7984 	func_id = insn->imm;
7985 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7986 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7987 			func_id);
7988 		return -EINVAL;
7989 	}
7990 
7991 	if (env->ops->get_func_proto)
7992 		fn = env->ops->get_func_proto(func_id, env->prog);
7993 	if (!fn) {
7994 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7995 			func_id);
7996 		return -EINVAL;
7997 	}
7998 
7999 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
8000 	if (!env->prog->gpl_compatible && fn->gpl_only) {
8001 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
8002 		return -EINVAL;
8003 	}
8004 
8005 	if (fn->allowed && !fn->allowed(env->prog)) {
8006 		verbose(env, "helper call is not allowed in probe\n");
8007 		return -EINVAL;
8008 	}
8009 
8010 	if (!env->prog->aux->sleepable && fn->might_sleep) {
8011 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
8012 		return -EINVAL;
8013 	}
8014 
8015 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
8016 	changes_data = bpf_helper_changes_pkt_data(fn->func);
8017 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
8018 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
8019 			func_id_name(func_id), func_id);
8020 		return -EINVAL;
8021 	}
8022 
8023 	memset(&meta, 0, sizeof(meta));
8024 	meta.pkt_access = fn->pkt_access;
8025 
8026 	err = check_func_proto(fn, func_id);
8027 	if (err) {
8028 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
8029 			func_id_name(func_id), func_id);
8030 		return err;
8031 	}
8032 
8033 	if (env->cur_state->active_rcu_lock) {
8034 		if (fn->might_sleep) {
8035 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
8036 				func_id_name(func_id), func_id);
8037 			return -EINVAL;
8038 		}
8039 
8040 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
8041 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
8042 	}
8043 
8044 	meta.func_id = func_id;
8045 	/* check args */
8046 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
8047 		err = check_func_arg(env, i, &meta, fn);
8048 		if (err)
8049 			return err;
8050 	}
8051 
8052 	err = record_func_map(env, &meta, func_id, insn_idx);
8053 	if (err)
8054 		return err;
8055 
8056 	err = record_func_key(env, &meta, func_id, insn_idx);
8057 	if (err)
8058 		return err;
8059 
8060 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
8061 	 * is inferred from register state.
8062 	 */
8063 	for (i = 0; i < meta.access_size; i++) {
8064 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
8065 				       BPF_WRITE, -1, false);
8066 		if (err)
8067 			return err;
8068 	}
8069 
8070 	regs = cur_regs(env);
8071 
8072 	/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8073 	 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr
8074 	 * is safe to do directly.
8075 	 */
8076 	if (meta.uninit_dynptr_regno) {
8077 		if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) {
8078 			verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n");
8079 			return -EFAULT;
8080 		}
8081 		/* we write BPF_DW bits (8 bytes) at a time */
8082 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8083 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
8084 					       i, BPF_DW, BPF_WRITE, -1, false);
8085 			if (err)
8086 				return err;
8087 		}
8088 
8089 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
8090 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
8091 					      insn_idx);
8092 		if (err)
8093 			return err;
8094 	}
8095 
8096 	if (meta.release_regno) {
8097 		err = -EINVAL;
8098 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8099 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
8100 		 * is safe to do directly.
8101 		 */
8102 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
8103 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
8104 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
8105 				return -EFAULT;
8106 			}
8107 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
8108 		} else if (meta.ref_obj_id) {
8109 			err = release_reference(env, meta.ref_obj_id);
8110 		} else if (register_is_null(&regs[meta.release_regno])) {
8111 			/* meta.ref_obj_id can only be 0 if register that is meant to be
8112 			 * released is NULL, which must be > R0.
8113 			 */
8114 			err = 0;
8115 		}
8116 		if (err) {
8117 			verbose(env, "func %s#%d reference has not been acquired before\n",
8118 				func_id_name(func_id), func_id);
8119 			return err;
8120 		}
8121 	}
8122 
8123 	switch (func_id) {
8124 	case BPF_FUNC_tail_call:
8125 		err = check_reference_leak(env);
8126 		if (err) {
8127 			verbose(env, "tail_call would lead to reference leak\n");
8128 			return err;
8129 		}
8130 		break;
8131 	case BPF_FUNC_get_local_storage:
8132 		/* check that flags argument in get_local_storage(map, flags) is 0,
8133 		 * this is required because get_local_storage() can't return an error.
8134 		 */
8135 		if (!register_is_null(&regs[BPF_REG_2])) {
8136 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
8137 			return -EINVAL;
8138 		}
8139 		break;
8140 	case BPF_FUNC_for_each_map_elem:
8141 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8142 					set_map_elem_callback_state);
8143 		break;
8144 	case BPF_FUNC_timer_set_callback:
8145 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8146 					set_timer_callback_state);
8147 		break;
8148 	case BPF_FUNC_find_vma:
8149 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8150 					set_find_vma_callback_state);
8151 		break;
8152 	case BPF_FUNC_snprintf:
8153 		err = check_bpf_snprintf_call(env, regs);
8154 		break;
8155 	case BPF_FUNC_loop:
8156 		update_loop_inline_state(env, meta.subprogno);
8157 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8158 					set_loop_callback_state);
8159 		break;
8160 	case BPF_FUNC_dynptr_from_mem:
8161 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
8162 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
8163 				reg_type_str(env, regs[BPF_REG_1].type));
8164 			return -EACCES;
8165 		}
8166 		break;
8167 	case BPF_FUNC_set_retval:
8168 		if (prog_type == BPF_PROG_TYPE_LSM &&
8169 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
8170 			if (!env->prog->aux->attach_func_proto->type) {
8171 				/* Make sure programs that attach to void
8172 				 * hooks don't try to modify return value.
8173 				 */
8174 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
8175 				return -EINVAL;
8176 			}
8177 		}
8178 		break;
8179 	case BPF_FUNC_dynptr_data:
8180 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
8181 			if (arg_type_is_dynptr(fn->arg_type[i])) {
8182 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
8183 				int id, ref_obj_id;
8184 
8185 				if (meta.dynptr_id) {
8186 					verbose(env, "verifier internal error: meta.dynptr_id already set\n");
8187 					return -EFAULT;
8188 				}
8189 
8190 				if (meta.ref_obj_id) {
8191 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
8192 					return -EFAULT;
8193 				}
8194 
8195 				id = dynptr_id(env, reg);
8196 				if (id < 0) {
8197 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
8198 					return id;
8199 				}
8200 
8201 				ref_obj_id = dynptr_ref_obj_id(env, reg);
8202 				if (ref_obj_id < 0) {
8203 					verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
8204 					return ref_obj_id;
8205 				}
8206 
8207 				meta.dynptr_id = id;
8208 				meta.ref_obj_id = ref_obj_id;
8209 				break;
8210 			}
8211 		}
8212 		if (i == MAX_BPF_FUNC_REG_ARGS) {
8213 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
8214 			return -EFAULT;
8215 		}
8216 		break;
8217 	case BPF_FUNC_user_ringbuf_drain:
8218 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8219 					set_user_ringbuf_callback_state);
8220 		break;
8221 	}
8222 
8223 	if (err)
8224 		return err;
8225 
8226 	/* reset caller saved regs */
8227 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8228 		mark_reg_not_init(env, regs, caller_saved[i]);
8229 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8230 	}
8231 
8232 	/* helper call returns 64-bit value. */
8233 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8234 
8235 	/* update return register (already marked as written above) */
8236 	ret_type = fn->ret_type;
8237 	ret_flag = type_flag(ret_type);
8238 
8239 	switch (base_type(ret_type)) {
8240 	case RET_INTEGER:
8241 		/* sets type to SCALAR_VALUE */
8242 		mark_reg_unknown(env, regs, BPF_REG_0);
8243 		break;
8244 	case RET_VOID:
8245 		regs[BPF_REG_0].type = NOT_INIT;
8246 		break;
8247 	case RET_PTR_TO_MAP_VALUE:
8248 		/* There is no offset yet applied, variable or fixed */
8249 		mark_reg_known_zero(env, regs, BPF_REG_0);
8250 		/* remember map_ptr, so that check_map_access()
8251 		 * can check 'value_size' boundary of memory access
8252 		 * to map element returned from bpf_map_lookup_elem()
8253 		 */
8254 		if (meta.map_ptr == NULL) {
8255 			verbose(env,
8256 				"kernel subsystem misconfigured verifier\n");
8257 			return -EINVAL;
8258 		}
8259 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
8260 		regs[BPF_REG_0].map_uid = meta.map_uid;
8261 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
8262 		if (!type_may_be_null(ret_type) &&
8263 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
8264 			regs[BPF_REG_0].id = ++env->id_gen;
8265 		}
8266 		break;
8267 	case RET_PTR_TO_SOCKET:
8268 		mark_reg_known_zero(env, regs, BPF_REG_0);
8269 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
8270 		break;
8271 	case RET_PTR_TO_SOCK_COMMON:
8272 		mark_reg_known_zero(env, regs, BPF_REG_0);
8273 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
8274 		break;
8275 	case RET_PTR_TO_TCP_SOCK:
8276 		mark_reg_known_zero(env, regs, BPF_REG_0);
8277 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
8278 		break;
8279 	case RET_PTR_TO_MEM:
8280 		mark_reg_known_zero(env, regs, BPF_REG_0);
8281 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8282 		regs[BPF_REG_0].mem_size = meta.mem_size;
8283 		break;
8284 	case RET_PTR_TO_MEM_OR_BTF_ID:
8285 	{
8286 		const struct btf_type *t;
8287 
8288 		mark_reg_known_zero(env, regs, BPF_REG_0);
8289 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
8290 		if (!btf_type_is_struct(t)) {
8291 			u32 tsize;
8292 			const struct btf_type *ret;
8293 			const char *tname;
8294 
8295 			/* resolve the type size of ksym. */
8296 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
8297 			if (IS_ERR(ret)) {
8298 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
8299 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
8300 					tname, PTR_ERR(ret));
8301 				return -EINVAL;
8302 			}
8303 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8304 			regs[BPF_REG_0].mem_size = tsize;
8305 		} else {
8306 			/* MEM_RDONLY may be carried from ret_flag, but it
8307 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
8308 			 * it will confuse the check of PTR_TO_BTF_ID in
8309 			 * check_mem_access().
8310 			 */
8311 			ret_flag &= ~MEM_RDONLY;
8312 
8313 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8314 			regs[BPF_REG_0].btf = meta.ret_btf;
8315 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
8316 		}
8317 		break;
8318 	}
8319 	case RET_PTR_TO_BTF_ID:
8320 	{
8321 		struct btf *ret_btf;
8322 		int ret_btf_id;
8323 
8324 		mark_reg_known_zero(env, regs, BPF_REG_0);
8325 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8326 		if (func_id == BPF_FUNC_kptr_xchg) {
8327 			ret_btf = meta.kptr_field->kptr.btf;
8328 			ret_btf_id = meta.kptr_field->kptr.btf_id;
8329 		} else {
8330 			if (fn->ret_btf_id == BPF_PTR_POISON) {
8331 				verbose(env, "verifier internal error:");
8332 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
8333 					func_id_name(func_id));
8334 				return -EINVAL;
8335 			}
8336 			ret_btf = btf_vmlinux;
8337 			ret_btf_id = *fn->ret_btf_id;
8338 		}
8339 		if (ret_btf_id == 0) {
8340 			verbose(env, "invalid return type %u of func %s#%d\n",
8341 				base_type(ret_type), func_id_name(func_id),
8342 				func_id);
8343 			return -EINVAL;
8344 		}
8345 		regs[BPF_REG_0].btf = ret_btf;
8346 		regs[BPF_REG_0].btf_id = ret_btf_id;
8347 		break;
8348 	}
8349 	default:
8350 		verbose(env, "unknown return type %u of func %s#%d\n",
8351 			base_type(ret_type), func_id_name(func_id), func_id);
8352 		return -EINVAL;
8353 	}
8354 
8355 	if (type_may_be_null(regs[BPF_REG_0].type))
8356 		regs[BPF_REG_0].id = ++env->id_gen;
8357 
8358 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
8359 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
8360 			func_id_name(func_id), func_id);
8361 		return -EFAULT;
8362 	}
8363 
8364 	if (is_dynptr_ref_function(func_id))
8365 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
8366 
8367 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
8368 		/* For release_reference() */
8369 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
8370 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
8371 		int id = acquire_reference_state(env, insn_idx);
8372 
8373 		if (id < 0)
8374 			return id;
8375 		/* For mark_ptr_or_null_reg() */
8376 		regs[BPF_REG_0].id = id;
8377 		/* For release_reference() */
8378 		regs[BPF_REG_0].ref_obj_id = id;
8379 	}
8380 
8381 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
8382 
8383 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
8384 	if (err)
8385 		return err;
8386 
8387 	if ((func_id == BPF_FUNC_get_stack ||
8388 	     func_id == BPF_FUNC_get_task_stack) &&
8389 	    !env->prog->has_callchain_buf) {
8390 		const char *err_str;
8391 
8392 #ifdef CONFIG_PERF_EVENTS
8393 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
8394 		err_str = "cannot get callchain buffer for func %s#%d\n";
8395 #else
8396 		err = -ENOTSUPP;
8397 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
8398 #endif
8399 		if (err) {
8400 			verbose(env, err_str, func_id_name(func_id), func_id);
8401 			return err;
8402 		}
8403 
8404 		env->prog->has_callchain_buf = true;
8405 	}
8406 
8407 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
8408 		env->prog->call_get_stack = true;
8409 
8410 	if (func_id == BPF_FUNC_get_func_ip) {
8411 		if (check_get_func_ip(env))
8412 			return -ENOTSUPP;
8413 		env->prog->call_get_func_ip = true;
8414 	}
8415 
8416 	if (changes_data)
8417 		clear_all_pkt_pointers(env);
8418 	return 0;
8419 }
8420 
8421 /* mark_btf_func_reg_size() is used when the reg size is determined by
8422  * the BTF func_proto's return value size and argument.
8423  */
8424 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
8425 				   size_t reg_size)
8426 {
8427 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
8428 
8429 	if (regno == BPF_REG_0) {
8430 		/* Function return value */
8431 		reg->live |= REG_LIVE_WRITTEN;
8432 		reg->subreg_def = reg_size == sizeof(u64) ?
8433 			DEF_NOT_SUBREG : env->insn_idx + 1;
8434 	} else {
8435 		/* Function argument */
8436 		if (reg_size == sizeof(u64)) {
8437 			mark_insn_zext(env, reg);
8438 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
8439 		} else {
8440 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
8441 		}
8442 	}
8443 }
8444 
8445 struct bpf_kfunc_call_arg_meta {
8446 	/* In parameters */
8447 	struct btf *btf;
8448 	u32 func_id;
8449 	u32 kfunc_flags;
8450 	const struct btf_type *func_proto;
8451 	const char *func_name;
8452 	/* Out parameters */
8453 	u32 ref_obj_id;
8454 	u8 release_regno;
8455 	bool r0_rdonly;
8456 	u32 ret_btf_id;
8457 	u64 r0_size;
8458 	struct {
8459 		u64 value;
8460 		bool found;
8461 	} arg_constant;
8462 	struct {
8463 		struct btf *btf;
8464 		u32 btf_id;
8465 	} arg_obj_drop;
8466 	struct {
8467 		struct btf_field *field;
8468 	} arg_list_head;
8469 };
8470 
8471 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
8472 {
8473 	return meta->kfunc_flags & KF_ACQUIRE;
8474 }
8475 
8476 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
8477 {
8478 	return meta->kfunc_flags & KF_RET_NULL;
8479 }
8480 
8481 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
8482 {
8483 	return meta->kfunc_flags & KF_RELEASE;
8484 }
8485 
8486 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
8487 {
8488 	return meta->kfunc_flags & KF_TRUSTED_ARGS;
8489 }
8490 
8491 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
8492 {
8493 	return meta->kfunc_flags & KF_SLEEPABLE;
8494 }
8495 
8496 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
8497 {
8498 	return meta->kfunc_flags & KF_DESTRUCTIVE;
8499 }
8500 
8501 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
8502 {
8503 	return meta->kfunc_flags & KF_RCU;
8504 }
8505 
8506 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
8507 {
8508 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
8509 }
8510 
8511 static bool __kfunc_param_match_suffix(const struct btf *btf,
8512 				       const struct btf_param *arg,
8513 				       const char *suffix)
8514 {
8515 	int suffix_len = strlen(suffix), len;
8516 	const char *param_name;
8517 
8518 	/* In the future, this can be ported to use BTF tagging */
8519 	param_name = btf_name_by_offset(btf, arg->name_off);
8520 	if (str_is_empty(param_name))
8521 		return false;
8522 	len = strlen(param_name);
8523 	if (len < suffix_len)
8524 		return false;
8525 	param_name += len - suffix_len;
8526 	return !strncmp(param_name, suffix, suffix_len);
8527 }
8528 
8529 static bool is_kfunc_arg_mem_size(const struct btf *btf,
8530 				  const struct btf_param *arg,
8531 				  const struct bpf_reg_state *reg)
8532 {
8533 	const struct btf_type *t;
8534 
8535 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8536 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
8537 		return false;
8538 
8539 	return __kfunc_param_match_suffix(btf, arg, "__sz");
8540 }
8541 
8542 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8543 {
8544 	return __kfunc_param_match_suffix(btf, arg, "__k");
8545 }
8546 
8547 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8548 {
8549 	return __kfunc_param_match_suffix(btf, arg, "__ign");
8550 }
8551 
8552 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8553 {
8554 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
8555 }
8556 
8557 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8558 					  const struct btf_param *arg,
8559 					  const char *name)
8560 {
8561 	int len, target_len = strlen(name);
8562 	const char *param_name;
8563 
8564 	param_name = btf_name_by_offset(btf, arg->name_off);
8565 	if (str_is_empty(param_name))
8566 		return false;
8567 	len = strlen(param_name);
8568 	if (len != target_len)
8569 		return false;
8570 	if (strcmp(param_name, name))
8571 		return false;
8572 
8573 	return true;
8574 }
8575 
8576 enum {
8577 	KF_ARG_DYNPTR_ID,
8578 	KF_ARG_LIST_HEAD_ID,
8579 	KF_ARG_LIST_NODE_ID,
8580 };
8581 
8582 BTF_ID_LIST(kf_arg_btf_ids)
8583 BTF_ID(struct, bpf_dynptr_kern)
8584 BTF_ID(struct, bpf_list_head)
8585 BTF_ID(struct, bpf_list_node)
8586 
8587 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8588 				    const struct btf_param *arg, int type)
8589 {
8590 	const struct btf_type *t;
8591 	u32 res_id;
8592 
8593 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8594 	if (!t)
8595 		return false;
8596 	if (!btf_type_is_ptr(t))
8597 		return false;
8598 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
8599 	if (!t)
8600 		return false;
8601 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
8602 }
8603 
8604 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
8605 {
8606 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
8607 }
8608 
8609 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
8610 {
8611 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
8612 }
8613 
8614 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
8615 {
8616 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
8617 }
8618 
8619 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8620 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8621 					const struct btf *btf,
8622 					const struct btf_type *t, int rec)
8623 {
8624 	const struct btf_type *member_type;
8625 	const struct btf_member *member;
8626 	u32 i;
8627 
8628 	if (!btf_type_is_struct(t))
8629 		return false;
8630 
8631 	for_each_member(i, t, member) {
8632 		const struct btf_array *array;
8633 
8634 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8635 		if (btf_type_is_struct(member_type)) {
8636 			if (rec >= 3) {
8637 				verbose(env, "max struct nesting depth exceeded\n");
8638 				return false;
8639 			}
8640 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8641 				return false;
8642 			continue;
8643 		}
8644 		if (btf_type_is_array(member_type)) {
8645 			array = btf_array(member_type);
8646 			if (!array->nelems)
8647 				return false;
8648 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8649 			if (!btf_type_is_scalar(member_type))
8650 				return false;
8651 			continue;
8652 		}
8653 		if (!btf_type_is_scalar(member_type))
8654 			return false;
8655 	}
8656 	return true;
8657 }
8658 
8659 
8660 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8661 #ifdef CONFIG_NET
8662 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8663 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8664 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8665 #endif
8666 };
8667 
8668 enum kfunc_ptr_arg_type {
8669 	KF_ARG_PTR_TO_CTX,
8670 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
8671 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
8672 	KF_ARG_PTR_TO_DYNPTR,
8673 	KF_ARG_PTR_TO_LIST_HEAD,
8674 	KF_ARG_PTR_TO_LIST_NODE,
8675 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
8676 	KF_ARG_PTR_TO_MEM,
8677 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
8678 };
8679 
8680 enum special_kfunc_type {
8681 	KF_bpf_obj_new_impl,
8682 	KF_bpf_obj_drop_impl,
8683 	KF_bpf_list_push_front,
8684 	KF_bpf_list_push_back,
8685 	KF_bpf_list_pop_front,
8686 	KF_bpf_list_pop_back,
8687 	KF_bpf_cast_to_kern_ctx,
8688 	KF_bpf_rdonly_cast,
8689 	KF_bpf_rcu_read_lock,
8690 	KF_bpf_rcu_read_unlock,
8691 };
8692 
8693 BTF_SET_START(special_kfunc_set)
8694 BTF_ID(func, bpf_obj_new_impl)
8695 BTF_ID(func, bpf_obj_drop_impl)
8696 BTF_ID(func, bpf_list_push_front)
8697 BTF_ID(func, bpf_list_push_back)
8698 BTF_ID(func, bpf_list_pop_front)
8699 BTF_ID(func, bpf_list_pop_back)
8700 BTF_ID(func, bpf_cast_to_kern_ctx)
8701 BTF_ID(func, bpf_rdonly_cast)
8702 BTF_SET_END(special_kfunc_set)
8703 
8704 BTF_ID_LIST(special_kfunc_list)
8705 BTF_ID(func, bpf_obj_new_impl)
8706 BTF_ID(func, bpf_obj_drop_impl)
8707 BTF_ID(func, bpf_list_push_front)
8708 BTF_ID(func, bpf_list_push_back)
8709 BTF_ID(func, bpf_list_pop_front)
8710 BTF_ID(func, bpf_list_pop_back)
8711 BTF_ID(func, bpf_cast_to_kern_ctx)
8712 BTF_ID(func, bpf_rdonly_cast)
8713 BTF_ID(func, bpf_rcu_read_lock)
8714 BTF_ID(func, bpf_rcu_read_unlock)
8715 
8716 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
8717 {
8718 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
8719 }
8720 
8721 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
8722 {
8723 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
8724 }
8725 
8726 static enum kfunc_ptr_arg_type
8727 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8728 		       struct bpf_kfunc_call_arg_meta *meta,
8729 		       const struct btf_type *t, const struct btf_type *ref_t,
8730 		       const char *ref_tname, const struct btf_param *args,
8731 		       int argno, int nargs)
8732 {
8733 	u32 regno = argno + 1;
8734 	struct bpf_reg_state *regs = cur_regs(env);
8735 	struct bpf_reg_state *reg = &regs[regno];
8736 	bool arg_mem_size = false;
8737 
8738 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8739 		return KF_ARG_PTR_TO_CTX;
8740 
8741 	/* In this function, we verify the kfunc's BTF as per the argument type,
8742 	 * leaving the rest of the verification with respect to the register
8743 	 * type to our caller. When a set of conditions hold in the BTF type of
8744 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8745 	 */
8746 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8747 		return KF_ARG_PTR_TO_CTX;
8748 
8749 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8750 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8751 
8752 	if (is_kfunc_arg_kptr_get(meta, argno)) {
8753 		if (!btf_type_is_ptr(ref_t)) {
8754 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8755 			return -EINVAL;
8756 		}
8757 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
8758 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8759 		if (!btf_type_is_struct(ref_t)) {
8760 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8761 				meta->func_name, btf_type_str(ref_t), ref_tname);
8762 			return -EINVAL;
8763 		}
8764 		return KF_ARG_PTR_TO_KPTR;
8765 	}
8766 
8767 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8768 		return KF_ARG_PTR_TO_DYNPTR;
8769 
8770 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8771 		return KF_ARG_PTR_TO_LIST_HEAD;
8772 
8773 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8774 		return KF_ARG_PTR_TO_LIST_NODE;
8775 
8776 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8777 		if (!btf_type_is_struct(ref_t)) {
8778 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8779 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8780 			return -EINVAL;
8781 		}
8782 		return KF_ARG_PTR_TO_BTF_ID;
8783 	}
8784 
8785 	if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8786 		arg_mem_size = true;
8787 
8788 	/* This is the catch all argument type of register types supported by
8789 	 * check_helper_mem_access. However, we only allow when argument type is
8790 	 * pointer to scalar, or struct composed (recursively) of scalars. When
8791 	 * arg_mem_size is true, the pointer can be void *.
8792 	 */
8793 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8794 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8795 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8796 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8797 		return -EINVAL;
8798 	}
8799 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8800 }
8801 
8802 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8803 					struct bpf_reg_state *reg,
8804 					const struct btf_type *ref_t,
8805 					const char *ref_tname, u32 ref_id,
8806 					struct bpf_kfunc_call_arg_meta *meta,
8807 					int argno)
8808 {
8809 	const struct btf_type *reg_ref_t;
8810 	bool strict_type_match = false;
8811 	const struct btf *reg_btf;
8812 	const char *reg_ref_tname;
8813 	u32 reg_ref_id;
8814 
8815 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
8816 		reg_btf = reg->btf;
8817 		reg_ref_id = reg->btf_id;
8818 	} else {
8819 		reg_btf = btf_vmlinux;
8820 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8821 	}
8822 
8823 	/* Enforce strict type matching for calls to kfuncs that are acquiring
8824 	 * or releasing a reference, or are no-cast aliases. We do _not_
8825 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
8826 	 * as we want to enable BPF programs to pass types that are bitwise
8827 	 * equivalent without forcing them to explicitly cast with something
8828 	 * like bpf_cast_to_kern_ctx().
8829 	 *
8830 	 * For example, say we had a type like the following:
8831 	 *
8832 	 * struct bpf_cpumask {
8833 	 *	cpumask_t cpumask;
8834 	 *	refcount_t usage;
8835 	 * };
8836 	 *
8837 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
8838 	 * to a struct cpumask, so it would be safe to pass a struct
8839 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
8840 	 *
8841 	 * The philosophy here is similar to how we allow scalars of different
8842 	 * types to be passed to kfuncs as long as the size is the same. The
8843 	 * only difference here is that we're simply allowing
8844 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
8845 	 * resolve types.
8846 	 */
8847 	if (is_kfunc_acquire(meta) ||
8848 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
8849 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
8850 		strict_type_match = true;
8851 
8852 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
8853 
8854 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8855 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8856 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8857 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8858 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8859 			btf_type_str(reg_ref_t), reg_ref_tname);
8860 		return -EINVAL;
8861 	}
8862 	return 0;
8863 }
8864 
8865 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8866 				      struct bpf_reg_state *reg,
8867 				      const struct btf_type *ref_t,
8868 				      const char *ref_tname,
8869 				      struct bpf_kfunc_call_arg_meta *meta,
8870 				      int argno)
8871 {
8872 	struct btf_field *kptr_field;
8873 
8874 	/* check_func_arg_reg_off allows var_off for
8875 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8876 	 * off_desc.
8877 	 */
8878 	if (!tnum_is_const(reg->var_off)) {
8879 		verbose(env, "arg#0 must have constant offset\n");
8880 		return -EINVAL;
8881 	}
8882 
8883 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8884 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8885 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8886 			reg->off + reg->var_off.value);
8887 		return -EINVAL;
8888 	}
8889 
8890 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8891 				  kptr_field->kptr.btf_id, true)) {
8892 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8893 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8894 		return -EINVAL;
8895 	}
8896 	return 0;
8897 }
8898 
8899 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8900 {
8901 	struct bpf_func_state *state = cur_func(env);
8902 	struct bpf_reg_state *reg;
8903 	int i;
8904 
8905 	/* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8906 	 * subprogs, no global functions. This means that the references would
8907 	 * not be released inside the critical section but they may be added to
8908 	 * the reference state, and the acquired_refs are never copied out for a
8909 	 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8910 	 * critical sections.
8911 	 */
8912 	if (!ref_obj_id) {
8913 		verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8914 		return -EFAULT;
8915 	}
8916 	for (i = 0; i < state->acquired_refs; i++) {
8917 		if (state->refs[i].id == ref_obj_id) {
8918 			if (state->refs[i].release_on_unlock) {
8919 				verbose(env, "verifier internal error: expected false release_on_unlock");
8920 				return -EFAULT;
8921 			}
8922 			state->refs[i].release_on_unlock = true;
8923 			/* Now mark everyone sharing same ref_obj_id as untrusted */
8924 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8925 				if (reg->ref_obj_id == ref_obj_id)
8926 					reg->type |= PTR_UNTRUSTED;
8927 			}));
8928 			return 0;
8929 		}
8930 	}
8931 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8932 	return -EFAULT;
8933 }
8934 
8935 /* Implementation details:
8936  *
8937  * Each register points to some region of memory, which we define as an
8938  * allocation. Each allocation may embed a bpf_spin_lock which protects any
8939  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8940  * allocation. The lock and the data it protects are colocated in the same
8941  * memory region.
8942  *
8943  * Hence, everytime a register holds a pointer value pointing to such
8944  * allocation, the verifier preserves a unique reg->id for it.
8945  *
8946  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8947  * bpf_spin_lock is called.
8948  *
8949  * To enable this, lock state in the verifier captures two values:
8950  *	active_lock.ptr = Register's type specific pointer
8951  *	active_lock.id  = A unique ID for each register pointer value
8952  *
8953  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8954  * supported register types.
8955  *
8956  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8957  * allocated objects is the reg->btf pointer.
8958  *
8959  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8960  * can establish the provenance of the map value statically for each distinct
8961  * lookup into such maps. They always contain a single map value hence unique
8962  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8963  *
8964  * So, in case of global variables, they use array maps with max_entries = 1,
8965  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8966  * into the same map value as max_entries is 1, as described above).
8967  *
8968  * In case of inner map lookups, the inner map pointer has same map_ptr as the
8969  * outer map pointer (in verifier context), but each lookup into an inner map
8970  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8971  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8972  * will get different reg->id assigned to each lookup, hence different
8973  * active_lock.id.
8974  *
8975  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8976  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8977  * returned from bpf_obj_new. Each allocation receives a new reg->id.
8978  */
8979 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8980 {
8981 	void *ptr;
8982 	u32 id;
8983 
8984 	switch ((int)reg->type) {
8985 	case PTR_TO_MAP_VALUE:
8986 		ptr = reg->map_ptr;
8987 		break;
8988 	case PTR_TO_BTF_ID | MEM_ALLOC:
8989 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8990 		ptr = reg->btf;
8991 		break;
8992 	default:
8993 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
8994 		return -EFAULT;
8995 	}
8996 	id = reg->id;
8997 
8998 	if (!env->cur_state->active_lock.ptr)
8999 		return -EINVAL;
9000 	if (env->cur_state->active_lock.ptr != ptr ||
9001 	    env->cur_state->active_lock.id != id) {
9002 		verbose(env, "held lock and object are not in the same allocation\n");
9003 		return -EINVAL;
9004 	}
9005 	return 0;
9006 }
9007 
9008 static bool is_bpf_list_api_kfunc(u32 btf_id)
9009 {
9010 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9011 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
9012 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9013 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
9014 }
9015 
9016 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
9017 					   struct bpf_reg_state *reg, u32 regno,
9018 					   struct bpf_kfunc_call_arg_meta *meta)
9019 {
9020 	struct btf_field *field;
9021 	struct btf_record *rec;
9022 	u32 list_head_off;
9023 
9024 	if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
9025 		verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
9026 		return -EFAULT;
9027 	}
9028 
9029 	if (!tnum_is_const(reg->var_off)) {
9030 		verbose(env,
9031 			"R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
9032 			regno);
9033 		return -EINVAL;
9034 	}
9035 
9036 	rec = reg_btf_record(reg);
9037 	list_head_off = reg->off + reg->var_off.value;
9038 	field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
9039 	if (!field) {
9040 		verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
9041 		return -EINVAL;
9042 	}
9043 
9044 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
9045 	if (check_reg_allocation_locked(env, reg)) {
9046 		verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
9047 			rec->spin_lock_off);
9048 		return -EINVAL;
9049 	}
9050 
9051 	if (meta->arg_list_head.field) {
9052 		verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
9053 		return -EFAULT;
9054 	}
9055 	meta->arg_list_head.field = field;
9056 	return 0;
9057 }
9058 
9059 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
9060 					   struct bpf_reg_state *reg, u32 regno,
9061 					   struct bpf_kfunc_call_arg_meta *meta)
9062 {
9063 	const struct btf_type *et, *t;
9064 	struct btf_field *field;
9065 	struct btf_record *rec;
9066 	u32 list_node_off;
9067 
9068 	if (meta->btf != btf_vmlinux ||
9069 	    (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
9070 	     meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
9071 		verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
9072 		return -EFAULT;
9073 	}
9074 
9075 	if (!tnum_is_const(reg->var_off)) {
9076 		verbose(env,
9077 			"R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
9078 			regno);
9079 		return -EINVAL;
9080 	}
9081 
9082 	rec = reg_btf_record(reg);
9083 	list_node_off = reg->off + reg->var_off.value;
9084 	field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
9085 	if (!field || field->offset != list_node_off) {
9086 		verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
9087 		return -EINVAL;
9088 	}
9089 
9090 	field = meta->arg_list_head.field;
9091 
9092 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
9093 	t = btf_type_by_id(reg->btf, reg->btf_id);
9094 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
9095 				  field->graph_root.value_btf_id, true)) {
9096 		verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
9097 			"in struct %s, but arg is at offset=%d in struct %s\n",
9098 			field->graph_root.node_offset,
9099 			btf_name_by_offset(field->graph_root.btf, et->name_off),
9100 			list_node_off, btf_name_by_offset(reg->btf, t->name_off));
9101 		return -EINVAL;
9102 	}
9103 
9104 	if (list_node_off != field->graph_root.node_offset) {
9105 		verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
9106 			list_node_off, field->graph_root.node_offset,
9107 			btf_name_by_offset(field->graph_root.btf, et->name_off));
9108 		return -EINVAL;
9109 	}
9110 	/* Set arg#1 for expiration after unlock */
9111 	return ref_set_release_on_unlock(env, reg->ref_obj_id);
9112 }
9113 
9114 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
9115 {
9116 	const char *func_name = meta->func_name, *ref_tname;
9117 	const struct btf *btf = meta->btf;
9118 	const struct btf_param *args;
9119 	u32 i, nargs;
9120 	int ret;
9121 
9122 	args = (const struct btf_param *)(meta->func_proto + 1);
9123 	nargs = btf_type_vlen(meta->func_proto);
9124 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
9125 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
9126 			MAX_BPF_FUNC_REG_ARGS);
9127 		return -EINVAL;
9128 	}
9129 
9130 	/* Check that BTF function arguments match actual types that the
9131 	 * verifier sees.
9132 	 */
9133 	for (i = 0; i < nargs; i++) {
9134 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
9135 		const struct btf_type *t, *ref_t, *resolve_ret;
9136 		enum bpf_arg_type arg_type = ARG_DONTCARE;
9137 		u32 regno = i + 1, ref_id, type_size;
9138 		bool is_ret_buf_sz = false;
9139 		int kf_arg_type;
9140 
9141 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
9142 
9143 		if (is_kfunc_arg_ignore(btf, &args[i]))
9144 			continue;
9145 
9146 		if (btf_type_is_scalar(t)) {
9147 			if (reg->type != SCALAR_VALUE) {
9148 				verbose(env, "R%d is not a scalar\n", regno);
9149 				return -EINVAL;
9150 			}
9151 
9152 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
9153 				if (meta->arg_constant.found) {
9154 					verbose(env, "verifier internal error: only one constant argument permitted\n");
9155 					return -EFAULT;
9156 				}
9157 				if (!tnum_is_const(reg->var_off)) {
9158 					verbose(env, "R%d must be a known constant\n", regno);
9159 					return -EINVAL;
9160 				}
9161 				ret = mark_chain_precision(env, regno);
9162 				if (ret < 0)
9163 					return ret;
9164 				meta->arg_constant.found = true;
9165 				meta->arg_constant.value = reg->var_off.value;
9166 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
9167 				meta->r0_rdonly = true;
9168 				is_ret_buf_sz = true;
9169 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
9170 				is_ret_buf_sz = true;
9171 			}
9172 
9173 			if (is_ret_buf_sz) {
9174 				if (meta->r0_size) {
9175 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
9176 					return -EINVAL;
9177 				}
9178 
9179 				if (!tnum_is_const(reg->var_off)) {
9180 					verbose(env, "R%d is not a const\n", regno);
9181 					return -EINVAL;
9182 				}
9183 
9184 				meta->r0_size = reg->var_off.value;
9185 				ret = mark_chain_precision(env, regno);
9186 				if (ret)
9187 					return ret;
9188 			}
9189 			continue;
9190 		}
9191 
9192 		if (!btf_type_is_ptr(t)) {
9193 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
9194 			return -EINVAL;
9195 		}
9196 
9197 		if (is_kfunc_trusted_args(meta) &&
9198 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
9199 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
9200 			return -EACCES;
9201 		}
9202 
9203 		if (reg->ref_obj_id) {
9204 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
9205 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
9206 					regno, reg->ref_obj_id,
9207 					meta->ref_obj_id);
9208 				return -EFAULT;
9209 			}
9210 			meta->ref_obj_id = reg->ref_obj_id;
9211 			if (is_kfunc_release(meta))
9212 				meta->release_regno = regno;
9213 		}
9214 
9215 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
9216 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
9217 
9218 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
9219 		if (kf_arg_type < 0)
9220 			return kf_arg_type;
9221 
9222 		switch (kf_arg_type) {
9223 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
9224 		case KF_ARG_PTR_TO_BTF_ID:
9225 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
9226 				break;
9227 
9228 			if (!is_trusted_reg(reg)) {
9229 				if (!is_kfunc_rcu(meta)) {
9230 					verbose(env, "R%d must be referenced or trusted\n", regno);
9231 					return -EINVAL;
9232 				}
9233 				if (!is_rcu_reg(reg)) {
9234 					verbose(env, "R%d must be a rcu pointer\n", regno);
9235 					return -EINVAL;
9236 				}
9237 			}
9238 
9239 			fallthrough;
9240 		case KF_ARG_PTR_TO_CTX:
9241 			/* Trusted arguments have the same offset checks as release arguments */
9242 			arg_type |= OBJ_RELEASE;
9243 			break;
9244 		case KF_ARG_PTR_TO_KPTR:
9245 		case KF_ARG_PTR_TO_DYNPTR:
9246 		case KF_ARG_PTR_TO_LIST_HEAD:
9247 		case KF_ARG_PTR_TO_LIST_NODE:
9248 		case KF_ARG_PTR_TO_MEM:
9249 		case KF_ARG_PTR_TO_MEM_SIZE:
9250 			/* Trusted by default */
9251 			break;
9252 		default:
9253 			WARN_ON_ONCE(1);
9254 			return -EFAULT;
9255 		}
9256 
9257 		if (is_kfunc_release(meta) && reg->ref_obj_id)
9258 			arg_type |= OBJ_RELEASE;
9259 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
9260 		if (ret < 0)
9261 			return ret;
9262 
9263 		switch (kf_arg_type) {
9264 		case KF_ARG_PTR_TO_CTX:
9265 			if (reg->type != PTR_TO_CTX) {
9266 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
9267 				return -EINVAL;
9268 			}
9269 
9270 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9271 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
9272 				if (ret < 0)
9273 					return -EINVAL;
9274 				meta->ret_btf_id  = ret;
9275 			}
9276 			break;
9277 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
9278 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9279 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
9280 				return -EINVAL;
9281 			}
9282 			if (!reg->ref_obj_id) {
9283 				verbose(env, "allocated object must be referenced\n");
9284 				return -EINVAL;
9285 			}
9286 			if (meta->btf == btf_vmlinux &&
9287 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9288 				meta->arg_obj_drop.btf = reg->btf;
9289 				meta->arg_obj_drop.btf_id = reg->btf_id;
9290 			}
9291 			break;
9292 		case KF_ARG_PTR_TO_KPTR:
9293 			if (reg->type != PTR_TO_MAP_VALUE) {
9294 				verbose(env, "arg#0 expected pointer to map value\n");
9295 				return -EINVAL;
9296 			}
9297 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
9298 			if (ret < 0)
9299 				return ret;
9300 			break;
9301 		case KF_ARG_PTR_TO_DYNPTR:
9302 			if (reg->type != PTR_TO_STACK &&
9303 			    reg->type != CONST_PTR_TO_DYNPTR) {
9304 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
9305 				return -EINVAL;
9306 			}
9307 
9308 			ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL);
9309 			if (ret < 0)
9310 				return ret;
9311 			break;
9312 		case KF_ARG_PTR_TO_LIST_HEAD:
9313 			if (reg->type != PTR_TO_MAP_VALUE &&
9314 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9315 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
9316 				return -EINVAL;
9317 			}
9318 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
9319 				verbose(env, "allocated object must be referenced\n");
9320 				return -EINVAL;
9321 			}
9322 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
9323 			if (ret < 0)
9324 				return ret;
9325 			break;
9326 		case KF_ARG_PTR_TO_LIST_NODE:
9327 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9328 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
9329 				return -EINVAL;
9330 			}
9331 			if (!reg->ref_obj_id) {
9332 				verbose(env, "allocated object must be referenced\n");
9333 				return -EINVAL;
9334 			}
9335 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
9336 			if (ret < 0)
9337 				return ret;
9338 			break;
9339 		case KF_ARG_PTR_TO_BTF_ID:
9340 			/* Only base_type is checked, further checks are done here */
9341 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
9342 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
9343 			    !reg2btf_ids[base_type(reg->type)]) {
9344 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
9345 				verbose(env, "expected %s or socket\n",
9346 					reg_type_str(env, base_type(reg->type) |
9347 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
9348 				return -EINVAL;
9349 			}
9350 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
9351 			if (ret < 0)
9352 				return ret;
9353 			break;
9354 		case KF_ARG_PTR_TO_MEM:
9355 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
9356 			if (IS_ERR(resolve_ret)) {
9357 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
9358 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
9359 				return -EINVAL;
9360 			}
9361 			ret = check_mem_reg(env, reg, regno, type_size);
9362 			if (ret < 0)
9363 				return ret;
9364 			break;
9365 		case KF_ARG_PTR_TO_MEM_SIZE:
9366 			ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
9367 			if (ret < 0) {
9368 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
9369 				return ret;
9370 			}
9371 			/* Skip next '__sz' argument */
9372 			i++;
9373 			break;
9374 		}
9375 	}
9376 
9377 	if (is_kfunc_release(meta) && !meta->release_regno) {
9378 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
9379 			func_name);
9380 		return -EINVAL;
9381 	}
9382 
9383 	return 0;
9384 }
9385 
9386 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9387 			    int *insn_idx_p)
9388 {
9389 	const struct btf_type *t, *func, *func_proto, *ptr_type;
9390 	struct bpf_reg_state *regs = cur_regs(env);
9391 	const char *func_name, *ptr_type_name;
9392 	bool sleepable, rcu_lock, rcu_unlock;
9393 	struct bpf_kfunc_call_arg_meta meta;
9394 	u32 i, nargs, func_id, ptr_type_id;
9395 	int err, insn_idx = *insn_idx_p;
9396 	const struct btf_param *args;
9397 	const struct btf_type *ret_t;
9398 	struct btf *desc_btf;
9399 	u32 *kfunc_flags;
9400 
9401 	/* skip for now, but return error when we find this in fixup_kfunc_call */
9402 	if (!insn->imm)
9403 		return 0;
9404 
9405 	desc_btf = find_kfunc_desc_btf(env, insn->off);
9406 	if (IS_ERR(desc_btf))
9407 		return PTR_ERR(desc_btf);
9408 
9409 	func_id = insn->imm;
9410 	func = btf_type_by_id(desc_btf, func_id);
9411 	func_name = btf_name_by_offset(desc_btf, func->name_off);
9412 	func_proto = btf_type_by_id(desc_btf, func->type);
9413 
9414 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
9415 	if (!kfunc_flags) {
9416 		verbose(env, "calling kernel function %s is not allowed\n",
9417 			func_name);
9418 		return -EACCES;
9419 	}
9420 
9421 	/* Prepare kfunc call metadata */
9422 	memset(&meta, 0, sizeof(meta));
9423 	meta.btf = desc_btf;
9424 	meta.func_id = func_id;
9425 	meta.kfunc_flags = *kfunc_flags;
9426 	meta.func_proto = func_proto;
9427 	meta.func_name = func_name;
9428 
9429 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
9430 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
9431 		return -EACCES;
9432 	}
9433 
9434 	sleepable = is_kfunc_sleepable(&meta);
9435 	if (sleepable && !env->prog->aux->sleepable) {
9436 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
9437 		return -EACCES;
9438 	}
9439 
9440 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
9441 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9442 	if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) {
9443 		verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name);
9444 		return -EACCES;
9445 	}
9446 
9447 	if (env->cur_state->active_rcu_lock) {
9448 		struct bpf_func_state *state;
9449 		struct bpf_reg_state *reg;
9450 
9451 		if (rcu_lock) {
9452 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
9453 			return -EINVAL;
9454 		} else if (rcu_unlock) {
9455 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9456 				if (reg->type & MEM_RCU) {
9457 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9458 					reg->type |= PTR_UNTRUSTED;
9459 				}
9460 			}));
9461 			env->cur_state->active_rcu_lock = false;
9462 		} else if (sleepable) {
9463 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
9464 			return -EACCES;
9465 		}
9466 	} else if (rcu_lock) {
9467 		env->cur_state->active_rcu_lock = true;
9468 	} else if (rcu_unlock) {
9469 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
9470 		return -EINVAL;
9471 	}
9472 
9473 	/* Check the arguments */
9474 	err = check_kfunc_args(env, &meta);
9475 	if (err < 0)
9476 		return err;
9477 	/* In case of release function, we get register number of refcounted
9478 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
9479 	 */
9480 	if (meta.release_regno) {
9481 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
9482 		if (err) {
9483 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
9484 				func_name, func_id);
9485 			return err;
9486 		}
9487 	}
9488 
9489 	for (i = 0; i < CALLER_SAVED_REGS; i++)
9490 		mark_reg_not_init(env, regs, caller_saved[i]);
9491 
9492 	/* Check return type */
9493 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
9494 
9495 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
9496 		/* Only exception is bpf_obj_new_impl */
9497 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
9498 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
9499 			return -EINVAL;
9500 		}
9501 	}
9502 
9503 	if (btf_type_is_scalar(t)) {
9504 		mark_reg_unknown(env, regs, BPF_REG_0);
9505 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
9506 	} else if (btf_type_is_ptr(t)) {
9507 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
9508 
9509 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
9510 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
9511 				struct btf *ret_btf;
9512 				u32 ret_btf_id;
9513 
9514 				if (unlikely(!bpf_global_ma_set))
9515 					return -ENOMEM;
9516 
9517 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
9518 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
9519 					return -EINVAL;
9520 				}
9521 
9522 				ret_btf = env->prog->aux->btf;
9523 				ret_btf_id = meta.arg_constant.value;
9524 
9525 				/* This may be NULL due to user not supplying a BTF */
9526 				if (!ret_btf) {
9527 					verbose(env, "bpf_obj_new requires prog BTF\n");
9528 					return -EINVAL;
9529 				}
9530 
9531 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
9532 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
9533 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
9534 					return -EINVAL;
9535 				}
9536 
9537 				mark_reg_known_zero(env, regs, BPF_REG_0);
9538 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9539 				regs[BPF_REG_0].btf = ret_btf;
9540 				regs[BPF_REG_0].btf_id = ret_btf_id;
9541 
9542 				env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
9543 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9544 					btf_find_struct_meta(ret_btf, ret_btf_id);
9545 			} else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9546 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9547 					btf_find_struct_meta(meta.arg_obj_drop.btf,
9548 							     meta.arg_obj_drop.btf_id);
9549 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9550 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
9551 				struct btf_field *field = meta.arg_list_head.field;
9552 
9553 				mark_reg_known_zero(env, regs, BPF_REG_0);
9554 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9555 				regs[BPF_REG_0].btf = field->graph_root.btf;
9556 				regs[BPF_REG_0].btf_id = field->graph_root.value_btf_id;
9557 				regs[BPF_REG_0].off = field->graph_root.node_offset;
9558 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9559 				mark_reg_known_zero(env, regs, BPF_REG_0);
9560 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
9561 				regs[BPF_REG_0].btf = desc_btf;
9562 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9563 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
9564 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
9565 				if (!ret_t || !btf_type_is_struct(ret_t)) {
9566 					verbose(env,
9567 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
9568 					return -EINVAL;
9569 				}
9570 
9571 				mark_reg_known_zero(env, regs, BPF_REG_0);
9572 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
9573 				regs[BPF_REG_0].btf = desc_btf;
9574 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
9575 			} else {
9576 				verbose(env, "kernel function %s unhandled dynamic return type\n",
9577 					meta.func_name);
9578 				return -EFAULT;
9579 			}
9580 		} else if (!__btf_type_is_struct(ptr_type)) {
9581 			if (!meta.r0_size) {
9582 				ptr_type_name = btf_name_by_offset(desc_btf,
9583 								   ptr_type->name_off);
9584 				verbose(env,
9585 					"kernel function %s returns pointer type %s %s is not supported\n",
9586 					func_name,
9587 					btf_type_str(ptr_type),
9588 					ptr_type_name);
9589 				return -EINVAL;
9590 			}
9591 
9592 			mark_reg_known_zero(env, regs, BPF_REG_0);
9593 			regs[BPF_REG_0].type = PTR_TO_MEM;
9594 			regs[BPF_REG_0].mem_size = meta.r0_size;
9595 
9596 			if (meta.r0_rdonly)
9597 				regs[BPF_REG_0].type |= MEM_RDONLY;
9598 
9599 			/* Ensures we don't access the memory after a release_reference() */
9600 			if (meta.ref_obj_id)
9601 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9602 		} else {
9603 			mark_reg_known_zero(env, regs, BPF_REG_0);
9604 			regs[BPF_REG_0].btf = desc_btf;
9605 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
9606 			regs[BPF_REG_0].btf_id = ptr_type_id;
9607 		}
9608 
9609 		if (is_kfunc_ret_null(&meta)) {
9610 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
9611 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
9612 			regs[BPF_REG_0].id = ++env->id_gen;
9613 		}
9614 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
9615 		if (is_kfunc_acquire(&meta)) {
9616 			int id = acquire_reference_state(env, insn_idx);
9617 
9618 			if (id < 0)
9619 				return id;
9620 			if (is_kfunc_ret_null(&meta))
9621 				regs[BPF_REG_0].id = id;
9622 			regs[BPF_REG_0].ref_obj_id = id;
9623 		}
9624 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9625 			regs[BPF_REG_0].id = ++env->id_gen;
9626 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9627 
9628 	nargs = btf_type_vlen(func_proto);
9629 	args = (const struct btf_param *)(func_proto + 1);
9630 	for (i = 0; i < nargs; i++) {
9631 		u32 regno = i + 1;
9632 
9633 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
9634 		if (btf_type_is_ptr(t))
9635 			mark_btf_func_reg_size(env, regno, sizeof(void *));
9636 		else
9637 			/* scalar. ensured by btf_check_kfunc_arg_match() */
9638 			mark_btf_func_reg_size(env, regno, t->size);
9639 	}
9640 
9641 	return 0;
9642 }
9643 
9644 static bool signed_add_overflows(s64 a, s64 b)
9645 {
9646 	/* Do the add in u64, where overflow is well-defined */
9647 	s64 res = (s64)((u64)a + (u64)b);
9648 
9649 	if (b < 0)
9650 		return res > a;
9651 	return res < a;
9652 }
9653 
9654 static bool signed_add32_overflows(s32 a, s32 b)
9655 {
9656 	/* Do the add in u32, where overflow is well-defined */
9657 	s32 res = (s32)((u32)a + (u32)b);
9658 
9659 	if (b < 0)
9660 		return res > a;
9661 	return res < a;
9662 }
9663 
9664 static bool signed_sub_overflows(s64 a, s64 b)
9665 {
9666 	/* Do the sub in u64, where overflow is well-defined */
9667 	s64 res = (s64)((u64)a - (u64)b);
9668 
9669 	if (b < 0)
9670 		return res < a;
9671 	return res > a;
9672 }
9673 
9674 static bool signed_sub32_overflows(s32 a, s32 b)
9675 {
9676 	/* Do the sub in u32, where overflow is well-defined */
9677 	s32 res = (s32)((u32)a - (u32)b);
9678 
9679 	if (b < 0)
9680 		return res < a;
9681 	return res > a;
9682 }
9683 
9684 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9685 				  const struct bpf_reg_state *reg,
9686 				  enum bpf_reg_type type)
9687 {
9688 	bool known = tnum_is_const(reg->var_off);
9689 	s64 val = reg->var_off.value;
9690 	s64 smin = reg->smin_value;
9691 
9692 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9693 		verbose(env, "math between %s pointer and %lld is not allowed\n",
9694 			reg_type_str(env, type), val);
9695 		return false;
9696 	}
9697 
9698 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9699 		verbose(env, "%s pointer offset %d is not allowed\n",
9700 			reg_type_str(env, type), reg->off);
9701 		return false;
9702 	}
9703 
9704 	if (smin == S64_MIN) {
9705 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
9706 			reg_type_str(env, type));
9707 		return false;
9708 	}
9709 
9710 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9711 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
9712 			smin, reg_type_str(env, type));
9713 		return false;
9714 	}
9715 
9716 	return true;
9717 }
9718 
9719 enum {
9720 	REASON_BOUNDS	= -1,
9721 	REASON_TYPE	= -2,
9722 	REASON_PATHS	= -3,
9723 	REASON_LIMIT	= -4,
9724 	REASON_STACK	= -5,
9725 };
9726 
9727 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
9728 			      u32 *alu_limit, bool mask_to_left)
9729 {
9730 	u32 max = 0, ptr_limit = 0;
9731 
9732 	switch (ptr_reg->type) {
9733 	case PTR_TO_STACK:
9734 		/* Offset 0 is out-of-bounds, but acceptable start for the
9735 		 * left direction, see BPF_REG_FP. Also, unknown scalar
9736 		 * offset where we would need to deal with min/max bounds is
9737 		 * currently prohibited for unprivileged.
9738 		 */
9739 		max = MAX_BPF_STACK + mask_to_left;
9740 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
9741 		break;
9742 	case PTR_TO_MAP_VALUE:
9743 		max = ptr_reg->map_ptr->value_size;
9744 		ptr_limit = (mask_to_left ?
9745 			     ptr_reg->smin_value :
9746 			     ptr_reg->umax_value) + ptr_reg->off;
9747 		break;
9748 	default:
9749 		return REASON_TYPE;
9750 	}
9751 
9752 	if (ptr_limit >= max)
9753 		return REASON_LIMIT;
9754 	*alu_limit = ptr_limit;
9755 	return 0;
9756 }
9757 
9758 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9759 				    const struct bpf_insn *insn)
9760 {
9761 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
9762 }
9763 
9764 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9765 				       u32 alu_state, u32 alu_limit)
9766 {
9767 	/* If we arrived here from different branches with different
9768 	 * state or limits to sanitize, then this won't work.
9769 	 */
9770 	if (aux->alu_state &&
9771 	    (aux->alu_state != alu_state ||
9772 	     aux->alu_limit != alu_limit))
9773 		return REASON_PATHS;
9774 
9775 	/* Corresponding fixup done in do_misc_fixups(). */
9776 	aux->alu_state = alu_state;
9777 	aux->alu_limit = alu_limit;
9778 	return 0;
9779 }
9780 
9781 static int sanitize_val_alu(struct bpf_verifier_env *env,
9782 			    struct bpf_insn *insn)
9783 {
9784 	struct bpf_insn_aux_data *aux = cur_aux(env);
9785 
9786 	if (can_skip_alu_sanitation(env, insn))
9787 		return 0;
9788 
9789 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9790 }
9791 
9792 static bool sanitize_needed(u8 opcode)
9793 {
9794 	return opcode == BPF_ADD || opcode == BPF_SUB;
9795 }
9796 
9797 struct bpf_sanitize_info {
9798 	struct bpf_insn_aux_data aux;
9799 	bool mask_to_left;
9800 };
9801 
9802 static struct bpf_verifier_state *
9803 sanitize_speculative_path(struct bpf_verifier_env *env,
9804 			  const struct bpf_insn *insn,
9805 			  u32 next_idx, u32 curr_idx)
9806 {
9807 	struct bpf_verifier_state *branch;
9808 	struct bpf_reg_state *regs;
9809 
9810 	branch = push_stack(env, next_idx, curr_idx, true);
9811 	if (branch && insn) {
9812 		regs = branch->frame[branch->curframe]->regs;
9813 		if (BPF_SRC(insn->code) == BPF_K) {
9814 			mark_reg_unknown(env, regs, insn->dst_reg);
9815 		} else if (BPF_SRC(insn->code) == BPF_X) {
9816 			mark_reg_unknown(env, regs, insn->dst_reg);
9817 			mark_reg_unknown(env, regs, insn->src_reg);
9818 		}
9819 	}
9820 	return branch;
9821 }
9822 
9823 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9824 			    struct bpf_insn *insn,
9825 			    const struct bpf_reg_state *ptr_reg,
9826 			    const struct bpf_reg_state *off_reg,
9827 			    struct bpf_reg_state *dst_reg,
9828 			    struct bpf_sanitize_info *info,
9829 			    const bool commit_window)
9830 {
9831 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
9832 	struct bpf_verifier_state *vstate = env->cur_state;
9833 	bool off_is_imm = tnum_is_const(off_reg->var_off);
9834 	bool off_is_neg = off_reg->smin_value < 0;
9835 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
9836 	u8 opcode = BPF_OP(insn->code);
9837 	u32 alu_state, alu_limit;
9838 	struct bpf_reg_state tmp;
9839 	bool ret;
9840 	int err;
9841 
9842 	if (can_skip_alu_sanitation(env, insn))
9843 		return 0;
9844 
9845 	/* We already marked aux for masking from non-speculative
9846 	 * paths, thus we got here in the first place. We only care
9847 	 * to explore bad access from here.
9848 	 */
9849 	if (vstate->speculative)
9850 		goto do_sim;
9851 
9852 	if (!commit_window) {
9853 		if (!tnum_is_const(off_reg->var_off) &&
9854 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9855 			return REASON_BOUNDS;
9856 
9857 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
9858 				     (opcode == BPF_SUB && !off_is_neg);
9859 	}
9860 
9861 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
9862 	if (err < 0)
9863 		return err;
9864 
9865 	if (commit_window) {
9866 		/* In commit phase we narrow the masking window based on
9867 		 * the observed pointer move after the simulated operation.
9868 		 */
9869 		alu_state = info->aux.alu_state;
9870 		alu_limit = abs(info->aux.alu_limit - alu_limit);
9871 	} else {
9872 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
9873 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
9874 		alu_state |= ptr_is_dst_reg ?
9875 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
9876 
9877 		/* Limit pruning on unknown scalars to enable deep search for
9878 		 * potential masking differences from other program paths.
9879 		 */
9880 		if (!off_is_imm)
9881 			env->explore_alu_limits = true;
9882 	}
9883 
9884 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9885 	if (err < 0)
9886 		return err;
9887 do_sim:
9888 	/* If we're in commit phase, we're done here given we already
9889 	 * pushed the truncated dst_reg into the speculative verification
9890 	 * stack.
9891 	 *
9892 	 * Also, when register is a known constant, we rewrite register-based
9893 	 * operation to immediate-based, and thus do not need masking (and as
9894 	 * a consequence, do not need to simulate the zero-truncation either).
9895 	 */
9896 	if (commit_window || off_is_imm)
9897 		return 0;
9898 
9899 	/* Simulate and find potential out-of-bounds access under
9900 	 * speculative execution from truncation as a result of
9901 	 * masking when off was not within expected range. If off
9902 	 * sits in dst, then we temporarily need to move ptr there
9903 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9904 	 * for cases where we use K-based arithmetic in one direction
9905 	 * and truncated reg-based in the other in order to explore
9906 	 * bad access.
9907 	 */
9908 	if (!ptr_is_dst_reg) {
9909 		tmp = *dst_reg;
9910 		*dst_reg = *ptr_reg;
9911 	}
9912 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9913 					env->insn_idx);
9914 	if (!ptr_is_dst_reg && ret)
9915 		*dst_reg = tmp;
9916 	return !ret ? REASON_STACK : 0;
9917 }
9918 
9919 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9920 {
9921 	struct bpf_verifier_state *vstate = env->cur_state;
9922 
9923 	/* If we simulate paths under speculation, we don't update the
9924 	 * insn as 'seen' such that when we verify unreachable paths in
9925 	 * the non-speculative domain, sanitize_dead_code() can still
9926 	 * rewrite/sanitize them.
9927 	 */
9928 	if (!vstate->speculative)
9929 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9930 }
9931 
9932 static int sanitize_err(struct bpf_verifier_env *env,
9933 			const struct bpf_insn *insn, int reason,
9934 			const struct bpf_reg_state *off_reg,
9935 			const struct bpf_reg_state *dst_reg)
9936 {
9937 	static const char *err = "pointer arithmetic with it prohibited for !root";
9938 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9939 	u32 dst = insn->dst_reg, src = insn->src_reg;
9940 
9941 	switch (reason) {
9942 	case REASON_BOUNDS:
9943 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9944 			off_reg == dst_reg ? dst : src, err);
9945 		break;
9946 	case REASON_TYPE:
9947 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9948 			off_reg == dst_reg ? src : dst, err);
9949 		break;
9950 	case REASON_PATHS:
9951 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9952 			dst, op, err);
9953 		break;
9954 	case REASON_LIMIT:
9955 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9956 			dst, op, err);
9957 		break;
9958 	case REASON_STACK:
9959 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9960 			dst, err);
9961 		break;
9962 	default:
9963 		verbose(env, "verifier internal error: unknown reason (%d)\n",
9964 			reason);
9965 		break;
9966 	}
9967 
9968 	return -EACCES;
9969 }
9970 
9971 /* check that stack access falls within stack limits and that 'reg' doesn't
9972  * have a variable offset.
9973  *
9974  * Variable offset is prohibited for unprivileged mode for simplicity since it
9975  * requires corresponding support in Spectre masking for stack ALU.  See also
9976  * retrieve_ptr_limit().
9977  *
9978  *
9979  * 'off' includes 'reg->off'.
9980  */
9981 static int check_stack_access_for_ptr_arithmetic(
9982 				struct bpf_verifier_env *env,
9983 				int regno,
9984 				const struct bpf_reg_state *reg,
9985 				int off)
9986 {
9987 	if (!tnum_is_const(reg->var_off)) {
9988 		char tn_buf[48];
9989 
9990 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9991 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9992 			regno, tn_buf, off);
9993 		return -EACCES;
9994 	}
9995 
9996 	if (off >= 0 || off < -MAX_BPF_STACK) {
9997 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
9998 			"prohibited for !root; off=%d\n", regno, off);
9999 		return -EACCES;
10000 	}
10001 
10002 	return 0;
10003 }
10004 
10005 static int sanitize_check_bounds(struct bpf_verifier_env *env,
10006 				 const struct bpf_insn *insn,
10007 				 const struct bpf_reg_state *dst_reg)
10008 {
10009 	u32 dst = insn->dst_reg;
10010 
10011 	/* For unprivileged we require that resulting offset must be in bounds
10012 	 * in order to be able to sanitize access later on.
10013 	 */
10014 	if (env->bypass_spec_v1)
10015 		return 0;
10016 
10017 	switch (dst_reg->type) {
10018 	case PTR_TO_STACK:
10019 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
10020 					dst_reg->off + dst_reg->var_off.value))
10021 			return -EACCES;
10022 		break;
10023 	case PTR_TO_MAP_VALUE:
10024 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
10025 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
10026 				"prohibited for !root\n", dst);
10027 			return -EACCES;
10028 		}
10029 		break;
10030 	default:
10031 		break;
10032 	}
10033 
10034 	return 0;
10035 }
10036 
10037 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
10038  * Caller should also handle BPF_MOV case separately.
10039  * If we return -EACCES, caller may want to try again treating pointer as a
10040  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
10041  */
10042 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
10043 				   struct bpf_insn *insn,
10044 				   const struct bpf_reg_state *ptr_reg,
10045 				   const struct bpf_reg_state *off_reg)
10046 {
10047 	struct bpf_verifier_state *vstate = env->cur_state;
10048 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10049 	struct bpf_reg_state *regs = state->regs, *dst_reg;
10050 	bool known = tnum_is_const(off_reg->var_off);
10051 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
10052 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
10053 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
10054 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
10055 	struct bpf_sanitize_info info = {};
10056 	u8 opcode = BPF_OP(insn->code);
10057 	u32 dst = insn->dst_reg;
10058 	int ret;
10059 
10060 	dst_reg = &regs[dst];
10061 
10062 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
10063 	    smin_val > smax_val || umin_val > umax_val) {
10064 		/* Taint dst register if offset had invalid bounds derived from
10065 		 * e.g. dead branches.
10066 		 */
10067 		__mark_reg_unknown(env, dst_reg);
10068 		return 0;
10069 	}
10070 
10071 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
10072 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
10073 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
10074 			__mark_reg_unknown(env, dst_reg);
10075 			return 0;
10076 		}
10077 
10078 		verbose(env,
10079 			"R%d 32-bit pointer arithmetic prohibited\n",
10080 			dst);
10081 		return -EACCES;
10082 	}
10083 
10084 	if (ptr_reg->type & PTR_MAYBE_NULL) {
10085 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
10086 			dst, reg_type_str(env, ptr_reg->type));
10087 		return -EACCES;
10088 	}
10089 
10090 	switch (base_type(ptr_reg->type)) {
10091 	case CONST_PTR_TO_MAP:
10092 		/* smin_val represents the known value */
10093 		if (known && smin_val == 0 && opcode == BPF_ADD)
10094 			break;
10095 		fallthrough;
10096 	case PTR_TO_PACKET_END:
10097 	case PTR_TO_SOCKET:
10098 	case PTR_TO_SOCK_COMMON:
10099 	case PTR_TO_TCP_SOCK:
10100 	case PTR_TO_XDP_SOCK:
10101 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
10102 			dst, reg_type_str(env, ptr_reg->type));
10103 		return -EACCES;
10104 	default:
10105 		break;
10106 	}
10107 
10108 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
10109 	 * The id may be overwritten later if we create a new variable offset.
10110 	 */
10111 	dst_reg->type = ptr_reg->type;
10112 	dst_reg->id = ptr_reg->id;
10113 
10114 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
10115 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
10116 		return -EINVAL;
10117 
10118 	/* pointer types do not carry 32-bit bounds at the moment. */
10119 	__mark_reg32_unbounded(dst_reg);
10120 
10121 	if (sanitize_needed(opcode)) {
10122 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
10123 				       &info, false);
10124 		if (ret < 0)
10125 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
10126 	}
10127 
10128 	switch (opcode) {
10129 	case BPF_ADD:
10130 		/* We can take a fixed offset as long as it doesn't overflow
10131 		 * the s32 'off' field
10132 		 */
10133 		if (known && (ptr_reg->off + smin_val ==
10134 			      (s64)(s32)(ptr_reg->off + smin_val))) {
10135 			/* pointer += K.  Accumulate it into fixed offset */
10136 			dst_reg->smin_value = smin_ptr;
10137 			dst_reg->smax_value = smax_ptr;
10138 			dst_reg->umin_value = umin_ptr;
10139 			dst_reg->umax_value = umax_ptr;
10140 			dst_reg->var_off = ptr_reg->var_off;
10141 			dst_reg->off = ptr_reg->off + smin_val;
10142 			dst_reg->raw = ptr_reg->raw;
10143 			break;
10144 		}
10145 		/* A new variable offset is created.  Note that off_reg->off
10146 		 * == 0, since it's a scalar.
10147 		 * dst_reg gets the pointer type and since some positive
10148 		 * integer value was added to the pointer, give it a new 'id'
10149 		 * if it's a PTR_TO_PACKET.
10150 		 * this creates a new 'base' pointer, off_reg (variable) gets
10151 		 * added into the variable offset, and we copy the fixed offset
10152 		 * from ptr_reg.
10153 		 */
10154 		if (signed_add_overflows(smin_ptr, smin_val) ||
10155 		    signed_add_overflows(smax_ptr, smax_val)) {
10156 			dst_reg->smin_value = S64_MIN;
10157 			dst_reg->smax_value = S64_MAX;
10158 		} else {
10159 			dst_reg->smin_value = smin_ptr + smin_val;
10160 			dst_reg->smax_value = smax_ptr + smax_val;
10161 		}
10162 		if (umin_ptr + umin_val < umin_ptr ||
10163 		    umax_ptr + umax_val < umax_ptr) {
10164 			dst_reg->umin_value = 0;
10165 			dst_reg->umax_value = U64_MAX;
10166 		} else {
10167 			dst_reg->umin_value = umin_ptr + umin_val;
10168 			dst_reg->umax_value = umax_ptr + umax_val;
10169 		}
10170 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
10171 		dst_reg->off = ptr_reg->off;
10172 		dst_reg->raw = ptr_reg->raw;
10173 		if (reg_is_pkt_pointer(ptr_reg)) {
10174 			dst_reg->id = ++env->id_gen;
10175 			/* something was added to pkt_ptr, set range to zero */
10176 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
10177 		}
10178 		break;
10179 	case BPF_SUB:
10180 		if (dst_reg == off_reg) {
10181 			/* scalar -= pointer.  Creates an unknown scalar */
10182 			verbose(env, "R%d tried to subtract pointer from scalar\n",
10183 				dst);
10184 			return -EACCES;
10185 		}
10186 		/* We don't allow subtraction from FP, because (according to
10187 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
10188 		 * be able to deal with it.
10189 		 */
10190 		if (ptr_reg->type == PTR_TO_STACK) {
10191 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
10192 				dst);
10193 			return -EACCES;
10194 		}
10195 		if (known && (ptr_reg->off - smin_val ==
10196 			      (s64)(s32)(ptr_reg->off - smin_val))) {
10197 			/* pointer -= K.  Subtract it from fixed offset */
10198 			dst_reg->smin_value = smin_ptr;
10199 			dst_reg->smax_value = smax_ptr;
10200 			dst_reg->umin_value = umin_ptr;
10201 			dst_reg->umax_value = umax_ptr;
10202 			dst_reg->var_off = ptr_reg->var_off;
10203 			dst_reg->id = ptr_reg->id;
10204 			dst_reg->off = ptr_reg->off - smin_val;
10205 			dst_reg->raw = ptr_reg->raw;
10206 			break;
10207 		}
10208 		/* A new variable offset is created.  If the subtrahend is known
10209 		 * nonnegative, then any reg->range we had before is still good.
10210 		 */
10211 		if (signed_sub_overflows(smin_ptr, smax_val) ||
10212 		    signed_sub_overflows(smax_ptr, smin_val)) {
10213 			/* Overflow possible, we know nothing */
10214 			dst_reg->smin_value = S64_MIN;
10215 			dst_reg->smax_value = S64_MAX;
10216 		} else {
10217 			dst_reg->smin_value = smin_ptr - smax_val;
10218 			dst_reg->smax_value = smax_ptr - smin_val;
10219 		}
10220 		if (umin_ptr < umax_val) {
10221 			/* Overflow possible, we know nothing */
10222 			dst_reg->umin_value = 0;
10223 			dst_reg->umax_value = U64_MAX;
10224 		} else {
10225 			/* Cannot overflow (as long as bounds are consistent) */
10226 			dst_reg->umin_value = umin_ptr - umax_val;
10227 			dst_reg->umax_value = umax_ptr - umin_val;
10228 		}
10229 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
10230 		dst_reg->off = ptr_reg->off;
10231 		dst_reg->raw = ptr_reg->raw;
10232 		if (reg_is_pkt_pointer(ptr_reg)) {
10233 			dst_reg->id = ++env->id_gen;
10234 			/* something was added to pkt_ptr, set range to zero */
10235 			if (smin_val < 0)
10236 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
10237 		}
10238 		break;
10239 	case BPF_AND:
10240 	case BPF_OR:
10241 	case BPF_XOR:
10242 		/* bitwise ops on pointers are troublesome, prohibit. */
10243 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
10244 			dst, bpf_alu_string[opcode >> 4]);
10245 		return -EACCES;
10246 	default:
10247 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
10248 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
10249 			dst, bpf_alu_string[opcode >> 4]);
10250 		return -EACCES;
10251 	}
10252 
10253 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
10254 		return -EINVAL;
10255 	reg_bounds_sync(dst_reg);
10256 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
10257 		return -EACCES;
10258 	if (sanitize_needed(opcode)) {
10259 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
10260 				       &info, true);
10261 		if (ret < 0)
10262 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
10263 	}
10264 
10265 	return 0;
10266 }
10267 
10268 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
10269 				 struct bpf_reg_state *src_reg)
10270 {
10271 	s32 smin_val = src_reg->s32_min_value;
10272 	s32 smax_val = src_reg->s32_max_value;
10273 	u32 umin_val = src_reg->u32_min_value;
10274 	u32 umax_val = src_reg->u32_max_value;
10275 
10276 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
10277 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
10278 		dst_reg->s32_min_value = S32_MIN;
10279 		dst_reg->s32_max_value = S32_MAX;
10280 	} else {
10281 		dst_reg->s32_min_value += smin_val;
10282 		dst_reg->s32_max_value += smax_val;
10283 	}
10284 	if (dst_reg->u32_min_value + umin_val < umin_val ||
10285 	    dst_reg->u32_max_value + umax_val < umax_val) {
10286 		dst_reg->u32_min_value = 0;
10287 		dst_reg->u32_max_value = U32_MAX;
10288 	} else {
10289 		dst_reg->u32_min_value += umin_val;
10290 		dst_reg->u32_max_value += umax_val;
10291 	}
10292 }
10293 
10294 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
10295 			       struct bpf_reg_state *src_reg)
10296 {
10297 	s64 smin_val = src_reg->smin_value;
10298 	s64 smax_val = src_reg->smax_value;
10299 	u64 umin_val = src_reg->umin_value;
10300 	u64 umax_val = src_reg->umax_value;
10301 
10302 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
10303 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
10304 		dst_reg->smin_value = S64_MIN;
10305 		dst_reg->smax_value = S64_MAX;
10306 	} else {
10307 		dst_reg->smin_value += smin_val;
10308 		dst_reg->smax_value += smax_val;
10309 	}
10310 	if (dst_reg->umin_value + umin_val < umin_val ||
10311 	    dst_reg->umax_value + umax_val < umax_val) {
10312 		dst_reg->umin_value = 0;
10313 		dst_reg->umax_value = U64_MAX;
10314 	} else {
10315 		dst_reg->umin_value += umin_val;
10316 		dst_reg->umax_value += umax_val;
10317 	}
10318 }
10319 
10320 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
10321 				 struct bpf_reg_state *src_reg)
10322 {
10323 	s32 smin_val = src_reg->s32_min_value;
10324 	s32 smax_val = src_reg->s32_max_value;
10325 	u32 umin_val = src_reg->u32_min_value;
10326 	u32 umax_val = src_reg->u32_max_value;
10327 
10328 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
10329 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
10330 		/* Overflow possible, we know nothing */
10331 		dst_reg->s32_min_value = S32_MIN;
10332 		dst_reg->s32_max_value = S32_MAX;
10333 	} else {
10334 		dst_reg->s32_min_value -= smax_val;
10335 		dst_reg->s32_max_value -= smin_val;
10336 	}
10337 	if (dst_reg->u32_min_value < umax_val) {
10338 		/* Overflow possible, we know nothing */
10339 		dst_reg->u32_min_value = 0;
10340 		dst_reg->u32_max_value = U32_MAX;
10341 	} else {
10342 		/* Cannot overflow (as long as bounds are consistent) */
10343 		dst_reg->u32_min_value -= umax_val;
10344 		dst_reg->u32_max_value -= umin_val;
10345 	}
10346 }
10347 
10348 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
10349 			       struct bpf_reg_state *src_reg)
10350 {
10351 	s64 smin_val = src_reg->smin_value;
10352 	s64 smax_val = src_reg->smax_value;
10353 	u64 umin_val = src_reg->umin_value;
10354 	u64 umax_val = src_reg->umax_value;
10355 
10356 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
10357 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
10358 		/* Overflow possible, we know nothing */
10359 		dst_reg->smin_value = S64_MIN;
10360 		dst_reg->smax_value = S64_MAX;
10361 	} else {
10362 		dst_reg->smin_value -= smax_val;
10363 		dst_reg->smax_value -= smin_val;
10364 	}
10365 	if (dst_reg->umin_value < umax_val) {
10366 		/* Overflow possible, we know nothing */
10367 		dst_reg->umin_value = 0;
10368 		dst_reg->umax_value = U64_MAX;
10369 	} else {
10370 		/* Cannot overflow (as long as bounds are consistent) */
10371 		dst_reg->umin_value -= umax_val;
10372 		dst_reg->umax_value -= umin_val;
10373 	}
10374 }
10375 
10376 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
10377 				 struct bpf_reg_state *src_reg)
10378 {
10379 	s32 smin_val = src_reg->s32_min_value;
10380 	u32 umin_val = src_reg->u32_min_value;
10381 	u32 umax_val = src_reg->u32_max_value;
10382 
10383 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
10384 		/* Ain't nobody got time to multiply that sign */
10385 		__mark_reg32_unbounded(dst_reg);
10386 		return;
10387 	}
10388 	/* Both values are positive, so we can work with unsigned and
10389 	 * copy the result to signed (unless it exceeds S32_MAX).
10390 	 */
10391 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
10392 		/* Potential overflow, we know nothing */
10393 		__mark_reg32_unbounded(dst_reg);
10394 		return;
10395 	}
10396 	dst_reg->u32_min_value *= umin_val;
10397 	dst_reg->u32_max_value *= umax_val;
10398 	if (dst_reg->u32_max_value > S32_MAX) {
10399 		/* Overflow possible, we know nothing */
10400 		dst_reg->s32_min_value = S32_MIN;
10401 		dst_reg->s32_max_value = S32_MAX;
10402 	} else {
10403 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10404 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10405 	}
10406 }
10407 
10408 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
10409 			       struct bpf_reg_state *src_reg)
10410 {
10411 	s64 smin_val = src_reg->smin_value;
10412 	u64 umin_val = src_reg->umin_value;
10413 	u64 umax_val = src_reg->umax_value;
10414 
10415 	if (smin_val < 0 || dst_reg->smin_value < 0) {
10416 		/* Ain't nobody got time to multiply that sign */
10417 		__mark_reg64_unbounded(dst_reg);
10418 		return;
10419 	}
10420 	/* Both values are positive, so we can work with unsigned and
10421 	 * copy the result to signed (unless it exceeds S64_MAX).
10422 	 */
10423 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
10424 		/* Potential overflow, we know nothing */
10425 		__mark_reg64_unbounded(dst_reg);
10426 		return;
10427 	}
10428 	dst_reg->umin_value *= umin_val;
10429 	dst_reg->umax_value *= umax_val;
10430 	if (dst_reg->umax_value > S64_MAX) {
10431 		/* Overflow possible, we know nothing */
10432 		dst_reg->smin_value = S64_MIN;
10433 		dst_reg->smax_value = S64_MAX;
10434 	} else {
10435 		dst_reg->smin_value = dst_reg->umin_value;
10436 		dst_reg->smax_value = dst_reg->umax_value;
10437 	}
10438 }
10439 
10440 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
10441 				 struct bpf_reg_state *src_reg)
10442 {
10443 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10444 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10445 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10446 	s32 smin_val = src_reg->s32_min_value;
10447 	u32 umax_val = src_reg->u32_max_value;
10448 
10449 	if (src_known && dst_known) {
10450 		__mark_reg32_known(dst_reg, var32_off.value);
10451 		return;
10452 	}
10453 
10454 	/* We get our minimum from the var_off, since that's inherently
10455 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10456 	 */
10457 	dst_reg->u32_min_value = var32_off.value;
10458 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
10459 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10460 		/* Lose signed bounds when ANDing negative numbers,
10461 		 * ain't nobody got time for that.
10462 		 */
10463 		dst_reg->s32_min_value = S32_MIN;
10464 		dst_reg->s32_max_value = S32_MAX;
10465 	} else {
10466 		/* ANDing two positives gives a positive, so safe to
10467 		 * cast result into s64.
10468 		 */
10469 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10470 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10471 	}
10472 }
10473 
10474 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
10475 			       struct bpf_reg_state *src_reg)
10476 {
10477 	bool src_known = tnum_is_const(src_reg->var_off);
10478 	bool dst_known = tnum_is_const(dst_reg->var_off);
10479 	s64 smin_val = src_reg->smin_value;
10480 	u64 umax_val = src_reg->umax_value;
10481 
10482 	if (src_known && dst_known) {
10483 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10484 		return;
10485 	}
10486 
10487 	/* We get our minimum from the var_off, since that's inherently
10488 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10489 	 */
10490 	dst_reg->umin_value = dst_reg->var_off.value;
10491 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
10492 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10493 		/* Lose signed bounds when ANDing negative numbers,
10494 		 * ain't nobody got time for that.
10495 		 */
10496 		dst_reg->smin_value = S64_MIN;
10497 		dst_reg->smax_value = S64_MAX;
10498 	} else {
10499 		/* ANDing two positives gives a positive, so safe to
10500 		 * cast result into s64.
10501 		 */
10502 		dst_reg->smin_value = dst_reg->umin_value;
10503 		dst_reg->smax_value = dst_reg->umax_value;
10504 	}
10505 	/* We may learn something more from the var_off */
10506 	__update_reg_bounds(dst_reg);
10507 }
10508 
10509 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
10510 				struct bpf_reg_state *src_reg)
10511 {
10512 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10513 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10514 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10515 	s32 smin_val = src_reg->s32_min_value;
10516 	u32 umin_val = src_reg->u32_min_value;
10517 
10518 	if (src_known && dst_known) {
10519 		__mark_reg32_known(dst_reg, var32_off.value);
10520 		return;
10521 	}
10522 
10523 	/* We get our maximum from the var_off, and our minimum is the
10524 	 * maximum of the operands' minima
10525 	 */
10526 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
10527 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10528 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10529 		/* Lose signed bounds when ORing negative numbers,
10530 		 * ain't nobody got time for that.
10531 		 */
10532 		dst_reg->s32_min_value = S32_MIN;
10533 		dst_reg->s32_max_value = S32_MAX;
10534 	} else {
10535 		/* ORing two positives gives a positive, so safe to
10536 		 * cast result into s64.
10537 		 */
10538 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10539 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10540 	}
10541 }
10542 
10543 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
10544 			      struct bpf_reg_state *src_reg)
10545 {
10546 	bool src_known = tnum_is_const(src_reg->var_off);
10547 	bool dst_known = tnum_is_const(dst_reg->var_off);
10548 	s64 smin_val = src_reg->smin_value;
10549 	u64 umin_val = src_reg->umin_value;
10550 
10551 	if (src_known && dst_known) {
10552 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10553 		return;
10554 	}
10555 
10556 	/* We get our maximum from the var_off, and our minimum is the
10557 	 * maximum of the operands' minima
10558 	 */
10559 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
10560 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10561 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10562 		/* Lose signed bounds when ORing negative numbers,
10563 		 * ain't nobody got time for that.
10564 		 */
10565 		dst_reg->smin_value = S64_MIN;
10566 		dst_reg->smax_value = S64_MAX;
10567 	} else {
10568 		/* ORing two positives gives a positive, so safe to
10569 		 * cast result into s64.
10570 		 */
10571 		dst_reg->smin_value = dst_reg->umin_value;
10572 		dst_reg->smax_value = dst_reg->umax_value;
10573 	}
10574 	/* We may learn something more from the var_off */
10575 	__update_reg_bounds(dst_reg);
10576 }
10577 
10578 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
10579 				 struct bpf_reg_state *src_reg)
10580 {
10581 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10582 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10583 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10584 	s32 smin_val = src_reg->s32_min_value;
10585 
10586 	if (src_known && dst_known) {
10587 		__mark_reg32_known(dst_reg, var32_off.value);
10588 		return;
10589 	}
10590 
10591 	/* We get both minimum and maximum from the var32_off. */
10592 	dst_reg->u32_min_value = var32_off.value;
10593 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10594 
10595 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
10596 		/* XORing two positive sign numbers gives a positive,
10597 		 * so safe to cast u32 result into s32.
10598 		 */
10599 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10600 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10601 	} else {
10602 		dst_reg->s32_min_value = S32_MIN;
10603 		dst_reg->s32_max_value = S32_MAX;
10604 	}
10605 }
10606 
10607 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
10608 			       struct bpf_reg_state *src_reg)
10609 {
10610 	bool src_known = tnum_is_const(src_reg->var_off);
10611 	bool dst_known = tnum_is_const(dst_reg->var_off);
10612 	s64 smin_val = src_reg->smin_value;
10613 
10614 	if (src_known && dst_known) {
10615 		/* dst_reg->var_off.value has been updated earlier */
10616 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10617 		return;
10618 	}
10619 
10620 	/* We get both minimum and maximum from the var_off. */
10621 	dst_reg->umin_value = dst_reg->var_off.value;
10622 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10623 
10624 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10625 		/* XORing two positive sign numbers gives a positive,
10626 		 * so safe to cast u64 result into s64.
10627 		 */
10628 		dst_reg->smin_value = dst_reg->umin_value;
10629 		dst_reg->smax_value = dst_reg->umax_value;
10630 	} else {
10631 		dst_reg->smin_value = S64_MIN;
10632 		dst_reg->smax_value = S64_MAX;
10633 	}
10634 
10635 	__update_reg_bounds(dst_reg);
10636 }
10637 
10638 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10639 				   u64 umin_val, u64 umax_val)
10640 {
10641 	/* We lose all sign bit information (except what we can pick
10642 	 * up from var_off)
10643 	 */
10644 	dst_reg->s32_min_value = S32_MIN;
10645 	dst_reg->s32_max_value = S32_MAX;
10646 	/* If we might shift our top bit out, then we know nothing */
10647 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10648 		dst_reg->u32_min_value = 0;
10649 		dst_reg->u32_max_value = U32_MAX;
10650 	} else {
10651 		dst_reg->u32_min_value <<= umin_val;
10652 		dst_reg->u32_max_value <<= umax_val;
10653 	}
10654 }
10655 
10656 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10657 				 struct bpf_reg_state *src_reg)
10658 {
10659 	u32 umax_val = src_reg->u32_max_value;
10660 	u32 umin_val = src_reg->u32_min_value;
10661 	/* u32 alu operation will zext upper bits */
10662 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10663 
10664 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10665 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10666 	/* Not required but being careful mark reg64 bounds as unknown so
10667 	 * that we are forced to pick them up from tnum and zext later and
10668 	 * if some path skips this step we are still safe.
10669 	 */
10670 	__mark_reg64_unbounded(dst_reg);
10671 	__update_reg32_bounds(dst_reg);
10672 }
10673 
10674 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10675 				   u64 umin_val, u64 umax_val)
10676 {
10677 	/* Special case <<32 because it is a common compiler pattern to sign
10678 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10679 	 * positive we know this shift will also be positive so we can track
10680 	 * bounds correctly. Otherwise we lose all sign bit information except
10681 	 * what we can pick up from var_off. Perhaps we can generalize this
10682 	 * later to shifts of any length.
10683 	 */
10684 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10685 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10686 	else
10687 		dst_reg->smax_value = S64_MAX;
10688 
10689 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10690 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10691 	else
10692 		dst_reg->smin_value = S64_MIN;
10693 
10694 	/* If we might shift our top bit out, then we know nothing */
10695 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10696 		dst_reg->umin_value = 0;
10697 		dst_reg->umax_value = U64_MAX;
10698 	} else {
10699 		dst_reg->umin_value <<= umin_val;
10700 		dst_reg->umax_value <<= umax_val;
10701 	}
10702 }
10703 
10704 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10705 			       struct bpf_reg_state *src_reg)
10706 {
10707 	u64 umax_val = src_reg->umax_value;
10708 	u64 umin_val = src_reg->umin_value;
10709 
10710 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
10711 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10712 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10713 
10714 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10715 	/* We may learn something more from the var_off */
10716 	__update_reg_bounds(dst_reg);
10717 }
10718 
10719 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10720 				 struct bpf_reg_state *src_reg)
10721 {
10722 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10723 	u32 umax_val = src_reg->u32_max_value;
10724 	u32 umin_val = src_reg->u32_min_value;
10725 
10726 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10727 	 * be negative, then either:
10728 	 * 1) src_reg might be zero, so the sign bit of the result is
10729 	 *    unknown, so we lose our signed bounds
10730 	 * 2) it's known negative, thus the unsigned bounds capture the
10731 	 *    signed bounds
10732 	 * 3) the signed bounds cross zero, so they tell us nothing
10733 	 *    about the result
10734 	 * If the value in dst_reg is known nonnegative, then again the
10735 	 * unsigned bounds capture the signed bounds.
10736 	 * Thus, in all cases it suffices to blow away our signed bounds
10737 	 * and rely on inferring new ones from the unsigned bounds and
10738 	 * var_off of the result.
10739 	 */
10740 	dst_reg->s32_min_value = S32_MIN;
10741 	dst_reg->s32_max_value = S32_MAX;
10742 
10743 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
10744 	dst_reg->u32_min_value >>= umax_val;
10745 	dst_reg->u32_max_value >>= umin_val;
10746 
10747 	__mark_reg64_unbounded(dst_reg);
10748 	__update_reg32_bounds(dst_reg);
10749 }
10750 
10751 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10752 			       struct bpf_reg_state *src_reg)
10753 {
10754 	u64 umax_val = src_reg->umax_value;
10755 	u64 umin_val = src_reg->umin_value;
10756 
10757 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10758 	 * be negative, then either:
10759 	 * 1) src_reg might be zero, so the sign bit of the result is
10760 	 *    unknown, so we lose our signed bounds
10761 	 * 2) it's known negative, thus the unsigned bounds capture the
10762 	 *    signed bounds
10763 	 * 3) the signed bounds cross zero, so they tell us nothing
10764 	 *    about the result
10765 	 * If the value in dst_reg is known nonnegative, then again the
10766 	 * unsigned bounds capture the signed bounds.
10767 	 * Thus, in all cases it suffices to blow away our signed bounds
10768 	 * and rely on inferring new ones from the unsigned bounds and
10769 	 * var_off of the result.
10770 	 */
10771 	dst_reg->smin_value = S64_MIN;
10772 	dst_reg->smax_value = S64_MAX;
10773 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10774 	dst_reg->umin_value >>= umax_val;
10775 	dst_reg->umax_value >>= umin_val;
10776 
10777 	/* Its not easy to operate on alu32 bounds here because it depends
10778 	 * on bits being shifted in. Take easy way out and mark unbounded
10779 	 * so we can recalculate later from tnum.
10780 	 */
10781 	__mark_reg32_unbounded(dst_reg);
10782 	__update_reg_bounds(dst_reg);
10783 }
10784 
10785 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10786 				  struct bpf_reg_state *src_reg)
10787 {
10788 	u64 umin_val = src_reg->u32_min_value;
10789 
10790 	/* Upon reaching here, src_known is true and
10791 	 * umax_val is equal to umin_val.
10792 	 */
10793 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10794 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
10795 
10796 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10797 
10798 	/* blow away the dst_reg umin_value/umax_value and rely on
10799 	 * dst_reg var_off to refine the result.
10800 	 */
10801 	dst_reg->u32_min_value = 0;
10802 	dst_reg->u32_max_value = U32_MAX;
10803 
10804 	__mark_reg64_unbounded(dst_reg);
10805 	__update_reg32_bounds(dst_reg);
10806 }
10807 
10808 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10809 				struct bpf_reg_state *src_reg)
10810 {
10811 	u64 umin_val = src_reg->umin_value;
10812 
10813 	/* Upon reaching here, src_known is true and umax_val is equal
10814 	 * to umin_val.
10815 	 */
10816 	dst_reg->smin_value >>= umin_val;
10817 	dst_reg->smax_value >>= umin_val;
10818 
10819 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
10820 
10821 	/* blow away the dst_reg umin_value/umax_value and rely on
10822 	 * dst_reg var_off to refine the result.
10823 	 */
10824 	dst_reg->umin_value = 0;
10825 	dst_reg->umax_value = U64_MAX;
10826 
10827 	/* Its not easy to operate on alu32 bounds here because it depends
10828 	 * on bits being shifted in from upper 32-bits. Take easy way out
10829 	 * and mark unbounded so we can recalculate later from tnum.
10830 	 */
10831 	__mark_reg32_unbounded(dst_reg);
10832 	__update_reg_bounds(dst_reg);
10833 }
10834 
10835 /* WARNING: This function does calculations on 64-bit values, but the actual
10836  * execution may occur on 32-bit values. Therefore, things like bitshifts
10837  * need extra checks in the 32-bit case.
10838  */
10839 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10840 				      struct bpf_insn *insn,
10841 				      struct bpf_reg_state *dst_reg,
10842 				      struct bpf_reg_state src_reg)
10843 {
10844 	struct bpf_reg_state *regs = cur_regs(env);
10845 	u8 opcode = BPF_OP(insn->code);
10846 	bool src_known;
10847 	s64 smin_val, smax_val;
10848 	u64 umin_val, umax_val;
10849 	s32 s32_min_val, s32_max_val;
10850 	u32 u32_min_val, u32_max_val;
10851 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
10852 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
10853 	int ret;
10854 
10855 	smin_val = src_reg.smin_value;
10856 	smax_val = src_reg.smax_value;
10857 	umin_val = src_reg.umin_value;
10858 	umax_val = src_reg.umax_value;
10859 
10860 	s32_min_val = src_reg.s32_min_value;
10861 	s32_max_val = src_reg.s32_max_value;
10862 	u32_min_val = src_reg.u32_min_value;
10863 	u32_max_val = src_reg.u32_max_value;
10864 
10865 	if (alu32) {
10866 		src_known = tnum_subreg_is_const(src_reg.var_off);
10867 		if ((src_known &&
10868 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10869 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10870 			/* Taint dst register if offset had invalid bounds
10871 			 * derived from e.g. dead branches.
10872 			 */
10873 			__mark_reg_unknown(env, dst_reg);
10874 			return 0;
10875 		}
10876 	} else {
10877 		src_known = tnum_is_const(src_reg.var_off);
10878 		if ((src_known &&
10879 		     (smin_val != smax_val || umin_val != umax_val)) ||
10880 		    smin_val > smax_val || umin_val > umax_val) {
10881 			/* Taint dst register if offset had invalid bounds
10882 			 * derived from e.g. dead branches.
10883 			 */
10884 			__mark_reg_unknown(env, dst_reg);
10885 			return 0;
10886 		}
10887 	}
10888 
10889 	if (!src_known &&
10890 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
10891 		__mark_reg_unknown(env, dst_reg);
10892 		return 0;
10893 	}
10894 
10895 	if (sanitize_needed(opcode)) {
10896 		ret = sanitize_val_alu(env, insn);
10897 		if (ret < 0)
10898 			return sanitize_err(env, insn, ret, NULL, NULL);
10899 	}
10900 
10901 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10902 	 * There are two classes of instructions: The first class we track both
10903 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
10904 	 * greatest amount of precision when alu operations are mixed with jmp32
10905 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10906 	 * and BPF_OR. This is possible because these ops have fairly easy to
10907 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10908 	 * See alu32 verifier tests for examples. The second class of
10909 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10910 	 * with regards to tracking sign/unsigned bounds because the bits may
10911 	 * cross subreg boundaries in the alu64 case. When this happens we mark
10912 	 * the reg unbounded in the subreg bound space and use the resulting
10913 	 * tnum to calculate an approximation of the sign/unsigned bounds.
10914 	 */
10915 	switch (opcode) {
10916 	case BPF_ADD:
10917 		scalar32_min_max_add(dst_reg, &src_reg);
10918 		scalar_min_max_add(dst_reg, &src_reg);
10919 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
10920 		break;
10921 	case BPF_SUB:
10922 		scalar32_min_max_sub(dst_reg, &src_reg);
10923 		scalar_min_max_sub(dst_reg, &src_reg);
10924 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
10925 		break;
10926 	case BPF_MUL:
10927 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10928 		scalar32_min_max_mul(dst_reg, &src_reg);
10929 		scalar_min_max_mul(dst_reg, &src_reg);
10930 		break;
10931 	case BPF_AND:
10932 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10933 		scalar32_min_max_and(dst_reg, &src_reg);
10934 		scalar_min_max_and(dst_reg, &src_reg);
10935 		break;
10936 	case BPF_OR:
10937 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10938 		scalar32_min_max_or(dst_reg, &src_reg);
10939 		scalar_min_max_or(dst_reg, &src_reg);
10940 		break;
10941 	case BPF_XOR:
10942 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10943 		scalar32_min_max_xor(dst_reg, &src_reg);
10944 		scalar_min_max_xor(dst_reg, &src_reg);
10945 		break;
10946 	case BPF_LSH:
10947 		if (umax_val >= insn_bitness) {
10948 			/* Shifts greater than 31 or 63 are undefined.
10949 			 * This includes shifts by a negative number.
10950 			 */
10951 			mark_reg_unknown(env, regs, insn->dst_reg);
10952 			break;
10953 		}
10954 		if (alu32)
10955 			scalar32_min_max_lsh(dst_reg, &src_reg);
10956 		else
10957 			scalar_min_max_lsh(dst_reg, &src_reg);
10958 		break;
10959 	case BPF_RSH:
10960 		if (umax_val >= insn_bitness) {
10961 			/* Shifts greater than 31 or 63 are undefined.
10962 			 * This includes shifts by a negative number.
10963 			 */
10964 			mark_reg_unknown(env, regs, insn->dst_reg);
10965 			break;
10966 		}
10967 		if (alu32)
10968 			scalar32_min_max_rsh(dst_reg, &src_reg);
10969 		else
10970 			scalar_min_max_rsh(dst_reg, &src_reg);
10971 		break;
10972 	case BPF_ARSH:
10973 		if (umax_val >= insn_bitness) {
10974 			/* Shifts greater than 31 or 63 are undefined.
10975 			 * This includes shifts by a negative number.
10976 			 */
10977 			mark_reg_unknown(env, regs, insn->dst_reg);
10978 			break;
10979 		}
10980 		if (alu32)
10981 			scalar32_min_max_arsh(dst_reg, &src_reg);
10982 		else
10983 			scalar_min_max_arsh(dst_reg, &src_reg);
10984 		break;
10985 	default:
10986 		mark_reg_unknown(env, regs, insn->dst_reg);
10987 		break;
10988 	}
10989 
10990 	/* ALU32 ops are zero extended into 64bit register */
10991 	if (alu32)
10992 		zext_32_to_64(dst_reg);
10993 	reg_bounds_sync(dst_reg);
10994 	return 0;
10995 }
10996 
10997 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10998  * and var_off.
10999  */
11000 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
11001 				   struct bpf_insn *insn)
11002 {
11003 	struct bpf_verifier_state *vstate = env->cur_state;
11004 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11005 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
11006 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
11007 	u8 opcode = BPF_OP(insn->code);
11008 	int err;
11009 
11010 	dst_reg = &regs[insn->dst_reg];
11011 	src_reg = NULL;
11012 	if (dst_reg->type != SCALAR_VALUE)
11013 		ptr_reg = dst_reg;
11014 	else
11015 		/* Make sure ID is cleared otherwise dst_reg min/max could be
11016 		 * incorrectly propagated into other registers by find_equal_scalars()
11017 		 */
11018 		dst_reg->id = 0;
11019 	if (BPF_SRC(insn->code) == BPF_X) {
11020 		src_reg = &regs[insn->src_reg];
11021 		if (src_reg->type != SCALAR_VALUE) {
11022 			if (dst_reg->type != SCALAR_VALUE) {
11023 				/* Combining two pointers by any ALU op yields
11024 				 * an arbitrary scalar. Disallow all math except
11025 				 * pointer subtraction
11026 				 */
11027 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11028 					mark_reg_unknown(env, regs, insn->dst_reg);
11029 					return 0;
11030 				}
11031 				verbose(env, "R%d pointer %s pointer prohibited\n",
11032 					insn->dst_reg,
11033 					bpf_alu_string[opcode >> 4]);
11034 				return -EACCES;
11035 			} else {
11036 				/* scalar += pointer
11037 				 * This is legal, but we have to reverse our
11038 				 * src/dest handling in computing the range
11039 				 */
11040 				err = mark_chain_precision(env, insn->dst_reg);
11041 				if (err)
11042 					return err;
11043 				return adjust_ptr_min_max_vals(env, insn,
11044 							       src_reg, dst_reg);
11045 			}
11046 		} else if (ptr_reg) {
11047 			/* pointer += scalar */
11048 			err = mark_chain_precision(env, insn->src_reg);
11049 			if (err)
11050 				return err;
11051 			return adjust_ptr_min_max_vals(env, insn,
11052 						       dst_reg, src_reg);
11053 		} else if (dst_reg->precise) {
11054 			/* if dst_reg is precise, src_reg should be precise as well */
11055 			err = mark_chain_precision(env, insn->src_reg);
11056 			if (err)
11057 				return err;
11058 		}
11059 	} else {
11060 		/* Pretend the src is a reg with a known value, since we only
11061 		 * need to be able to read from this state.
11062 		 */
11063 		off_reg.type = SCALAR_VALUE;
11064 		__mark_reg_known(&off_reg, insn->imm);
11065 		src_reg = &off_reg;
11066 		if (ptr_reg) /* pointer += K */
11067 			return adjust_ptr_min_max_vals(env, insn,
11068 						       ptr_reg, src_reg);
11069 	}
11070 
11071 	/* Got here implies adding two SCALAR_VALUEs */
11072 	if (WARN_ON_ONCE(ptr_reg)) {
11073 		print_verifier_state(env, state, true);
11074 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
11075 		return -EINVAL;
11076 	}
11077 	if (WARN_ON(!src_reg)) {
11078 		print_verifier_state(env, state, true);
11079 		verbose(env, "verifier internal error: no src_reg\n");
11080 		return -EINVAL;
11081 	}
11082 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
11083 }
11084 
11085 /* check validity of 32-bit and 64-bit arithmetic operations */
11086 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
11087 {
11088 	struct bpf_reg_state *regs = cur_regs(env);
11089 	u8 opcode = BPF_OP(insn->code);
11090 	int err;
11091 
11092 	if (opcode == BPF_END || opcode == BPF_NEG) {
11093 		if (opcode == BPF_NEG) {
11094 			if (BPF_SRC(insn->code) != BPF_K ||
11095 			    insn->src_reg != BPF_REG_0 ||
11096 			    insn->off != 0 || insn->imm != 0) {
11097 				verbose(env, "BPF_NEG uses reserved fields\n");
11098 				return -EINVAL;
11099 			}
11100 		} else {
11101 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
11102 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
11103 			    BPF_CLASS(insn->code) == BPF_ALU64) {
11104 				verbose(env, "BPF_END uses reserved fields\n");
11105 				return -EINVAL;
11106 			}
11107 		}
11108 
11109 		/* check src operand */
11110 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11111 		if (err)
11112 			return err;
11113 
11114 		if (is_pointer_value(env, insn->dst_reg)) {
11115 			verbose(env, "R%d pointer arithmetic prohibited\n",
11116 				insn->dst_reg);
11117 			return -EACCES;
11118 		}
11119 
11120 		/* check dest operand */
11121 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
11122 		if (err)
11123 			return err;
11124 
11125 	} else if (opcode == BPF_MOV) {
11126 
11127 		if (BPF_SRC(insn->code) == BPF_X) {
11128 			if (insn->imm != 0 || insn->off != 0) {
11129 				verbose(env, "BPF_MOV uses reserved fields\n");
11130 				return -EINVAL;
11131 			}
11132 
11133 			/* check src operand */
11134 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11135 			if (err)
11136 				return err;
11137 		} else {
11138 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
11139 				verbose(env, "BPF_MOV uses reserved fields\n");
11140 				return -EINVAL;
11141 			}
11142 		}
11143 
11144 		/* check dest operand, mark as required later */
11145 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11146 		if (err)
11147 			return err;
11148 
11149 		if (BPF_SRC(insn->code) == BPF_X) {
11150 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
11151 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
11152 
11153 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
11154 				/* case: R1 = R2
11155 				 * copy register state to dest reg
11156 				 */
11157 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
11158 					/* Assign src and dst registers the same ID
11159 					 * that will be used by find_equal_scalars()
11160 					 * to propagate min/max range.
11161 					 */
11162 					src_reg->id = ++env->id_gen;
11163 				*dst_reg = *src_reg;
11164 				dst_reg->live |= REG_LIVE_WRITTEN;
11165 				dst_reg->subreg_def = DEF_NOT_SUBREG;
11166 			} else {
11167 				/* R1 = (u32) R2 */
11168 				if (is_pointer_value(env, insn->src_reg)) {
11169 					verbose(env,
11170 						"R%d partial copy of pointer\n",
11171 						insn->src_reg);
11172 					return -EACCES;
11173 				} else if (src_reg->type == SCALAR_VALUE) {
11174 					*dst_reg = *src_reg;
11175 					/* Make sure ID is cleared otherwise
11176 					 * dst_reg min/max could be incorrectly
11177 					 * propagated into src_reg by find_equal_scalars()
11178 					 */
11179 					dst_reg->id = 0;
11180 					dst_reg->live |= REG_LIVE_WRITTEN;
11181 					dst_reg->subreg_def = env->insn_idx + 1;
11182 				} else {
11183 					mark_reg_unknown(env, regs,
11184 							 insn->dst_reg);
11185 				}
11186 				zext_32_to_64(dst_reg);
11187 				reg_bounds_sync(dst_reg);
11188 			}
11189 		} else {
11190 			/* case: R = imm
11191 			 * remember the value we stored into this reg
11192 			 */
11193 			/* clear any state __mark_reg_known doesn't set */
11194 			mark_reg_unknown(env, regs, insn->dst_reg);
11195 			regs[insn->dst_reg].type = SCALAR_VALUE;
11196 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
11197 				__mark_reg_known(regs + insn->dst_reg,
11198 						 insn->imm);
11199 			} else {
11200 				__mark_reg_known(regs + insn->dst_reg,
11201 						 (u32)insn->imm);
11202 			}
11203 		}
11204 
11205 	} else if (opcode > BPF_END) {
11206 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
11207 		return -EINVAL;
11208 
11209 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
11210 
11211 		if (BPF_SRC(insn->code) == BPF_X) {
11212 			if (insn->imm != 0 || insn->off != 0) {
11213 				verbose(env, "BPF_ALU uses reserved fields\n");
11214 				return -EINVAL;
11215 			}
11216 			/* check src1 operand */
11217 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11218 			if (err)
11219 				return err;
11220 		} else {
11221 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
11222 				verbose(env, "BPF_ALU uses reserved fields\n");
11223 				return -EINVAL;
11224 			}
11225 		}
11226 
11227 		/* check src2 operand */
11228 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11229 		if (err)
11230 			return err;
11231 
11232 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
11233 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
11234 			verbose(env, "div by zero\n");
11235 			return -EINVAL;
11236 		}
11237 
11238 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
11239 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
11240 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
11241 
11242 			if (insn->imm < 0 || insn->imm >= size) {
11243 				verbose(env, "invalid shift %d\n", insn->imm);
11244 				return -EINVAL;
11245 			}
11246 		}
11247 
11248 		/* check dest operand */
11249 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11250 		if (err)
11251 			return err;
11252 
11253 		return adjust_reg_min_max_vals(env, insn);
11254 	}
11255 
11256 	return 0;
11257 }
11258 
11259 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
11260 				   struct bpf_reg_state *dst_reg,
11261 				   enum bpf_reg_type type,
11262 				   bool range_right_open)
11263 {
11264 	struct bpf_func_state *state;
11265 	struct bpf_reg_state *reg;
11266 	int new_range;
11267 
11268 	if (dst_reg->off < 0 ||
11269 	    (dst_reg->off == 0 && range_right_open))
11270 		/* This doesn't give us any range */
11271 		return;
11272 
11273 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
11274 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
11275 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
11276 		 * than pkt_end, but that's because it's also less than pkt.
11277 		 */
11278 		return;
11279 
11280 	new_range = dst_reg->off;
11281 	if (range_right_open)
11282 		new_range++;
11283 
11284 	/* Examples for register markings:
11285 	 *
11286 	 * pkt_data in dst register:
11287 	 *
11288 	 *   r2 = r3;
11289 	 *   r2 += 8;
11290 	 *   if (r2 > pkt_end) goto <handle exception>
11291 	 *   <access okay>
11292 	 *
11293 	 *   r2 = r3;
11294 	 *   r2 += 8;
11295 	 *   if (r2 < pkt_end) goto <access okay>
11296 	 *   <handle exception>
11297 	 *
11298 	 *   Where:
11299 	 *     r2 == dst_reg, pkt_end == src_reg
11300 	 *     r2=pkt(id=n,off=8,r=0)
11301 	 *     r3=pkt(id=n,off=0,r=0)
11302 	 *
11303 	 * pkt_data in src register:
11304 	 *
11305 	 *   r2 = r3;
11306 	 *   r2 += 8;
11307 	 *   if (pkt_end >= r2) goto <access okay>
11308 	 *   <handle exception>
11309 	 *
11310 	 *   r2 = r3;
11311 	 *   r2 += 8;
11312 	 *   if (pkt_end <= r2) goto <handle exception>
11313 	 *   <access okay>
11314 	 *
11315 	 *   Where:
11316 	 *     pkt_end == dst_reg, r2 == src_reg
11317 	 *     r2=pkt(id=n,off=8,r=0)
11318 	 *     r3=pkt(id=n,off=0,r=0)
11319 	 *
11320 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
11321 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
11322 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
11323 	 * the check.
11324 	 */
11325 
11326 	/* If our ids match, then we must have the same max_value.  And we
11327 	 * don't care about the other reg's fixed offset, since if it's too big
11328 	 * the range won't allow anything.
11329 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
11330 	 */
11331 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11332 		if (reg->type == type && reg->id == dst_reg->id)
11333 			/* keep the maximum range already checked */
11334 			reg->range = max(reg->range, new_range);
11335 	}));
11336 }
11337 
11338 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
11339 {
11340 	struct tnum subreg = tnum_subreg(reg->var_off);
11341 	s32 sval = (s32)val;
11342 
11343 	switch (opcode) {
11344 	case BPF_JEQ:
11345 		if (tnum_is_const(subreg))
11346 			return !!tnum_equals_const(subreg, val);
11347 		break;
11348 	case BPF_JNE:
11349 		if (tnum_is_const(subreg))
11350 			return !tnum_equals_const(subreg, val);
11351 		break;
11352 	case BPF_JSET:
11353 		if ((~subreg.mask & subreg.value) & val)
11354 			return 1;
11355 		if (!((subreg.mask | subreg.value) & val))
11356 			return 0;
11357 		break;
11358 	case BPF_JGT:
11359 		if (reg->u32_min_value > val)
11360 			return 1;
11361 		else if (reg->u32_max_value <= val)
11362 			return 0;
11363 		break;
11364 	case BPF_JSGT:
11365 		if (reg->s32_min_value > sval)
11366 			return 1;
11367 		else if (reg->s32_max_value <= sval)
11368 			return 0;
11369 		break;
11370 	case BPF_JLT:
11371 		if (reg->u32_max_value < val)
11372 			return 1;
11373 		else if (reg->u32_min_value >= val)
11374 			return 0;
11375 		break;
11376 	case BPF_JSLT:
11377 		if (reg->s32_max_value < sval)
11378 			return 1;
11379 		else if (reg->s32_min_value >= sval)
11380 			return 0;
11381 		break;
11382 	case BPF_JGE:
11383 		if (reg->u32_min_value >= val)
11384 			return 1;
11385 		else if (reg->u32_max_value < val)
11386 			return 0;
11387 		break;
11388 	case BPF_JSGE:
11389 		if (reg->s32_min_value >= sval)
11390 			return 1;
11391 		else if (reg->s32_max_value < sval)
11392 			return 0;
11393 		break;
11394 	case BPF_JLE:
11395 		if (reg->u32_max_value <= val)
11396 			return 1;
11397 		else if (reg->u32_min_value > val)
11398 			return 0;
11399 		break;
11400 	case BPF_JSLE:
11401 		if (reg->s32_max_value <= sval)
11402 			return 1;
11403 		else if (reg->s32_min_value > sval)
11404 			return 0;
11405 		break;
11406 	}
11407 
11408 	return -1;
11409 }
11410 
11411 
11412 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
11413 {
11414 	s64 sval = (s64)val;
11415 
11416 	switch (opcode) {
11417 	case BPF_JEQ:
11418 		if (tnum_is_const(reg->var_off))
11419 			return !!tnum_equals_const(reg->var_off, val);
11420 		break;
11421 	case BPF_JNE:
11422 		if (tnum_is_const(reg->var_off))
11423 			return !tnum_equals_const(reg->var_off, val);
11424 		break;
11425 	case BPF_JSET:
11426 		if ((~reg->var_off.mask & reg->var_off.value) & val)
11427 			return 1;
11428 		if (!((reg->var_off.mask | reg->var_off.value) & val))
11429 			return 0;
11430 		break;
11431 	case BPF_JGT:
11432 		if (reg->umin_value > val)
11433 			return 1;
11434 		else if (reg->umax_value <= val)
11435 			return 0;
11436 		break;
11437 	case BPF_JSGT:
11438 		if (reg->smin_value > sval)
11439 			return 1;
11440 		else if (reg->smax_value <= sval)
11441 			return 0;
11442 		break;
11443 	case BPF_JLT:
11444 		if (reg->umax_value < val)
11445 			return 1;
11446 		else if (reg->umin_value >= val)
11447 			return 0;
11448 		break;
11449 	case BPF_JSLT:
11450 		if (reg->smax_value < sval)
11451 			return 1;
11452 		else if (reg->smin_value >= sval)
11453 			return 0;
11454 		break;
11455 	case BPF_JGE:
11456 		if (reg->umin_value >= val)
11457 			return 1;
11458 		else if (reg->umax_value < val)
11459 			return 0;
11460 		break;
11461 	case BPF_JSGE:
11462 		if (reg->smin_value >= sval)
11463 			return 1;
11464 		else if (reg->smax_value < sval)
11465 			return 0;
11466 		break;
11467 	case BPF_JLE:
11468 		if (reg->umax_value <= val)
11469 			return 1;
11470 		else if (reg->umin_value > val)
11471 			return 0;
11472 		break;
11473 	case BPF_JSLE:
11474 		if (reg->smax_value <= sval)
11475 			return 1;
11476 		else if (reg->smin_value > sval)
11477 			return 0;
11478 		break;
11479 	}
11480 
11481 	return -1;
11482 }
11483 
11484 /* compute branch direction of the expression "if (reg opcode val) goto target;"
11485  * and return:
11486  *  1 - branch will be taken and "goto target" will be executed
11487  *  0 - branch will not be taken and fall-through to next insn
11488  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
11489  *      range [0,10]
11490  */
11491 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
11492 			   bool is_jmp32)
11493 {
11494 	if (__is_pointer_value(false, reg)) {
11495 		if (!reg_type_not_null(reg->type))
11496 			return -1;
11497 
11498 		/* If pointer is valid tests against zero will fail so we can
11499 		 * use this to direct branch taken.
11500 		 */
11501 		if (val != 0)
11502 			return -1;
11503 
11504 		switch (opcode) {
11505 		case BPF_JEQ:
11506 			return 0;
11507 		case BPF_JNE:
11508 			return 1;
11509 		default:
11510 			return -1;
11511 		}
11512 	}
11513 
11514 	if (is_jmp32)
11515 		return is_branch32_taken(reg, val, opcode);
11516 	return is_branch64_taken(reg, val, opcode);
11517 }
11518 
11519 static int flip_opcode(u32 opcode)
11520 {
11521 	/* How can we transform "a <op> b" into "b <op> a"? */
11522 	static const u8 opcode_flip[16] = {
11523 		/* these stay the same */
11524 		[BPF_JEQ  >> 4] = BPF_JEQ,
11525 		[BPF_JNE  >> 4] = BPF_JNE,
11526 		[BPF_JSET >> 4] = BPF_JSET,
11527 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
11528 		[BPF_JGE  >> 4] = BPF_JLE,
11529 		[BPF_JGT  >> 4] = BPF_JLT,
11530 		[BPF_JLE  >> 4] = BPF_JGE,
11531 		[BPF_JLT  >> 4] = BPF_JGT,
11532 		[BPF_JSGE >> 4] = BPF_JSLE,
11533 		[BPF_JSGT >> 4] = BPF_JSLT,
11534 		[BPF_JSLE >> 4] = BPF_JSGE,
11535 		[BPF_JSLT >> 4] = BPF_JSGT
11536 	};
11537 	return opcode_flip[opcode >> 4];
11538 }
11539 
11540 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
11541 				   struct bpf_reg_state *src_reg,
11542 				   u8 opcode)
11543 {
11544 	struct bpf_reg_state *pkt;
11545 
11546 	if (src_reg->type == PTR_TO_PACKET_END) {
11547 		pkt = dst_reg;
11548 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
11549 		pkt = src_reg;
11550 		opcode = flip_opcode(opcode);
11551 	} else {
11552 		return -1;
11553 	}
11554 
11555 	if (pkt->range >= 0)
11556 		return -1;
11557 
11558 	switch (opcode) {
11559 	case BPF_JLE:
11560 		/* pkt <= pkt_end */
11561 		fallthrough;
11562 	case BPF_JGT:
11563 		/* pkt > pkt_end */
11564 		if (pkt->range == BEYOND_PKT_END)
11565 			/* pkt has at last one extra byte beyond pkt_end */
11566 			return opcode == BPF_JGT;
11567 		break;
11568 	case BPF_JLT:
11569 		/* pkt < pkt_end */
11570 		fallthrough;
11571 	case BPF_JGE:
11572 		/* pkt >= pkt_end */
11573 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
11574 			return opcode == BPF_JGE;
11575 		break;
11576 	}
11577 	return -1;
11578 }
11579 
11580 /* Adjusts the register min/max values in the case that the dst_reg is the
11581  * variable register that we are working on, and src_reg is a constant or we're
11582  * simply doing a BPF_K check.
11583  * In JEQ/JNE cases we also adjust the var_off values.
11584  */
11585 static void reg_set_min_max(struct bpf_reg_state *true_reg,
11586 			    struct bpf_reg_state *false_reg,
11587 			    u64 val, u32 val32,
11588 			    u8 opcode, bool is_jmp32)
11589 {
11590 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
11591 	struct tnum false_64off = false_reg->var_off;
11592 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
11593 	struct tnum true_64off = true_reg->var_off;
11594 	s64 sval = (s64)val;
11595 	s32 sval32 = (s32)val32;
11596 
11597 	/* If the dst_reg is a pointer, we can't learn anything about its
11598 	 * variable offset from the compare (unless src_reg were a pointer into
11599 	 * the same object, but we don't bother with that.
11600 	 * Since false_reg and true_reg have the same type by construction, we
11601 	 * only need to check one of them for pointerness.
11602 	 */
11603 	if (__is_pointer_value(false, false_reg))
11604 		return;
11605 
11606 	switch (opcode) {
11607 	/* JEQ/JNE comparison doesn't change the register equivalence.
11608 	 *
11609 	 * r1 = r2;
11610 	 * if (r1 == 42) goto label;
11611 	 * ...
11612 	 * label: // here both r1 and r2 are known to be 42.
11613 	 *
11614 	 * Hence when marking register as known preserve it's ID.
11615 	 */
11616 	case BPF_JEQ:
11617 		if (is_jmp32) {
11618 			__mark_reg32_known(true_reg, val32);
11619 			true_32off = tnum_subreg(true_reg->var_off);
11620 		} else {
11621 			___mark_reg_known(true_reg, val);
11622 			true_64off = true_reg->var_off;
11623 		}
11624 		break;
11625 	case BPF_JNE:
11626 		if (is_jmp32) {
11627 			__mark_reg32_known(false_reg, val32);
11628 			false_32off = tnum_subreg(false_reg->var_off);
11629 		} else {
11630 			___mark_reg_known(false_reg, val);
11631 			false_64off = false_reg->var_off;
11632 		}
11633 		break;
11634 	case BPF_JSET:
11635 		if (is_jmp32) {
11636 			false_32off = tnum_and(false_32off, tnum_const(~val32));
11637 			if (is_power_of_2(val32))
11638 				true_32off = tnum_or(true_32off,
11639 						     tnum_const(val32));
11640 		} else {
11641 			false_64off = tnum_and(false_64off, tnum_const(~val));
11642 			if (is_power_of_2(val))
11643 				true_64off = tnum_or(true_64off,
11644 						     tnum_const(val));
11645 		}
11646 		break;
11647 	case BPF_JGE:
11648 	case BPF_JGT:
11649 	{
11650 		if (is_jmp32) {
11651 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
11652 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11653 
11654 			false_reg->u32_max_value = min(false_reg->u32_max_value,
11655 						       false_umax);
11656 			true_reg->u32_min_value = max(true_reg->u32_min_value,
11657 						      true_umin);
11658 		} else {
11659 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
11660 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11661 
11662 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
11663 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
11664 		}
11665 		break;
11666 	}
11667 	case BPF_JSGE:
11668 	case BPF_JSGT:
11669 	{
11670 		if (is_jmp32) {
11671 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
11672 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
11673 
11674 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11675 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11676 		} else {
11677 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
11678 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11679 
11680 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
11681 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
11682 		}
11683 		break;
11684 	}
11685 	case BPF_JLE:
11686 	case BPF_JLT:
11687 	{
11688 		if (is_jmp32) {
11689 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
11690 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11691 
11692 			false_reg->u32_min_value = max(false_reg->u32_min_value,
11693 						       false_umin);
11694 			true_reg->u32_max_value = min(true_reg->u32_max_value,
11695 						      true_umax);
11696 		} else {
11697 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
11698 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11699 
11700 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
11701 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
11702 		}
11703 		break;
11704 	}
11705 	case BPF_JSLE:
11706 	case BPF_JSLT:
11707 	{
11708 		if (is_jmp32) {
11709 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
11710 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
11711 
11712 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11713 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11714 		} else {
11715 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
11716 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11717 
11718 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
11719 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
11720 		}
11721 		break;
11722 	}
11723 	default:
11724 		return;
11725 	}
11726 
11727 	if (is_jmp32) {
11728 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11729 					     tnum_subreg(false_32off));
11730 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11731 					    tnum_subreg(true_32off));
11732 		__reg_combine_32_into_64(false_reg);
11733 		__reg_combine_32_into_64(true_reg);
11734 	} else {
11735 		false_reg->var_off = false_64off;
11736 		true_reg->var_off = true_64off;
11737 		__reg_combine_64_into_32(false_reg);
11738 		__reg_combine_64_into_32(true_reg);
11739 	}
11740 }
11741 
11742 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
11743  * the variable reg.
11744  */
11745 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
11746 				struct bpf_reg_state *false_reg,
11747 				u64 val, u32 val32,
11748 				u8 opcode, bool is_jmp32)
11749 {
11750 	opcode = flip_opcode(opcode);
11751 	/* This uses zero as "not present in table"; luckily the zero opcode,
11752 	 * BPF_JA, can't get here.
11753 	 */
11754 	if (opcode)
11755 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
11756 }
11757 
11758 /* Regs are known to be equal, so intersect their min/max/var_off */
11759 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11760 				  struct bpf_reg_state *dst_reg)
11761 {
11762 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11763 							dst_reg->umin_value);
11764 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11765 							dst_reg->umax_value);
11766 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11767 							dst_reg->smin_value);
11768 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11769 							dst_reg->smax_value);
11770 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11771 							     dst_reg->var_off);
11772 	reg_bounds_sync(src_reg);
11773 	reg_bounds_sync(dst_reg);
11774 }
11775 
11776 static void reg_combine_min_max(struct bpf_reg_state *true_src,
11777 				struct bpf_reg_state *true_dst,
11778 				struct bpf_reg_state *false_src,
11779 				struct bpf_reg_state *false_dst,
11780 				u8 opcode)
11781 {
11782 	switch (opcode) {
11783 	case BPF_JEQ:
11784 		__reg_combine_min_max(true_src, true_dst);
11785 		break;
11786 	case BPF_JNE:
11787 		__reg_combine_min_max(false_src, false_dst);
11788 		break;
11789 	}
11790 }
11791 
11792 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11793 				 struct bpf_reg_state *reg, u32 id,
11794 				 bool is_null)
11795 {
11796 	if (type_may_be_null(reg->type) && reg->id == id &&
11797 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
11798 		/* Old offset (both fixed and variable parts) should have been
11799 		 * known-zero, because we don't allow pointer arithmetic on
11800 		 * pointers that might be NULL. If we see this happening, don't
11801 		 * convert the register.
11802 		 *
11803 		 * But in some cases, some helpers that return local kptrs
11804 		 * advance offset for the returned pointer. In those cases, it
11805 		 * is fine to expect to see reg->off.
11806 		 */
11807 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11808 			return;
11809 		if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
11810 			return;
11811 		if (is_null) {
11812 			reg->type = SCALAR_VALUE;
11813 			/* We don't need id and ref_obj_id from this point
11814 			 * onwards anymore, thus we should better reset it,
11815 			 * so that state pruning has chances to take effect.
11816 			 */
11817 			reg->id = 0;
11818 			reg->ref_obj_id = 0;
11819 
11820 			return;
11821 		}
11822 
11823 		mark_ptr_not_null_reg(reg);
11824 
11825 		if (!reg_may_point_to_spin_lock(reg)) {
11826 			/* For not-NULL ptr, reg->ref_obj_id will be reset
11827 			 * in release_reference().
11828 			 *
11829 			 * reg->id is still used by spin_lock ptr. Other
11830 			 * than spin_lock ptr type, reg->id can be reset.
11831 			 */
11832 			reg->id = 0;
11833 		}
11834 	}
11835 }
11836 
11837 /* The logic is similar to find_good_pkt_pointers(), both could eventually
11838  * be folded together at some point.
11839  */
11840 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11841 				  bool is_null)
11842 {
11843 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11844 	struct bpf_reg_state *regs = state->regs, *reg;
11845 	u32 ref_obj_id = regs[regno].ref_obj_id;
11846 	u32 id = regs[regno].id;
11847 
11848 	if (ref_obj_id && ref_obj_id == id && is_null)
11849 		/* regs[regno] is in the " == NULL" branch.
11850 		 * No one could have freed the reference state before
11851 		 * doing the NULL check.
11852 		 */
11853 		WARN_ON_ONCE(release_reference_state(state, id));
11854 
11855 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11856 		mark_ptr_or_null_reg(state, reg, id, is_null);
11857 	}));
11858 }
11859 
11860 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11861 				   struct bpf_reg_state *dst_reg,
11862 				   struct bpf_reg_state *src_reg,
11863 				   struct bpf_verifier_state *this_branch,
11864 				   struct bpf_verifier_state *other_branch)
11865 {
11866 	if (BPF_SRC(insn->code) != BPF_X)
11867 		return false;
11868 
11869 	/* Pointers are always 64-bit. */
11870 	if (BPF_CLASS(insn->code) == BPF_JMP32)
11871 		return false;
11872 
11873 	switch (BPF_OP(insn->code)) {
11874 	case BPF_JGT:
11875 		if ((dst_reg->type == PTR_TO_PACKET &&
11876 		     src_reg->type == PTR_TO_PACKET_END) ||
11877 		    (dst_reg->type == PTR_TO_PACKET_META &&
11878 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11879 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11880 			find_good_pkt_pointers(this_branch, dst_reg,
11881 					       dst_reg->type, false);
11882 			mark_pkt_end(other_branch, insn->dst_reg, true);
11883 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11884 			    src_reg->type == PTR_TO_PACKET) ||
11885 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11886 			    src_reg->type == PTR_TO_PACKET_META)) {
11887 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
11888 			find_good_pkt_pointers(other_branch, src_reg,
11889 					       src_reg->type, true);
11890 			mark_pkt_end(this_branch, insn->src_reg, false);
11891 		} else {
11892 			return false;
11893 		}
11894 		break;
11895 	case BPF_JLT:
11896 		if ((dst_reg->type == PTR_TO_PACKET &&
11897 		     src_reg->type == PTR_TO_PACKET_END) ||
11898 		    (dst_reg->type == PTR_TO_PACKET_META &&
11899 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11900 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11901 			find_good_pkt_pointers(other_branch, dst_reg,
11902 					       dst_reg->type, true);
11903 			mark_pkt_end(this_branch, insn->dst_reg, false);
11904 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11905 			    src_reg->type == PTR_TO_PACKET) ||
11906 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11907 			    src_reg->type == PTR_TO_PACKET_META)) {
11908 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
11909 			find_good_pkt_pointers(this_branch, src_reg,
11910 					       src_reg->type, false);
11911 			mark_pkt_end(other_branch, insn->src_reg, true);
11912 		} else {
11913 			return false;
11914 		}
11915 		break;
11916 	case BPF_JGE:
11917 		if ((dst_reg->type == PTR_TO_PACKET &&
11918 		     src_reg->type == PTR_TO_PACKET_END) ||
11919 		    (dst_reg->type == PTR_TO_PACKET_META &&
11920 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11921 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11922 			find_good_pkt_pointers(this_branch, dst_reg,
11923 					       dst_reg->type, true);
11924 			mark_pkt_end(other_branch, insn->dst_reg, false);
11925 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11926 			    src_reg->type == PTR_TO_PACKET) ||
11927 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11928 			    src_reg->type == PTR_TO_PACKET_META)) {
11929 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11930 			find_good_pkt_pointers(other_branch, src_reg,
11931 					       src_reg->type, false);
11932 			mark_pkt_end(this_branch, insn->src_reg, true);
11933 		} else {
11934 			return false;
11935 		}
11936 		break;
11937 	case BPF_JLE:
11938 		if ((dst_reg->type == PTR_TO_PACKET &&
11939 		     src_reg->type == PTR_TO_PACKET_END) ||
11940 		    (dst_reg->type == PTR_TO_PACKET_META &&
11941 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11942 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11943 			find_good_pkt_pointers(other_branch, dst_reg,
11944 					       dst_reg->type, false);
11945 			mark_pkt_end(this_branch, insn->dst_reg, true);
11946 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11947 			    src_reg->type == PTR_TO_PACKET) ||
11948 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11949 			    src_reg->type == PTR_TO_PACKET_META)) {
11950 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11951 			find_good_pkt_pointers(this_branch, src_reg,
11952 					       src_reg->type, true);
11953 			mark_pkt_end(other_branch, insn->src_reg, false);
11954 		} else {
11955 			return false;
11956 		}
11957 		break;
11958 	default:
11959 		return false;
11960 	}
11961 
11962 	return true;
11963 }
11964 
11965 static void find_equal_scalars(struct bpf_verifier_state *vstate,
11966 			       struct bpf_reg_state *known_reg)
11967 {
11968 	struct bpf_func_state *state;
11969 	struct bpf_reg_state *reg;
11970 
11971 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11972 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11973 			*reg = *known_reg;
11974 	}));
11975 }
11976 
11977 static int check_cond_jmp_op(struct bpf_verifier_env *env,
11978 			     struct bpf_insn *insn, int *insn_idx)
11979 {
11980 	struct bpf_verifier_state *this_branch = env->cur_state;
11981 	struct bpf_verifier_state *other_branch;
11982 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
11983 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
11984 	struct bpf_reg_state *eq_branch_regs;
11985 	u8 opcode = BPF_OP(insn->code);
11986 	bool is_jmp32;
11987 	int pred = -1;
11988 	int err;
11989 
11990 	/* Only conditional jumps are expected to reach here. */
11991 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
11992 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
11993 		return -EINVAL;
11994 	}
11995 
11996 	if (BPF_SRC(insn->code) == BPF_X) {
11997 		if (insn->imm != 0) {
11998 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11999 			return -EINVAL;
12000 		}
12001 
12002 		/* check src1 operand */
12003 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
12004 		if (err)
12005 			return err;
12006 
12007 		if (is_pointer_value(env, insn->src_reg)) {
12008 			verbose(env, "R%d pointer comparison prohibited\n",
12009 				insn->src_reg);
12010 			return -EACCES;
12011 		}
12012 		src_reg = &regs[insn->src_reg];
12013 	} else {
12014 		if (insn->src_reg != BPF_REG_0) {
12015 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
12016 			return -EINVAL;
12017 		}
12018 	}
12019 
12020 	/* check src2 operand */
12021 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12022 	if (err)
12023 		return err;
12024 
12025 	dst_reg = &regs[insn->dst_reg];
12026 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
12027 
12028 	if (BPF_SRC(insn->code) == BPF_K) {
12029 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
12030 	} else if (src_reg->type == SCALAR_VALUE &&
12031 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
12032 		pred = is_branch_taken(dst_reg,
12033 				       tnum_subreg(src_reg->var_off).value,
12034 				       opcode,
12035 				       is_jmp32);
12036 	} else if (src_reg->type == SCALAR_VALUE &&
12037 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
12038 		pred = is_branch_taken(dst_reg,
12039 				       src_reg->var_off.value,
12040 				       opcode,
12041 				       is_jmp32);
12042 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
12043 		   reg_is_pkt_pointer_any(src_reg) &&
12044 		   !is_jmp32) {
12045 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
12046 	}
12047 
12048 	if (pred >= 0) {
12049 		/* If we get here with a dst_reg pointer type it is because
12050 		 * above is_branch_taken() special cased the 0 comparison.
12051 		 */
12052 		if (!__is_pointer_value(false, dst_reg))
12053 			err = mark_chain_precision(env, insn->dst_reg);
12054 		if (BPF_SRC(insn->code) == BPF_X && !err &&
12055 		    !__is_pointer_value(false, src_reg))
12056 			err = mark_chain_precision(env, insn->src_reg);
12057 		if (err)
12058 			return err;
12059 	}
12060 
12061 	if (pred == 1) {
12062 		/* Only follow the goto, ignore fall-through. If needed, push
12063 		 * the fall-through branch for simulation under speculative
12064 		 * execution.
12065 		 */
12066 		if (!env->bypass_spec_v1 &&
12067 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
12068 					       *insn_idx))
12069 			return -EFAULT;
12070 		*insn_idx += insn->off;
12071 		return 0;
12072 	} else if (pred == 0) {
12073 		/* Only follow the fall-through branch, since that's where the
12074 		 * program will go. If needed, push the goto branch for
12075 		 * simulation under speculative execution.
12076 		 */
12077 		if (!env->bypass_spec_v1 &&
12078 		    !sanitize_speculative_path(env, insn,
12079 					       *insn_idx + insn->off + 1,
12080 					       *insn_idx))
12081 			return -EFAULT;
12082 		return 0;
12083 	}
12084 
12085 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
12086 				  false);
12087 	if (!other_branch)
12088 		return -EFAULT;
12089 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
12090 
12091 	/* detect if we are comparing against a constant value so we can adjust
12092 	 * our min/max values for our dst register.
12093 	 * this is only legit if both are scalars (or pointers to the same
12094 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
12095 	 * because otherwise the different base pointers mean the offsets aren't
12096 	 * comparable.
12097 	 */
12098 	if (BPF_SRC(insn->code) == BPF_X) {
12099 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
12100 
12101 		if (dst_reg->type == SCALAR_VALUE &&
12102 		    src_reg->type == SCALAR_VALUE) {
12103 			if (tnum_is_const(src_reg->var_off) ||
12104 			    (is_jmp32 &&
12105 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
12106 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
12107 						dst_reg,
12108 						src_reg->var_off.value,
12109 						tnum_subreg(src_reg->var_off).value,
12110 						opcode, is_jmp32);
12111 			else if (tnum_is_const(dst_reg->var_off) ||
12112 				 (is_jmp32 &&
12113 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
12114 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
12115 						    src_reg,
12116 						    dst_reg->var_off.value,
12117 						    tnum_subreg(dst_reg->var_off).value,
12118 						    opcode, is_jmp32);
12119 			else if (!is_jmp32 &&
12120 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
12121 				/* Comparing for equality, we can combine knowledge */
12122 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
12123 						    &other_branch_regs[insn->dst_reg],
12124 						    src_reg, dst_reg, opcode);
12125 			if (src_reg->id &&
12126 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
12127 				find_equal_scalars(this_branch, src_reg);
12128 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
12129 			}
12130 
12131 		}
12132 	} else if (dst_reg->type == SCALAR_VALUE) {
12133 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
12134 					dst_reg, insn->imm, (u32)insn->imm,
12135 					opcode, is_jmp32);
12136 	}
12137 
12138 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
12139 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
12140 		find_equal_scalars(this_branch, dst_reg);
12141 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
12142 	}
12143 
12144 	/* if one pointer register is compared to another pointer
12145 	 * register check if PTR_MAYBE_NULL could be lifted.
12146 	 * E.g. register A - maybe null
12147 	 *      register B - not null
12148 	 * for JNE A, B, ... - A is not null in the false branch;
12149 	 * for JEQ A, B, ... - A is not null in the true branch.
12150 	 *
12151 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
12152 	 * not need to be null checked by the BPF program, i.e.,
12153 	 * could be null even without PTR_MAYBE_NULL marking, so
12154 	 * only propagate nullness when neither reg is that type.
12155 	 */
12156 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
12157 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
12158 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
12159 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
12160 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
12161 		eq_branch_regs = NULL;
12162 		switch (opcode) {
12163 		case BPF_JEQ:
12164 			eq_branch_regs = other_branch_regs;
12165 			break;
12166 		case BPF_JNE:
12167 			eq_branch_regs = regs;
12168 			break;
12169 		default:
12170 			/* do nothing */
12171 			break;
12172 		}
12173 		if (eq_branch_regs) {
12174 			if (type_may_be_null(src_reg->type))
12175 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
12176 			else
12177 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
12178 		}
12179 	}
12180 
12181 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
12182 	 * NOTE: these optimizations below are related with pointer comparison
12183 	 *       which will never be JMP32.
12184 	 */
12185 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
12186 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
12187 	    type_may_be_null(dst_reg->type)) {
12188 		/* Mark all identical registers in each branch as either
12189 		 * safe or unknown depending R == 0 or R != 0 conditional.
12190 		 */
12191 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
12192 				      opcode == BPF_JNE);
12193 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
12194 				      opcode == BPF_JEQ);
12195 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
12196 					   this_branch, other_branch) &&
12197 		   is_pointer_value(env, insn->dst_reg)) {
12198 		verbose(env, "R%d pointer comparison prohibited\n",
12199 			insn->dst_reg);
12200 		return -EACCES;
12201 	}
12202 	if (env->log.level & BPF_LOG_LEVEL)
12203 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
12204 	return 0;
12205 }
12206 
12207 /* verify BPF_LD_IMM64 instruction */
12208 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
12209 {
12210 	struct bpf_insn_aux_data *aux = cur_aux(env);
12211 	struct bpf_reg_state *regs = cur_regs(env);
12212 	struct bpf_reg_state *dst_reg;
12213 	struct bpf_map *map;
12214 	int err;
12215 
12216 	if (BPF_SIZE(insn->code) != BPF_DW) {
12217 		verbose(env, "invalid BPF_LD_IMM insn\n");
12218 		return -EINVAL;
12219 	}
12220 	if (insn->off != 0) {
12221 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
12222 		return -EINVAL;
12223 	}
12224 
12225 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
12226 	if (err)
12227 		return err;
12228 
12229 	dst_reg = &regs[insn->dst_reg];
12230 	if (insn->src_reg == 0) {
12231 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
12232 
12233 		dst_reg->type = SCALAR_VALUE;
12234 		__mark_reg_known(&regs[insn->dst_reg], imm);
12235 		return 0;
12236 	}
12237 
12238 	/* All special src_reg cases are listed below. From this point onwards
12239 	 * we either succeed and assign a corresponding dst_reg->type after
12240 	 * zeroing the offset, or fail and reject the program.
12241 	 */
12242 	mark_reg_known_zero(env, regs, insn->dst_reg);
12243 
12244 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
12245 		dst_reg->type = aux->btf_var.reg_type;
12246 		switch (base_type(dst_reg->type)) {
12247 		case PTR_TO_MEM:
12248 			dst_reg->mem_size = aux->btf_var.mem_size;
12249 			break;
12250 		case PTR_TO_BTF_ID:
12251 			dst_reg->btf = aux->btf_var.btf;
12252 			dst_reg->btf_id = aux->btf_var.btf_id;
12253 			break;
12254 		default:
12255 			verbose(env, "bpf verifier is misconfigured\n");
12256 			return -EFAULT;
12257 		}
12258 		return 0;
12259 	}
12260 
12261 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
12262 		struct bpf_prog_aux *aux = env->prog->aux;
12263 		u32 subprogno = find_subprog(env,
12264 					     env->insn_idx + insn->imm + 1);
12265 
12266 		if (!aux->func_info) {
12267 			verbose(env, "missing btf func_info\n");
12268 			return -EINVAL;
12269 		}
12270 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
12271 			verbose(env, "callback function not static\n");
12272 			return -EINVAL;
12273 		}
12274 
12275 		dst_reg->type = PTR_TO_FUNC;
12276 		dst_reg->subprogno = subprogno;
12277 		return 0;
12278 	}
12279 
12280 	map = env->used_maps[aux->map_index];
12281 	dst_reg->map_ptr = map;
12282 
12283 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
12284 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
12285 		dst_reg->type = PTR_TO_MAP_VALUE;
12286 		dst_reg->off = aux->map_off;
12287 		WARN_ON_ONCE(map->max_entries != 1);
12288 		/* We want reg->id to be same (0) as map_value is not distinct */
12289 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
12290 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
12291 		dst_reg->type = CONST_PTR_TO_MAP;
12292 	} else {
12293 		verbose(env, "bpf verifier is misconfigured\n");
12294 		return -EINVAL;
12295 	}
12296 
12297 	return 0;
12298 }
12299 
12300 static bool may_access_skb(enum bpf_prog_type type)
12301 {
12302 	switch (type) {
12303 	case BPF_PROG_TYPE_SOCKET_FILTER:
12304 	case BPF_PROG_TYPE_SCHED_CLS:
12305 	case BPF_PROG_TYPE_SCHED_ACT:
12306 		return true;
12307 	default:
12308 		return false;
12309 	}
12310 }
12311 
12312 /* verify safety of LD_ABS|LD_IND instructions:
12313  * - they can only appear in the programs where ctx == skb
12314  * - since they are wrappers of function calls, they scratch R1-R5 registers,
12315  *   preserve R6-R9, and store return value into R0
12316  *
12317  * Implicit input:
12318  *   ctx == skb == R6 == CTX
12319  *
12320  * Explicit input:
12321  *   SRC == any register
12322  *   IMM == 32-bit immediate
12323  *
12324  * Output:
12325  *   R0 - 8/16/32-bit skb data converted to cpu endianness
12326  */
12327 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
12328 {
12329 	struct bpf_reg_state *regs = cur_regs(env);
12330 	static const int ctx_reg = BPF_REG_6;
12331 	u8 mode = BPF_MODE(insn->code);
12332 	int i, err;
12333 
12334 	if (!may_access_skb(resolve_prog_type(env->prog))) {
12335 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
12336 		return -EINVAL;
12337 	}
12338 
12339 	if (!env->ops->gen_ld_abs) {
12340 		verbose(env, "bpf verifier is misconfigured\n");
12341 		return -EINVAL;
12342 	}
12343 
12344 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
12345 	    BPF_SIZE(insn->code) == BPF_DW ||
12346 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
12347 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
12348 		return -EINVAL;
12349 	}
12350 
12351 	/* check whether implicit source operand (register R6) is readable */
12352 	err = check_reg_arg(env, ctx_reg, SRC_OP);
12353 	if (err)
12354 		return err;
12355 
12356 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
12357 	 * gen_ld_abs() may terminate the program at runtime, leading to
12358 	 * reference leak.
12359 	 */
12360 	err = check_reference_leak(env);
12361 	if (err) {
12362 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
12363 		return err;
12364 	}
12365 
12366 	if (env->cur_state->active_lock.ptr) {
12367 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
12368 		return -EINVAL;
12369 	}
12370 
12371 	if (env->cur_state->active_rcu_lock) {
12372 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
12373 		return -EINVAL;
12374 	}
12375 
12376 	if (regs[ctx_reg].type != PTR_TO_CTX) {
12377 		verbose(env,
12378 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
12379 		return -EINVAL;
12380 	}
12381 
12382 	if (mode == BPF_IND) {
12383 		/* check explicit source operand */
12384 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
12385 		if (err)
12386 			return err;
12387 	}
12388 
12389 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
12390 	if (err < 0)
12391 		return err;
12392 
12393 	/* reset caller saved regs to unreadable */
12394 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
12395 		mark_reg_not_init(env, regs, caller_saved[i]);
12396 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
12397 	}
12398 
12399 	/* mark destination R0 register as readable, since it contains
12400 	 * the value fetched from the packet.
12401 	 * Already marked as written above.
12402 	 */
12403 	mark_reg_unknown(env, regs, BPF_REG_0);
12404 	/* ld_abs load up to 32-bit skb data. */
12405 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
12406 	return 0;
12407 }
12408 
12409 static int check_return_code(struct bpf_verifier_env *env)
12410 {
12411 	struct tnum enforce_attach_type_range = tnum_unknown;
12412 	const struct bpf_prog *prog = env->prog;
12413 	struct bpf_reg_state *reg;
12414 	struct tnum range = tnum_range(0, 1);
12415 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12416 	int err;
12417 	struct bpf_func_state *frame = env->cur_state->frame[0];
12418 	const bool is_subprog = frame->subprogno;
12419 
12420 	/* LSM and struct_ops func-ptr's return type could be "void" */
12421 	if (!is_subprog) {
12422 		switch (prog_type) {
12423 		case BPF_PROG_TYPE_LSM:
12424 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
12425 				/* See below, can be 0 or 0-1 depending on hook. */
12426 				break;
12427 			fallthrough;
12428 		case BPF_PROG_TYPE_STRUCT_OPS:
12429 			if (!prog->aux->attach_func_proto->type)
12430 				return 0;
12431 			break;
12432 		default:
12433 			break;
12434 		}
12435 	}
12436 
12437 	/* eBPF calling convention is such that R0 is used
12438 	 * to return the value from eBPF program.
12439 	 * Make sure that it's readable at this time
12440 	 * of bpf_exit, which means that program wrote
12441 	 * something into it earlier
12442 	 */
12443 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
12444 	if (err)
12445 		return err;
12446 
12447 	if (is_pointer_value(env, BPF_REG_0)) {
12448 		verbose(env, "R0 leaks addr as return value\n");
12449 		return -EACCES;
12450 	}
12451 
12452 	reg = cur_regs(env) + BPF_REG_0;
12453 
12454 	if (frame->in_async_callback_fn) {
12455 		/* enforce return zero from async callbacks like timer */
12456 		if (reg->type != SCALAR_VALUE) {
12457 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
12458 				reg_type_str(env, reg->type));
12459 			return -EINVAL;
12460 		}
12461 
12462 		if (!tnum_in(tnum_const(0), reg->var_off)) {
12463 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
12464 			return -EINVAL;
12465 		}
12466 		return 0;
12467 	}
12468 
12469 	if (is_subprog) {
12470 		if (reg->type != SCALAR_VALUE) {
12471 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
12472 				reg_type_str(env, reg->type));
12473 			return -EINVAL;
12474 		}
12475 		return 0;
12476 	}
12477 
12478 	switch (prog_type) {
12479 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
12480 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
12481 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
12482 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
12483 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
12484 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
12485 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
12486 			range = tnum_range(1, 1);
12487 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
12488 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
12489 			range = tnum_range(0, 3);
12490 		break;
12491 	case BPF_PROG_TYPE_CGROUP_SKB:
12492 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
12493 			range = tnum_range(0, 3);
12494 			enforce_attach_type_range = tnum_range(2, 3);
12495 		}
12496 		break;
12497 	case BPF_PROG_TYPE_CGROUP_SOCK:
12498 	case BPF_PROG_TYPE_SOCK_OPS:
12499 	case BPF_PROG_TYPE_CGROUP_DEVICE:
12500 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
12501 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
12502 		break;
12503 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12504 		if (!env->prog->aux->attach_btf_id)
12505 			return 0;
12506 		range = tnum_const(0);
12507 		break;
12508 	case BPF_PROG_TYPE_TRACING:
12509 		switch (env->prog->expected_attach_type) {
12510 		case BPF_TRACE_FENTRY:
12511 		case BPF_TRACE_FEXIT:
12512 			range = tnum_const(0);
12513 			break;
12514 		case BPF_TRACE_RAW_TP:
12515 		case BPF_MODIFY_RETURN:
12516 			return 0;
12517 		case BPF_TRACE_ITER:
12518 			break;
12519 		default:
12520 			return -ENOTSUPP;
12521 		}
12522 		break;
12523 	case BPF_PROG_TYPE_SK_LOOKUP:
12524 		range = tnum_range(SK_DROP, SK_PASS);
12525 		break;
12526 
12527 	case BPF_PROG_TYPE_LSM:
12528 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
12529 			/* Regular BPF_PROG_TYPE_LSM programs can return
12530 			 * any value.
12531 			 */
12532 			return 0;
12533 		}
12534 		if (!env->prog->aux->attach_func_proto->type) {
12535 			/* Make sure programs that attach to void
12536 			 * hooks don't try to modify return value.
12537 			 */
12538 			range = tnum_range(1, 1);
12539 		}
12540 		break;
12541 
12542 	case BPF_PROG_TYPE_EXT:
12543 		/* freplace program can return anything as its return value
12544 		 * depends on the to-be-replaced kernel func or bpf program.
12545 		 */
12546 	default:
12547 		return 0;
12548 	}
12549 
12550 	if (reg->type != SCALAR_VALUE) {
12551 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
12552 			reg_type_str(env, reg->type));
12553 		return -EINVAL;
12554 	}
12555 
12556 	if (!tnum_in(range, reg->var_off)) {
12557 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
12558 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
12559 		    prog_type == BPF_PROG_TYPE_LSM &&
12560 		    !prog->aux->attach_func_proto->type)
12561 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
12562 		return -EINVAL;
12563 	}
12564 
12565 	if (!tnum_is_unknown(enforce_attach_type_range) &&
12566 	    tnum_in(enforce_attach_type_range, reg->var_off))
12567 		env->prog->enforce_expected_attach_type = 1;
12568 	return 0;
12569 }
12570 
12571 /* non-recursive DFS pseudo code
12572  * 1  procedure DFS-iterative(G,v):
12573  * 2      label v as discovered
12574  * 3      let S be a stack
12575  * 4      S.push(v)
12576  * 5      while S is not empty
12577  * 6            t <- S.peek()
12578  * 7            if t is what we're looking for:
12579  * 8                return t
12580  * 9            for all edges e in G.adjacentEdges(t) do
12581  * 10               if edge e is already labelled
12582  * 11                   continue with the next edge
12583  * 12               w <- G.adjacentVertex(t,e)
12584  * 13               if vertex w is not discovered and not explored
12585  * 14                   label e as tree-edge
12586  * 15                   label w as discovered
12587  * 16                   S.push(w)
12588  * 17                   continue at 5
12589  * 18               else if vertex w is discovered
12590  * 19                   label e as back-edge
12591  * 20               else
12592  * 21                   // vertex w is explored
12593  * 22                   label e as forward- or cross-edge
12594  * 23           label t as explored
12595  * 24           S.pop()
12596  *
12597  * convention:
12598  * 0x10 - discovered
12599  * 0x11 - discovered and fall-through edge labelled
12600  * 0x12 - discovered and fall-through and branch edges labelled
12601  * 0x20 - explored
12602  */
12603 
12604 enum {
12605 	DISCOVERED = 0x10,
12606 	EXPLORED = 0x20,
12607 	FALLTHROUGH = 1,
12608 	BRANCH = 2,
12609 };
12610 
12611 static u32 state_htab_size(struct bpf_verifier_env *env)
12612 {
12613 	return env->prog->len;
12614 }
12615 
12616 static struct bpf_verifier_state_list **explored_state(
12617 					struct bpf_verifier_env *env,
12618 					int idx)
12619 {
12620 	struct bpf_verifier_state *cur = env->cur_state;
12621 	struct bpf_func_state *state = cur->frame[cur->curframe];
12622 
12623 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
12624 }
12625 
12626 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
12627 {
12628 	env->insn_aux_data[idx].prune_point = true;
12629 }
12630 
12631 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
12632 {
12633 	return env->insn_aux_data[insn_idx].prune_point;
12634 }
12635 
12636 enum {
12637 	DONE_EXPLORING = 0,
12638 	KEEP_EXPLORING = 1,
12639 };
12640 
12641 /* t, w, e - match pseudo-code above:
12642  * t - index of current instruction
12643  * w - next instruction
12644  * e - edge
12645  */
12646 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12647 		     bool loop_ok)
12648 {
12649 	int *insn_stack = env->cfg.insn_stack;
12650 	int *insn_state = env->cfg.insn_state;
12651 
12652 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
12653 		return DONE_EXPLORING;
12654 
12655 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
12656 		return DONE_EXPLORING;
12657 
12658 	if (w < 0 || w >= env->prog->len) {
12659 		verbose_linfo(env, t, "%d: ", t);
12660 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
12661 		return -EINVAL;
12662 	}
12663 
12664 	if (e == BRANCH) {
12665 		/* mark branch target for state pruning */
12666 		mark_prune_point(env, w);
12667 		mark_jmp_point(env, w);
12668 	}
12669 
12670 	if (insn_state[w] == 0) {
12671 		/* tree-edge */
12672 		insn_state[t] = DISCOVERED | e;
12673 		insn_state[w] = DISCOVERED;
12674 		if (env->cfg.cur_stack >= env->prog->len)
12675 			return -E2BIG;
12676 		insn_stack[env->cfg.cur_stack++] = w;
12677 		return KEEP_EXPLORING;
12678 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
12679 		if (loop_ok && env->bpf_capable)
12680 			return DONE_EXPLORING;
12681 		verbose_linfo(env, t, "%d: ", t);
12682 		verbose_linfo(env, w, "%d: ", w);
12683 		verbose(env, "back-edge from insn %d to %d\n", t, w);
12684 		return -EINVAL;
12685 	} else if (insn_state[w] == EXPLORED) {
12686 		/* forward- or cross-edge */
12687 		insn_state[t] = DISCOVERED | e;
12688 	} else {
12689 		verbose(env, "insn state internal bug\n");
12690 		return -EFAULT;
12691 	}
12692 	return DONE_EXPLORING;
12693 }
12694 
12695 static int visit_func_call_insn(int t, struct bpf_insn *insns,
12696 				struct bpf_verifier_env *env,
12697 				bool visit_callee)
12698 {
12699 	int ret;
12700 
12701 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12702 	if (ret)
12703 		return ret;
12704 
12705 	mark_prune_point(env, t + 1);
12706 	/* when we exit from subprog, we need to record non-linear history */
12707 	mark_jmp_point(env, t + 1);
12708 
12709 	if (visit_callee) {
12710 		mark_prune_point(env, t);
12711 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12712 				/* It's ok to allow recursion from CFG point of
12713 				 * view. __check_func_call() will do the actual
12714 				 * check.
12715 				 */
12716 				bpf_pseudo_func(insns + t));
12717 	}
12718 	return ret;
12719 }
12720 
12721 /* Visits the instruction at index t and returns one of the following:
12722  *  < 0 - an error occurred
12723  *  DONE_EXPLORING - the instruction was fully explored
12724  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
12725  */
12726 static int visit_insn(int t, struct bpf_verifier_env *env)
12727 {
12728 	struct bpf_insn *insns = env->prog->insnsi;
12729 	int ret;
12730 
12731 	if (bpf_pseudo_func(insns + t))
12732 		return visit_func_call_insn(t, insns, env, true);
12733 
12734 	/* All non-branch instructions have a single fall-through edge. */
12735 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12736 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
12737 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
12738 
12739 	switch (BPF_OP(insns[t].code)) {
12740 	case BPF_EXIT:
12741 		return DONE_EXPLORING;
12742 
12743 	case BPF_CALL:
12744 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
12745 			/* Mark this call insn as a prune point to trigger
12746 			 * is_state_visited() check before call itself is
12747 			 * processed by __check_func_call(). Otherwise new
12748 			 * async state will be pushed for further exploration.
12749 			 */
12750 			mark_prune_point(env, t);
12751 		return visit_func_call_insn(t, insns, env,
12752 					    insns[t].src_reg == BPF_PSEUDO_CALL);
12753 
12754 	case BPF_JA:
12755 		if (BPF_SRC(insns[t].code) != BPF_K)
12756 			return -EINVAL;
12757 
12758 		/* unconditional jump with single edge */
12759 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12760 				true);
12761 		if (ret)
12762 			return ret;
12763 
12764 		mark_prune_point(env, t + insns[t].off + 1);
12765 		mark_jmp_point(env, t + insns[t].off + 1);
12766 
12767 		return ret;
12768 
12769 	default:
12770 		/* conditional jump with two edges */
12771 		mark_prune_point(env, t);
12772 
12773 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12774 		if (ret)
12775 			return ret;
12776 
12777 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12778 	}
12779 }
12780 
12781 /* non-recursive depth-first-search to detect loops in BPF program
12782  * loop == back-edge in directed graph
12783  */
12784 static int check_cfg(struct bpf_verifier_env *env)
12785 {
12786 	int insn_cnt = env->prog->len;
12787 	int *insn_stack, *insn_state;
12788 	int ret = 0;
12789 	int i;
12790 
12791 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12792 	if (!insn_state)
12793 		return -ENOMEM;
12794 
12795 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12796 	if (!insn_stack) {
12797 		kvfree(insn_state);
12798 		return -ENOMEM;
12799 	}
12800 
12801 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12802 	insn_stack[0] = 0; /* 0 is the first instruction */
12803 	env->cfg.cur_stack = 1;
12804 
12805 	while (env->cfg.cur_stack > 0) {
12806 		int t = insn_stack[env->cfg.cur_stack - 1];
12807 
12808 		ret = visit_insn(t, env);
12809 		switch (ret) {
12810 		case DONE_EXPLORING:
12811 			insn_state[t] = EXPLORED;
12812 			env->cfg.cur_stack--;
12813 			break;
12814 		case KEEP_EXPLORING:
12815 			break;
12816 		default:
12817 			if (ret > 0) {
12818 				verbose(env, "visit_insn internal bug\n");
12819 				ret = -EFAULT;
12820 			}
12821 			goto err_free;
12822 		}
12823 	}
12824 
12825 	if (env->cfg.cur_stack < 0) {
12826 		verbose(env, "pop stack internal bug\n");
12827 		ret = -EFAULT;
12828 		goto err_free;
12829 	}
12830 
12831 	for (i = 0; i < insn_cnt; i++) {
12832 		if (insn_state[i] != EXPLORED) {
12833 			verbose(env, "unreachable insn %d\n", i);
12834 			ret = -EINVAL;
12835 			goto err_free;
12836 		}
12837 	}
12838 	ret = 0; /* cfg looks good */
12839 
12840 err_free:
12841 	kvfree(insn_state);
12842 	kvfree(insn_stack);
12843 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
12844 	return ret;
12845 }
12846 
12847 static int check_abnormal_return(struct bpf_verifier_env *env)
12848 {
12849 	int i;
12850 
12851 	for (i = 1; i < env->subprog_cnt; i++) {
12852 		if (env->subprog_info[i].has_ld_abs) {
12853 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12854 			return -EINVAL;
12855 		}
12856 		if (env->subprog_info[i].has_tail_call) {
12857 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12858 			return -EINVAL;
12859 		}
12860 	}
12861 	return 0;
12862 }
12863 
12864 /* The minimum supported BTF func info size */
12865 #define MIN_BPF_FUNCINFO_SIZE	8
12866 #define MAX_FUNCINFO_REC_SIZE	252
12867 
12868 static int check_btf_func(struct bpf_verifier_env *env,
12869 			  const union bpf_attr *attr,
12870 			  bpfptr_t uattr)
12871 {
12872 	const struct btf_type *type, *func_proto, *ret_type;
12873 	u32 i, nfuncs, urec_size, min_size;
12874 	u32 krec_size = sizeof(struct bpf_func_info);
12875 	struct bpf_func_info *krecord;
12876 	struct bpf_func_info_aux *info_aux = NULL;
12877 	struct bpf_prog *prog;
12878 	const struct btf *btf;
12879 	bpfptr_t urecord;
12880 	u32 prev_offset = 0;
12881 	bool scalar_return;
12882 	int ret = -ENOMEM;
12883 
12884 	nfuncs = attr->func_info_cnt;
12885 	if (!nfuncs) {
12886 		if (check_abnormal_return(env))
12887 			return -EINVAL;
12888 		return 0;
12889 	}
12890 
12891 	if (nfuncs != env->subprog_cnt) {
12892 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12893 		return -EINVAL;
12894 	}
12895 
12896 	urec_size = attr->func_info_rec_size;
12897 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12898 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
12899 	    urec_size % sizeof(u32)) {
12900 		verbose(env, "invalid func info rec size %u\n", urec_size);
12901 		return -EINVAL;
12902 	}
12903 
12904 	prog = env->prog;
12905 	btf = prog->aux->btf;
12906 
12907 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
12908 	min_size = min_t(u32, krec_size, urec_size);
12909 
12910 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
12911 	if (!krecord)
12912 		return -ENOMEM;
12913 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12914 	if (!info_aux)
12915 		goto err_free;
12916 
12917 	for (i = 0; i < nfuncs; i++) {
12918 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12919 		if (ret) {
12920 			if (ret == -E2BIG) {
12921 				verbose(env, "nonzero tailing record in func info");
12922 				/* set the size kernel expects so loader can zero
12923 				 * out the rest of the record.
12924 				 */
12925 				if (copy_to_bpfptr_offset(uattr,
12926 							  offsetof(union bpf_attr, func_info_rec_size),
12927 							  &min_size, sizeof(min_size)))
12928 					ret = -EFAULT;
12929 			}
12930 			goto err_free;
12931 		}
12932 
12933 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
12934 			ret = -EFAULT;
12935 			goto err_free;
12936 		}
12937 
12938 		/* check insn_off */
12939 		ret = -EINVAL;
12940 		if (i == 0) {
12941 			if (krecord[i].insn_off) {
12942 				verbose(env,
12943 					"nonzero insn_off %u for the first func info record",
12944 					krecord[i].insn_off);
12945 				goto err_free;
12946 			}
12947 		} else if (krecord[i].insn_off <= prev_offset) {
12948 			verbose(env,
12949 				"same or smaller insn offset (%u) than previous func info record (%u)",
12950 				krecord[i].insn_off, prev_offset);
12951 			goto err_free;
12952 		}
12953 
12954 		if (env->subprog_info[i].start != krecord[i].insn_off) {
12955 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
12956 			goto err_free;
12957 		}
12958 
12959 		/* check type_id */
12960 		type = btf_type_by_id(btf, krecord[i].type_id);
12961 		if (!type || !btf_type_is_func(type)) {
12962 			verbose(env, "invalid type id %d in func info",
12963 				krecord[i].type_id);
12964 			goto err_free;
12965 		}
12966 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
12967 
12968 		func_proto = btf_type_by_id(btf, type->type);
12969 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12970 			/* btf_func_check() already verified it during BTF load */
12971 			goto err_free;
12972 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12973 		scalar_return =
12974 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
12975 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12976 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12977 			goto err_free;
12978 		}
12979 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12980 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12981 			goto err_free;
12982 		}
12983 
12984 		prev_offset = krecord[i].insn_off;
12985 		bpfptr_add(&urecord, urec_size);
12986 	}
12987 
12988 	prog->aux->func_info = krecord;
12989 	prog->aux->func_info_cnt = nfuncs;
12990 	prog->aux->func_info_aux = info_aux;
12991 	return 0;
12992 
12993 err_free:
12994 	kvfree(krecord);
12995 	kfree(info_aux);
12996 	return ret;
12997 }
12998 
12999 static void adjust_btf_func(struct bpf_verifier_env *env)
13000 {
13001 	struct bpf_prog_aux *aux = env->prog->aux;
13002 	int i;
13003 
13004 	if (!aux->func_info)
13005 		return;
13006 
13007 	for (i = 0; i < env->subprog_cnt; i++)
13008 		aux->func_info[i].insn_off = env->subprog_info[i].start;
13009 }
13010 
13011 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
13012 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
13013 
13014 static int check_btf_line(struct bpf_verifier_env *env,
13015 			  const union bpf_attr *attr,
13016 			  bpfptr_t uattr)
13017 {
13018 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
13019 	struct bpf_subprog_info *sub;
13020 	struct bpf_line_info *linfo;
13021 	struct bpf_prog *prog;
13022 	const struct btf *btf;
13023 	bpfptr_t ulinfo;
13024 	int err;
13025 
13026 	nr_linfo = attr->line_info_cnt;
13027 	if (!nr_linfo)
13028 		return 0;
13029 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
13030 		return -EINVAL;
13031 
13032 	rec_size = attr->line_info_rec_size;
13033 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
13034 	    rec_size > MAX_LINEINFO_REC_SIZE ||
13035 	    rec_size & (sizeof(u32) - 1))
13036 		return -EINVAL;
13037 
13038 	/* Need to zero it in case the userspace may
13039 	 * pass in a smaller bpf_line_info object.
13040 	 */
13041 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
13042 			 GFP_KERNEL | __GFP_NOWARN);
13043 	if (!linfo)
13044 		return -ENOMEM;
13045 
13046 	prog = env->prog;
13047 	btf = prog->aux->btf;
13048 
13049 	s = 0;
13050 	sub = env->subprog_info;
13051 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
13052 	expected_size = sizeof(struct bpf_line_info);
13053 	ncopy = min_t(u32, expected_size, rec_size);
13054 	for (i = 0; i < nr_linfo; i++) {
13055 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
13056 		if (err) {
13057 			if (err == -E2BIG) {
13058 				verbose(env, "nonzero tailing record in line_info");
13059 				if (copy_to_bpfptr_offset(uattr,
13060 							  offsetof(union bpf_attr, line_info_rec_size),
13061 							  &expected_size, sizeof(expected_size)))
13062 					err = -EFAULT;
13063 			}
13064 			goto err_free;
13065 		}
13066 
13067 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
13068 			err = -EFAULT;
13069 			goto err_free;
13070 		}
13071 
13072 		/*
13073 		 * Check insn_off to ensure
13074 		 * 1) strictly increasing AND
13075 		 * 2) bounded by prog->len
13076 		 *
13077 		 * The linfo[0].insn_off == 0 check logically falls into
13078 		 * the later "missing bpf_line_info for func..." case
13079 		 * because the first linfo[0].insn_off must be the
13080 		 * first sub also and the first sub must have
13081 		 * subprog_info[0].start == 0.
13082 		 */
13083 		if ((i && linfo[i].insn_off <= prev_offset) ||
13084 		    linfo[i].insn_off >= prog->len) {
13085 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
13086 				i, linfo[i].insn_off, prev_offset,
13087 				prog->len);
13088 			err = -EINVAL;
13089 			goto err_free;
13090 		}
13091 
13092 		if (!prog->insnsi[linfo[i].insn_off].code) {
13093 			verbose(env,
13094 				"Invalid insn code at line_info[%u].insn_off\n",
13095 				i);
13096 			err = -EINVAL;
13097 			goto err_free;
13098 		}
13099 
13100 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
13101 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
13102 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
13103 			err = -EINVAL;
13104 			goto err_free;
13105 		}
13106 
13107 		if (s != env->subprog_cnt) {
13108 			if (linfo[i].insn_off == sub[s].start) {
13109 				sub[s].linfo_idx = i;
13110 				s++;
13111 			} else if (sub[s].start < linfo[i].insn_off) {
13112 				verbose(env, "missing bpf_line_info for func#%u\n", s);
13113 				err = -EINVAL;
13114 				goto err_free;
13115 			}
13116 		}
13117 
13118 		prev_offset = linfo[i].insn_off;
13119 		bpfptr_add(&ulinfo, rec_size);
13120 	}
13121 
13122 	if (s != env->subprog_cnt) {
13123 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
13124 			env->subprog_cnt - s, s);
13125 		err = -EINVAL;
13126 		goto err_free;
13127 	}
13128 
13129 	prog->aux->linfo = linfo;
13130 	prog->aux->nr_linfo = nr_linfo;
13131 
13132 	return 0;
13133 
13134 err_free:
13135 	kvfree(linfo);
13136 	return err;
13137 }
13138 
13139 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
13140 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
13141 
13142 static int check_core_relo(struct bpf_verifier_env *env,
13143 			   const union bpf_attr *attr,
13144 			   bpfptr_t uattr)
13145 {
13146 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
13147 	struct bpf_core_relo core_relo = {};
13148 	struct bpf_prog *prog = env->prog;
13149 	const struct btf *btf = prog->aux->btf;
13150 	struct bpf_core_ctx ctx = {
13151 		.log = &env->log,
13152 		.btf = btf,
13153 	};
13154 	bpfptr_t u_core_relo;
13155 	int err;
13156 
13157 	nr_core_relo = attr->core_relo_cnt;
13158 	if (!nr_core_relo)
13159 		return 0;
13160 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
13161 		return -EINVAL;
13162 
13163 	rec_size = attr->core_relo_rec_size;
13164 	if (rec_size < MIN_CORE_RELO_SIZE ||
13165 	    rec_size > MAX_CORE_RELO_SIZE ||
13166 	    rec_size % sizeof(u32))
13167 		return -EINVAL;
13168 
13169 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
13170 	expected_size = sizeof(struct bpf_core_relo);
13171 	ncopy = min_t(u32, expected_size, rec_size);
13172 
13173 	/* Unlike func_info and line_info, copy and apply each CO-RE
13174 	 * relocation record one at a time.
13175 	 */
13176 	for (i = 0; i < nr_core_relo; i++) {
13177 		/* future proofing when sizeof(bpf_core_relo) changes */
13178 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
13179 		if (err) {
13180 			if (err == -E2BIG) {
13181 				verbose(env, "nonzero tailing record in core_relo");
13182 				if (copy_to_bpfptr_offset(uattr,
13183 							  offsetof(union bpf_attr, core_relo_rec_size),
13184 							  &expected_size, sizeof(expected_size)))
13185 					err = -EFAULT;
13186 			}
13187 			break;
13188 		}
13189 
13190 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
13191 			err = -EFAULT;
13192 			break;
13193 		}
13194 
13195 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
13196 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
13197 				i, core_relo.insn_off, prog->len);
13198 			err = -EINVAL;
13199 			break;
13200 		}
13201 
13202 		err = bpf_core_apply(&ctx, &core_relo, i,
13203 				     &prog->insnsi[core_relo.insn_off / 8]);
13204 		if (err)
13205 			break;
13206 		bpfptr_add(&u_core_relo, rec_size);
13207 	}
13208 	return err;
13209 }
13210 
13211 static int check_btf_info(struct bpf_verifier_env *env,
13212 			  const union bpf_attr *attr,
13213 			  bpfptr_t uattr)
13214 {
13215 	struct btf *btf;
13216 	int err;
13217 
13218 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
13219 		if (check_abnormal_return(env))
13220 			return -EINVAL;
13221 		return 0;
13222 	}
13223 
13224 	btf = btf_get_by_fd(attr->prog_btf_fd);
13225 	if (IS_ERR(btf))
13226 		return PTR_ERR(btf);
13227 	if (btf_is_kernel(btf)) {
13228 		btf_put(btf);
13229 		return -EACCES;
13230 	}
13231 	env->prog->aux->btf = btf;
13232 
13233 	err = check_btf_func(env, attr, uattr);
13234 	if (err)
13235 		return err;
13236 
13237 	err = check_btf_line(env, attr, uattr);
13238 	if (err)
13239 		return err;
13240 
13241 	err = check_core_relo(env, attr, uattr);
13242 	if (err)
13243 		return err;
13244 
13245 	return 0;
13246 }
13247 
13248 /* check %cur's range satisfies %old's */
13249 static bool range_within(struct bpf_reg_state *old,
13250 			 struct bpf_reg_state *cur)
13251 {
13252 	return old->umin_value <= cur->umin_value &&
13253 	       old->umax_value >= cur->umax_value &&
13254 	       old->smin_value <= cur->smin_value &&
13255 	       old->smax_value >= cur->smax_value &&
13256 	       old->u32_min_value <= cur->u32_min_value &&
13257 	       old->u32_max_value >= cur->u32_max_value &&
13258 	       old->s32_min_value <= cur->s32_min_value &&
13259 	       old->s32_max_value >= cur->s32_max_value;
13260 }
13261 
13262 /* If in the old state two registers had the same id, then they need to have
13263  * the same id in the new state as well.  But that id could be different from
13264  * the old state, so we need to track the mapping from old to new ids.
13265  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
13266  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
13267  * regs with a different old id could still have new id 9, we don't care about
13268  * that.
13269  * So we look through our idmap to see if this old id has been seen before.  If
13270  * so, we require the new id to match; otherwise, we add the id pair to the map.
13271  */
13272 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
13273 {
13274 	unsigned int i;
13275 
13276 	/* either both IDs should be set or both should be zero */
13277 	if (!!old_id != !!cur_id)
13278 		return false;
13279 
13280 	if (old_id == 0) /* cur_id == 0 as well */
13281 		return true;
13282 
13283 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
13284 		if (!idmap[i].old) {
13285 			/* Reached an empty slot; haven't seen this id before */
13286 			idmap[i].old = old_id;
13287 			idmap[i].cur = cur_id;
13288 			return true;
13289 		}
13290 		if (idmap[i].old == old_id)
13291 			return idmap[i].cur == cur_id;
13292 	}
13293 	/* We ran out of idmap slots, which should be impossible */
13294 	WARN_ON_ONCE(1);
13295 	return false;
13296 }
13297 
13298 static void clean_func_state(struct bpf_verifier_env *env,
13299 			     struct bpf_func_state *st)
13300 {
13301 	enum bpf_reg_liveness live;
13302 	int i, j;
13303 
13304 	for (i = 0; i < BPF_REG_FP; i++) {
13305 		live = st->regs[i].live;
13306 		/* liveness must not touch this register anymore */
13307 		st->regs[i].live |= REG_LIVE_DONE;
13308 		if (!(live & REG_LIVE_READ))
13309 			/* since the register is unused, clear its state
13310 			 * to make further comparison simpler
13311 			 */
13312 			__mark_reg_not_init(env, &st->regs[i]);
13313 	}
13314 
13315 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
13316 		live = st->stack[i].spilled_ptr.live;
13317 		/* liveness must not touch this stack slot anymore */
13318 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
13319 		if (!(live & REG_LIVE_READ)) {
13320 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
13321 			for (j = 0; j < BPF_REG_SIZE; j++)
13322 				st->stack[i].slot_type[j] = STACK_INVALID;
13323 		}
13324 	}
13325 }
13326 
13327 static void clean_verifier_state(struct bpf_verifier_env *env,
13328 				 struct bpf_verifier_state *st)
13329 {
13330 	int i;
13331 
13332 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
13333 		/* all regs in this state in all frames were already marked */
13334 		return;
13335 
13336 	for (i = 0; i <= st->curframe; i++)
13337 		clean_func_state(env, st->frame[i]);
13338 }
13339 
13340 /* the parentage chains form a tree.
13341  * the verifier states are added to state lists at given insn and
13342  * pushed into state stack for future exploration.
13343  * when the verifier reaches bpf_exit insn some of the verifer states
13344  * stored in the state lists have their final liveness state already,
13345  * but a lot of states will get revised from liveness point of view when
13346  * the verifier explores other branches.
13347  * Example:
13348  * 1: r0 = 1
13349  * 2: if r1 == 100 goto pc+1
13350  * 3: r0 = 2
13351  * 4: exit
13352  * when the verifier reaches exit insn the register r0 in the state list of
13353  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
13354  * of insn 2 and goes exploring further. At the insn 4 it will walk the
13355  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
13356  *
13357  * Since the verifier pushes the branch states as it sees them while exploring
13358  * the program the condition of walking the branch instruction for the second
13359  * time means that all states below this branch were already explored and
13360  * their final liveness marks are already propagated.
13361  * Hence when the verifier completes the search of state list in is_state_visited()
13362  * we can call this clean_live_states() function to mark all liveness states
13363  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
13364  * will not be used.
13365  * This function also clears the registers and stack for states that !READ
13366  * to simplify state merging.
13367  *
13368  * Important note here that walking the same branch instruction in the callee
13369  * doesn't meant that the states are DONE. The verifier has to compare
13370  * the callsites
13371  */
13372 static void clean_live_states(struct bpf_verifier_env *env, int insn,
13373 			      struct bpf_verifier_state *cur)
13374 {
13375 	struct bpf_verifier_state_list *sl;
13376 	int i;
13377 
13378 	sl = *explored_state(env, insn);
13379 	while (sl) {
13380 		if (sl->state.branches)
13381 			goto next;
13382 		if (sl->state.insn_idx != insn ||
13383 		    sl->state.curframe != cur->curframe)
13384 			goto next;
13385 		for (i = 0; i <= cur->curframe; i++)
13386 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
13387 				goto next;
13388 		clean_verifier_state(env, &sl->state);
13389 next:
13390 		sl = sl->next;
13391 	}
13392 }
13393 
13394 static bool regs_exact(const struct bpf_reg_state *rold,
13395 		       const struct bpf_reg_state *rcur,
13396 		       struct bpf_id_pair *idmap)
13397 {
13398 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
13399 	       check_ids(rold->id, rcur->id, idmap) &&
13400 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
13401 }
13402 
13403 /* Returns true if (rold safe implies rcur safe) */
13404 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
13405 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
13406 {
13407 	if (!(rold->live & REG_LIVE_READ))
13408 		/* explored state didn't use this */
13409 		return true;
13410 	if (rold->type == NOT_INIT)
13411 		/* explored state can't have used this */
13412 		return true;
13413 	if (rcur->type == NOT_INIT)
13414 		return false;
13415 
13416 	/* Enforce that register types have to match exactly, including their
13417 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
13418 	 * rule.
13419 	 *
13420 	 * One can make a point that using a pointer register as unbounded
13421 	 * SCALAR would be technically acceptable, but this could lead to
13422 	 * pointer leaks because scalars are allowed to leak while pointers
13423 	 * are not. We could make this safe in special cases if root is
13424 	 * calling us, but it's probably not worth the hassle.
13425 	 *
13426 	 * Also, register types that are *not* MAYBE_NULL could technically be
13427 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
13428 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
13429 	 * to the same map).
13430 	 * However, if the old MAYBE_NULL register then got NULL checked,
13431 	 * doing so could have affected others with the same id, and we can't
13432 	 * check for that because we lost the id when we converted to
13433 	 * a non-MAYBE_NULL variant.
13434 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
13435 	 * non-MAYBE_NULL registers as well.
13436 	 */
13437 	if (rold->type != rcur->type)
13438 		return false;
13439 
13440 	switch (base_type(rold->type)) {
13441 	case SCALAR_VALUE:
13442 		if (regs_exact(rold, rcur, idmap))
13443 			return true;
13444 		if (env->explore_alu_limits)
13445 			return false;
13446 		if (!rold->precise)
13447 			return true;
13448 		/* new val must satisfy old val knowledge */
13449 		return range_within(rold, rcur) &&
13450 		       tnum_in(rold->var_off, rcur->var_off);
13451 	case PTR_TO_MAP_KEY:
13452 	case PTR_TO_MAP_VALUE:
13453 		/* If the new min/max/var_off satisfy the old ones and
13454 		 * everything else matches, we are OK.
13455 		 */
13456 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
13457 		       range_within(rold, rcur) &&
13458 		       tnum_in(rold->var_off, rcur->var_off) &&
13459 		       check_ids(rold->id, rcur->id, idmap);
13460 	case PTR_TO_PACKET_META:
13461 	case PTR_TO_PACKET:
13462 		/* We must have at least as much range as the old ptr
13463 		 * did, so that any accesses which were safe before are
13464 		 * still safe.  This is true even if old range < old off,
13465 		 * since someone could have accessed through (ptr - k), or
13466 		 * even done ptr -= k in a register, to get a safe access.
13467 		 */
13468 		if (rold->range > rcur->range)
13469 			return false;
13470 		/* If the offsets don't match, we can't trust our alignment;
13471 		 * nor can we be sure that we won't fall out of range.
13472 		 */
13473 		if (rold->off != rcur->off)
13474 			return false;
13475 		/* id relations must be preserved */
13476 		if (!check_ids(rold->id, rcur->id, idmap))
13477 			return false;
13478 		/* new val must satisfy old val knowledge */
13479 		return range_within(rold, rcur) &&
13480 		       tnum_in(rold->var_off, rcur->var_off);
13481 	case PTR_TO_STACK:
13482 		/* two stack pointers are equal only if they're pointing to
13483 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
13484 		 */
13485 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
13486 	default:
13487 		return regs_exact(rold, rcur, idmap);
13488 	}
13489 }
13490 
13491 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
13492 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
13493 {
13494 	int i, spi;
13495 
13496 	/* walk slots of the explored stack and ignore any additional
13497 	 * slots in the current stack, since explored(safe) state
13498 	 * didn't use them
13499 	 */
13500 	for (i = 0; i < old->allocated_stack; i++) {
13501 		spi = i / BPF_REG_SIZE;
13502 
13503 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
13504 			i += BPF_REG_SIZE - 1;
13505 			/* explored state didn't use this */
13506 			continue;
13507 		}
13508 
13509 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
13510 			continue;
13511 
13512 		/* explored stack has more populated slots than current stack
13513 		 * and these slots were used
13514 		 */
13515 		if (i >= cur->allocated_stack)
13516 			return false;
13517 
13518 		/* if old state was safe with misc data in the stack
13519 		 * it will be safe with zero-initialized stack.
13520 		 * The opposite is not true
13521 		 */
13522 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
13523 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
13524 			continue;
13525 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
13526 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
13527 			/* Ex: old explored (safe) state has STACK_SPILL in
13528 			 * this stack slot, but current has STACK_MISC ->
13529 			 * this verifier states are not equivalent,
13530 			 * return false to continue verification of this path
13531 			 */
13532 			return false;
13533 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
13534 			continue;
13535 		/* Both old and cur are having same slot_type */
13536 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
13537 		case STACK_SPILL:
13538 			/* when explored and current stack slot are both storing
13539 			 * spilled registers, check that stored pointers types
13540 			 * are the same as well.
13541 			 * Ex: explored safe path could have stored
13542 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
13543 			 * but current path has stored:
13544 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
13545 			 * such verifier states are not equivalent.
13546 			 * return false to continue verification of this path
13547 			 */
13548 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
13549 				     &cur->stack[spi].spilled_ptr, idmap))
13550 				return false;
13551 			break;
13552 		case STACK_DYNPTR:
13553 		{
13554 			const struct bpf_reg_state *old_reg, *cur_reg;
13555 
13556 			old_reg = &old->stack[spi].spilled_ptr;
13557 			cur_reg = &cur->stack[spi].spilled_ptr;
13558 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
13559 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
13560 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
13561 				return false;
13562 			break;
13563 		}
13564 		case STACK_MISC:
13565 		case STACK_ZERO:
13566 		case STACK_INVALID:
13567 			continue;
13568 		/* Ensure that new unhandled slot types return false by default */
13569 		default:
13570 			return false;
13571 		}
13572 	}
13573 	return true;
13574 }
13575 
13576 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
13577 		    struct bpf_id_pair *idmap)
13578 {
13579 	int i;
13580 
13581 	if (old->acquired_refs != cur->acquired_refs)
13582 		return false;
13583 
13584 	for (i = 0; i < old->acquired_refs; i++) {
13585 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
13586 			return false;
13587 	}
13588 
13589 	return true;
13590 }
13591 
13592 /* compare two verifier states
13593  *
13594  * all states stored in state_list are known to be valid, since
13595  * verifier reached 'bpf_exit' instruction through them
13596  *
13597  * this function is called when verifier exploring different branches of
13598  * execution popped from the state stack. If it sees an old state that has
13599  * more strict register state and more strict stack state then this execution
13600  * branch doesn't need to be explored further, since verifier already
13601  * concluded that more strict state leads to valid finish.
13602  *
13603  * Therefore two states are equivalent if register state is more conservative
13604  * and explored stack state is more conservative than the current one.
13605  * Example:
13606  *       explored                   current
13607  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
13608  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
13609  *
13610  * In other words if current stack state (one being explored) has more
13611  * valid slots than old one that already passed validation, it means
13612  * the verifier can stop exploring and conclude that current state is valid too
13613  *
13614  * Similarly with registers. If explored state has register type as invalid
13615  * whereas register type in current state is meaningful, it means that
13616  * the current state will reach 'bpf_exit' instruction safely
13617  */
13618 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
13619 			      struct bpf_func_state *cur)
13620 {
13621 	int i;
13622 
13623 	for (i = 0; i < MAX_BPF_REG; i++)
13624 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
13625 			     env->idmap_scratch))
13626 			return false;
13627 
13628 	if (!stacksafe(env, old, cur, env->idmap_scratch))
13629 		return false;
13630 
13631 	if (!refsafe(old, cur, env->idmap_scratch))
13632 		return false;
13633 
13634 	return true;
13635 }
13636 
13637 static bool states_equal(struct bpf_verifier_env *env,
13638 			 struct bpf_verifier_state *old,
13639 			 struct bpf_verifier_state *cur)
13640 {
13641 	int i;
13642 
13643 	if (old->curframe != cur->curframe)
13644 		return false;
13645 
13646 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
13647 
13648 	/* Verification state from speculative execution simulation
13649 	 * must never prune a non-speculative execution one.
13650 	 */
13651 	if (old->speculative && !cur->speculative)
13652 		return false;
13653 
13654 	if (old->active_lock.ptr != cur->active_lock.ptr)
13655 		return false;
13656 
13657 	/* Old and cur active_lock's have to be either both present
13658 	 * or both absent.
13659 	 */
13660 	if (!!old->active_lock.id != !!cur->active_lock.id)
13661 		return false;
13662 
13663 	if (old->active_lock.id &&
13664 	    !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
13665 		return false;
13666 
13667 	if (old->active_rcu_lock != cur->active_rcu_lock)
13668 		return false;
13669 
13670 	/* for states to be equal callsites have to be the same
13671 	 * and all frame states need to be equivalent
13672 	 */
13673 	for (i = 0; i <= old->curframe; i++) {
13674 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
13675 			return false;
13676 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
13677 			return false;
13678 	}
13679 	return true;
13680 }
13681 
13682 /* Return 0 if no propagation happened. Return negative error code if error
13683  * happened. Otherwise, return the propagated bit.
13684  */
13685 static int propagate_liveness_reg(struct bpf_verifier_env *env,
13686 				  struct bpf_reg_state *reg,
13687 				  struct bpf_reg_state *parent_reg)
13688 {
13689 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13690 	u8 flag = reg->live & REG_LIVE_READ;
13691 	int err;
13692 
13693 	/* When comes here, read flags of PARENT_REG or REG could be any of
13694 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13695 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13696 	 */
13697 	if (parent_flag == REG_LIVE_READ64 ||
13698 	    /* Or if there is no read flag from REG. */
13699 	    !flag ||
13700 	    /* Or if the read flag from REG is the same as PARENT_REG. */
13701 	    parent_flag == flag)
13702 		return 0;
13703 
13704 	err = mark_reg_read(env, reg, parent_reg, flag);
13705 	if (err)
13706 		return err;
13707 
13708 	return flag;
13709 }
13710 
13711 /* A write screens off any subsequent reads; but write marks come from the
13712  * straight-line code between a state and its parent.  When we arrive at an
13713  * equivalent state (jump target or such) we didn't arrive by the straight-line
13714  * code, so read marks in the state must propagate to the parent regardless
13715  * of the state's write marks. That's what 'parent == state->parent' comparison
13716  * in mark_reg_read() is for.
13717  */
13718 static int propagate_liveness(struct bpf_verifier_env *env,
13719 			      const struct bpf_verifier_state *vstate,
13720 			      struct bpf_verifier_state *vparent)
13721 {
13722 	struct bpf_reg_state *state_reg, *parent_reg;
13723 	struct bpf_func_state *state, *parent;
13724 	int i, frame, err = 0;
13725 
13726 	if (vparent->curframe != vstate->curframe) {
13727 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
13728 		     vparent->curframe, vstate->curframe);
13729 		return -EFAULT;
13730 	}
13731 	/* Propagate read liveness of registers... */
13732 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
13733 	for (frame = 0; frame <= vstate->curframe; frame++) {
13734 		parent = vparent->frame[frame];
13735 		state = vstate->frame[frame];
13736 		parent_reg = parent->regs;
13737 		state_reg = state->regs;
13738 		/* We don't need to worry about FP liveness, it's read-only */
13739 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
13740 			err = propagate_liveness_reg(env, &state_reg[i],
13741 						     &parent_reg[i]);
13742 			if (err < 0)
13743 				return err;
13744 			if (err == REG_LIVE_READ64)
13745 				mark_insn_zext(env, &parent_reg[i]);
13746 		}
13747 
13748 		/* Propagate stack slots. */
13749 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13750 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
13751 			parent_reg = &parent->stack[i].spilled_ptr;
13752 			state_reg = &state->stack[i].spilled_ptr;
13753 			err = propagate_liveness_reg(env, state_reg,
13754 						     parent_reg);
13755 			if (err < 0)
13756 				return err;
13757 		}
13758 	}
13759 	return 0;
13760 }
13761 
13762 /* find precise scalars in the previous equivalent state and
13763  * propagate them into the current state
13764  */
13765 static int propagate_precision(struct bpf_verifier_env *env,
13766 			       const struct bpf_verifier_state *old)
13767 {
13768 	struct bpf_reg_state *state_reg;
13769 	struct bpf_func_state *state;
13770 	int i, err = 0, fr;
13771 
13772 	for (fr = old->curframe; fr >= 0; fr--) {
13773 		state = old->frame[fr];
13774 		state_reg = state->regs;
13775 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13776 			if (state_reg->type != SCALAR_VALUE ||
13777 			    !state_reg->precise)
13778 				continue;
13779 			if (env->log.level & BPF_LOG_LEVEL2)
13780 				verbose(env, "frame %d: propagating r%d\n", i, fr);
13781 			err = mark_chain_precision_frame(env, fr, i);
13782 			if (err < 0)
13783 				return err;
13784 		}
13785 
13786 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13787 			if (!is_spilled_reg(&state->stack[i]))
13788 				continue;
13789 			state_reg = &state->stack[i].spilled_ptr;
13790 			if (state_reg->type != SCALAR_VALUE ||
13791 			    !state_reg->precise)
13792 				continue;
13793 			if (env->log.level & BPF_LOG_LEVEL2)
13794 				verbose(env, "frame %d: propagating fp%d\n",
13795 					(-i - 1) * BPF_REG_SIZE, fr);
13796 			err = mark_chain_precision_stack_frame(env, fr, i);
13797 			if (err < 0)
13798 				return err;
13799 		}
13800 	}
13801 	return 0;
13802 }
13803 
13804 static bool states_maybe_looping(struct bpf_verifier_state *old,
13805 				 struct bpf_verifier_state *cur)
13806 {
13807 	struct bpf_func_state *fold, *fcur;
13808 	int i, fr = cur->curframe;
13809 
13810 	if (old->curframe != fr)
13811 		return false;
13812 
13813 	fold = old->frame[fr];
13814 	fcur = cur->frame[fr];
13815 	for (i = 0; i < MAX_BPF_REG; i++)
13816 		if (memcmp(&fold->regs[i], &fcur->regs[i],
13817 			   offsetof(struct bpf_reg_state, parent)))
13818 			return false;
13819 	return true;
13820 }
13821 
13822 
13823 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
13824 {
13825 	struct bpf_verifier_state_list *new_sl;
13826 	struct bpf_verifier_state_list *sl, **pprev;
13827 	struct bpf_verifier_state *cur = env->cur_state, *new;
13828 	int i, j, err, states_cnt = 0;
13829 	bool add_new_state = env->test_state_freq ? true : false;
13830 
13831 	/* bpf progs typically have pruning point every 4 instructions
13832 	 * http://vger.kernel.org/bpfconf2019.html#session-1
13833 	 * Do not add new state for future pruning if the verifier hasn't seen
13834 	 * at least 2 jumps and at least 8 instructions.
13835 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13836 	 * In tests that amounts to up to 50% reduction into total verifier
13837 	 * memory consumption and 20% verifier time speedup.
13838 	 */
13839 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13840 	    env->insn_processed - env->prev_insn_processed >= 8)
13841 		add_new_state = true;
13842 
13843 	pprev = explored_state(env, insn_idx);
13844 	sl = *pprev;
13845 
13846 	clean_live_states(env, insn_idx, cur);
13847 
13848 	while (sl) {
13849 		states_cnt++;
13850 		if (sl->state.insn_idx != insn_idx)
13851 			goto next;
13852 
13853 		if (sl->state.branches) {
13854 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13855 
13856 			if (frame->in_async_callback_fn &&
13857 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13858 				/* Different async_entry_cnt means that the verifier is
13859 				 * processing another entry into async callback.
13860 				 * Seeing the same state is not an indication of infinite
13861 				 * loop or infinite recursion.
13862 				 * But finding the same state doesn't mean that it's safe
13863 				 * to stop processing the current state. The previous state
13864 				 * hasn't yet reached bpf_exit, since state.branches > 0.
13865 				 * Checking in_async_callback_fn alone is not enough either.
13866 				 * Since the verifier still needs to catch infinite loops
13867 				 * inside async callbacks.
13868 				 */
13869 			} else if (states_maybe_looping(&sl->state, cur) &&
13870 				   states_equal(env, &sl->state, cur)) {
13871 				verbose_linfo(env, insn_idx, "; ");
13872 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13873 				return -EINVAL;
13874 			}
13875 			/* if the verifier is processing a loop, avoid adding new state
13876 			 * too often, since different loop iterations have distinct
13877 			 * states and may not help future pruning.
13878 			 * This threshold shouldn't be too low to make sure that
13879 			 * a loop with large bound will be rejected quickly.
13880 			 * The most abusive loop will be:
13881 			 * r1 += 1
13882 			 * if r1 < 1000000 goto pc-2
13883 			 * 1M insn_procssed limit / 100 == 10k peak states.
13884 			 * This threshold shouldn't be too high either, since states
13885 			 * at the end of the loop are likely to be useful in pruning.
13886 			 */
13887 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13888 			    env->insn_processed - env->prev_insn_processed < 100)
13889 				add_new_state = false;
13890 			goto miss;
13891 		}
13892 		if (states_equal(env, &sl->state, cur)) {
13893 			sl->hit_cnt++;
13894 			/* reached equivalent register/stack state,
13895 			 * prune the search.
13896 			 * Registers read by the continuation are read by us.
13897 			 * If we have any write marks in env->cur_state, they
13898 			 * will prevent corresponding reads in the continuation
13899 			 * from reaching our parent (an explored_state).  Our
13900 			 * own state will get the read marks recorded, but
13901 			 * they'll be immediately forgotten as we're pruning
13902 			 * this state and will pop a new one.
13903 			 */
13904 			err = propagate_liveness(env, &sl->state, cur);
13905 
13906 			/* if previous state reached the exit with precision and
13907 			 * current state is equivalent to it (except precsion marks)
13908 			 * the precision needs to be propagated back in
13909 			 * the current state.
13910 			 */
13911 			err = err ? : push_jmp_history(env, cur);
13912 			err = err ? : propagate_precision(env, &sl->state);
13913 			if (err)
13914 				return err;
13915 			return 1;
13916 		}
13917 miss:
13918 		/* when new state is not going to be added do not increase miss count.
13919 		 * Otherwise several loop iterations will remove the state
13920 		 * recorded earlier. The goal of these heuristics is to have
13921 		 * states from some iterations of the loop (some in the beginning
13922 		 * and some at the end) to help pruning.
13923 		 */
13924 		if (add_new_state)
13925 			sl->miss_cnt++;
13926 		/* heuristic to determine whether this state is beneficial
13927 		 * to keep checking from state equivalence point of view.
13928 		 * Higher numbers increase max_states_per_insn and verification time,
13929 		 * but do not meaningfully decrease insn_processed.
13930 		 */
13931 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13932 			/* the state is unlikely to be useful. Remove it to
13933 			 * speed up verification
13934 			 */
13935 			*pprev = sl->next;
13936 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
13937 				u32 br = sl->state.branches;
13938 
13939 				WARN_ONCE(br,
13940 					  "BUG live_done but branches_to_explore %d\n",
13941 					  br);
13942 				free_verifier_state(&sl->state, false);
13943 				kfree(sl);
13944 				env->peak_states--;
13945 			} else {
13946 				/* cannot free this state, since parentage chain may
13947 				 * walk it later. Add it for free_list instead to
13948 				 * be freed at the end of verification
13949 				 */
13950 				sl->next = env->free_list;
13951 				env->free_list = sl;
13952 			}
13953 			sl = *pprev;
13954 			continue;
13955 		}
13956 next:
13957 		pprev = &sl->next;
13958 		sl = *pprev;
13959 	}
13960 
13961 	if (env->max_states_per_insn < states_cnt)
13962 		env->max_states_per_insn = states_cnt;
13963 
13964 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
13965 		return 0;
13966 
13967 	if (!add_new_state)
13968 		return 0;
13969 
13970 	/* There were no equivalent states, remember the current one.
13971 	 * Technically the current state is not proven to be safe yet,
13972 	 * but it will either reach outer most bpf_exit (which means it's safe)
13973 	 * or it will be rejected. When there are no loops the verifier won't be
13974 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
13975 	 * again on the way to bpf_exit.
13976 	 * When looping the sl->state.branches will be > 0 and this state
13977 	 * will not be considered for equivalence until branches == 0.
13978 	 */
13979 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
13980 	if (!new_sl)
13981 		return -ENOMEM;
13982 	env->total_states++;
13983 	env->peak_states++;
13984 	env->prev_jmps_processed = env->jmps_processed;
13985 	env->prev_insn_processed = env->insn_processed;
13986 
13987 	/* forget precise markings we inherited, see __mark_chain_precision */
13988 	if (env->bpf_capable)
13989 		mark_all_scalars_imprecise(env, cur);
13990 
13991 	/* add new state to the head of linked list */
13992 	new = &new_sl->state;
13993 	err = copy_verifier_state(new, cur);
13994 	if (err) {
13995 		free_verifier_state(new, false);
13996 		kfree(new_sl);
13997 		return err;
13998 	}
13999 	new->insn_idx = insn_idx;
14000 	WARN_ONCE(new->branches != 1,
14001 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
14002 
14003 	cur->parent = new;
14004 	cur->first_insn_idx = insn_idx;
14005 	clear_jmp_history(cur);
14006 	new_sl->next = *explored_state(env, insn_idx);
14007 	*explored_state(env, insn_idx) = new_sl;
14008 	/* connect new state to parentage chain. Current frame needs all
14009 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
14010 	 * to the stack implicitly by JITs) so in callers' frames connect just
14011 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
14012 	 * the state of the call instruction (with WRITTEN set), and r0 comes
14013 	 * from callee with its full parentage chain, anyway.
14014 	 */
14015 	/* clear write marks in current state: the writes we did are not writes
14016 	 * our child did, so they don't screen off its reads from us.
14017 	 * (There are no read marks in current state, because reads always mark
14018 	 * their parent and current state never has children yet.  Only
14019 	 * explored_states can get read marks.)
14020 	 */
14021 	for (j = 0; j <= cur->curframe; j++) {
14022 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
14023 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
14024 		for (i = 0; i < BPF_REG_FP; i++)
14025 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
14026 	}
14027 
14028 	/* all stack frames are accessible from callee, clear them all */
14029 	for (j = 0; j <= cur->curframe; j++) {
14030 		struct bpf_func_state *frame = cur->frame[j];
14031 		struct bpf_func_state *newframe = new->frame[j];
14032 
14033 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
14034 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
14035 			frame->stack[i].spilled_ptr.parent =
14036 						&newframe->stack[i].spilled_ptr;
14037 		}
14038 	}
14039 	return 0;
14040 }
14041 
14042 /* Return true if it's OK to have the same insn return a different type. */
14043 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
14044 {
14045 	switch (base_type(type)) {
14046 	case PTR_TO_CTX:
14047 	case PTR_TO_SOCKET:
14048 	case PTR_TO_SOCK_COMMON:
14049 	case PTR_TO_TCP_SOCK:
14050 	case PTR_TO_XDP_SOCK:
14051 	case PTR_TO_BTF_ID:
14052 		return false;
14053 	default:
14054 		return true;
14055 	}
14056 }
14057 
14058 /* If an instruction was previously used with particular pointer types, then we
14059  * need to be careful to avoid cases such as the below, where it may be ok
14060  * for one branch accessing the pointer, but not ok for the other branch:
14061  *
14062  * R1 = sock_ptr
14063  * goto X;
14064  * ...
14065  * R1 = some_other_valid_ptr;
14066  * goto X;
14067  * ...
14068  * R2 = *(u32 *)(R1 + 0);
14069  */
14070 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
14071 {
14072 	return src != prev && (!reg_type_mismatch_ok(src) ||
14073 			       !reg_type_mismatch_ok(prev));
14074 }
14075 
14076 static int do_check(struct bpf_verifier_env *env)
14077 {
14078 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14079 	struct bpf_verifier_state *state = env->cur_state;
14080 	struct bpf_insn *insns = env->prog->insnsi;
14081 	struct bpf_reg_state *regs;
14082 	int insn_cnt = env->prog->len;
14083 	bool do_print_state = false;
14084 	int prev_insn_idx = -1;
14085 
14086 	for (;;) {
14087 		struct bpf_insn *insn;
14088 		u8 class;
14089 		int err;
14090 
14091 		env->prev_insn_idx = prev_insn_idx;
14092 		if (env->insn_idx >= insn_cnt) {
14093 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
14094 				env->insn_idx, insn_cnt);
14095 			return -EFAULT;
14096 		}
14097 
14098 		insn = &insns[env->insn_idx];
14099 		class = BPF_CLASS(insn->code);
14100 
14101 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
14102 			verbose(env,
14103 				"BPF program is too large. Processed %d insn\n",
14104 				env->insn_processed);
14105 			return -E2BIG;
14106 		}
14107 
14108 		state->last_insn_idx = env->prev_insn_idx;
14109 
14110 		if (is_prune_point(env, env->insn_idx)) {
14111 			err = is_state_visited(env, env->insn_idx);
14112 			if (err < 0)
14113 				return err;
14114 			if (err == 1) {
14115 				/* found equivalent state, can prune the search */
14116 				if (env->log.level & BPF_LOG_LEVEL) {
14117 					if (do_print_state)
14118 						verbose(env, "\nfrom %d to %d%s: safe\n",
14119 							env->prev_insn_idx, env->insn_idx,
14120 							env->cur_state->speculative ?
14121 							" (speculative execution)" : "");
14122 					else
14123 						verbose(env, "%d: safe\n", env->insn_idx);
14124 				}
14125 				goto process_bpf_exit;
14126 			}
14127 		}
14128 
14129 		if (is_jmp_point(env, env->insn_idx)) {
14130 			err = push_jmp_history(env, state);
14131 			if (err)
14132 				return err;
14133 		}
14134 
14135 		if (signal_pending(current))
14136 			return -EAGAIN;
14137 
14138 		if (need_resched())
14139 			cond_resched();
14140 
14141 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
14142 			verbose(env, "\nfrom %d to %d%s:",
14143 				env->prev_insn_idx, env->insn_idx,
14144 				env->cur_state->speculative ?
14145 				" (speculative execution)" : "");
14146 			print_verifier_state(env, state->frame[state->curframe], true);
14147 			do_print_state = false;
14148 		}
14149 
14150 		if (env->log.level & BPF_LOG_LEVEL) {
14151 			const struct bpf_insn_cbs cbs = {
14152 				.cb_call	= disasm_kfunc_name,
14153 				.cb_print	= verbose,
14154 				.private_data	= env,
14155 			};
14156 
14157 			if (verifier_state_scratched(env))
14158 				print_insn_state(env, state->frame[state->curframe]);
14159 
14160 			verbose_linfo(env, env->insn_idx, "; ");
14161 			env->prev_log_len = env->log.len_used;
14162 			verbose(env, "%d: ", env->insn_idx);
14163 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
14164 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
14165 			env->prev_log_len = env->log.len_used;
14166 		}
14167 
14168 		if (bpf_prog_is_offloaded(env->prog->aux)) {
14169 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
14170 							   env->prev_insn_idx);
14171 			if (err)
14172 				return err;
14173 		}
14174 
14175 		regs = cur_regs(env);
14176 		sanitize_mark_insn_seen(env);
14177 		prev_insn_idx = env->insn_idx;
14178 
14179 		if (class == BPF_ALU || class == BPF_ALU64) {
14180 			err = check_alu_op(env, insn);
14181 			if (err)
14182 				return err;
14183 
14184 		} else if (class == BPF_LDX) {
14185 			enum bpf_reg_type *prev_src_type, src_reg_type;
14186 
14187 			/* check for reserved fields is already done */
14188 
14189 			/* check src operand */
14190 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14191 			if (err)
14192 				return err;
14193 
14194 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14195 			if (err)
14196 				return err;
14197 
14198 			src_reg_type = regs[insn->src_reg].type;
14199 
14200 			/* check that memory (src_reg + off) is readable,
14201 			 * the state of dst_reg will be updated by this func
14202 			 */
14203 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
14204 					       insn->off, BPF_SIZE(insn->code),
14205 					       BPF_READ, insn->dst_reg, false);
14206 			if (err)
14207 				return err;
14208 
14209 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
14210 
14211 			if (*prev_src_type == NOT_INIT) {
14212 				/* saw a valid insn
14213 				 * dst_reg = *(u32 *)(src_reg + off)
14214 				 * save type to validate intersecting paths
14215 				 */
14216 				*prev_src_type = src_reg_type;
14217 
14218 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
14219 				/* ABuser program is trying to use the same insn
14220 				 * dst_reg = *(u32*) (src_reg + off)
14221 				 * with different pointer types:
14222 				 * src_reg == ctx in one branch and
14223 				 * src_reg == stack|map in some other branch.
14224 				 * Reject it.
14225 				 */
14226 				verbose(env, "same insn cannot be used with different pointers\n");
14227 				return -EINVAL;
14228 			}
14229 
14230 		} else if (class == BPF_STX) {
14231 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
14232 
14233 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
14234 				err = check_atomic(env, env->insn_idx, insn);
14235 				if (err)
14236 					return err;
14237 				env->insn_idx++;
14238 				continue;
14239 			}
14240 
14241 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
14242 				verbose(env, "BPF_STX uses reserved fields\n");
14243 				return -EINVAL;
14244 			}
14245 
14246 			/* check src1 operand */
14247 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14248 			if (err)
14249 				return err;
14250 			/* check src2 operand */
14251 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14252 			if (err)
14253 				return err;
14254 
14255 			dst_reg_type = regs[insn->dst_reg].type;
14256 
14257 			/* check that memory (dst_reg + off) is writeable */
14258 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
14259 					       insn->off, BPF_SIZE(insn->code),
14260 					       BPF_WRITE, insn->src_reg, false);
14261 			if (err)
14262 				return err;
14263 
14264 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
14265 
14266 			if (*prev_dst_type == NOT_INIT) {
14267 				*prev_dst_type = dst_reg_type;
14268 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
14269 				verbose(env, "same insn cannot be used with different pointers\n");
14270 				return -EINVAL;
14271 			}
14272 
14273 		} else if (class == BPF_ST) {
14274 			if (BPF_MODE(insn->code) != BPF_MEM ||
14275 			    insn->src_reg != BPF_REG_0) {
14276 				verbose(env, "BPF_ST uses reserved fields\n");
14277 				return -EINVAL;
14278 			}
14279 			/* check src operand */
14280 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14281 			if (err)
14282 				return err;
14283 
14284 			if (is_ctx_reg(env, insn->dst_reg)) {
14285 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
14286 					insn->dst_reg,
14287 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
14288 				return -EACCES;
14289 			}
14290 
14291 			/* check that memory (dst_reg + off) is writeable */
14292 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
14293 					       insn->off, BPF_SIZE(insn->code),
14294 					       BPF_WRITE, -1, false);
14295 			if (err)
14296 				return err;
14297 
14298 		} else if (class == BPF_JMP || class == BPF_JMP32) {
14299 			u8 opcode = BPF_OP(insn->code);
14300 
14301 			env->jmps_processed++;
14302 			if (opcode == BPF_CALL) {
14303 				if (BPF_SRC(insn->code) != BPF_K ||
14304 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
14305 				     && insn->off != 0) ||
14306 				    (insn->src_reg != BPF_REG_0 &&
14307 				     insn->src_reg != BPF_PSEUDO_CALL &&
14308 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
14309 				    insn->dst_reg != BPF_REG_0 ||
14310 				    class == BPF_JMP32) {
14311 					verbose(env, "BPF_CALL uses reserved fields\n");
14312 					return -EINVAL;
14313 				}
14314 
14315 				if (env->cur_state->active_lock.ptr) {
14316 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
14317 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
14318 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
14319 					     (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
14320 						verbose(env, "function calls are not allowed while holding a lock\n");
14321 						return -EINVAL;
14322 					}
14323 				}
14324 				if (insn->src_reg == BPF_PSEUDO_CALL)
14325 					err = check_func_call(env, insn, &env->insn_idx);
14326 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
14327 					err = check_kfunc_call(env, insn, &env->insn_idx);
14328 				else
14329 					err = check_helper_call(env, insn, &env->insn_idx);
14330 				if (err)
14331 					return err;
14332 			} else if (opcode == BPF_JA) {
14333 				if (BPF_SRC(insn->code) != BPF_K ||
14334 				    insn->imm != 0 ||
14335 				    insn->src_reg != BPF_REG_0 ||
14336 				    insn->dst_reg != BPF_REG_0 ||
14337 				    class == BPF_JMP32) {
14338 					verbose(env, "BPF_JA uses reserved fields\n");
14339 					return -EINVAL;
14340 				}
14341 
14342 				env->insn_idx += insn->off + 1;
14343 				continue;
14344 
14345 			} else if (opcode == BPF_EXIT) {
14346 				if (BPF_SRC(insn->code) != BPF_K ||
14347 				    insn->imm != 0 ||
14348 				    insn->src_reg != BPF_REG_0 ||
14349 				    insn->dst_reg != BPF_REG_0 ||
14350 				    class == BPF_JMP32) {
14351 					verbose(env, "BPF_EXIT uses reserved fields\n");
14352 					return -EINVAL;
14353 				}
14354 
14355 				if (env->cur_state->active_lock.ptr) {
14356 					verbose(env, "bpf_spin_unlock is missing\n");
14357 					return -EINVAL;
14358 				}
14359 
14360 				if (env->cur_state->active_rcu_lock) {
14361 					verbose(env, "bpf_rcu_read_unlock is missing\n");
14362 					return -EINVAL;
14363 				}
14364 
14365 				/* We must do check_reference_leak here before
14366 				 * prepare_func_exit to handle the case when
14367 				 * state->curframe > 0, it may be a callback
14368 				 * function, for which reference_state must
14369 				 * match caller reference state when it exits.
14370 				 */
14371 				err = check_reference_leak(env);
14372 				if (err)
14373 					return err;
14374 
14375 				if (state->curframe) {
14376 					/* exit from nested function */
14377 					err = prepare_func_exit(env, &env->insn_idx);
14378 					if (err)
14379 						return err;
14380 					do_print_state = true;
14381 					continue;
14382 				}
14383 
14384 				err = check_return_code(env);
14385 				if (err)
14386 					return err;
14387 process_bpf_exit:
14388 				mark_verifier_state_scratched(env);
14389 				update_branch_counts(env, env->cur_state);
14390 				err = pop_stack(env, &prev_insn_idx,
14391 						&env->insn_idx, pop_log);
14392 				if (err < 0) {
14393 					if (err != -ENOENT)
14394 						return err;
14395 					break;
14396 				} else {
14397 					do_print_state = true;
14398 					continue;
14399 				}
14400 			} else {
14401 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
14402 				if (err)
14403 					return err;
14404 			}
14405 		} else if (class == BPF_LD) {
14406 			u8 mode = BPF_MODE(insn->code);
14407 
14408 			if (mode == BPF_ABS || mode == BPF_IND) {
14409 				err = check_ld_abs(env, insn);
14410 				if (err)
14411 					return err;
14412 
14413 			} else if (mode == BPF_IMM) {
14414 				err = check_ld_imm(env, insn);
14415 				if (err)
14416 					return err;
14417 
14418 				env->insn_idx++;
14419 				sanitize_mark_insn_seen(env);
14420 			} else {
14421 				verbose(env, "invalid BPF_LD mode\n");
14422 				return -EINVAL;
14423 			}
14424 		} else {
14425 			verbose(env, "unknown insn class %d\n", class);
14426 			return -EINVAL;
14427 		}
14428 
14429 		env->insn_idx++;
14430 	}
14431 
14432 	return 0;
14433 }
14434 
14435 static int find_btf_percpu_datasec(struct btf *btf)
14436 {
14437 	const struct btf_type *t;
14438 	const char *tname;
14439 	int i, n;
14440 
14441 	/*
14442 	 * Both vmlinux and module each have their own ".data..percpu"
14443 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
14444 	 * types to look at only module's own BTF types.
14445 	 */
14446 	n = btf_nr_types(btf);
14447 	if (btf_is_module(btf))
14448 		i = btf_nr_types(btf_vmlinux);
14449 	else
14450 		i = 1;
14451 
14452 	for(; i < n; i++) {
14453 		t = btf_type_by_id(btf, i);
14454 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
14455 			continue;
14456 
14457 		tname = btf_name_by_offset(btf, t->name_off);
14458 		if (!strcmp(tname, ".data..percpu"))
14459 			return i;
14460 	}
14461 
14462 	return -ENOENT;
14463 }
14464 
14465 /* replace pseudo btf_id with kernel symbol address */
14466 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
14467 			       struct bpf_insn *insn,
14468 			       struct bpf_insn_aux_data *aux)
14469 {
14470 	const struct btf_var_secinfo *vsi;
14471 	const struct btf_type *datasec;
14472 	struct btf_mod_pair *btf_mod;
14473 	const struct btf_type *t;
14474 	const char *sym_name;
14475 	bool percpu = false;
14476 	u32 type, id = insn->imm;
14477 	struct btf *btf;
14478 	s32 datasec_id;
14479 	u64 addr;
14480 	int i, btf_fd, err;
14481 
14482 	btf_fd = insn[1].imm;
14483 	if (btf_fd) {
14484 		btf = btf_get_by_fd(btf_fd);
14485 		if (IS_ERR(btf)) {
14486 			verbose(env, "invalid module BTF object FD specified.\n");
14487 			return -EINVAL;
14488 		}
14489 	} else {
14490 		if (!btf_vmlinux) {
14491 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
14492 			return -EINVAL;
14493 		}
14494 		btf = btf_vmlinux;
14495 		btf_get(btf);
14496 	}
14497 
14498 	t = btf_type_by_id(btf, id);
14499 	if (!t) {
14500 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
14501 		err = -ENOENT;
14502 		goto err_put;
14503 	}
14504 
14505 	if (!btf_type_is_var(t)) {
14506 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
14507 		err = -EINVAL;
14508 		goto err_put;
14509 	}
14510 
14511 	sym_name = btf_name_by_offset(btf, t->name_off);
14512 	addr = kallsyms_lookup_name(sym_name);
14513 	if (!addr) {
14514 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
14515 			sym_name);
14516 		err = -ENOENT;
14517 		goto err_put;
14518 	}
14519 
14520 	datasec_id = find_btf_percpu_datasec(btf);
14521 	if (datasec_id > 0) {
14522 		datasec = btf_type_by_id(btf, datasec_id);
14523 		for_each_vsi(i, datasec, vsi) {
14524 			if (vsi->type == id) {
14525 				percpu = true;
14526 				break;
14527 			}
14528 		}
14529 	}
14530 
14531 	insn[0].imm = (u32)addr;
14532 	insn[1].imm = addr >> 32;
14533 
14534 	type = t->type;
14535 	t = btf_type_skip_modifiers(btf, type, NULL);
14536 	if (percpu) {
14537 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
14538 		aux->btf_var.btf = btf;
14539 		aux->btf_var.btf_id = type;
14540 	} else if (!btf_type_is_struct(t)) {
14541 		const struct btf_type *ret;
14542 		const char *tname;
14543 		u32 tsize;
14544 
14545 		/* resolve the type size of ksym. */
14546 		ret = btf_resolve_size(btf, t, &tsize);
14547 		if (IS_ERR(ret)) {
14548 			tname = btf_name_by_offset(btf, t->name_off);
14549 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
14550 				tname, PTR_ERR(ret));
14551 			err = -EINVAL;
14552 			goto err_put;
14553 		}
14554 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
14555 		aux->btf_var.mem_size = tsize;
14556 	} else {
14557 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
14558 		aux->btf_var.btf = btf;
14559 		aux->btf_var.btf_id = type;
14560 	}
14561 
14562 	/* check whether we recorded this BTF (and maybe module) already */
14563 	for (i = 0; i < env->used_btf_cnt; i++) {
14564 		if (env->used_btfs[i].btf == btf) {
14565 			btf_put(btf);
14566 			return 0;
14567 		}
14568 	}
14569 
14570 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
14571 		err = -E2BIG;
14572 		goto err_put;
14573 	}
14574 
14575 	btf_mod = &env->used_btfs[env->used_btf_cnt];
14576 	btf_mod->btf = btf;
14577 	btf_mod->module = NULL;
14578 
14579 	/* if we reference variables from kernel module, bump its refcount */
14580 	if (btf_is_module(btf)) {
14581 		btf_mod->module = btf_try_get_module(btf);
14582 		if (!btf_mod->module) {
14583 			err = -ENXIO;
14584 			goto err_put;
14585 		}
14586 	}
14587 
14588 	env->used_btf_cnt++;
14589 
14590 	return 0;
14591 err_put:
14592 	btf_put(btf);
14593 	return err;
14594 }
14595 
14596 static bool is_tracing_prog_type(enum bpf_prog_type type)
14597 {
14598 	switch (type) {
14599 	case BPF_PROG_TYPE_KPROBE:
14600 	case BPF_PROG_TYPE_TRACEPOINT:
14601 	case BPF_PROG_TYPE_PERF_EVENT:
14602 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14603 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
14604 		return true;
14605 	default:
14606 		return false;
14607 	}
14608 }
14609 
14610 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
14611 					struct bpf_map *map,
14612 					struct bpf_prog *prog)
14613 
14614 {
14615 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
14616 
14617 	if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
14618 		if (is_tracing_prog_type(prog_type)) {
14619 			verbose(env, "tracing progs cannot use bpf_list_head yet\n");
14620 			return -EINVAL;
14621 		}
14622 	}
14623 
14624 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
14625 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
14626 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
14627 			return -EINVAL;
14628 		}
14629 
14630 		if (is_tracing_prog_type(prog_type)) {
14631 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
14632 			return -EINVAL;
14633 		}
14634 
14635 		if (prog->aux->sleepable) {
14636 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
14637 			return -EINVAL;
14638 		}
14639 	}
14640 
14641 	if (btf_record_has_field(map->record, BPF_TIMER)) {
14642 		if (is_tracing_prog_type(prog_type)) {
14643 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
14644 			return -EINVAL;
14645 		}
14646 	}
14647 
14648 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
14649 	    !bpf_offload_prog_map_match(prog, map)) {
14650 		verbose(env, "offload device mismatch between prog and map\n");
14651 		return -EINVAL;
14652 	}
14653 
14654 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
14655 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
14656 		return -EINVAL;
14657 	}
14658 
14659 	if (prog->aux->sleepable)
14660 		switch (map->map_type) {
14661 		case BPF_MAP_TYPE_HASH:
14662 		case BPF_MAP_TYPE_LRU_HASH:
14663 		case BPF_MAP_TYPE_ARRAY:
14664 		case BPF_MAP_TYPE_PERCPU_HASH:
14665 		case BPF_MAP_TYPE_PERCPU_ARRAY:
14666 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14667 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14668 		case BPF_MAP_TYPE_HASH_OF_MAPS:
14669 		case BPF_MAP_TYPE_RINGBUF:
14670 		case BPF_MAP_TYPE_USER_RINGBUF:
14671 		case BPF_MAP_TYPE_INODE_STORAGE:
14672 		case BPF_MAP_TYPE_SK_STORAGE:
14673 		case BPF_MAP_TYPE_TASK_STORAGE:
14674 		case BPF_MAP_TYPE_CGRP_STORAGE:
14675 			break;
14676 		default:
14677 			verbose(env,
14678 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
14679 			return -EINVAL;
14680 		}
14681 
14682 	return 0;
14683 }
14684 
14685 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14686 {
14687 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14688 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14689 }
14690 
14691 /* find and rewrite pseudo imm in ld_imm64 instructions:
14692  *
14693  * 1. if it accesses map FD, replace it with actual map pointer.
14694  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14695  *
14696  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
14697  */
14698 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
14699 {
14700 	struct bpf_insn *insn = env->prog->insnsi;
14701 	int insn_cnt = env->prog->len;
14702 	int i, j, err;
14703 
14704 	err = bpf_prog_calc_tag(env->prog);
14705 	if (err)
14706 		return err;
14707 
14708 	for (i = 0; i < insn_cnt; i++, insn++) {
14709 		if (BPF_CLASS(insn->code) == BPF_LDX &&
14710 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
14711 			verbose(env, "BPF_LDX uses reserved fields\n");
14712 			return -EINVAL;
14713 		}
14714 
14715 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
14716 			struct bpf_insn_aux_data *aux;
14717 			struct bpf_map *map;
14718 			struct fd f;
14719 			u64 addr;
14720 			u32 fd;
14721 
14722 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
14723 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14724 			    insn[1].off != 0) {
14725 				verbose(env, "invalid bpf_ld_imm64 insn\n");
14726 				return -EINVAL;
14727 			}
14728 
14729 			if (insn[0].src_reg == 0)
14730 				/* valid generic load 64-bit imm */
14731 				goto next_insn;
14732 
14733 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14734 				aux = &env->insn_aux_data[i];
14735 				err = check_pseudo_btf_id(env, insn, aux);
14736 				if (err)
14737 					return err;
14738 				goto next_insn;
14739 			}
14740 
14741 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14742 				aux = &env->insn_aux_data[i];
14743 				aux->ptr_type = PTR_TO_FUNC;
14744 				goto next_insn;
14745 			}
14746 
14747 			/* In final convert_pseudo_ld_imm64() step, this is
14748 			 * converted into regular 64-bit imm load insn.
14749 			 */
14750 			switch (insn[0].src_reg) {
14751 			case BPF_PSEUDO_MAP_VALUE:
14752 			case BPF_PSEUDO_MAP_IDX_VALUE:
14753 				break;
14754 			case BPF_PSEUDO_MAP_FD:
14755 			case BPF_PSEUDO_MAP_IDX:
14756 				if (insn[1].imm == 0)
14757 					break;
14758 				fallthrough;
14759 			default:
14760 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
14761 				return -EINVAL;
14762 			}
14763 
14764 			switch (insn[0].src_reg) {
14765 			case BPF_PSEUDO_MAP_IDX_VALUE:
14766 			case BPF_PSEUDO_MAP_IDX:
14767 				if (bpfptr_is_null(env->fd_array)) {
14768 					verbose(env, "fd_idx without fd_array is invalid\n");
14769 					return -EPROTO;
14770 				}
14771 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
14772 							    insn[0].imm * sizeof(fd),
14773 							    sizeof(fd)))
14774 					return -EFAULT;
14775 				break;
14776 			default:
14777 				fd = insn[0].imm;
14778 				break;
14779 			}
14780 
14781 			f = fdget(fd);
14782 			map = __bpf_map_get(f);
14783 			if (IS_ERR(map)) {
14784 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
14785 					insn[0].imm);
14786 				return PTR_ERR(map);
14787 			}
14788 
14789 			err = check_map_prog_compatibility(env, map, env->prog);
14790 			if (err) {
14791 				fdput(f);
14792 				return err;
14793 			}
14794 
14795 			aux = &env->insn_aux_data[i];
14796 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14797 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
14798 				addr = (unsigned long)map;
14799 			} else {
14800 				u32 off = insn[1].imm;
14801 
14802 				if (off >= BPF_MAX_VAR_OFF) {
14803 					verbose(env, "direct value offset of %u is not allowed\n", off);
14804 					fdput(f);
14805 					return -EINVAL;
14806 				}
14807 
14808 				if (!map->ops->map_direct_value_addr) {
14809 					verbose(env, "no direct value access support for this map type\n");
14810 					fdput(f);
14811 					return -EINVAL;
14812 				}
14813 
14814 				err = map->ops->map_direct_value_addr(map, &addr, off);
14815 				if (err) {
14816 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14817 						map->value_size, off);
14818 					fdput(f);
14819 					return err;
14820 				}
14821 
14822 				aux->map_off = off;
14823 				addr += off;
14824 			}
14825 
14826 			insn[0].imm = (u32)addr;
14827 			insn[1].imm = addr >> 32;
14828 
14829 			/* check whether we recorded this map already */
14830 			for (j = 0; j < env->used_map_cnt; j++) {
14831 				if (env->used_maps[j] == map) {
14832 					aux->map_index = j;
14833 					fdput(f);
14834 					goto next_insn;
14835 				}
14836 			}
14837 
14838 			if (env->used_map_cnt >= MAX_USED_MAPS) {
14839 				fdput(f);
14840 				return -E2BIG;
14841 			}
14842 
14843 			/* hold the map. If the program is rejected by verifier,
14844 			 * the map will be released by release_maps() or it
14845 			 * will be used by the valid program until it's unloaded
14846 			 * and all maps are released in free_used_maps()
14847 			 */
14848 			bpf_map_inc(map);
14849 
14850 			aux->map_index = env->used_map_cnt;
14851 			env->used_maps[env->used_map_cnt++] = map;
14852 
14853 			if (bpf_map_is_cgroup_storage(map) &&
14854 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
14855 				verbose(env, "only one cgroup storage of each type is allowed\n");
14856 				fdput(f);
14857 				return -EBUSY;
14858 			}
14859 
14860 			fdput(f);
14861 next_insn:
14862 			insn++;
14863 			i++;
14864 			continue;
14865 		}
14866 
14867 		/* Basic sanity check before we invest more work here. */
14868 		if (!bpf_opcode_in_insntable(insn->code)) {
14869 			verbose(env, "unknown opcode %02x\n", insn->code);
14870 			return -EINVAL;
14871 		}
14872 	}
14873 
14874 	/* now all pseudo BPF_LD_IMM64 instructions load valid
14875 	 * 'struct bpf_map *' into a register instead of user map_fd.
14876 	 * These pointers will be used later by verifier to validate map access.
14877 	 */
14878 	return 0;
14879 }
14880 
14881 /* drop refcnt of maps used by the rejected program */
14882 static void release_maps(struct bpf_verifier_env *env)
14883 {
14884 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
14885 			     env->used_map_cnt);
14886 }
14887 
14888 /* drop refcnt of maps used by the rejected program */
14889 static void release_btfs(struct bpf_verifier_env *env)
14890 {
14891 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14892 			     env->used_btf_cnt);
14893 }
14894 
14895 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
14896 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
14897 {
14898 	struct bpf_insn *insn = env->prog->insnsi;
14899 	int insn_cnt = env->prog->len;
14900 	int i;
14901 
14902 	for (i = 0; i < insn_cnt; i++, insn++) {
14903 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14904 			continue;
14905 		if (insn->src_reg == BPF_PSEUDO_FUNC)
14906 			continue;
14907 		insn->src_reg = 0;
14908 	}
14909 }
14910 
14911 /* single env->prog->insni[off] instruction was replaced with the range
14912  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
14913  * [0, off) and [off, end) to new locations, so the patched range stays zero
14914  */
14915 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14916 				 struct bpf_insn_aux_data *new_data,
14917 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
14918 {
14919 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
14920 	struct bpf_insn *insn = new_prog->insnsi;
14921 	u32 old_seen = old_data[off].seen;
14922 	u32 prog_len;
14923 	int i;
14924 
14925 	/* aux info at OFF always needs adjustment, no matter fast path
14926 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14927 	 * original insn at old prog.
14928 	 */
14929 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14930 
14931 	if (cnt == 1)
14932 		return;
14933 	prog_len = new_prog->len;
14934 
14935 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14936 	memcpy(new_data + off + cnt - 1, old_data + off,
14937 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
14938 	for (i = off; i < off + cnt - 1; i++) {
14939 		/* Expand insni[off]'s seen count to the patched range. */
14940 		new_data[i].seen = old_seen;
14941 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
14942 	}
14943 	env->insn_aux_data = new_data;
14944 	vfree(old_data);
14945 }
14946 
14947 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14948 {
14949 	int i;
14950 
14951 	if (len == 1)
14952 		return;
14953 	/* NOTE: fake 'exit' subprog should be updated as well. */
14954 	for (i = 0; i <= env->subprog_cnt; i++) {
14955 		if (env->subprog_info[i].start <= off)
14956 			continue;
14957 		env->subprog_info[i].start += len - 1;
14958 	}
14959 }
14960 
14961 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
14962 {
14963 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14964 	int i, sz = prog->aux->size_poke_tab;
14965 	struct bpf_jit_poke_descriptor *desc;
14966 
14967 	for (i = 0; i < sz; i++) {
14968 		desc = &tab[i];
14969 		if (desc->insn_idx <= off)
14970 			continue;
14971 		desc->insn_idx += len - 1;
14972 	}
14973 }
14974 
14975 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14976 					    const struct bpf_insn *patch, u32 len)
14977 {
14978 	struct bpf_prog *new_prog;
14979 	struct bpf_insn_aux_data *new_data = NULL;
14980 
14981 	if (len > 1) {
14982 		new_data = vzalloc(array_size(env->prog->len + len - 1,
14983 					      sizeof(struct bpf_insn_aux_data)));
14984 		if (!new_data)
14985 			return NULL;
14986 	}
14987 
14988 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
14989 	if (IS_ERR(new_prog)) {
14990 		if (PTR_ERR(new_prog) == -ERANGE)
14991 			verbose(env,
14992 				"insn %d cannot be patched due to 16-bit range\n",
14993 				env->insn_aux_data[off].orig_idx);
14994 		vfree(new_data);
14995 		return NULL;
14996 	}
14997 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
14998 	adjust_subprog_starts(env, off, len);
14999 	adjust_poke_descs(new_prog, off, len);
15000 	return new_prog;
15001 }
15002 
15003 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
15004 					      u32 off, u32 cnt)
15005 {
15006 	int i, j;
15007 
15008 	/* find first prog starting at or after off (first to remove) */
15009 	for (i = 0; i < env->subprog_cnt; i++)
15010 		if (env->subprog_info[i].start >= off)
15011 			break;
15012 	/* find first prog starting at or after off + cnt (first to stay) */
15013 	for (j = i; j < env->subprog_cnt; j++)
15014 		if (env->subprog_info[j].start >= off + cnt)
15015 			break;
15016 	/* if j doesn't start exactly at off + cnt, we are just removing
15017 	 * the front of previous prog
15018 	 */
15019 	if (env->subprog_info[j].start != off + cnt)
15020 		j--;
15021 
15022 	if (j > i) {
15023 		struct bpf_prog_aux *aux = env->prog->aux;
15024 		int move;
15025 
15026 		/* move fake 'exit' subprog as well */
15027 		move = env->subprog_cnt + 1 - j;
15028 
15029 		memmove(env->subprog_info + i,
15030 			env->subprog_info + j,
15031 			sizeof(*env->subprog_info) * move);
15032 		env->subprog_cnt -= j - i;
15033 
15034 		/* remove func_info */
15035 		if (aux->func_info) {
15036 			move = aux->func_info_cnt - j;
15037 
15038 			memmove(aux->func_info + i,
15039 				aux->func_info + j,
15040 				sizeof(*aux->func_info) * move);
15041 			aux->func_info_cnt -= j - i;
15042 			/* func_info->insn_off is set after all code rewrites,
15043 			 * in adjust_btf_func() - no need to adjust
15044 			 */
15045 		}
15046 	} else {
15047 		/* convert i from "first prog to remove" to "first to adjust" */
15048 		if (env->subprog_info[i].start == off)
15049 			i++;
15050 	}
15051 
15052 	/* update fake 'exit' subprog as well */
15053 	for (; i <= env->subprog_cnt; i++)
15054 		env->subprog_info[i].start -= cnt;
15055 
15056 	return 0;
15057 }
15058 
15059 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
15060 				      u32 cnt)
15061 {
15062 	struct bpf_prog *prog = env->prog;
15063 	u32 i, l_off, l_cnt, nr_linfo;
15064 	struct bpf_line_info *linfo;
15065 
15066 	nr_linfo = prog->aux->nr_linfo;
15067 	if (!nr_linfo)
15068 		return 0;
15069 
15070 	linfo = prog->aux->linfo;
15071 
15072 	/* find first line info to remove, count lines to be removed */
15073 	for (i = 0; i < nr_linfo; i++)
15074 		if (linfo[i].insn_off >= off)
15075 			break;
15076 
15077 	l_off = i;
15078 	l_cnt = 0;
15079 	for (; i < nr_linfo; i++)
15080 		if (linfo[i].insn_off < off + cnt)
15081 			l_cnt++;
15082 		else
15083 			break;
15084 
15085 	/* First live insn doesn't match first live linfo, it needs to "inherit"
15086 	 * last removed linfo.  prog is already modified, so prog->len == off
15087 	 * means no live instructions after (tail of the program was removed).
15088 	 */
15089 	if (prog->len != off && l_cnt &&
15090 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
15091 		l_cnt--;
15092 		linfo[--i].insn_off = off + cnt;
15093 	}
15094 
15095 	/* remove the line info which refer to the removed instructions */
15096 	if (l_cnt) {
15097 		memmove(linfo + l_off, linfo + i,
15098 			sizeof(*linfo) * (nr_linfo - i));
15099 
15100 		prog->aux->nr_linfo -= l_cnt;
15101 		nr_linfo = prog->aux->nr_linfo;
15102 	}
15103 
15104 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
15105 	for (i = l_off; i < nr_linfo; i++)
15106 		linfo[i].insn_off -= cnt;
15107 
15108 	/* fix up all subprogs (incl. 'exit') which start >= off */
15109 	for (i = 0; i <= env->subprog_cnt; i++)
15110 		if (env->subprog_info[i].linfo_idx > l_off) {
15111 			/* program may have started in the removed region but
15112 			 * may not be fully removed
15113 			 */
15114 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
15115 				env->subprog_info[i].linfo_idx -= l_cnt;
15116 			else
15117 				env->subprog_info[i].linfo_idx = l_off;
15118 		}
15119 
15120 	return 0;
15121 }
15122 
15123 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
15124 {
15125 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15126 	unsigned int orig_prog_len = env->prog->len;
15127 	int err;
15128 
15129 	if (bpf_prog_is_offloaded(env->prog->aux))
15130 		bpf_prog_offload_remove_insns(env, off, cnt);
15131 
15132 	err = bpf_remove_insns(env->prog, off, cnt);
15133 	if (err)
15134 		return err;
15135 
15136 	err = adjust_subprog_starts_after_remove(env, off, cnt);
15137 	if (err)
15138 		return err;
15139 
15140 	err = bpf_adj_linfo_after_remove(env, off, cnt);
15141 	if (err)
15142 		return err;
15143 
15144 	memmove(aux_data + off,	aux_data + off + cnt,
15145 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
15146 
15147 	return 0;
15148 }
15149 
15150 /* The verifier does more data flow analysis than llvm and will not
15151  * explore branches that are dead at run time. Malicious programs can
15152  * have dead code too. Therefore replace all dead at-run-time code
15153  * with 'ja -1'.
15154  *
15155  * Just nops are not optimal, e.g. if they would sit at the end of the
15156  * program and through another bug we would manage to jump there, then
15157  * we'd execute beyond program memory otherwise. Returning exception
15158  * code also wouldn't work since we can have subprogs where the dead
15159  * code could be located.
15160  */
15161 static void sanitize_dead_code(struct bpf_verifier_env *env)
15162 {
15163 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15164 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
15165 	struct bpf_insn *insn = env->prog->insnsi;
15166 	const int insn_cnt = env->prog->len;
15167 	int i;
15168 
15169 	for (i = 0; i < insn_cnt; i++) {
15170 		if (aux_data[i].seen)
15171 			continue;
15172 		memcpy(insn + i, &trap, sizeof(trap));
15173 		aux_data[i].zext_dst = false;
15174 	}
15175 }
15176 
15177 static bool insn_is_cond_jump(u8 code)
15178 {
15179 	u8 op;
15180 
15181 	if (BPF_CLASS(code) == BPF_JMP32)
15182 		return true;
15183 
15184 	if (BPF_CLASS(code) != BPF_JMP)
15185 		return false;
15186 
15187 	op = BPF_OP(code);
15188 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
15189 }
15190 
15191 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
15192 {
15193 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15194 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
15195 	struct bpf_insn *insn = env->prog->insnsi;
15196 	const int insn_cnt = env->prog->len;
15197 	int i;
15198 
15199 	for (i = 0; i < insn_cnt; i++, insn++) {
15200 		if (!insn_is_cond_jump(insn->code))
15201 			continue;
15202 
15203 		if (!aux_data[i + 1].seen)
15204 			ja.off = insn->off;
15205 		else if (!aux_data[i + 1 + insn->off].seen)
15206 			ja.off = 0;
15207 		else
15208 			continue;
15209 
15210 		if (bpf_prog_is_offloaded(env->prog->aux))
15211 			bpf_prog_offload_replace_insn(env, i, &ja);
15212 
15213 		memcpy(insn, &ja, sizeof(ja));
15214 	}
15215 }
15216 
15217 static int opt_remove_dead_code(struct bpf_verifier_env *env)
15218 {
15219 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15220 	int insn_cnt = env->prog->len;
15221 	int i, err;
15222 
15223 	for (i = 0; i < insn_cnt; i++) {
15224 		int j;
15225 
15226 		j = 0;
15227 		while (i + j < insn_cnt && !aux_data[i + j].seen)
15228 			j++;
15229 		if (!j)
15230 			continue;
15231 
15232 		err = verifier_remove_insns(env, i, j);
15233 		if (err)
15234 			return err;
15235 		insn_cnt = env->prog->len;
15236 	}
15237 
15238 	return 0;
15239 }
15240 
15241 static int opt_remove_nops(struct bpf_verifier_env *env)
15242 {
15243 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
15244 	struct bpf_insn *insn = env->prog->insnsi;
15245 	int insn_cnt = env->prog->len;
15246 	int i, err;
15247 
15248 	for (i = 0; i < insn_cnt; i++) {
15249 		if (memcmp(&insn[i], &ja, sizeof(ja)))
15250 			continue;
15251 
15252 		err = verifier_remove_insns(env, i, 1);
15253 		if (err)
15254 			return err;
15255 		insn_cnt--;
15256 		i--;
15257 	}
15258 
15259 	return 0;
15260 }
15261 
15262 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
15263 					 const union bpf_attr *attr)
15264 {
15265 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
15266 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
15267 	int i, patch_len, delta = 0, len = env->prog->len;
15268 	struct bpf_insn *insns = env->prog->insnsi;
15269 	struct bpf_prog *new_prog;
15270 	bool rnd_hi32;
15271 
15272 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
15273 	zext_patch[1] = BPF_ZEXT_REG(0);
15274 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
15275 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
15276 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
15277 	for (i = 0; i < len; i++) {
15278 		int adj_idx = i + delta;
15279 		struct bpf_insn insn;
15280 		int load_reg;
15281 
15282 		insn = insns[adj_idx];
15283 		load_reg = insn_def_regno(&insn);
15284 		if (!aux[adj_idx].zext_dst) {
15285 			u8 code, class;
15286 			u32 imm_rnd;
15287 
15288 			if (!rnd_hi32)
15289 				continue;
15290 
15291 			code = insn.code;
15292 			class = BPF_CLASS(code);
15293 			if (load_reg == -1)
15294 				continue;
15295 
15296 			/* NOTE: arg "reg" (the fourth one) is only used for
15297 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
15298 			 *       here.
15299 			 */
15300 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
15301 				if (class == BPF_LD &&
15302 				    BPF_MODE(code) == BPF_IMM)
15303 					i++;
15304 				continue;
15305 			}
15306 
15307 			/* ctx load could be transformed into wider load. */
15308 			if (class == BPF_LDX &&
15309 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
15310 				continue;
15311 
15312 			imm_rnd = get_random_u32();
15313 			rnd_hi32_patch[0] = insn;
15314 			rnd_hi32_patch[1].imm = imm_rnd;
15315 			rnd_hi32_patch[3].dst_reg = load_reg;
15316 			patch = rnd_hi32_patch;
15317 			patch_len = 4;
15318 			goto apply_patch_buffer;
15319 		}
15320 
15321 		/* Add in an zero-extend instruction if a) the JIT has requested
15322 		 * it or b) it's a CMPXCHG.
15323 		 *
15324 		 * The latter is because: BPF_CMPXCHG always loads a value into
15325 		 * R0, therefore always zero-extends. However some archs'
15326 		 * equivalent instruction only does this load when the
15327 		 * comparison is successful. This detail of CMPXCHG is
15328 		 * orthogonal to the general zero-extension behaviour of the
15329 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
15330 		 */
15331 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
15332 			continue;
15333 
15334 		/* Zero-extension is done by the caller. */
15335 		if (bpf_pseudo_kfunc_call(&insn))
15336 			continue;
15337 
15338 		if (WARN_ON(load_reg == -1)) {
15339 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
15340 			return -EFAULT;
15341 		}
15342 
15343 		zext_patch[0] = insn;
15344 		zext_patch[1].dst_reg = load_reg;
15345 		zext_patch[1].src_reg = load_reg;
15346 		patch = zext_patch;
15347 		patch_len = 2;
15348 apply_patch_buffer:
15349 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
15350 		if (!new_prog)
15351 			return -ENOMEM;
15352 		env->prog = new_prog;
15353 		insns = new_prog->insnsi;
15354 		aux = env->insn_aux_data;
15355 		delta += patch_len - 1;
15356 	}
15357 
15358 	return 0;
15359 }
15360 
15361 /* convert load instructions that access fields of a context type into a
15362  * sequence of instructions that access fields of the underlying structure:
15363  *     struct __sk_buff    -> struct sk_buff
15364  *     struct bpf_sock_ops -> struct sock
15365  */
15366 static int convert_ctx_accesses(struct bpf_verifier_env *env)
15367 {
15368 	const struct bpf_verifier_ops *ops = env->ops;
15369 	int i, cnt, size, ctx_field_size, delta = 0;
15370 	const int insn_cnt = env->prog->len;
15371 	struct bpf_insn insn_buf[16], *insn;
15372 	u32 target_size, size_default, off;
15373 	struct bpf_prog *new_prog;
15374 	enum bpf_access_type type;
15375 	bool is_narrower_load;
15376 
15377 	if (ops->gen_prologue || env->seen_direct_write) {
15378 		if (!ops->gen_prologue) {
15379 			verbose(env, "bpf verifier is misconfigured\n");
15380 			return -EINVAL;
15381 		}
15382 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
15383 					env->prog);
15384 		if (cnt >= ARRAY_SIZE(insn_buf)) {
15385 			verbose(env, "bpf verifier is misconfigured\n");
15386 			return -EINVAL;
15387 		} else if (cnt) {
15388 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
15389 			if (!new_prog)
15390 				return -ENOMEM;
15391 
15392 			env->prog = new_prog;
15393 			delta += cnt - 1;
15394 		}
15395 	}
15396 
15397 	if (bpf_prog_is_offloaded(env->prog->aux))
15398 		return 0;
15399 
15400 	insn = env->prog->insnsi + delta;
15401 
15402 	for (i = 0; i < insn_cnt; i++, insn++) {
15403 		bpf_convert_ctx_access_t convert_ctx_access;
15404 		bool ctx_access;
15405 
15406 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
15407 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
15408 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
15409 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
15410 			type = BPF_READ;
15411 			ctx_access = true;
15412 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
15413 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
15414 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
15415 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
15416 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
15417 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
15418 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
15419 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
15420 			type = BPF_WRITE;
15421 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
15422 		} else {
15423 			continue;
15424 		}
15425 
15426 		if (type == BPF_WRITE &&
15427 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
15428 			struct bpf_insn patch[] = {
15429 				*insn,
15430 				BPF_ST_NOSPEC(),
15431 			};
15432 
15433 			cnt = ARRAY_SIZE(patch);
15434 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
15435 			if (!new_prog)
15436 				return -ENOMEM;
15437 
15438 			delta    += cnt - 1;
15439 			env->prog = new_prog;
15440 			insn      = new_prog->insnsi + i + delta;
15441 			continue;
15442 		}
15443 
15444 		if (!ctx_access)
15445 			continue;
15446 
15447 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
15448 		case PTR_TO_CTX:
15449 			if (!ops->convert_ctx_access)
15450 				continue;
15451 			convert_ctx_access = ops->convert_ctx_access;
15452 			break;
15453 		case PTR_TO_SOCKET:
15454 		case PTR_TO_SOCK_COMMON:
15455 			convert_ctx_access = bpf_sock_convert_ctx_access;
15456 			break;
15457 		case PTR_TO_TCP_SOCK:
15458 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
15459 			break;
15460 		case PTR_TO_XDP_SOCK:
15461 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
15462 			break;
15463 		case PTR_TO_BTF_ID:
15464 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
15465 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
15466 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
15467 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
15468 		 * any faults for loads into such types. BPF_WRITE is disallowed
15469 		 * for this case.
15470 		 */
15471 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
15472 			if (type == BPF_READ) {
15473 				insn->code = BPF_LDX | BPF_PROBE_MEM |
15474 					BPF_SIZE((insn)->code);
15475 				env->prog->aux->num_exentries++;
15476 			}
15477 			continue;
15478 		default:
15479 			continue;
15480 		}
15481 
15482 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
15483 		size = BPF_LDST_BYTES(insn);
15484 
15485 		/* If the read access is a narrower load of the field,
15486 		 * convert to a 4/8-byte load, to minimum program type specific
15487 		 * convert_ctx_access changes. If conversion is successful,
15488 		 * we will apply proper mask to the result.
15489 		 */
15490 		is_narrower_load = size < ctx_field_size;
15491 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
15492 		off = insn->off;
15493 		if (is_narrower_load) {
15494 			u8 size_code;
15495 
15496 			if (type == BPF_WRITE) {
15497 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
15498 				return -EINVAL;
15499 			}
15500 
15501 			size_code = BPF_H;
15502 			if (ctx_field_size == 4)
15503 				size_code = BPF_W;
15504 			else if (ctx_field_size == 8)
15505 				size_code = BPF_DW;
15506 
15507 			insn->off = off & ~(size_default - 1);
15508 			insn->code = BPF_LDX | BPF_MEM | size_code;
15509 		}
15510 
15511 		target_size = 0;
15512 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
15513 					 &target_size);
15514 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
15515 		    (ctx_field_size && !target_size)) {
15516 			verbose(env, "bpf verifier is misconfigured\n");
15517 			return -EINVAL;
15518 		}
15519 
15520 		if (is_narrower_load && size < target_size) {
15521 			u8 shift = bpf_ctx_narrow_access_offset(
15522 				off, size, size_default) * 8;
15523 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
15524 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
15525 				return -EINVAL;
15526 			}
15527 			if (ctx_field_size <= 4) {
15528 				if (shift)
15529 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
15530 									insn->dst_reg,
15531 									shift);
15532 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
15533 								(1 << size * 8) - 1);
15534 			} else {
15535 				if (shift)
15536 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
15537 									insn->dst_reg,
15538 									shift);
15539 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
15540 								(1ULL << size * 8) - 1);
15541 			}
15542 		}
15543 
15544 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15545 		if (!new_prog)
15546 			return -ENOMEM;
15547 
15548 		delta += cnt - 1;
15549 
15550 		/* keep walking new program and skip insns we just inserted */
15551 		env->prog = new_prog;
15552 		insn      = new_prog->insnsi + i + delta;
15553 	}
15554 
15555 	return 0;
15556 }
15557 
15558 static int jit_subprogs(struct bpf_verifier_env *env)
15559 {
15560 	struct bpf_prog *prog = env->prog, **func, *tmp;
15561 	int i, j, subprog_start, subprog_end = 0, len, subprog;
15562 	struct bpf_map *map_ptr;
15563 	struct bpf_insn *insn;
15564 	void *old_bpf_func;
15565 	int err, num_exentries;
15566 
15567 	if (env->subprog_cnt <= 1)
15568 		return 0;
15569 
15570 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15571 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
15572 			continue;
15573 
15574 		/* Upon error here we cannot fall back to interpreter but
15575 		 * need a hard reject of the program. Thus -EFAULT is
15576 		 * propagated in any case.
15577 		 */
15578 		subprog = find_subprog(env, i + insn->imm + 1);
15579 		if (subprog < 0) {
15580 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
15581 				  i + insn->imm + 1);
15582 			return -EFAULT;
15583 		}
15584 		/* temporarily remember subprog id inside insn instead of
15585 		 * aux_data, since next loop will split up all insns into funcs
15586 		 */
15587 		insn->off = subprog;
15588 		/* remember original imm in case JIT fails and fallback
15589 		 * to interpreter will be needed
15590 		 */
15591 		env->insn_aux_data[i].call_imm = insn->imm;
15592 		/* point imm to __bpf_call_base+1 from JITs point of view */
15593 		insn->imm = 1;
15594 		if (bpf_pseudo_func(insn))
15595 			/* jit (e.g. x86_64) may emit fewer instructions
15596 			 * if it learns a u32 imm is the same as a u64 imm.
15597 			 * Force a non zero here.
15598 			 */
15599 			insn[1].imm = 1;
15600 	}
15601 
15602 	err = bpf_prog_alloc_jited_linfo(prog);
15603 	if (err)
15604 		goto out_undo_insn;
15605 
15606 	err = -ENOMEM;
15607 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
15608 	if (!func)
15609 		goto out_undo_insn;
15610 
15611 	for (i = 0; i < env->subprog_cnt; i++) {
15612 		subprog_start = subprog_end;
15613 		subprog_end = env->subprog_info[i + 1].start;
15614 
15615 		len = subprog_end - subprog_start;
15616 		/* bpf_prog_run() doesn't call subprogs directly,
15617 		 * hence main prog stats include the runtime of subprogs.
15618 		 * subprogs don't have IDs and not reachable via prog_get_next_id
15619 		 * func[i]->stats will never be accessed and stays NULL
15620 		 */
15621 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
15622 		if (!func[i])
15623 			goto out_free;
15624 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
15625 		       len * sizeof(struct bpf_insn));
15626 		func[i]->type = prog->type;
15627 		func[i]->len = len;
15628 		if (bpf_prog_calc_tag(func[i]))
15629 			goto out_free;
15630 		func[i]->is_func = 1;
15631 		func[i]->aux->func_idx = i;
15632 		/* Below members will be freed only at prog->aux */
15633 		func[i]->aux->btf = prog->aux->btf;
15634 		func[i]->aux->func_info = prog->aux->func_info;
15635 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
15636 		func[i]->aux->poke_tab = prog->aux->poke_tab;
15637 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
15638 
15639 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
15640 			struct bpf_jit_poke_descriptor *poke;
15641 
15642 			poke = &prog->aux->poke_tab[j];
15643 			if (poke->insn_idx < subprog_end &&
15644 			    poke->insn_idx >= subprog_start)
15645 				poke->aux = func[i]->aux;
15646 		}
15647 
15648 		func[i]->aux->name[0] = 'F';
15649 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
15650 		func[i]->jit_requested = 1;
15651 		func[i]->blinding_requested = prog->blinding_requested;
15652 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
15653 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
15654 		func[i]->aux->linfo = prog->aux->linfo;
15655 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
15656 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
15657 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
15658 		num_exentries = 0;
15659 		insn = func[i]->insnsi;
15660 		for (j = 0; j < func[i]->len; j++, insn++) {
15661 			if (BPF_CLASS(insn->code) == BPF_LDX &&
15662 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
15663 				num_exentries++;
15664 		}
15665 		func[i]->aux->num_exentries = num_exentries;
15666 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
15667 		func[i] = bpf_int_jit_compile(func[i]);
15668 		if (!func[i]->jited) {
15669 			err = -ENOTSUPP;
15670 			goto out_free;
15671 		}
15672 		cond_resched();
15673 	}
15674 
15675 	/* at this point all bpf functions were successfully JITed
15676 	 * now populate all bpf_calls with correct addresses and
15677 	 * run last pass of JIT
15678 	 */
15679 	for (i = 0; i < env->subprog_cnt; i++) {
15680 		insn = func[i]->insnsi;
15681 		for (j = 0; j < func[i]->len; j++, insn++) {
15682 			if (bpf_pseudo_func(insn)) {
15683 				subprog = insn->off;
15684 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15685 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15686 				continue;
15687 			}
15688 			if (!bpf_pseudo_call(insn))
15689 				continue;
15690 			subprog = insn->off;
15691 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
15692 		}
15693 
15694 		/* we use the aux data to keep a list of the start addresses
15695 		 * of the JITed images for each function in the program
15696 		 *
15697 		 * for some architectures, such as powerpc64, the imm field
15698 		 * might not be large enough to hold the offset of the start
15699 		 * address of the callee's JITed image from __bpf_call_base
15700 		 *
15701 		 * in such cases, we can lookup the start address of a callee
15702 		 * by using its subprog id, available from the off field of
15703 		 * the call instruction, as an index for this list
15704 		 */
15705 		func[i]->aux->func = func;
15706 		func[i]->aux->func_cnt = env->subprog_cnt;
15707 	}
15708 	for (i = 0; i < env->subprog_cnt; i++) {
15709 		old_bpf_func = func[i]->bpf_func;
15710 		tmp = bpf_int_jit_compile(func[i]);
15711 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15712 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
15713 			err = -ENOTSUPP;
15714 			goto out_free;
15715 		}
15716 		cond_resched();
15717 	}
15718 
15719 	/* finally lock prog and jit images for all functions and
15720 	 * populate kallsysm
15721 	 */
15722 	for (i = 0; i < env->subprog_cnt; i++) {
15723 		bpf_prog_lock_ro(func[i]);
15724 		bpf_prog_kallsyms_add(func[i]);
15725 	}
15726 
15727 	/* Last step: make now unused interpreter insns from main
15728 	 * prog consistent for later dump requests, so they can
15729 	 * later look the same as if they were interpreted only.
15730 	 */
15731 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15732 		if (bpf_pseudo_func(insn)) {
15733 			insn[0].imm = env->insn_aux_data[i].call_imm;
15734 			insn[1].imm = insn->off;
15735 			insn->off = 0;
15736 			continue;
15737 		}
15738 		if (!bpf_pseudo_call(insn))
15739 			continue;
15740 		insn->off = env->insn_aux_data[i].call_imm;
15741 		subprog = find_subprog(env, i + insn->off + 1);
15742 		insn->imm = subprog;
15743 	}
15744 
15745 	prog->jited = 1;
15746 	prog->bpf_func = func[0]->bpf_func;
15747 	prog->jited_len = func[0]->jited_len;
15748 	prog->aux->func = func;
15749 	prog->aux->func_cnt = env->subprog_cnt;
15750 	bpf_prog_jit_attempt_done(prog);
15751 	return 0;
15752 out_free:
15753 	/* We failed JIT'ing, so at this point we need to unregister poke
15754 	 * descriptors from subprogs, so that kernel is not attempting to
15755 	 * patch it anymore as we're freeing the subprog JIT memory.
15756 	 */
15757 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15758 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15759 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15760 	}
15761 	/* At this point we're guaranteed that poke descriptors are not
15762 	 * live anymore. We can just unlink its descriptor table as it's
15763 	 * released with the main prog.
15764 	 */
15765 	for (i = 0; i < env->subprog_cnt; i++) {
15766 		if (!func[i])
15767 			continue;
15768 		func[i]->aux->poke_tab = NULL;
15769 		bpf_jit_free(func[i]);
15770 	}
15771 	kfree(func);
15772 out_undo_insn:
15773 	/* cleanup main prog to be interpreted */
15774 	prog->jit_requested = 0;
15775 	prog->blinding_requested = 0;
15776 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15777 		if (!bpf_pseudo_call(insn))
15778 			continue;
15779 		insn->off = 0;
15780 		insn->imm = env->insn_aux_data[i].call_imm;
15781 	}
15782 	bpf_prog_jit_attempt_done(prog);
15783 	return err;
15784 }
15785 
15786 static int fixup_call_args(struct bpf_verifier_env *env)
15787 {
15788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15789 	struct bpf_prog *prog = env->prog;
15790 	struct bpf_insn *insn = prog->insnsi;
15791 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
15792 	int i, depth;
15793 #endif
15794 	int err = 0;
15795 
15796 	if (env->prog->jit_requested &&
15797 	    !bpf_prog_is_offloaded(env->prog->aux)) {
15798 		err = jit_subprogs(env);
15799 		if (err == 0)
15800 			return 0;
15801 		if (err == -EFAULT)
15802 			return err;
15803 	}
15804 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15805 	if (has_kfunc_call) {
15806 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15807 		return -EINVAL;
15808 	}
15809 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15810 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
15811 		 * have to be rejected, since interpreter doesn't support them yet.
15812 		 */
15813 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15814 		return -EINVAL;
15815 	}
15816 	for (i = 0; i < prog->len; i++, insn++) {
15817 		if (bpf_pseudo_func(insn)) {
15818 			/* When JIT fails the progs with callback calls
15819 			 * have to be rejected, since interpreter doesn't support them yet.
15820 			 */
15821 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
15822 			return -EINVAL;
15823 		}
15824 
15825 		if (!bpf_pseudo_call(insn))
15826 			continue;
15827 		depth = get_callee_stack_depth(env, insn, i);
15828 		if (depth < 0)
15829 			return depth;
15830 		bpf_patch_call_args(insn, depth);
15831 	}
15832 	err = 0;
15833 #endif
15834 	return err;
15835 }
15836 
15837 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15838 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
15839 {
15840 	const struct bpf_kfunc_desc *desc;
15841 	void *xdp_kfunc;
15842 
15843 	if (!insn->imm) {
15844 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15845 		return -EINVAL;
15846 	}
15847 
15848 	*cnt = 0;
15849 
15850 	if (bpf_dev_bound_kfunc_id(insn->imm)) {
15851 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm);
15852 		if (xdp_kfunc) {
15853 			insn->imm = BPF_CALL_IMM(xdp_kfunc);
15854 			return 0;
15855 		}
15856 
15857 		/* fallback to default kfunc when not supported by netdev */
15858 	}
15859 
15860 	/* insn->imm has the btf func_id. Replace it with
15861 	 * an address (relative to __bpf_call_base).
15862 	 */
15863 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
15864 	if (!desc) {
15865 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15866 			insn->imm);
15867 		return -EFAULT;
15868 	}
15869 
15870 	insn->imm = desc->imm;
15871 	if (insn->off)
15872 		return 0;
15873 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15874 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15875 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15876 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
15877 
15878 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15879 		insn_buf[1] = addr[0];
15880 		insn_buf[2] = addr[1];
15881 		insn_buf[3] = *insn;
15882 		*cnt = 4;
15883 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15884 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15885 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15886 
15887 		insn_buf[0] = addr[0];
15888 		insn_buf[1] = addr[1];
15889 		insn_buf[2] = *insn;
15890 		*cnt = 3;
15891 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15892 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
15893 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15894 		*cnt = 1;
15895 	}
15896 	return 0;
15897 }
15898 
15899 /* Do various post-verification rewrites in a single program pass.
15900  * These rewrites simplify JIT and interpreter implementations.
15901  */
15902 static int do_misc_fixups(struct bpf_verifier_env *env)
15903 {
15904 	struct bpf_prog *prog = env->prog;
15905 	enum bpf_attach_type eatype = prog->expected_attach_type;
15906 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
15907 	struct bpf_insn *insn = prog->insnsi;
15908 	const struct bpf_func_proto *fn;
15909 	const int insn_cnt = prog->len;
15910 	const struct bpf_map_ops *ops;
15911 	struct bpf_insn_aux_data *aux;
15912 	struct bpf_insn insn_buf[16];
15913 	struct bpf_prog *new_prog;
15914 	struct bpf_map *map_ptr;
15915 	int i, ret, cnt, delta = 0;
15916 
15917 	for (i = 0; i < insn_cnt; i++, insn++) {
15918 		/* Make divide-by-zero exceptions impossible. */
15919 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15920 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15921 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
15922 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
15923 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
15924 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15925 			struct bpf_insn *patchlet;
15926 			struct bpf_insn chk_and_div[] = {
15927 				/* [R,W]x div 0 -> 0 */
15928 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15929 					     BPF_JNE | BPF_K, insn->src_reg,
15930 					     0, 2, 0),
15931 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15932 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15933 				*insn,
15934 			};
15935 			struct bpf_insn chk_and_mod[] = {
15936 				/* [R,W]x mod 0 -> [R,W]x */
15937 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15938 					     BPF_JEQ | BPF_K, insn->src_reg,
15939 					     0, 1 + (is64 ? 0 : 1), 0),
15940 				*insn,
15941 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15942 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
15943 			};
15944 
15945 			patchlet = isdiv ? chk_and_div : chk_and_mod;
15946 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
15947 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
15948 
15949 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
15950 			if (!new_prog)
15951 				return -ENOMEM;
15952 
15953 			delta    += cnt - 1;
15954 			env->prog = prog = new_prog;
15955 			insn      = new_prog->insnsi + i + delta;
15956 			continue;
15957 		}
15958 
15959 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
15960 		if (BPF_CLASS(insn->code) == BPF_LD &&
15961 		    (BPF_MODE(insn->code) == BPF_ABS ||
15962 		     BPF_MODE(insn->code) == BPF_IND)) {
15963 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
15964 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15965 				verbose(env, "bpf verifier is misconfigured\n");
15966 				return -EINVAL;
15967 			}
15968 
15969 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15970 			if (!new_prog)
15971 				return -ENOMEM;
15972 
15973 			delta    += cnt - 1;
15974 			env->prog = prog = new_prog;
15975 			insn      = new_prog->insnsi + i + delta;
15976 			continue;
15977 		}
15978 
15979 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
15980 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15981 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15982 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15983 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
15984 			struct bpf_insn *patch = &insn_buf[0];
15985 			bool issrc, isneg, isimm;
15986 			u32 off_reg;
15987 
15988 			aux = &env->insn_aux_data[i + delta];
15989 			if (!aux->alu_state ||
15990 			    aux->alu_state == BPF_ALU_NON_POINTER)
15991 				continue;
15992 
15993 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15994 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15995 				BPF_ALU_SANITIZE_SRC;
15996 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
15997 
15998 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
15999 			if (isimm) {
16000 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
16001 			} else {
16002 				if (isneg)
16003 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
16004 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
16005 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
16006 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
16007 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
16008 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
16009 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
16010 			}
16011 			if (!issrc)
16012 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
16013 			insn->src_reg = BPF_REG_AX;
16014 			if (isneg)
16015 				insn->code = insn->code == code_add ?
16016 					     code_sub : code_add;
16017 			*patch++ = *insn;
16018 			if (issrc && isneg && !isimm)
16019 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
16020 			cnt = patch - insn_buf;
16021 
16022 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16023 			if (!new_prog)
16024 				return -ENOMEM;
16025 
16026 			delta    += cnt - 1;
16027 			env->prog = prog = new_prog;
16028 			insn      = new_prog->insnsi + i + delta;
16029 			continue;
16030 		}
16031 
16032 		if (insn->code != (BPF_JMP | BPF_CALL))
16033 			continue;
16034 		if (insn->src_reg == BPF_PSEUDO_CALL)
16035 			continue;
16036 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16037 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
16038 			if (ret)
16039 				return ret;
16040 			if (cnt == 0)
16041 				continue;
16042 
16043 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16044 			if (!new_prog)
16045 				return -ENOMEM;
16046 
16047 			delta	 += cnt - 1;
16048 			env->prog = prog = new_prog;
16049 			insn	  = new_prog->insnsi + i + delta;
16050 			continue;
16051 		}
16052 
16053 		if (insn->imm == BPF_FUNC_get_route_realm)
16054 			prog->dst_needed = 1;
16055 		if (insn->imm == BPF_FUNC_get_prandom_u32)
16056 			bpf_user_rnd_init_once();
16057 		if (insn->imm == BPF_FUNC_override_return)
16058 			prog->kprobe_override = 1;
16059 		if (insn->imm == BPF_FUNC_tail_call) {
16060 			/* If we tail call into other programs, we
16061 			 * cannot make any assumptions since they can
16062 			 * be replaced dynamically during runtime in
16063 			 * the program array.
16064 			 */
16065 			prog->cb_access = 1;
16066 			if (!allow_tail_call_in_subprogs(env))
16067 				prog->aux->stack_depth = MAX_BPF_STACK;
16068 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
16069 
16070 			/* mark bpf_tail_call as different opcode to avoid
16071 			 * conditional branch in the interpreter for every normal
16072 			 * call and to prevent accidental JITing by JIT compiler
16073 			 * that doesn't support bpf_tail_call yet
16074 			 */
16075 			insn->imm = 0;
16076 			insn->code = BPF_JMP | BPF_TAIL_CALL;
16077 
16078 			aux = &env->insn_aux_data[i + delta];
16079 			if (env->bpf_capable && !prog->blinding_requested &&
16080 			    prog->jit_requested &&
16081 			    !bpf_map_key_poisoned(aux) &&
16082 			    !bpf_map_ptr_poisoned(aux) &&
16083 			    !bpf_map_ptr_unpriv(aux)) {
16084 				struct bpf_jit_poke_descriptor desc = {
16085 					.reason = BPF_POKE_REASON_TAIL_CALL,
16086 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
16087 					.tail_call.key = bpf_map_key_immediate(aux),
16088 					.insn_idx = i + delta,
16089 				};
16090 
16091 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
16092 				if (ret < 0) {
16093 					verbose(env, "adding tail call poke descriptor failed\n");
16094 					return ret;
16095 				}
16096 
16097 				insn->imm = ret + 1;
16098 				continue;
16099 			}
16100 
16101 			if (!bpf_map_ptr_unpriv(aux))
16102 				continue;
16103 
16104 			/* instead of changing every JIT dealing with tail_call
16105 			 * emit two extra insns:
16106 			 * if (index >= max_entries) goto out;
16107 			 * index &= array->index_mask;
16108 			 * to avoid out-of-bounds cpu speculation
16109 			 */
16110 			if (bpf_map_ptr_poisoned(aux)) {
16111 				verbose(env, "tail_call abusing map_ptr\n");
16112 				return -EINVAL;
16113 			}
16114 
16115 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
16116 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
16117 						  map_ptr->max_entries, 2);
16118 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
16119 						    container_of(map_ptr,
16120 								 struct bpf_array,
16121 								 map)->index_mask);
16122 			insn_buf[2] = *insn;
16123 			cnt = 3;
16124 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16125 			if (!new_prog)
16126 				return -ENOMEM;
16127 
16128 			delta    += cnt - 1;
16129 			env->prog = prog = new_prog;
16130 			insn      = new_prog->insnsi + i + delta;
16131 			continue;
16132 		}
16133 
16134 		if (insn->imm == BPF_FUNC_timer_set_callback) {
16135 			/* The verifier will process callback_fn as many times as necessary
16136 			 * with different maps and the register states prepared by
16137 			 * set_timer_callback_state will be accurate.
16138 			 *
16139 			 * The following use case is valid:
16140 			 *   map1 is shared by prog1, prog2, prog3.
16141 			 *   prog1 calls bpf_timer_init for some map1 elements
16142 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
16143 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
16144 			 *   prog3 calls bpf_timer_start for some map1 elements.
16145 			 *     Those that were not both bpf_timer_init-ed and
16146 			 *     bpf_timer_set_callback-ed will return -EINVAL.
16147 			 */
16148 			struct bpf_insn ld_addrs[2] = {
16149 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
16150 			};
16151 
16152 			insn_buf[0] = ld_addrs[0];
16153 			insn_buf[1] = ld_addrs[1];
16154 			insn_buf[2] = *insn;
16155 			cnt = 3;
16156 
16157 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16158 			if (!new_prog)
16159 				return -ENOMEM;
16160 
16161 			delta    += cnt - 1;
16162 			env->prog = prog = new_prog;
16163 			insn      = new_prog->insnsi + i + delta;
16164 			goto patch_call_imm;
16165 		}
16166 
16167 		if (is_storage_get_function(insn->imm)) {
16168 			if (!env->prog->aux->sleepable ||
16169 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
16170 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
16171 			else
16172 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
16173 			insn_buf[1] = *insn;
16174 			cnt = 2;
16175 
16176 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16177 			if (!new_prog)
16178 				return -ENOMEM;
16179 
16180 			delta += cnt - 1;
16181 			env->prog = prog = new_prog;
16182 			insn = new_prog->insnsi + i + delta;
16183 			goto patch_call_imm;
16184 		}
16185 
16186 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
16187 		 * and other inlining handlers are currently limited to 64 bit
16188 		 * only.
16189 		 */
16190 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
16191 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
16192 		     insn->imm == BPF_FUNC_map_update_elem ||
16193 		     insn->imm == BPF_FUNC_map_delete_elem ||
16194 		     insn->imm == BPF_FUNC_map_push_elem   ||
16195 		     insn->imm == BPF_FUNC_map_pop_elem    ||
16196 		     insn->imm == BPF_FUNC_map_peek_elem   ||
16197 		     insn->imm == BPF_FUNC_redirect_map    ||
16198 		     insn->imm == BPF_FUNC_for_each_map_elem ||
16199 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
16200 			aux = &env->insn_aux_data[i + delta];
16201 			if (bpf_map_ptr_poisoned(aux))
16202 				goto patch_call_imm;
16203 
16204 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
16205 			ops = map_ptr->ops;
16206 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
16207 			    ops->map_gen_lookup) {
16208 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
16209 				if (cnt == -EOPNOTSUPP)
16210 					goto patch_map_ops_generic;
16211 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
16212 					verbose(env, "bpf verifier is misconfigured\n");
16213 					return -EINVAL;
16214 				}
16215 
16216 				new_prog = bpf_patch_insn_data(env, i + delta,
16217 							       insn_buf, cnt);
16218 				if (!new_prog)
16219 					return -ENOMEM;
16220 
16221 				delta    += cnt - 1;
16222 				env->prog = prog = new_prog;
16223 				insn      = new_prog->insnsi + i + delta;
16224 				continue;
16225 			}
16226 
16227 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
16228 				     (void *(*)(struct bpf_map *map, void *key))NULL));
16229 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
16230 				     (int (*)(struct bpf_map *map, void *key))NULL));
16231 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
16232 				     (int (*)(struct bpf_map *map, void *key, void *value,
16233 					      u64 flags))NULL));
16234 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
16235 				     (int (*)(struct bpf_map *map, void *value,
16236 					      u64 flags))NULL));
16237 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
16238 				     (int (*)(struct bpf_map *map, void *value))NULL));
16239 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
16240 				     (int (*)(struct bpf_map *map, void *value))NULL));
16241 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
16242 				     (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
16243 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
16244 				     (int (*)(struct bpf_map *map,
16245 					      bpf_callback_t callback_fn,
16246 					      void *callback_ctx,
16247 					      u64 flags))NULL));
16248 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
16249 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
16250 
16251 patch_map_ops_generic:
16252 			switch (insn->imm) {
16253 			case BPF_FUNC_map_lookup_elem:
16254 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
16255 				continue;
16256 			case BPF_FUNC_map_update_elem:
16257 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
16258 				continue;
16259 			case BPF_FUNC_map_delete_elem:
16260 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
16261 				continue;
16262 			case BPF_FUNC_map_push_elem:
16263 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
16264 				continue;
16265 			case BPF_FUNC_map_pop_elem:
16266 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
16267 				continue;
16268 			case BPF_FUNC_map_peek_elem:
16269 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
16270 				continue;
16271 			case BPF_FUNC_redirect_map:
16272 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
16273 				continue;
16274 			case BPF_FUNC_for_each_map_elem:
16275 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
16276 				continue;
16277 			case BPF_FUNC_map_lookup_percpu_elem:
16278 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
16279 				continue;
16280 			}
16281 
16282 			goto patch_call_imm;
16283 		}
16284 
16285 		/* Implement bpf_jiffies64 inline. */
16286 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
16287 		    insn->imm == BPF_FUNC_jiffies64) {
16288 			struct bpf_insn ld_jiffies_addr[2] = {
16289 				BPF_LD_IMM64(BPF_REG_0,
16290 					     (unsigned long)&jiffies),
16291 			};
16292 
16293 			insn_buf[0] = ld_jiffies_addr[0];
16294 			insn_buf[1] = ld_jiffies_addr[1];
16295 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
16296 						  BPF_REG_0, 0);
16297 			cnt = 3;
16298 
16299 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
16300 						       cnt);
16301 			if (!new_prog)
16302 				return -ENOMEM;
16303 
16304 			delta    += cnt - 1;
16305 			env->prog = prog = new_prog;
16306 			insn      = new_prog->insnsi + i + delta;
16307 			continue;
16308 		}
16309 
16310 		/* Implement bpf_get_func_arg inline. */
16311 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16312 		    insn->imm == BPF_FUNC_get_func_arg) {
16313 			/* Load nr_args from ctx - 8 */
16314 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16315 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
16316 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
16317 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
16318 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
16319 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
16320 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
16321 			insn_buf[7] = BPF_JMP_A(1);
16322 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
16323 			cnt = 9;
16324 
16325 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16326 			if (!new_prog)
16327 				return -ENOMEM;
16328 
16329 			delta    += cnt - 1;
16330 			env->prog = prog = new_prog;
16331 			insn      = new_prog->insnsi + i + delta;
16332 			continue;
16333 		}
16334 
16335 		/* Implement bpf_get_func_ret inline. */
16336 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16337 		    insn->imm == BPF_FUNC_get_func_ret) {
16338 			if (eatype == BPF_TRACE_FEXIT ||
16339 			    eatype == BPF_MODIFY_RETURN) {
16340 				/* Load nr_args from ctx - 8 */
16341 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16342 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
16343 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
16344 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
16345 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
16346 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
16347 				cnt = 6;
16348 			} else {
16349 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
16350 				cnt = 1;
16351 			}
16352 
16353 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16354 			if (!new_prog)
16355 				return -ENOMEM;
16356 
16357 			delta    += cnt - 1;
16358 			env->prog = prog = new_prog;
16359 			insn      = new_prog->insnsi + i + delta;
16360 			continue;
16361 		}
16362 
16363 		/* Implement get_func_arg_cnt inline. */
16364 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16365 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
16366 			/* Load nr_args from ctx - 8 */
16367 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16368 
16369 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16370 			if (!new_prog)
16371 				return -ENOMEM;
16372 
16373 			env->prog = prog = new_prog;
16374 			insn      = new_prog->insnsi + i + delta;
16375 			continue;
16376 		}
16377 
16378 		/* Implement bpf_get_func_ip inline. */
16379 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16380 		    insn->imm == BPF_FUNC_get_func_ip) {
16381 			/* Load IP address from ctx - 16 */
16382 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
16383 
16384 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16385 			if (!new_prog)
16386 				return -ENOMEM;
16387 
16388 			env->prog = prog = new_prog;
16389 			insn      = new_prog->insnsi + i + delta;
16390 			continue;
16391 		}
16392 
16393 patch_call_imm:
16394 		fn = env->ops->get_func_proto(insn->imm, env->prog);
16395 		/* all functions that have prototype and verifier allowed
16396 		 * programs to call them, must be real in-kernel functions
16397 		 */
16398 		if (!fn->func) {
16399 			verbose(env,
16400 				"kernel subsystem misconfigured func %s#%d\n",
16401 				func_id_name(insn->imm), insn->imm);
16402 			return -EFAULT;
16403 		}
16404 		insn->imm = fn->func - __bpf_call_base;
16405 	}
16406 
16407 	/* Since poke tab is now finalized, publish aux to tracker. */
16408 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
16409 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
16410 		if (!map_ptr->ops->map_poke_track ||
16411 		    !map_ptr->ops->map_poke_untrack ||
16412 		    !map_ptr->ops->map_poke_run) {
16413 			verbose(env, "bpf verifier is misconfigured\n");
16414 			return -EINVAL;
16415 		}
16416 
16417 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
16418 		if (ret < 0) {
16419 			verbose(env, "tracking tail call prog failed\n");
16420 			return ret;
16421 		}
16422 	}
16423 
16424 	sort_kfunc_descs_by_imm(env->prog);
16425 
16426 	return 0;
16427 }
16428 
16429 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
16430 					int position,
16431 					s32 stack_base,
16432 					u32 callback_subprogno,
16433 					u32 *cnt)
16434 {
16435 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
16436 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
16437 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
16438 	int reg_loop_max = BPF_REG_6;
16439 	int reg_loop_cnt = BPF_REG_7;
16440 	int reg_loop_ctx = BPF_REG_8;
16441 
16442 	struct bpf_prog *new_prog;
16443 	u32 callback_start;
16444 	u32 call_insn_offset;
16445 	s32 callback_offset;
16446 
16447 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
16448 	 * be careful to modify this code in sync.
16449 	 */
16450 	struct bpf_insn insn_buf[] = {
16451 		/* Return error and jump to the end of the patch if
16452 		 * expected number of iterations is too big.
16453 		 */
16454 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
16455 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
16456 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
16457 		/* spill R6, R7, R8 to use these as loop vars */
16458 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
16459 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
16460 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
16461 		/* initialize loop vars */
16462 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
16463 		BPF_MOV32_IMM(reg_loop_cnt, 0),
16464 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
16465 		/* loop header,
16466 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
16467 		 */
16468 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
16469 		/* callback call,
16470 		 * correct callback offset would be set after patching
16471 		 */
16472 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
16473 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
16474 		BPF_CALL_REL(0),
16475 		/* increment loop counter */
16476 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
16477 		/* jump to loop header if callback returned 0 */
16478 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
16479 		/* return value of bpf_loop,
16480 		 * set R0 to the number of iterations
16481 		 */
16482 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
16483 		/* restore original values of R6, R7, R8 */
16484 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
16485 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
16486 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
16487 	};
16488 
16489 	*cnt = ARRAY_SIZE(insn_buf);
16490 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
16491 	if (!new_prog)
16492 		return new_prog;
16493 
16494 	/* callback start is known only after patching */
16495 	callback_start = env->subprog_info[callback_subprogno].start;
16496 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
16497 	call_insn_offset = position + 12;
16498 	callback_offset = callback_start - call_insn_offset - 1;
16499 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
16500 
16501 	return new_prog;
16502 }
16503 
16504 static bool is_bpf_loop_call(struct bpf_insn *insn)
16505 {
16506 	return insn->code == (BPF_JMP | BPF_CALL) &&
16507 		insn->src_reg == 0 &&
16508 		insn->imm == BPF_FUNC_loop;
16509 }
16510 
16511 /* For all sub-programs in the program (including main) check
16512  * insn_aux_data to see if there are bpf_loop calls that require
16513  * inlining. If such calls are found the calls are replaced with a
16514  * sequence of instructions produced by `inline_bpf_loop` function and
16515  * subprog stack_depth is increased by the size of 3 registers.
16516  * This stack space is used to spill values of the R6, R7, R8.  These
16517  * registers are used to store the loop bound, counter and context
16518  * variables.
16519  */
16520 static int optimize_bpf_loop(struct bpf_verifier_env *env)
16521 {
16522 	struct bpf_subprog_info *subprogs = env->subprog_info;
16523 	int i, cur_subprog = 0, cnt, delta = 0;
16524 	struct bpf_insn *insn = env->prog->insnsi;
16525 	int insn_cnt = env->prog->len;
16526 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
16527 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16528 	u16 stack_depth_extra = 0;
16529 
16530 	for (i = 0; i < insn_cnt; i++, insn++) {
16531 		struct bpf_loop_inline_state *inline_state =
16532 			&env->insn_aux_data[i + delta].loop_inline_state;
16533 
16534 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
16535 			struct bpf_prog *new_prog;
16536 
16537 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
16538 			new_prog = inline_bpf_loop(env,
16539 						   i + delta,
16540 						   -(stack_depth + stack_depth_extra),
16541 						   inline_state->callback_subprogno,
16542 						   &cnt);
16543 			if (!new_prog)
16544 				return -ENOMEM;
16545 
16546 			delta     += cnt - 1;
16547 			env->prog  = new_prog;
16548 			insn       = new_prog->insnsi + i + delta;
16549 		}
16550 
16551 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
16552 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
16553 			cur_subprog++;
16554 			stack_depth = subprogs[cur_subprog].stack_depth;
16555 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16556 			stack_depth_extra = 0;
16557 		}
16558 	}
16559 
16560 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16561 
16562 	return 0;
16563 }
16564 
16565 static void free_states(struct bpf_verifier_env *env)
16566 {
16567 	struct bpf_verifier_state_list *sl, *sln;
16568 	int i;
16569 
16570 	sl = env->free_list;
16571 	while (sl) {
16572 		sln = sl->next;
16573 		free_verifier_state(&sl->state, false);
16574 		kfree(sl);
16575 		sl = sln;
16576 	}
16577 	env->free_list = NULL;
16578 
16579 	if (!env->explored_states)
16580 		return;
16581 
16582 	for (i = 0; i < state_htab_size(env); i++) {
16583 		sl = env->explored_states[i];
16584 
16585 		while (sl) {
16586 			sln = sl->next;
16587 			free_verifier_state(&sl->state, false);
16588 			kfree(sl);
16589 			sl = sln;
16590 		}
16591 		env->explored_states[i] = NULL;
16592 	}
16593 }
16594 
16595 static int do_check_common(struct bpf_verifier_env *env, int subprog)
16596 {
16597 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16598 	struct bpf_verifier_state *state;
16599 	struct bpf_reg_state *regs;
16600 	int ret, i;
16601 
16602 	env->prev_linfo = NULL;
16603 	env->pass_cnt++;
16604 
16605 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
16606 	if (!state)
16607 		return -ENOMEM;
16608 	state->curframe = 0;
16609 	state->speculative = false;
16610 	state->branches = 1;
16611 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
16612 	if (!state->frame[0]) {
16613 		kfree(state);
16614 		return -ENOMEM;
16615 	}
16616 	env->cur_state = state;
16617 	init_func_state(env, state->frame[0],
16618 			BPF_MAIN_FUNC /* callsite */,
16619 			0 /* frameno */,
16620 			subprog);
16621 	state->first_insn_idx = env->subprog_info[subprog].start;
16622 	state->last_insn_idx = -1;
16623 
16624 	regs = state->frame[state->curframe]->regs;
16625 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
16626 		ret = btf_prepare_func_args(env, subprog, regs);
16627 		if (ret)
16628 			goto out;
16629 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
16630 			if (regs[i].type == PTR_TO_CTX)
16631 				mark_reg_known_zero(env, regs, i);
16632 			else if (regs[i].type == SCALAR_VALUE)
16633 				mark_reg_unknown(env, regs, i);
16634 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
16635 				const u32 mem_size = regs[i].mem_size;
16636 
16637 				mark_reg_known_zero(env, regs, i);
16638 				regs[i].mem_size = mem_size;
16639 				regs[i].id = ++env->id_gen;
16640 			}
16641 		}
16642 	} else {
16643 		/* 1st arg to a function */
16644 		regs[BPF_REG_1].type = PTR_TO_CTX;
16645 		mark_reg_known_zero(env, regs, BPF_REG_1);
16646 		ret = btf_check_subprog_arg_match(env, subprog, regs);
16647 		if (ret == -EFAULT)
16648 			/* unlikely verifier bug. abort.
16649 			 * ret == 0 and ret < 0 are sadly acceptable for
16650 			 * main() function due to backward compatibility.
16651 			 * Like socket filter program may be written as:
16652 			 * int bpf_prog(struct pt_regs *ctx)
16653 			 * and never dereference that ctx in the program.
16654 			 * 'struct pt_regs' is a type mismatch for socket
16655 			 * filter that should be using 'struct __sk_buff'.
16656 			 */
16657 			goto out;
16658 	}
16659 
16660 	ret = do_check(env);
16661 out:
16662 	/* check for NULL is necessary, since cur_state can be freed inside
16663 	 * do_check() under memory pressure.
16664 	 */
16665 	if (env->cur_state) {
16666 		free_verifier_state(env->cur_state, true);
16667 		env->cur_state = NULL;
16668 	}
16669 	while (!pop_stack(env, NULL, NULL, false));
16670 	if (!ret && pop_log)
16671 		bpf_vlog_reset(&env->log, 0);
16672 	free_states(env);
16673 	return ret;
16674 }
16675 
16676 /* Verify all global functions in a BPF program one by one based on their BTF.
16677  * All global functions must pass verification. Otherwise the whole program is rejected.
16678  * Consider:
16679  * int bar(int);
16680  * int foo(int f)
16681  * {
16682  *    return bar(f);
16683  * }
16684  * int bar(int b)
16685  * {
16686  *    ...
16687  * }
16688  * foo() will be verified first for R1=any_scalar_value. During verification it
16689  * will be assumed that bar() already verified successfully and call to bar()
16690  * from foo() will be checked for type match only. Later bar() will be verified
16691  * independently to check that it's safe for R1=any_scalar_value.
16692  */
16693 static int do_check_subprogs(struct bpf_verifier_env *env)
16694 {
16695 	struct bpf_prog_aux *aux = env->prog->aux;
16696 	int i, ret;
16697 
16698 	if (!aux->func_info)
16699 		return 0;
16700 
16701 	for (i = 1; i < env->subprog_cnt; i++) {
16702 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16703 			continue;
16704 		env->insn_idx = env->subprog_info[i].start;
16705 		WARN_ON_ONCE(env->insn_idx == 0);
16706 		ret = do_check_common(env, i);
16707 		if (ret) {
16708 			return ret;
16709 		} else if (env->log.level & BPF_LOG_LEVEL) {
16710 			verbose(env,
16711 				"Func#%d is safe for any args that match its prototype\n",
16712 				i);
16713 		}
16714 	}
16715 	return 0;
16716 }
16717 
16718 static int do_check_main(struct bpf_verifier_env *env)
16719 {
16720 	int ret;
16721 
16722 	env->insn_idx = 0;
16723 	ret = do_check_common(env, 0);
16724 	if (!ret)
16725 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16726 	return ret;
16727 }
16728 
16729 
16730 static void print_verification_stats(struct bpf_verifier_env *env)
16731 {
16732 	int i;
16733 
16734 	if (env->log.level & BPF_LOG_STATS) {
16735 		verbose(env, "verification time %lld usec\n",
16736 			div_u64(env->verification_time, 1000));
16737 		verbose(env, "stack depth ");
16738 		for (i = 0; i < env->subprog_cnt; i++) {
16739 			u32 depth = env->subprog_info[i].stack_depth;
16740 
16741 			verbose(env, "%d", depth);
16742 			if (i + 1 < env->subprog_cnt)
16743 				verbose(env, "+");
16744 		}
16745 		verbose(env, "\n");
16746 	}
16747 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16748 		"total_states %d peak_states %d mark_read %d\n",
16749 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16750 		env->max_states_per_insn, env->total_states,
16751 		env->peak_states, env->longest_mark_read_walk);
16752 }
16753 
16754 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16755 {
16756 	const struct btf_type *t, *func_proto;
16757 	const struct bpf_struct_ops *st_ops;
16758 	const struct btf_member *member;
16759 	struct bpf_prog *prog = env->prog;
16760 	u32 btf_id, member_idx;
16761 	const char *mname;
16762 
16763 	if (!prog->gpl_compatible) {
16764 		verbose(env, "struct ops programs must have a GPL compatible license\n");
16765 		return -EINVAL;
16766 	}
16767 
16768 	btf_id = prog->aux->attach_btf_id;
16769 	st_ops = bpf_struct_ops_find(btf_id);
16770 	if (!st_ops) {
16771 		verbose(env, "attach_btf_id %u is not a supported struct\n",
16772 			btf_id);
16773 		return -ENOTSUPP;
16774 	}
16775 
16776 	t = st_ops->type;
16777 	member_idx = prog->expected_attach_type;
16778 	if (member_idx >= btf_type_vlen(t)) {
16779 		verbose(env, "attach to invalid member idx %u of struct %s\n",
16780 			member_idx, st_ops->name);
16781 		return -EINVAL;
16782 	}
16783 
16784 	member = &btf_type_member(t)[member_idx];
16785 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16786 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16787 					       NULL);
16788 	if (!func_proto) {
16789 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16790 			mname, member_idx, st_ops->name);
16791 		return -EINVAL;
16792 	}
16793 
16794 	if (st_ops->check_member) {
16795 		int err = st_ops->check_member(t, member);
16796 
16797 		if (err) {
16798 			verbose(env, "attach to unsupported member %s of struct %s\n",
16799 				mname, st_ops->name);
16800 			return err;
16801 		}
16802 	}
16803 
16804 	prog->aux->attach_func_proto = func_proto;
16805 	prog->aux->attach_func_name = mname;
16806 	env->ops = st_ops->verifier_ops;
16807 
16808 	return 0;
16809 }
16810 #define SECURITY_PREFIX "security_"
16811 
16812 static int check_attach_modify_return(unsigned long addr, const char *func_name)
16813 {
16814 	if (within_error_injection_list(addr) ||
16815 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
16816 		return 0;
16817 
16818 	return -EINVAL;
16819 }
16820 
16821 /* list of non-sleepable functions that are otherwise on
16822  * ALLOW_ERROR_INJECTION list
16823  */
16824 BTF_SET_START(btf_non_sleepable_error_inject)
16825 /* Three functions below can be called from sleepable and non-sleepable context.
16826  * Assume non-sleepable from bpf safety point of view.
16827  */
16828 BTF_ID(func, __filemap_add_folio)
16829 BTF_ID(func, should_fail_alloc_page)
16830 BTF_ID(func, should_failslab)
16831 BTF_SET_END(btf_non_sleepable_error_inject)
16832 
16833 static int check_non_sleepable_error_inject(u32 btf_id)
16834 {
16835 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16836 }
16837 
16838 int bpf_check_attach_target(struct bpf_verifier_log *log,
16839 			    const struct bpf_prog *prog,
16840 			    const struct bpf_prog *tgt_prog,
16841 			    u32 btf_id,
16842 			    struct bpf_attach_target_info *tgt_info)
16843 {
16844 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
16845 	const char prefix[] = "btf_trace_";
16846 	int ret = 0, subprog = -1, i;
16847 	const struct btf_type *t;
16848 	bool conservative = true;
16849 	const char *tname;
16850 	struct btf *btf;
16851 	long addr = 0;
16852 
16853 	if (!btf_id) {
16854 		bpf_log(log, "Tracing programs must provide btf_id\n");
16855 		return -EINVAL;
16856 	}
16857 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
16858 	if (!btf) {
16859 		bpf_log(log,
16860 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16861 		return -EINVAL;
16862 	}
16863 	t = btf_type_by_id(btf, btf_id);
16864 	if (!t) {
16865 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
16866 		return -EINVAL;
16867 	}
16868 	tname = btf_name_by_offset(btf, t->name_off);
16869 	if (!tname) {
16870 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
16871 		return -EINVAL;
16872 	}
16873 	if (tgt_prog) {
16874 		struct bpf_prog_aux *aux = tgt_prog->aux;
16875 
16876 		if (bpf_prog_is_dev_bound(prog->aux) &&
16877 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
16878 			bpf_log(log, "Target program bound device mismatch");
16879 			return -EINVAL;
16880 		}
16881 
16882 		for (i = 0; i < aux->func_info_cnt; i++)
16883 			if (aux->func_info[i].type_id == btf_id) {
16884 				subprog = i;
16885 				break;
16886 			}
16887 		if (subprog == -1) {
16888 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
16889 			return -EINVAL;
16890 		}
16891 		conservative = aux->func_info_aux[subprog].unreliable;
16892 		if (prog_extension) {
16893 			if (conservative) {
16894 				bpf_log(log,
16895 					"Cannot replace static functions\n");
16896 				return -EINVAL;
16897 			}
16898 			if (!prog->jit_requested) {
16899 				bpf_log(log,
16900 					"Extension programs should be JITed\n");
16901 				return -EINVAL;
16902 			}
16903 		}
16904 		if (!tgt_prog->jited) {
16905 			bpf_log(log, "Can attach to only JITed progs\n");
16906 			return -EINVAL;
16907 		}
16908 		if (tgt_prog->type == prog->type) {
16909 			/* Cannot fentry/fexit another fentry/fexit program.
16910 			 * Cannot attach program extension to another extension.
16911 			 * It's ok to attach fentry/fexit to extension program.
16912 			 */
16913 			bpf_log(log, "Cannot recursively attach\n");
16914 			return -EINVAL;
16915 		}
16916 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16917 		    prog_extension &&
16918 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16919 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16920 			/* Program extensions can extend all program types
16921 			 * except fentry/fexit. The reason is the following.
16922 			 * The fentry/fexit programs are used for performance
16923 			 * analysis, stats and can be attached to any program
16924 			 * type except themselves. When extension program is
16925 			 * replacing XDP function it is necessary to allow
16926 			 * performance analysis of all functions. Both original
16927 			 * XDP program and its program extension. Hence
16928 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16929 			 * allowed. If extending of fentry/fexit was allowed it
16930 			 * would be possible to create long call chain
16931 			 * fentry->extension->fentry->extension beyond
16932 			 * reasonable stack size. Hence extending fentry is not
16933 			 * allowed.
16934 			 */
16935 			bpf_log(log, "Cannot extend fentry/fexit\n");
16936 			return -EINVAL;
16937 		}
16938 	} else {
16939 		if (prog_extension) {
16940 			bpf_log(log, "Cannot replace kernel functions\n");
16941 			return -EINVAL;
16942 		}
16943 	}
16944 
16945 	switch (prog->expected_attach_type) {
16946 	case BPF_TRACE_RAW_TP:
16947 		if (tgt_prog) {
16948 			bpf_log(log,
16949 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16950 			return -EINVAL;
16951 		}
16952 		if (!btf_type_is_typedef(t)) {
16953 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
16954 				btf_id);
16955 			return -EINVAL;
16956 		}
16957 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
16958 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
16959 				btf_id, tname);
16960 			return -EINVAL;
16961 		}
16962 		tname += sizeof(prefix) - 1;
16963 		t = btf_type_by_id(btf, t->type);
16964 		if (!btf_type_is_ptr(t))
16965 			/* should never happen in valid vmlinux build */
16966 			return -EINVAL;
16967 		t = btf_type_by_id(btf, t->type);
16968 		if (!btf_type_is_func_proto(t))
16969 			/* should never happen in valid vmlinux build */
16970 			return -EINVAL;
16971 
16972 		break;
16973 	case BPF_TRACE_ITER:
16974 		if (!btf_type_is_func(t)) {
16975 			bpf_log(log, "attach_btf_id %u is not a function\n",
16976 				btf_id);
16977 			return -EINVAL;
16978 		}
16979 		t = btf_type_by_id(btf, t->type);
16980 		if (!btf_type_is_func_proto(t))
16981 			return -EINVAL;
16982 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16983 		if (ret)
16984 			return ret;
16985 		break;
16986 	default:
16987 		if (!prog_extension)
16988 			return -EINVAL;
16989 		fallthrough;
16990 	case BPF_MODIFY_RETURN:
16991 	case BPF_LSM_MAC:
16992 	case BPF_LSM_CGROUP:
16993 	case BPF_TRACE_FENTRY:
16994 	case BPF_TRACE_FEXIT:
16995 		if (!btf_type_is_func(t)) {
16996 			bpf_log(log, "attach_btf_id %u is not a function\n",
16997 				btf_id);
16998 			return -EINVAL;
16999 		}
17000 		if (prog_extension &&
17001 		    btf_check_type_match(log, prog, btf, t))
17002 			return -EINVAL;
17003 		t = btf_type_by_id(btf, t->type);
17004 		if (!btf_type_is_func_proto(t))
17005 			return -EINVAL;
17006 
17007 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
17008 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
17009 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
17010 			return -EINVAL;
17011 
17012 		if (tgt_prog && conservative)
17013 			t = NULL;
17014 
17015 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
17016 		if (ret < 0)
17017 			return ret;
17018 
17019 		if (tgt_prog) {
17020 			if (subprog == 0)
17021 				addr = (long) tgt_prog->bpf_func;
17022 			else
17023 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
17024 		} else {
17025 			addr = kallsyms_lookup_name(tname);
17026 			if (!addr) {
17027 				bpf_log(log,
17028 					"The address of function %s cannot be found\n",
17029 					tname);
17030 				return -ENOENT;
17031 			}
17032 		}
17033 
17034 		if (prog->aux->sleepable) {
17035 			ret = -EINVAL;
17036 			switch (prog->type) {
17037 			case BPF_PROG_TYPE_TRACING:
17038 
17039 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
17040 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
17041 				 */
17042 				if (!check_non_sleepable_error_inject(btf_id) &&
17043 				    within_error_injection_list(addr))
17044 					ret = 0;
17045 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
17046 				 * in the fmodret id set with the KF_SLEEPABLE flag.
17047 				 */
17048 				else {
17049 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
17050 
17051 					if (flags && (*flags & KF_SLEEPABLE))
17052 						ret = 0;
17053 				}
17054 				break;
17055 			case BPF_PROG_TYPE_LSM:
17056 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
17057 				 * Only some of them are sleepable.
17058 				 */
17059 				if (bpf_lsm_is_sleepable_hook(btf_id))
17060 					ret = 0;
17061 				break;
17062 			default:
17063 				break;
17064 			}
17065 			if (ret) {
17066 				bpf_log(log, "%s is not sleepable\n", tname);
17067 				return ret;
17068 			}
17069 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
17070 			if (tgt_prog) {
17071 				bpf_log(log, "can't modify return codes of BPF programs\n");
17072 				return -EINVAL;
17073 			}
17074 			ret = -EINVAL;
17075 			if (btf_kfunc_is_modify_return(btf, btf_id) ||
17076 			    !check_attach_modify_return(addr, tname))
17077 				ret = 0;
17078 			if (ret) {
17079 				bpf_log(log, "%s() is not modifiable\n", tname);
17080 				return ret;
17081 			}
17082 		}
17083 
17084 		break;
17085 	}
17086 	tgt_info->tgt_addr = addr;
17087 	tgt_info->tgt_name = tname;
17088 	tgt_info->tgt_type = t;
17089 	return 0;
17090 }
17091 
17092 BTF_SET_START(btf_id_deny)
17093 BTF_ID_UNUSED
17094 #ifdef CONFIG_SMP
17095 BTF_ID(func, migrate_disable)
17096 BTF_ID(func, migrate_enable)
17097 #endif
17098 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
17099 BTF_ID(func, rcu_read_unlock_strict)
17100 #endif
17101 BTF_SET_END(btf_id_deny)
17102 
17103 static bool can_be_sleepable(struct bpf_prog *prog)
17104 {
17105 	if (prog->type == BPF_PROG_TYPE_TRACING) {
17106 		switch (prog->expected_attach_type) {
17107 		case BPF_TRACE_FENTRY:
17108 		case BPF_TRACE_FEXIT:
17109 		case BPF_MODIFY_RETURN:
17110 		case BPF_TRACE_ITER:
17111 			return true;
17112 		default:
17113 			return false;
17114 		}
17115 	}
17116 	return prog->type == BPF_PROG_TYPE_LSM ||
17117 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
17118 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
17119 }
17120 
17121 static int check_attach_btf_id(struct bpf_verifier_env *env)
17122 {
17123 	struct bpf_prog *prog = env->prog;
17124 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
17125 	struct bpf_attach_target_info tgt_info = {};
17126 	u32 btf_id = prog->aux->attach_btf_id;
17127 	struct bpf_trampoline *tr;
17128 	int ret;
17129 	u64 key;
17130 
17131 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
17132 		if (prog->aux->sleepable)
17133 			/* attach_btf_id checked to be zero already */
17134 			return 0;
17135 		verbose(env, "Syscall programs can only be sleepable\n");
17136 		return -EINVAL;
17137 	}
17138 
17139 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
17140 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
17141 		return -EINVAL;
17142 	}
17143 
17144 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
17145 		return check_struct_ops_btf_id(env);
17146 
17147 	if (prog->type != BPF_PROG_TYPE_TRACING &&
17148 	    prog->type != BPF_PROG_TYPE_LSM &&
17149 	    prog->type != BPF_PROG_TYPE_EXT)
17150 		return 0;
17151 
17152 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
17153 	if (ret)
17154 		return ret;
17155 
17156 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
17157 		/* to make freplace equivalent to their targets, they need to
17158 		 * inherit env->ops and expected_attach_type for the rest of the
17159 		 * verification
17160 		 */
17161 		env->ops = bpf_verifier_ops[tgt_prog->type];
17162 		prog->expected_attach_type = tgt_prog->expected_attach_type;
17163 	}
17164 
17165 	/* store info about the attachment target that will be used later */
17166 	prog->aux->attach_func_proto = tgt_info.tgt_type;
17167 	prog->aux->attach_func_name = tgt_info.tgt_name;
17168 
17169 	if (tgt_prog) {
17170 		prog->aux->saved_dst_prog_type = tgt_prog->type;
17171 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
17172 	}
17173 
17174 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
17175 		prog->aux->attach_btf_trace = true;
17176 		return 0;
17177 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
17178 		if (!bpf_iter_prog_supported(prog))
17179 			return -EINVAL;
17180 		return 0;
17181 	}
17182 
17183 	if (prog->type == BPF_PROG_TYPE_LSM) {
17184 		ret = bpf_lsm_verify_prog(&env->log, prog);
17185 		if (ret < 0)
17186 			return ret;
17187 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
17188 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
17189 		return -EINVAL;
17190 	}
17191 
17192 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
17193 	tr = bpf_trampoline_get(key, &tgt_info);
17194 	if (!tr)
17195 		return -ENOMEM;
17196 
17197 	prog->aux->dst_trampoline = tr;
17198 	return 0;
17199 }
17200 
17201 struct btf *bpf_get_btf_vmlinux(void)
17202 {
17203 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
17204 		mutex_lock(&bpf_verifier_lock);
17205 		if (!btf_vmlinux)
17206 			btf_vmlinux = btf_parse_vmlinux();
17207 		mutex_unlock(&bpf_verifier_lock);
17208 	}
17209 	return btf_vmlinux;
17210 }
17211 
17212 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
17213 {
17214 	u64 start_time = ktime_get_ns();
17215 	struct bpf_verifier_env *env;
17216 	struct bpf_verifier_log *log;
17217 	int i, len, ret = -EINVAL;
17218 	bool is_priv;
17219 
17220 	/* no program is valid */
17221 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
17222 		return -EINVAL;
17223 
17224 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
17225 	 * allocate/free it every time bpf_check() is called
17226 	 */
17227 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
17228 	if (!env)
17229 		return -ENOMEM;
17230 	log = &env->log;
17231 
17232 	len = (*prog)->len;
17233 	env->insn_aux_data =
17234 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
17235 	ret = -ENOMEM;
17236 	if (!env->insn_aux_data)
17237 		goto err_free_env;
17238 	for (i = 0; i < len; i++)
17239 		env->insn_aux_data[i].orig_idx = i;
17240 	env->prog = *prog;
17241 	env->ops = bpf_verifier_ops[env->prog->type];
17242 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
17243 	is_priv = bpf_capable();
17244 
17245 	bpf_get_btf_vmlinux();
17246 
17247 	/* grab the mutex to protect few globals used by verifier */
17248 	if (!is_priv)
17249 		mutex_lock(&bpf_verifier_lock);
17250 
17251 	if (attr->log_level || attr->log_buf || attr->log_size) {
17252 		/* user requested verbose verifier output
17253 		 * and supplied buffer to store the verification trace
17254 		 */
17255 		log->level = attr->log_level;
17256 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
17257 		log->len_total = attr->log_size;
17258 
17259 		/* log attributes have to be sane */
17260 		if (!bpf_verifier_log_attr_valid(log)) {
17261 			ret = -EINVAL;
17262 			goto err_unlock;
17263 		}
17264 	}
17265 
17266 	mark_verifier_state_clean(env);
17267 
17268 	if (IS_ERR(btf_vmlinux)) {
17269 		/* Either gcc or pahole or kernel are broken. */
17270 		verbose(env, "in-kernel BTF is malformed\n");
17271 		ret = PTR_ERR(btf_vmlinux);
17272 		goto skip_full_check;
17273 	}
17274 
17275 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
17276 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
17277 		env->strict_alignment = true;
17278 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
17279 		env->strict_alignment = false;
17280 
17281 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
17282 	env->allow_uninit_stack = bpf_allow_uninit_stack();
17283 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
17284 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
17285 	env->bpf_capable = bpf_capable();
17286 	env->rcu_tag_supported = btf_vmlinux &&
17287 		btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0;
17288 
17289 	if (is_priv)
17290 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
17291 
17292 	env->explored_states = kvcalloc(state_htab_size(env),
17293 				       sizeof(struct bpf_verifier_state_list *),
17294 				       GFP_USER);
17295 	ret = -ENOMEM;
17296 	if (!env->explored_states)
17297 		goto skip_full_check;
17298 
17299 	ret = add_subprog_and_kfunc(env);
17300 	if (ret < 0)
17301 		goto skip_full_check;
17302 
17303 	ret = check_subprogs(env);
17304 	if (ret < 0)
17305 		goto skip_full_check;
17306 
17307 	ret = check_btf_info(env, attr, uattr);
17308 	if (ret < 0)
17309 		goto skip_full_check;
17310 
17311 	ret = check_attach_btf_id(env);
17312 	if (ret)
17313 		goto skip_full_check;
17314 
17315 	ret = resolve_pseudo_ldimm64(env);
17316 	if (ret < 0)
17317 		goto skip_full_check;
17318 
17319 	if (bpf_prog_is_offloaded(env->prog->aux)) {
17320 		ret = bpf_prog_offload_verifier_prep(env->prog);
17321 		if (ret)
17322 			goto skip_full_check;
17323 	}
17324 
17325 	ret = check_cfg(env);
17326 	if (ret < 0)
17327 		goto skip_full_check;
17328 
17329 	ret = do_check_subprogs(env);
17330 	ret = ret ?: do_check_main(env);
17331 
17332 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
17333 		ret = bpf_prog_offload_finalize(env);
17334 
17335 skip_full_check:
17336 	kvfree(env->explored_states);
17337 
17338 	if (ret == 0)
17339 		ret = check_max_stack_depth(env);
17340 
17341 	/* instruction rewrites happen after this point */
17342 	if (ret == 0)
17343 		ret = optimize_bpf_loop(env);
17344 
17345 	if (is_priv) {
17346 		if (ret == 0)
17347 			opt_hard_wire_dead_code_branches(env);
17348 		if (ret == 0)
17349 			ret = opt_remove_dead_code(env);
17350 		if (ret == 0)
17351 			ret = opt_remove_nops(env);
17352 	} else {
17353 		if (ret == 0)
17354 			sanitize_dead_code(env);
17355 	}
17356 
17357 	if (ret == 0)
17358 		/* program is valid, convert *(u32*)(ctx + off) accesses */
17359 		ret = convert_ctx_accesses(env);
17360 
17361 	if (ret == 0)
17362 		ret = do_misc_fixups(env);
17363 
17364 	/* do 32-bit optimization after insn patching has done so those patched
17365 	 * insns could be handled correctly.
17366 	 */
17367 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
17368 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
17369 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
17370 								     : false;
17371 	}
17372 
17373 	if (ret == 0)
17374 		ret = fixup_call_args(env);
17375 
17376 	env->verification_time = ktime_get_ns() - start_time;
17377 	print_verification_stats(env);
17378 	env->prog->aux->verified_insns = env->insn_processed;
17379 
17380 	if (log->level && bpf_verifier_log_full(log))
17381 		ret = -ENOSPC;
17382 	if (log->level && !log->ubuf) {
17383 		ret = -EFAULT;
17384 		goto err_release_maps;
17385 	}
17386 
17387 	if (ret)
17388 		goto err_release_maps;
17389 
17390 	if (env->used_map_cnt) {
17391 		/* if program passed verifier, update used_maps in bpf_prog_info */
17392 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
17393 							  sizeof(env->used_maps[0]),
17394 							  GFP_KERNEL);
17395 
17396 		if (!env->prog->aux->used_maps) {
17397 			ret = -ENOMEM;
17398 			goto err_release_maps;
17399 		}
17400 
17401 		memcpy(env->prog->aux->used_maps, env->used_maps,
17402 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
17403 		env->prog->aux->used_map_cnt = env->used_map_cnt;
17404 	}
17405 	if (env->used_btf_cnt) {
17406 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
17407 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
17408 							  sizeof(env->used_btfs[0]),
17409 							  GFP_KERNEL);
17410 		if (!env->prog->aux->used_btfs) {
17411 			ret = -ENOMEM;
17412 			goto err_release_maps;
17413 		}
17414 
17415 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
17416 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
17417 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
17418 	}
17419 	if (env->used_map_cnt || env->used_btf_cnt) {
17420 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
17421 		 * bpf_ld_imm64 instructions
17422 		 */
17423 		convert_pseudo_ld_imm64(env);
17424 	}
17425 
17426 	adjust_btf_func(env);
17427 
17428 err_release_maps:
17429 	if (!env->prog->aux->used_maps)
17430 		/* if we didn't copy map pointers into bpf_prog_info, release
17431 		 * them now. Otherwise free_used_maps() will release them.
17432 		 */
17433 		release_maps(env);
17434 	if (!env->prog->aux->used_btfs)
17435 		release_btfs(env);
17436 
17437 	/* extension progs temporarily inherit the attach_type of their targets
17438 	   for verification purposes, so set it back to zero before returning
17439 	 */
17440 	if (env->prog->type == BPF_PROG_TYPE_EXT)
17441 		env->prog->expected_attach_type = 0;
17442 
17443 	*prog = env->prog;
17444 err_unlock:
17445 	if (!is_priv)
17446 		mutex_unlock(&bpf_verifier_lock);
17447 	vfree(env->insn_aux_data);
17448 err_free_env:
17449 	kfree(env);
17450 	return ret;
17451 }
17452