xref: /openbmc/linux/kernel/bpf/helpers.c (revision 8e1b52c15c81106456437f8e49575040e489e355)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 
26 #include "../../lib/kstrtox.h"
27 
28 /* If kernel subsystem is allowing eBPF programs to call this function,
29  * inside its own verifier_ops->get_func_proto() callback it should return
30  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
31  *
32  * Different map implementations will rely on rcu in map methods
33  * lookup/update/delete, therefore eBPF programs must run under rcu lock
34  * if program is allowed to access maps, so check rcu_read_lock_held() or
35  * rcu_read_lock_trace_held() in all three functions.
36  */
37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
38 {
39 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
40 		     !rcu_read_lock_bh_held());
41 	return (unsigned long) map->ops->map_lookup_elem(map, key);
42 }
43 
44 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
45 	.func		= bpf_map_lookup_elem,
46 	.gpl_only	= false,
47 	.pkt_access	= true,
48 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
49 	.arg1_type	= ARG_CONST_MAP_PTR,
50 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
51 };
52 
53 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
54 	   void *, value, u64, flags)
55 {
56 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
57 		     !rcu_read_lock_bh_held());
58 	return map->ops->map_update_elem(map, key, value, flags);
59 }
60 
61 const struct bpf_func_proto bpf_map_update_elem_proto = {
62 	.func		= bpf_map_update_elem,
63 	.gpl_only	= false,
64 	.pkt_access	= true,
65 	.ret_type	= RET_INTEGER,
66 	.arg1_type	= ARG_CONST_MAP_PTR,
67 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
68 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
69 	.arg4_type	= ARG_ANYTHING,
70 };
71 
72 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
73 {
74 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
75 		     !rcu_read_lock_bh_held());
76 	return map->ops->map_delete_elem(map, key);
77 }
78 
79 const struct bpf_func_proto bpf_map_delete_elem_proto = {
80 	.func		= bpf_map_delete_elem,
81 	.gpl_only	= false,
82 	.pkt_access	= true,
83 	.ret_type	= RET_INTEGER,
84 	.arg1_type	= ARG_CONST_MAP_PTR,
85 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
86 };
87 
88 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
89 {
90 	return map->ops->map_push_elem(map, value, flags);
91 }
92 
93 const struct bpf_func_proto bpf_map_push_elem_proto = {
94 	.func		= bpf_map_push_elem,
95 	.gpl_only	= false,
96 	.pkt_access	= true,
97 	.ret_type	= RET_INTEGER,
98 	.arg1_type	= ARG_CONST_MAP_PTR,
99 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
100 	.arg3_type	= ARG_ANYTHING,
101 };
102 
103 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
104 {
105 	return map->ops->map_pop_elem(map, value);
106 }
107 
108 const struct bpf_func_proto bpf_map_pop_elem_proto = {
109 	.func		= bpf_map_pop_elem,
110 	.gpl_only	= false,
111 	.ret_type	= RET_INTEGER,
112 	.arg1_type	= ARG_CONST_MAP_PTR,
113 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
114 };
115 
116 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
117 {
118 	return map->ops->map_peek_elem(map, value);
119 }
120 
121 const struct bpf_func_proto bpf_map_peek_elem_proto = {
122 	.func		= bpf_map_peek_elem,
123 	.gpl_only	= false,
124 	.ret_type	= RET_INTEGER,
125 	.arg1_type	= ARG_CONST_MAP_PTR,
126 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
127 };
128 
129 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
130 {
131 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
132 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
133 }
134 
135 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
136 	.func		= bpf_map_lookup_percpu_elem,
137 	.gpl_only	= false,
138 	.pkt_access	= true,
139 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
140 	.arg1_type	= ARG_CONST_MAP_PTR,
141 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
142 	.arg3_type	= ARG_ANYTHING,
143 };
144 
145 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
146 	.func		= bpf_user_rnd_u32,
147 	.gpl_only	= false,
148 	.ret_type	= RET_INTEGER,
149 };
150 
151 BPF_CALL_0(bpf_get_smp_processor_id)
152 {
153 	return smp_processor_id();
154 }
155 
156 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
157 	.func		= bpf_get_smp_processor_id,
158 	.gpl_only	= false,
159 	.ret_type	= RET_INTEGER,
160 };
161 
162 BPF_CALL_0(bpf_get_numa_node_id)
163 {
164 	return numa_node_id();
165 }
166 
167 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
168 	.func		= bpf_get_numa_node_id,
169 	.gpl_only	= false,
170 	.ret_type	= RET_INTEGER,
171 };
172 
173 BPF_CALL_0(bpf_ktime_get_ns)
174 {
175 	/* NMI safe access to clock monotonic */
176 	return ktime_get_mono_fast_ns();
177 }
178 
179 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
180 	.func		= bpf_ktime_get_ns,
181 	.gpl_only	= false,
182 	.ret_type	= RET_INTEGER,
183 };
184 
185 BPF_CALL_0(bpf_ktime_get_boot_ns)
186 {
187 	/* NMI safe access to clock boottime */
188 	return ktime_get_boot_fast_ns();
189 }
190 
191 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
192 	.func		= bpf_ktime_get_boot_ns,
193 	.gpl_only	= false,
194 	.ret_type	= RET_INTEGER,
195 };
196 
197 BPF_CALL_0(bpf_ktime_get_coarse_ns)
198 {
199 	return ktime_get_coarse_ns();
200 }
201 
202 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
203 	.func		= bpf_ktime_get_coarse_ns,
204 	.gpl_only	= false,
205 	.ret_type	= RET_INTEGER,
206 };
207 
208 BPF_CALL_0(bpf_ktime_get_tai_ns)
209 {
210 	/* NMI safe access to clock tai */
211 	return ktime_get_tai_fast_ns();
212 }
213 
214 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
215 	.func		= bpf_ktime_get_tai_ns,
216 	.gpl_only	= false,
217 	.ret_type	= RET_INTEGER,
218 };
219 
220 BPF_CALL_0(bpf_get_current_pid_tgid)
221 {
222 	struct task_struct *task = current;
223 
224 	if (unlikely(!task))
225 		return -EINVAL;
226 
227 	return (u64) task->tgid << 32 | task->pid;
228 }
229 
230 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
231 	.func		= bpf_get_current_pid_tgid,
232 	.gpl_only	= false,
233 	.ret_type	= RET_INTEGER,
234 };
235 
236 BPF_CALL_0(bpf_get_current_uid_gid)
237 {
238 	struct task_struct *task = current;
239 	kuid_t uid;
240 	kgid_t gid;
241 
242 	if (unlikely(!task))
243 		return -EINVAL;
244 
245 	current_uid_gid(&uid, &gid);
246 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
247 		     from_kuid(&init_user_ns, uid);
248 }
249 
250 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
251 	.func		= bpf_get_current_uid_gid,
252 	.gpl_only	= false,
253 	.ret_type	= RET_INTEGER,
254 };
255 
256 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
257 {
258 	struct task_struct *task = current;
259 
260 	if (unlikely(!task))
261 		goto err_clear;
262 
263 	/* Verifier guarantees that size > 0 */
264 	strscpy_pad(buf, task->comm, size);
265 	return 0;
266 err_clear:
267 	memset(buf, 0, size);
268 	return -EINVAL;
269 }
270 
271 const struct bpf_func_proto bpf_get_current_comm_proto = {
272 	.func		= bpf_get_current_comm,
273 	.gpl_only	= false,
274 	.ret_type	= RET_INTEGER,
275 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
276 	.arg2_type	= ARG_CONST_SIZE,
277 };
278 
279 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
280 
281 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
282 {
283 	arch_spinlock_t *l = (void *)lock;
284 	union {
285 		__u32 val;
286 		arch_spinlock_t lock;
287 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
288 
289 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
290 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
291 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
292 	preempt_disable();
293 	arch_spin_lock(l);
294 }
295 
296 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
297 {
298 	arch_spinlock_t *l = (void *)lock;
299 
300 	arch_spin_unlock(l);
301 	preempt_enable();
302 }
303 
304 #else
305 
306 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
307 {
308 	atomic_t *l = (void *)lock;
309 
310 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
311 	do {
312 		atomic_cond_read_relaxed(l, !VAL);
313 	} while (atomic_xchg(l, 1));
314 }
315 
316 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
317 {
318 	atomic_t *l = (void *)lock;
319 
320 	atomic_set_release(l, 0);
321 }
322 
323 #endif
324 
325 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
326 
327 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
328 {
329 	unsigned long flags;
330 
331 	local_irq_save(flags);
332 	__bpf_spin_lock(lock);
333 	__this_cpu_write(irqsave_flags, flags);
334 }
335 
336 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
337 {
338 	__bpf_spin_lock_irqsave(lock);
339 	return 0;
340 }
341 
342 const struct bpf_func_proto bpf_spin_lock_proto = {
343 	.func		= bpf_spin_lock,
344 	.gpl_only	= false,
345 	.ret_type	= RET_VOID,
346 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
347 	.arg1_btf_id    = BPF_PTR_POISON,
348 };
349 
350 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
351 {
352 	unsigned long flags;
353 
354 	flags = __this_cpu_read(irqsave_flags);
355 	__bpf_spin_unlock(lock);
356 	local_irq_restore(flags);
357 }
358 
359 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
360 {
361 	__bpf_spin_unlock_irqrestore(lock);
362 	return 0;
363 }
364 
365 const struct bpf_func_proto bpf_spin_unlock_proto = {
366 	.func		= bpf_spin_unlock,
367 	.gpl_only	= false,
368 	.ret_type	= RET_VOID,
369 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
370 	.arg1_btf_id    = BPF_PTR_POISON,
371 };
372 
373 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
374 			   bool lock_src)
375 {
376 	struct bpf_spin_lock *lock;
377 
378 	if (lock_src)
379 		lock = src + map->record->spin_lock_off;
380 	else
381 		lock = dst + map->record->spin_lock_off;
382 	preempt_disable();
383 	__bpf_spin_lock_irqsave(lock);
384 	copy_map_value(map, dst, src);
385 	__bpf_spin_unlock_irqrestore(lock);
386 	preempt_enable();
387 }
388 
389 BPF_CALL_0(bpf_jiffies64)
390 {
391 	return get_jiffies_64();
392 }
393 
394 const struct bpf_func_proto bpf_jiffies64_proto = {
395 	.func		= bpf_jiffies64,
396 	.gpl_only	= false,
397 	.ret_type	= RET_INTEGER,
398 };
399 
400 #ifdef CONFIG_CGROUPS
401 BPF_CALL_0(bpf_get_current_cgroup_id)
402 {
403 	struct cgroup *cgrp;
404 	u64 cgrp_id;
405 
406 	rcu_read_lock();
407 	cgrp = task_dfl_cgroup(current);
408 	cgrp_id = cgroup_id(cgrp);
409 	rcu_read_unlock();
410 
411 	return cgrp_id;
412 }
413 
414 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
415 	.func		= bpf_get_current_cgroup_id,
416 	.gpl_only	= false,
417 	.ret_type	= RET_INTEGER,
418 };
419 
420 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
421 {
422 	struct cgroup *cgrp;
423 	struct cgroup *ancestor;
424 	u64 cgrp_id;
425 
426 	rcu_read_lock();
427 	cgrp = task_dfl_cgroup(current);
428 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
429 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
430 	rcu_read_unlock();
431 
432 	return cgrp_id;
433 }
434 
435 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
436 	.func		= bpf_get_current_ancestor_cgroup_id,
437 	.gpl_only	= false,
438 	.ret_type	= RET_INTEGER,
439 	.arg1_type	= ARG_ANYTHING,
440 };
441 #endif /* CONFIG_CGROUPS */
442 
443 #define BPF_STRTOX_BASE_MASK 0x1F
444 
445 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
446 			  unsigned long long *res, bool *is_negative)
447 {
448 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
449 	const char *cur_buf = buf;
450 	size_t cur_len = buf_len;
451 	unsigned int consumed;
452 	size_t val_len;
453 	char str[64];
454 
455 	if (!buf || !buf_len || !res || !is_negative)
456 		return -EINVAL;
457 
458 	if (base != 0 && base != 8 && base != 10 && base != 16)
459 		return -EINVAL;
460 
461 	if (flags & ~BPF_STRTOX_BASE_MASK)
462 		return -EINVAL;
463 
464 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
465 		++cur_buf;
466 
467 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
468 	if (*is_negative)
469 		++cur_buf;
470 
471 	consumed = cur_buf - buf;
472 	cur_len -= consumed;
473 	if (!cur_len)
474 		return -EINVAL;
475 
476 	cur_len = min(cur_len, sizeof(str) - 1);
477 	memcpy(str, cur_buf, cur_len);
478 	str[cur_len] = '\0';
479 	cur_buf = str;
480 
481 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
482 	val_len = _parse_integer(cur_buf, base, res);
483 
484 	if (val_len & KSTRTOX_OVERFLOW)
485 		return -ERANGE;
486 
487 	if (val_len == 0)
488 		return -EINVAL;
489 
490 	cur_buf += val_len;
491 	consumed += cur_buf - str;
492 
493 	return consumed;
494 }
495 
496 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
497 			 long long *res)
498 {
499 	unsigned long long _res;
500 	bool is_negative;
501 	int err;
502 
503 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
504 	if (err < 0)
505 		return err;
506 	if (is_negative) {
507 		if ((long long)-_res > 0)
508 			return -ERANGE;
509 		*res = -_res;
510 	} else {
511 		if ((long long)_res < 0)
512 			return -ERANGE;
513 		*res = _res;
514 	}
515 	return err;
516 }
517 
518 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
519 	   s64 *, res)
520 {
521 	long long _res;
522 	int err;
523 
524 	*res = 0;
525 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
526 	if (err < 0)
527 		return err;
528 	if (_res != (long)_res)
529 		return -ERANGE;
530 	*res = _res;
531 	return err;
532 }
533 
534 const struct bpf_func_proto bpf_strtol_proto = {
535 	.func		= bpf_strtol,
536 	.gpl_only	= false,
537 	.ret_type	= RET_INTEGER,
538 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
539 	.arg2_type	= ARG_CONST_SIZE,
540 	.arg3_type	= ARG_ANYTHING,
541 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
542 	.arg4_size	= sizeof(s64),
543 };
544 
545 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
546 	   u64 *, res)
547 {
548 	unsigned long long _res;
549 	bool is_negative;
550 	int err;
551 
552 	*res = 0;
553 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
554 	if (err < 0)
555 		return err;
556 	if (is_negative)
557 		return -EINVAL;
558 	if (_res != (unsigned long)_res)
559 		return -ERANGE;
560 	*res = _res;
561 	return err;
562 }
563 
564 const struct bpf_func_proto bpf_strtoul_proto = {
565 	.func		= bpf_strtoul,
566 	.gpl_only	= false,
567 	.ret_type	= RET_INTEGER,
568 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
569 	.arg2_type	= ARG_CONST_SIZE,
570 	.arg3_type	= ARG_ANYTHING,
571 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
572 	.arg4_size	= sizeof(u64),
573 };
574 
575 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
576 {
577 	return strncmp(s1, s2, s1_sz);
578 }
579 
580 static const struct bpf_func_proto bpf_strncmp_proto = {
581 	.func		= bpf_strncmp,
582 	.gpl_only	= false,
583 	.ret_type	= RET_INTEGER,
584 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
585 	.arg2_type	= ARG_CONST_SIZE,
586 	.arg3_type	= ARG_PTR_TO_CONST_STR,
587 };
588 
589 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
590 	   struct bpf_pidns_info *, nsdata, u32, size)
591 {
592 	struct task_struct *task = current;
593 	struct pid_namespace *pidns;
594 	int err = -EINVAL;
595 
596 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
597 		goto clear;
598 
599 	if (unlikely((u64)(dev_t)dev != dev))
600 		goto clear;
601 
602 	if (unlikely(!task))
603 		goto clear;
604 
605 	pidns = task_active_pid_ns(task);
606 	if (unlikely(!pidns)) {
607 		err = -ENOENT;
608 		goto clear;
609 	}
610 
611 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
612 		goto clear;
613 
614 	nsdata->pid = task_pid_nr_ns(task, pidns);
615 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
616 	return 0;
617 clear:
618 	memset((void *)nsdata, 0, (size_t) size);
619 	return err;
620 }
621 
622 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
623 	.func		= bpf_get_ns_current_pid_tgid,
624 	.gpl_only	= false,
625 	.ret_type	= RET_INTEGER,
626 	.arg1_type	= ARG_ANYTHING,
627 	.arg2_type	= ARG_ANYTHING,
628 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
629 	.arg4_type      = ARG_CONST_SIZE,
630 };
631 
632 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
633 	.func		= bpf_get_raw_cpu_id,
634 	.gpl_only	= false,
635 	.ret_type	= RET_INTEGER,
636 };
637 
638 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
639 	   u64, flags, void *, data, u64, size)
640 {
641 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
642 		return -EINVAL;
643 
644 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
645 }
646 
647 const struct bpf_func_proto bpf_event_output_data_proto =  {
648 	.func		= bpf_event_output_data,
649 	.gpl_only       = true,
650 	.ret_type       = RET_INTEGER,
651 	.arg1_type      = ARG_PTR_TO_CTX,
652 	.arg2_type      = ARG_CONST_MAP_PTR,
653 	.arg3_type      = ARG_ANYTHING,
654 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
655 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
656 };
657 
658 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
659 	   const void __user *, user_ptr)
660 {
661 	int ret = copy_from_user(dst, user_ptr, size);
662 
663 	if (unlikely(ret)) {
664 		memset(dst, 0, size);
665 		ret = -EFAULT;
666 	}
667 
668 	return ret;
669 }
670 
671 const struct bpf_func_proto bpf_copy_from_user_proto = {
672 	.func		= bpf_copy_from_user,
673 	.gpl_only	= false,
674 	.might_sleep	= true,
675 	.ret_type	= RET_INTEGER,
676 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
677 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
678 	.arg3_type	= ARG_ANYTHING,
679 };
680 
681 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
682 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
683 {
684 	int ret;
685 
686 	/* flags is not used yet */
687 	if (unlikely(flags))
688 		return -EINVAL;
689 
690 	if (unlikely(!size))
691 		return 0;
692 
693 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
694 	if (ret == size)
695 		return 0;
696 
697 	memset(dst, 0, size);
698 	/* Return -EFAULT for partial read */
699 	return ret < 0 ? ret : -EFAULT;
700 }
701 
702 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
703 	.func		= bpf_copy_from_user_task,
704 	.gpl_only	= true,
705 	.might_sleep	= true,
706 	.ret_type	= RET_INTEGER,
707 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
708 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
709 	.arg3_type	= ARG_ANYTHING,
710 	.arg4_type	= ARG_PTR_TO_BTF_ID,
711 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
712 	.arg5_type	= ARG_ANYTHING
713 };
714 
715 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
716 {
717 	if (cpu >= nr_cpu_ids)
718 		return (unsigned long)NULL;
719 
720 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
721 }
722 
723 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
724 	.func		= bpf_per_cpu_ptr,
725 	.gpl_only	= false,
726 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
727 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
728 	.arg2_type	= ARG_ANYTHING,
729 };
730 
731 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
732 {
733 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
734 }
735 
736 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
737 	.func		= bpf_this_cpu_ptr,
738 	.gpl_only	= false,
739 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
740 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
741 };
742 
743 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
744 		size_t bufsz)
745 {
746 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
747 
748 	buf[0] = 0;
749 
750 	switch (fmt_ptype) {
751 	case 's':
752 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
753 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
754 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
755 		fallthrough;
756 #endif
757 	case 'k':
758 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
759 	case 'u':
760 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
761 	}
762 
763 	return -EINVAL;
764 }
765 
766 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
767  * arguments representation.
768  */
769 #define MAX_BPRINTF_BIN_ARGS	512
770 
771 /* Support executing three nested bprintf helper calls on a given CPU */
772 #define MAX_BPRINTF_NEST_LEVEL	3
773 struct bpf_bprintf_buffers {
774 	char bin_args[MAX_BPRINTF_BIN_ARGS];
775 	char buf[MAX_BPRINTF_BUF];
776 };
777 
778 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
779 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
780 
781 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
782 {
783 	int nest_level;
784 
785 	preempt_disable();
786 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
787 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
788 		this_cpu_dec(bpf_bprintf_nest_level);
789 		preempt_enable();
790 		return -EBUSY;
791 	}
792 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
793 
794 	return 0;
795 }
796 
797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 	if (!data->bin_args && !data->buf)
800 		return;
801 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
802 		return;
803 	this_cpu_dec(bpf_bprintf_nest_level);
804 	preempt_enable();
805 }
806 
807 /*
808  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
809  *
810  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
811  *
812  * This can be used in two ways:
813  * - Format string verification only: when data->get_bin_args is false
814  * - Arguments preparation: in addition to the above verification, it writes in
815  *   data->bin_args a binary representation of arguments usable by bstr_printf
816  *   where pointers from BPF have been sanitized.
817  *
818  * In argument preparation mode, if 0 is returned, safe temporary buffers are
819  * allocated and bpf_bprintf_cleanup should be called to free them after use.
820  */
821 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
822 			u32 num_args, struct bpf_bprintf_data *data)
823 {
824 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
825 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
826 	struct bpf_bprintf_buffers *buffers = NULL;
827 	size_t sizeof_cur_arg, sizeof_cur_ip;
828 	int err, i, num_spec = 0;
829 	u64 cur_arg;
830 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
831 
832 	fmt_end = strnchr(fmt, fmt_size, 0);
833 	if (!fmt_end)
834 		return -EINVAL;
835 	fmt_size = fmt_end - fmt;
836 
837 	if (get_buffers && try_get_buffers(&buffers))
838 		return -EBUSY;
839 
840 	if (data->get_bin_args) {
841 		if (num_args)
842 			tmp_buf = buffers->bin_args;
843 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
844 		data->bin_args = (u32 *)tmp_buf;
845 	}
846 
847 	if (data->get_buf)
848 		data->buf = buffers->buf;
849 
850 	for (i = 0; i < fmt_size; i++) {
851 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
852 			err = -EINVAL;
853 			goto out;
854 		}
855 
856 		if (fmt[i] != '%')
857 			continue;
858 
859 		if (fmt[i + 1] == '%') {
860 			i++;
861 			continue;
862 		}
863 
864 		if (num_spec >= num_args) {
865 			err = -EINVAL;
866 			goto out;
867 		}
868 
869 		/* The string is zero-terminated so if fmt[i] != 0, we can
870 		 * always access fmt[i + 1], in the worst case it will be a 0
871 		 */
872 		i++;
873 
874 		/* skip optional "[0 +-][num]" width formatting field */
875 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
876 		       fmt[i] == ' ')
877 			i++;
878 		if (fmt[i] >= '1' && fmt[i] <= '9') {
879 			i++;
880 			while (fmt[i] >= '0' && fmt[i] <= '9')
881 				i++;
882 		}
883 
884 		if (fmt[i] == 'p') {
885 			sizeof_cur_arg = sizeof(long);
886 
887 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
888 			    fmt[i + 2] == 's') {
889 				fmt_ptype = fmt[i + 1];
890 				i += 2;
891 				goto fmt_str;
892 			}
893 
894 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
895 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
896 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
897 			    fmt[i + 1] == 'S') {
898 				/* just kernel pointers */
899 				if (tmp_buf)
900 					cur_arg = raw_args[num_spec];
901 				i++;
902 				goto nocopy_fmt;
903 			}
904 
905 			if (fmt[i + 1] == 'B') {
906 				if (tmp_buf)  {
907 					err = snprintf(tmp_buf,
908 						       (tmp_buf_end - tmp_buf),
909 						       "%pB",
910 						       (void *)(long)raw_args[num_spec]);
911 					tmp_buf += (err + 1);
912 				}
913 
914 				i++;
915 				num_spec++;
916 				continue;
917 			}
918 
919 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
920 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
921 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
922 				err = -EINVAL;
923 				goto out;
924 			}
925 
926 			i += 2;
927 			if (!tmp_buf)
928 				goto nocopy_fmt;
929 
930 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
931 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
932 				err = -ENOSPC;
933 				goto out;
934 			}
935 
936 			unsafe_ptr = (char *)(long)raw_args[num_spec];
937 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
938 						       sizeof_cur_ip);
939 			if (err < 0)
940 				memset(cur_ip, 0, sizeof_cur_ip);
941 
942 			/* hack: bstr_printf expects IP addresses to be
943 			 * pre-formatted as strings, ironically, the easiest way
944 			 * to do that is to call snprintf.
945 			 */
946 			ip_spec[2] = fmt[i - 1];
947 			ip_spec[3] = fmt[i];
948 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
949 				       ip_spec, &cur_ip);
950 
951 			tmp_buf += err + 1;
952 			num_spec++;
953 
954 			continue;
955 		} else if (fmt[i] == 's') {
956 			fmt_ptype = fmt[i];
957 fmt_str:
958 			if (fmt[i + 1] != 0 &&
959 			    !isspace(fmt[i + 1]) &&
960 			    !ispunct(fmt[i + 1])) {
961 				err = -EINVAL;
962 				goto out;
963 			}
964 
965 			if (!tmp_buf)
966 				goto nocopy_fmt;
967 
968 			if (tmp_buf_end == tmp_buf) {
969 				err = -ENOSPC;
970 				goto out;
971 			}
972 
973 			unsafe_ptr = (char *)(long)raw_args[num_spec];
974 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
975 						    fmt_ptype,
976 						    tmp_buf_end - tmp_buf);
977 			if (err < 0) {
978 				tmp_buf[0] = '\0';
979 				err = 1;
980 			}
981 
982 			tmp_buf += err;
983 			num_spec++;
984 
985 			continue;
986 		} else if (fmt[i] == 'c') {
987 			if (!tmp_buf)
988 				goto nocopy_fmt;
989 
990 			if (tmp_buf_end == tmp_buf) {
991 				err = -ENOSPC;
992 				goto out;
993 			}
994 
995 			*tmp_buf = raw_args[num_spec];
996 			tmp_buf++;
997 			num_spec++;
998 
999 			continue;
1000 		}
1001 
1002 		sizeof_cur_arg = sizeof(int);
1003 
1004 		if (fmt[i] == 'l') {
1005 			sizeof_cur_arg = sizeof(long);
1006 			i++;
1007 		}
1008 		if (fmt[i] == 'l') {
1009 			sizeof_cur_arg = sizeof(long long);
1010 			i++;
1011 		}
1012 
1013 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1014 		    fmt[i] != 'x' && fmt[i] != 'X') {
1015 			err = -EINVAL;
1016 			goto out;
1017 		}
1018 
1019 		if (tmp_buf)
1020 			cur_arg = raw_args[num_spec];
1021 nocopy_fmt:
1022 		if (tmp_buf) {
1023 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1024 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1025 				err = -ENOSPC;
1026 				goto out;
1027 			}
1028 
1029 			if (sizeof_cur_arg == 8) {
1030 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1031 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1032 			} else {
1033 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1034 			}
1035 			tmp_buf += sizeof_cur_arg;
1036 		}
1037 		num_spec++;
1038 	}
1039 
1040 	err = 0;
1041 out:
1042 	if (err)
1043 		bpf_bprintf_cleanup(data);
1044 	return err;
1045 }
1046 
1047 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1048 	   const void *, args, u32, data_len)
1049 {
1050 	struct bpf_bprintf_data data = {
1051 		.get_bin_args	= true,
1052 	};
1053 	int err, num_args;
1054 
1055 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1056 	    (data_len && !args))
1057 		return -EINVAL;
1058 	num_args = data_len / 8;
1059 
1060 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1061 	 * can safely give an unbounded size.
1062 	 */
1063 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1064 	if (err < 0)
1065 		return err;
1066 
1067 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1068 
1069 	bpf_bprintf_cleanup(&data);
1070 
1071 	return err + 1;
1072 }
1073 
1074 const struct bpf_func_proto bpf_snprintf_proto = {
1075 	.func		= bpf_snprintf,
1076 	.gpl_only	= true,
1077 	.ret_type	= RET_INTEGER,
1078 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1079 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1080 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1081 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1082 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1083 };
1084 
1085 struct bpf_async_cb {
1086 	struct bpf_map *map;
1087 	struct bpf_prog *prog;
1088 	void __rcu *callback_fn;
1089 	void *value;
1090 	struct rcu_head rcu;
1091 	u64 flags;
1092 };
1093 
1094 /* BPF map elements can contain 'struct bpf_timer'.
1095  * Such map owns all of its BPF timers.
1096  * 'struct bpf_timer' is allocated as part of map element allocation
1097  * and it's zero initialized.
1098  * That space is used to keep 'struct bpf_async_kern'.
1099  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1100  * remembers 'struct bpf_map *' pointer it's part of.
1101  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1102  * bpf_timer_start() arms the timer.
1103  * If user space reference to a map goes to zero at this point
1104  * ops->map_release_uref callback is responsible for cancelling the timers,
1105  * freeing their memory, and decrementing prog's refcnts.
1106  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1107  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1108  * freeing the timers when inner map is replaced or deleted by user space.
1109  */
1110 struct bpf_hrtimer {
1111 	struct bpf_async_cb cb;
1112 	struct hrtimer timer;
1113 	atomic_t cancelling;
1114 };
1115 
1116 /* the actual struct hidden inside uapi struct bpf_timer */
1117 struct bpf_async_kern {
1118 	union {
1119 		struct bpf_async_cb *cb;
1120 		struct bpf_hrtimer *timer;
1121 	};
1122 	/* bpf_spin_lock is used here instead of spinlock_t to make
1123 	 * sure that it always fits into space reserved by struct bpf_timer
1124 	 * regardless of LOCKDEP and spinlock debug flags.
1125 	 */
1126 	struct bpf_spin_lock lock;
1127 } __attribute__((aligned(8)));
1128 
1129 enum bpf_async_type {
1130 	BPF_ASYNC_TYPE_TIMER = 0,
1131 };
1132 
1133 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1134 
1135 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1136 {
1137 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1138 	struct bpf_map *map = t->cb.map;
1139 	void *value = t->cb.value;
1140 	bpf_callback_t callback_fn;
1141 	void *key;
1142 	u32 idx;
1143 
1144 	BTF_TYPE_EMIT(struct bpf_timer);
1145 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1146 	if (!callback_fn)
1147 		goto out;
1148 
1149 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1150 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1151 	 * Remember the timer this callback is servicing to prevent
1152 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1153 	 * bpf_map_delete_elem() on the same timer.
1154 	 */
1155 	this_cpu_write(hrtimer_running, t);
1156 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1157 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1158 
1159 		/* compute the key */
1160 		idx = ((char *)value - array->value) / array->elem_size;
1161 		key = &idx;
1162 	} else { /* hash or lru */
1163 		key = value - round_up(map->key_size, 8);
1164 	}
1165 
1166 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1167 	/* The verifier checked that return value is zero. */
1168 
1169 	this_cpu_write(hrtimer_running, NULL);
1170 out:
1171 	return HRTIMER_NORESTART;
1172 }
1173 
1174 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1175 			    enum bpf_async_type type)
1176 {
1177 	struct bpf_async_cb *cb;
1178 	struct bpf_hrtimer *t;
1179 	clockid_t clockid;
1180 	size_t size;
1181 	int ret = 0;
1182 
1183 	if (in_nmi())
1184 		return -EOPNOTSUPP;
1185 
1186 	switch (type) {
1187 	case BPF_ASYNC_TYPE_TIMER:
1188 		size = sizeof(struct bpf_hrtimer);
1189 		break;
1190 	default:
1191 		return -EINVAL;
1192 	}
1193 
1194 	__bpf_spin_lock_irqsave(&async->lock);
1195 	t = async->timer;
1196 	if (t) {
1197 		ret = -EBUSY;
1198 		goto out;
1199 	}
1200 
1201 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1202 	cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1203 	if (!cb) {
1204 		ret = -ENOMEM;
1205 		goto out;
1206 	}
1207 
1208 	if (type == BPF_ASYNC_TYPE_TIMER) {
1209 		clockid = flags & (MAX_CLOCKS - 1);
1210 		t = (struct bpf_hrtimer *)cb;
1211 
1212 		atomic_set(&t->cancelling, 0);
1213 		hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1214 		t->timer.function = bpf_timer_cb;
1215 		cb->value = (void *)async - map->record->timer_off;
1216 	}
1217 	cb->map = map;
1218 	cb->prog = NULL;
1219 	cb->flags = flags;
1220 	rcu_assign_pointer(cb->callback_fn, NULL);
1221 
1222 	WRITE_ONCE(async->cb, cb);
1223 	/* Guarantee the order between async->cb and map->usercnt. So
1224 	 * when there are concurrent uref release and bpf timer init, either
1225 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1226 	 * timer or atomic64_read() below returns a zero usercnt.
1227 	 */
1228 	smp_mb();
1229 	if (!atomic64_read(&map->usercnt)) {
1230 		/* maps with timers must be either held by user space
1231 		 * or pinned in bpffs.
1232 		 */
1233 		WRITE_ONCE(async->cb, NULL);
1234 		kfree(cb);
1235 		ret = -EPERM;
1236 	}
1237 out:
1238 	__bpf_spin_unlock_irqrestore(&async->lock);
1239 	return ret;
1240 }
1241 
1242 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1243 	   u64, flags)
1244 {
1245 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1246 
1247 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1248 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1249 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1250 
1251 	if (flags >= MAX_CLOCKS ||
1252 	    /* similar to timerfd except _ALARM variants are not supported */
1253 	    (clockid != CLOCK_MONOTONIC &&
1254 	     clockid != CLOCK_REALTIME &&
1255 	     clockid != CLOCK_BOOTTIME))
1256 		return -EINVAL;
1257 
1258 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1259 }
1260 
1261 static const struct bpf_func_proto bpf_timer_init_proto = {
1262 	.func		= bpf_timer_init,
1263 	.gpl_only	= true,
1264 	.ret_type	= RET_INTEGER,
1265 	.arg1_type	= ARG_PTR_TO_TIMER,
1266 	.arg2_type	= ARG_CONST_MAP_PTR,
1267 	.arg3_type	= ARG_ANYTHING,
1268 };
1269 
1270 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1271 	   struct bpf_prog_aux *, aux)
1272 {
1273 	struct bpf_prog *prev, *prog = aux->prog;
1274 	struct bpf_hrtimer *t;
1275 	int ret = 0;
1276 
1277 	if (in_nmi())
1278 		return -EOPNOTSUPP;
1279 	__bpf_spin_lock_irqsave(&timer->lock);
1280 	t = timer->timer;
1281 	if (!t) {
1282 		ret = -EINVAL;
1283 		goto out;
1284 	}
1285 	if (!atomic64_read(&t->cb.map->usercnt)) {
1286 		/* maps with timers must be either held by user space
1287 		 * or pinned in bpffs. Otherwise timer might still be
1288 		 * running even when bpf prog is detached and user space
1289 		 * is gone, since map_release_uref won't ever be called.
1290 		 */
1291 		ret = -EPERM;
1292 		goto out;
1293 	}
1294 	prev = t->cb.prog;
1295 	if (prev != prog) {
1296 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1297 		 * can pick different callback_fn-s within the same prog.
1298 		 */
1299 		prog = bpf_prog_inc_not_zero(prog);
1300 		if (IS_ERR(prog)) {
1301 			ret = PTR_ERR(prog);
1302 			goto out;
1303 		}
1304 		if (prev)
1305 			/* Drop prev prog refcnt when swapping with new prog */
1306 			bpf_prog_put(prev);
1307 		t->cb.prog = prog;
1308 	}
1309 	rcu_assign_pointer(t->cb.callback_fn, callback_fn);
1310 out:
1311 	__bpf_spin_unlock_irqrestore(&timer->lock);
1312 	return ret;
1313 }
1314 
1315 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1316 	.func		= bpf_timer_set_callback,
1317 	.gpl_only	= true,
1318 	.ret_type	= RET_INTEGER,
1319 	.arg1_type	= ARG_PTR_TO_TIMER,
1320 	.arg2_type	= ARG_PTR_TO_FUNC,
1321 };
1322 
1323 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1324 {
1325 	struct bpf_hrtimer *t;
1326 	int ret = 0;
1327 	enum hrtimer_mode mode;
1328 
1329 	if (in_nmi())
1330 		return -EOPNOTSUPP;
1331 	if (flags > BPF_F_TIMER_ABS)
1332 		return -EINVAL;
1333 	__bpf_spin_lock_irqsave(&timer->lock);
1334 	t = timer->timer;
1335 	if (!t || !t->cb.prog) {
1336 		ret = -EINVAL;
1337 		goto out;
1338 	}
1339 
1340 	if (flags & BPF_F_TIMER_ABS)
1341 		mode = HRTIMER_MODE_ABS_SOFT;
1342 	else
1343 		mode = HRTIMER_MODE_REL_SOFT;
1344 
1345 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1346 out:
1347 	__bpf_spin_unlock_irqrestore(&timer->lock);
1348 	return ret;
1349 }
1350 
1351 static const struct bpf_func_proto bpf_timer_start_proto = {
1352 	.func		= bpf_timer_start,
1353 	.gpl_only	= true,
1354 	.ret_type	= RET_INTEGER,
1355 	.arg1_type	= ARG_PTR_TO_TIMER,
1356 	.arg2_type	= ARG_ANYTHING,
1357 	.arg3_type	= ARG_ANYTHING,
1358 };
1359 
1360 static void drop_prog_refcnt(struct bpf_async_cb *async)
1361 {
1362 	struct bpf_prog *prog = async->prog;
1363 
1364 	if (prog) {
1365 		bpf_prog_put(prog);
1366 		async->prog = NULL;
1367 		rcu_assign_pointer(async->callback_fn, NULL);
1368 	}
1369 }
1370 
1371 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1372 {
1373 	struct bpf_hrtimer *t, *cur_t;
1374 	bool inc = false;
1375 	int ret = 0;
1376 
1377 	if (in_nmi())
1378 		return -EOPNOTSUPP;
1379 	rcu_read_lock();
1380 	__bpf_spin_lock_irqsave(&timer->lock);
1381 	t = timer->timer;
1382 	if (!t) {
1383 		ret = -EINVAL;
1384 		goto out;
1385 	}
1386 
1387 	cur_t = this_cpu_read(hrtimer_running);
1388 	if (cur_t == t) {
1389 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1390 		 * its own timer the hrtimer_cancel() will deadlock
1391 		 * since it waits for callback_fn to finish.
1392 		 */
1393 		ret = -EDEADLK;
1394 		goto out;
1395 	}
1396 
1397 	/* Only account in-flight cancellations when invoked from a timer
1398 	 * callback, since we want to avoid waiting only if other _callbacks_
1399 	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1400 	 * are ok, since nobody would synchronously wait for their completion.
1401 	 */
1402 	if (!cur_t)
1403 		goto drop;
1404 	atomic_inc(&t->cancelling);
1405 	/* Need full barrier after relaxed atomic_inc */
1406 	smp_mb__after_atomic();
1407 	inc = true;
1408 	if (atomic_read(&cur_t->cancelling)) {
1409 		/* We're cancelling timer t, while some other timer callback is
1410 		 * attempting to cancel us. In such a case, it might be possible
1411 		 * that timer t belongs to the other callback, or some other
1412 		 * callback waiting upon it (creating transitive dependencies
1413 		 * upon us), and we will enter a deadlock if we continue
1414 		 * cancelling and waiting for it synchronously, since it might
1415 		 * do the same. Bail!
1416 		 */
1417 		ret = -EDEADLK;
1418 		goto out;
1419 	}
1420 drop:
1421 	drop_prog_refcnt(&t->cb);
1422 out:
1423 	__bpf_spin_unlock_irqrestore(&timer->lock);
1424 	/* Cancel the timer and wait for associated callback to finish
1425 	 * if it was running.
1426 	 */
1427 	ret = ret ?: hrtimer_cancel(&t->timer);
1428 	if (inc)
1429 		atomic_dec(&t->cancelling);
1430 	rcu_read_unlock();
1431 	return ret;
1432 }
1433 
1434 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1435 	.func		= bpf_timer_cancel,
1436 	.gpl_only	= true,
1437 	.ret_type	= RET_INTEGER,
1438 	.arg1_type	= ARG_PTR_TO_TIMER,
1439 };
1440 
1441 /* This function is called by map_delete/update_elem for individual element and
1442  * by ops->map_release_uref when the user space reference to a map reaches zero.
1443  */
1444 void bpf_timer_cancel_and_free(void *val)
1445 {
1446 	struct bpf_async_kern *timer = val;
1447 	struct bpf_hrtimer *t;
1448 
1449 	/* Performance optimization: read timer->timer without lock first. */
1450 	if (!READ_ONCE(timer->timer))
1451 		return;
1452 
1453 	__bpf_spin_lock_irqsave(&timer->lock);
1454 	/* re-read it under lock */
1455 	t = timer->timer;
1456 	if (!t)
1457 		goto out;
1458 	drop_prog_refcnt(&t->cb);
1459 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1460 	 * this timer, since it won't be initialized.
1461 	 */
1462 	WRITE_ONCE(timer->timer, NULL);
1463 out:
1464 	__bpf_spin_unlock_irqrestore(&timer->lock);
1465 	if (!t)
1466 		return;
1467 	/* Cancel the timer and wait for callback to complete if it was running.
1468 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1469 	 * right after for both preallocated and non-preallocated maps.
1470 	 * The timer->timer = NULL was already done and no code path can
1471 	 * see address 't' anymore.
1472 	 *
1473 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1474 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1475 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1476 	 * return -1). Though callback_fn is still running on this cpu it's
1477 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1478 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1479 	 * since timer->timer = NULL was already done. The timer will be
1480 	 * effectively cancelled because bpf_timer_cb() will return
1481 	 * HRTIMER_NORESTART.
1482 	 */
1483 	if (this_cpu_read(hrtimer_running) != t)
1484 		hrtimer_cancel(&t->timer);
1485 	kfree_rcu(t, cb.rcu);
1486 }
1487 
1488 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1489 {
1490 	unsigned long *kptr = map_value;
1491 
1492 	return xchg(kptr, (unsigned long)ptr);
1493 }
1494 
1495 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1496  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1497  * denote type that verifier will determine.
1498  */
1499 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1500 	.func         = bpf_kptr_xchg,
1501 	.gpl_only     = false,
1502 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1503 	.ret_btf_id   = BPF_PTR_POISON,
1504 	.arg1_type    = ARG_PTR_TO_KPTR,
1505 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1506 	.arg2_btf_id  = BPF_PTR_POISON,
1507 };
1508 
1509 /* Since the upper 8 bits of dynptr->size is reserved, the
1510  * maximum supported size is 2^24 - 1.
1511  */
1512 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1513 #define DYNPTR_TYPE_SHIFT	28
1514 #define DYNPTR_SIZE_MASK	0xFFFFFF
1515 #define DYNPTR_RDONLY_BIT	BIT(31)
1516 
1517 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1518 {
1519 	return ptr->size & DYNPTR_RDONLY_BIT;
1520 }
1521 
1522 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1523 {
1524 	ptr->size |= DYNPTR_RDONLY_BIT;
1525 }
1526 
1527 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1528 {
1529 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1530 }
1531 
1532 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1533 {
1534 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1535 }
1536 
1537 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1538 {
1539 	return ptr->size & DYNPTR_SIZE_MASK;
1540 }
1541 
1542 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1543 {
1544 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1545 
1546 	ptr->size = new_size | metadata;
1547 }
1548 
1549 int bpf_dynptr_check_size(u32 size)
1550 {
1551 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1552 }
1553 
1554 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1555 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1556 {
1557 	ptr->data = data;
1558 	ptr->offset = offset;
1559 	ptr->size = size;
1560 	bpf_dynptr_set_type(ptr, type);
1561 }
1562 
1563 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1564 {
1565 	memset(ptr, 0, sizeof(*ptr));
1566 }
1567 
1568 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1569 {
1570 	u32 size = __bpf_dynptr_size(ptr);
1571 
1572 	if (len > size || offset > size - len)
1573 		return -E2BIG;
1574 
1575 	return 0;
1576 }
1577 
1578 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1579 {
1580 	int err;
1581 
1582 	BTF_TYPE_EMIT(struct bpf_dynptr);
1583 
1584 	err = bpf_dynptr_check_size(size);
1585 	if (err)
1586 		goto error;
1587 
1588 	/* flags is currently unsupported */
1589 	if (flags) {
1590 		err = -EINVAL;
1591 		goto error;
1592 	}
1593 
1594 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1595 
1596 	return 0;
1597 
1598 error:
1599 	bpf_dynptr_set_null(ptr);
1600 	return err;
1601 }
1602 
1603 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1604 	.func		= bpf_dynptr_from_mem,
1605 	.gpl_only	= false,
1606 	.ret_type	= RET_INTEGER,
1607 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1608 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1609 	.arg3_type	= ARG_ANYTHING,
1610 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1611 };
1612 
1613 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1614 	   u32, offset, u64, flags)
1615 {
1616 	enum bpf_dynptr_type type;
1617 	int err;
1618 
1619 	if (!src->data || flags)
1620 		return -EINVAL;
1621 
1622 	err = bpf_dynptr_check_off_len(src, offset, len);
1623 	if (err)
1624 		return err;
1625 
1626 	type = bpf_dynptr_get_type(src);
1627 
1628 	switch (type) {
1629 	case BPF_DYNPTR_TYPE_LOCAL:
1630 	case BPF_DYNPTR_TYPE_RINGBUF:
1631 		/* Source and destination may possibly overlap, hence use memmove to
1632 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1633 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1634 		 */
1635 		memmove(dst, src->data + src->offset + offset, len);
1636 		return 0;
1637 	case BPF_DYNPTR_TYPE_SKB:
1638 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1639 	case BPF_DYNPTR_TYPE_XDP:
1640 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1641 	default:
1642 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1643 		return -EFAULT;
1644 	}
1645 }
1646 
1647 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1648 	.func		= bpf_dynptr_read,
1649 	.gpl_only	= false,
1650 	.ret_type	= RET_INTEGER,
1651 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1652 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1653 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1654 	.arg4_type	= ARG_ANYTHING,
1655 	.arg5_type	= ARG_ANYTHING,
1656 };
1657 
1658 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1659 	   u32, len, u64, flags)
1660 {
1661 	enum bpf_dynptr_type type;
1662 	int err;
1663 
1664 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1665 		return -EINVAL;
1666 
1667 	err = bpf_dynptr_check_off_len(dst, offset, len);
1668 	if (err)
1669 		return err;
1670 
1671 	type = bpf_dynptr_get_type(dst);
1672 
1673 	switch (type) {
1674 	case BPF_DYNPTR_TYPE_LOCAL:
1675 	case BPF_DYNPTR_TYPE_RINGBUF:
1676 		if (flags)
1677 			return -EINVAL;
1678 		/* Source and destination may possibly overlap, hence use memmove to
1679 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1680 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1681 		 */
1682 		memmove(dst->data + dst->offset + offset, src, len);
1683 		return 0;
1684 	case BPF_DYNPTR_TYPE_SKB:
1685 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1686 					     flags);
1687 	case BPF_DYNPTR_TYPE_XDP:
1688 		if (flags)
1689 			return -EINVAL;
1690 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1691 	default:
1692 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1693 		return -EFAULT;
1694 	}
1695 }
1696 
1697 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1698 	.func		= bpf_dynptr_write,
1699 	.gpl_only	= false,
1700 	.ret_type	= RET_INTEGER,
1701 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1702 	.arg2_type	= ARG_ANYTHING,
1703 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1704 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1705 	.arg5_type	= ARG_ANYTHING,
1706 };
1707 
1708 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1709 {
1710 	enum bpf_dynptr_type type;
1711 	int err;
1712 
1713 	if (!ptr->data)
1714 		return 0;
1715 
1716 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1717 	if (err)
1718 		return 0;
1719 
1720 	if (__bpf_dynptr_is_rdonly(ptr))
1721 		return 0;
1722 
1723 	type = bpf_dynptr_get_type(ptr);
1724 
1725 	switch (type) {
1726 	case BPF_DYNPTR_TYPE_LOCAL:
1727 	case BPF_DYNPTR_TYPE_RINGBUF:
1728 		return (unsigned long)(ptr->data + ptr->offset + offset);
1729 	case BPF_DYNPTR_TYPE_SKB:
1730 	case BPF_DYNPTR_TYPE_XDP:
1731 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1732 		return 0;
1733 	default:
1734 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1735 		return 0;
1736 	}
1737 }
1738 
1739 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1740 	.func		= bpf_dynptr_data,
1741 	.gpl_only	= false,
1742 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1743 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1744 	.arg2_type	= ARG_ANYTHING,
1745 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1746 };
1747 
1748 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1749 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1750 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1751 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1752 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1753 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1754 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1755 
1756 const struct bpf_func_proto *
1757 bpf_base_func_proto(enum bpf_func_id func_id)
1758 {
1759 	switch (func_id) {
1760 	case BPF_FUNC_map_lookup_elem:
1761 		return &bpf_map_lookup_elem_proto;
1762 	case BPF_FUNC_map_update_elem:
1763 		return &bpf_map_update_elem_proto;
1764 	case BPF_FUNC_map_delete_elem:
1765 		return &bpf_map_delete_elem_proto;
1766 	case BPF_FUNC_map_push_elem:
1767 		return &bpf_map_push_elem_proto;
1768 	case BPF_FUNC_map_pop_elem:
1769 		return &bpf_map_pop_elem_proto;
1770 	case BPF_FUNC_map_peek_elem:
1771 		return &bpf_map_peek_elem_proto;
1772 	case BPF_FUNC_map_lookup_percpu_elem:
1773 		return &bpf_map_lookup_percpu_elem_proto;
1774 	case BPF_FUNC_get_prandom_u32:
1775 		return &bpf_get_prandom_u32_proto;
1776 	case BPF_FUNC_get_smp_processor_id:
1777 		return &bpf_get_raw_smp_processor_id_proto;
1778 	case BPF_FUNC_get_numa_node_id:
1779 		return &bpf_get_numa_node_id_proto;
1780 	case BPF_FUNC_tail_call:
1781 		return &bpf_tail_call_proto;
1782 	case BPF_FUNC_ktime_get_ns:
1783 		return &bpf_ktime_get_ns_proto;
1784 	case BPF_FUNC_ktime_get_boot_ns:
1785 		return &bpf_ktime_get_boot_ns_proto;
1786 	case BPF_FUNC_ktime_get_tai_ns:
1787 		return &bpf_ktime_get_tai_ns_proto;
1788 	case BPF_FUNC_ringbuf_output:
1789 		return &bpf_ringbuf_output_proto;
1790 	case BPF_FUNC_ringbuf_reserve:
1791 		return &bpf_ringbuf_reserve_proto;
1792 	case BPF_FUNC_ringbuf_submit:
1793 		return &bpf_ringbuf_submit_proto;
1794 	case BPF_FUNC_ringbuf_discard:
1795 		return &bpf_ringbuf_discard_proto;
1796 	case BPF_FUNC_ringbuf_query:
1797 		return &bpf_ringbuf_query_proto;
1798 	case BPF_FUNC_strncmp:
1799 		return &bpf_strncmp_proto;
1800 	case BPF_FUNC_strtol:
1801 		return &bpf_strtol_proto;
1802 	case BPF_FUNC_strtoul:
1803 		return &bpf_strtoul_proto;
1804 	default:
1805 		break;
1806 	}
1807 
1808 	if (!bpf_capable())
1809 		return NULL;
1810 
1811 	switch (func_id) {
1812 	case BPF_FUNC_spin_lock:
1813 		return &bpf_spin_lock_proto;
1814 	case BPF_FUNC_spin_unlock:
1815 		return &bpf_spin_unlock_proto;
1816 	case BPF_FUNC_jiffies64:
1817 		return &bpf_jiffies64_proto;
1818 	case BPF_FUNC_per_cpu_ptr:
1819 		return &bpf_per_cpu_ptr_proto;
1820 	case BPF_FUNC_this_cpu_ptr:
1821 		return &bpf_this_cpu_ptr_proto;
1822 	case BPF_FUNC_timer_init:
1823 		return &bpf_timer_init_proto;
1824 	case BPF_FUNC_timer_set_callback:
1825 		return &bpf_timer_set_callback_proto;
1826 	case BPF_FUNC_timer_start:
1827 		return &bpf_timer_start_proto;
1828 	case BPF_FUNC_timer_cancel:
1829 		return &bpf_timer_cancel_proto;
1830 	case BPF_FUNC_kptr_xchg:
1831 		return &bpf_kptr_xchg_proto;
1832 	case BPF_FUNC_for_each_map_elem:
1833 		return &bpf_for_each_map_elem_proto;
1834 	case BPF_FUNC_loop:
1835 		return &bpf_loop_proto;
1836 	case BPF_FUNC_user_ringbuf_drain:
1837 		return &bpf_user_ringbuf_drain_proto;
1838 	case BPF_FUNC_ringbuf_reserve_dynptr:
1839 		return &bpf_ringbuf_reserve_dynptr_proto;
1840 	case BPF_FUNC_ringbuf_submit_dynptr:
1841 		return &bpf_ringbuf_submit_dynptr_proto;
1842 	case BPF_FUNC_ringbuf_discard_dynptr:
1843 		return &bpf_ringbuf_discard_dynptr_proto;
1844 	case BPF_FUNC_dynptr_from_mem:
1845 		return &bpf_dynptr_from_mem_proto;
1846 	case BPF_FUNC_dynptr_read:
1847 		return &bpf_dynptr_read_proto;
1848 	case BPF_FUNC_dynptr_write:
1849 		return &bpf_dynptr_write_proto;
1850 	case BPF_FUNC_dynptr_data:
1851 		return &bpf_dynptr_data_proto;
1852 #ifdef CONFIG_CGROUPS
1853 	case BPF_FUNC_cgrp_storage_get:
1854 		return &bpf_cgrp_storage_get_proto;
1855 	case BPF_FUNC_cgrp_storage_delete:
1856 		return &bpf_cgrp_storage_delete_proto;
1857 	case BPF_FUNC_get_current_cgroup_id:
1858 		return &bpf_get_current_cgroup_id_proto;
1859 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1860 		return &bpf_get_current_ancestor_cgroup_id_proto;
1861 #endif
1862 	default:
1863 		break;
1864 	}
1865 
1866 	if (!perfmon_capable())
1867 		return NULL;
1868 
1869 	switch (func_id) {
1870 	case BPF_FUNC_trace_printk:
1871 		return bpf_get_trace_printk_proto();
1872 	case BPF_FUNC_get_current_task:
1873 		return &bpf_get_current_task_proto;
1874 	case BPF_FUNC_get_current_task_btf:
1875 		return &bpf_get_current_task_btf_proto;
1876 	case BPF_FUNC_probe_read_user:
1877 		return &bpf_probe_read_user_proto;
1878 	case BPF_FUNC_probe_read_kernel:
1879 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1880 		       NULL : &bpf_probe_read_kernel_proto;
1881 	case BPF_FUNC_probe_read_user_str:
1882 		return &bpf_probe_read_user_str_proto;
1883 	case BPF_FUNC_probe_read_kernel_str:
1884 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1885 		       NULL : &bpf_probe_read_kernel_str_proto;
1886 	case BPF_FUNC_snprintf_btf:
1887 		return &bpf_snprintf_btf_proto;
1888 	case BPF_FUNC_snprintf:
1889 		return &bpf_snprintf_proto;
1890 	case BPF_FUNC_task_pt_regs:
1891 		return &bpf_task_pt_regs_proto;
1892 	case BPF_FUNC_trace_vprintk:
1893 		return bpf_get_trace_vprintk_proto();
1894 	default:
1895 		return NULL;
1896 	}
1897 }
1898 
1899 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec);
1900 
1901 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1902 			struct bpf_spin_lock *spin_lock)
1903 {
1904 	struct list_head *head = list_head, *orig_head = list_head;
1905 
1906 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1907 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1908 
1909 	/* Do the actual list draining outside the lock to not hold the lock for
1910 	 * too long, and also prevent deadlocks if tracing programs end up
1911 	 * executing on entry/exit of functions called inside the critical
1912 	 * section, and end up doing map ops that call bpf_list_head_free for
1913 	 * the same map value again.
1914 	 */
1915 	__bpf_spin_lock_irqsave(spin_lock);
1916 	if (!head->next || list_empty(head))
1917 		goto unlock;
1918 	head = head->next;
1919 unlock:
1920 	INIT_LIST_HEAD(orig_head);
1921 	__bpf_spin_unlock_irqrestore(spin_lock);
1922 
1923 	while (head != orig_head) {
1924 		void *obj = head;
1925 
1926 		obj -= field->graph_root.node_offset;
1927 		head = head->next;
1928 		/* The contained type can also have resources, including a
1929 		 * bpf_list_head which needs to be freed.
1930 		 */
1931 		migrate_disable();
1932 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1933 		migrate_enable();
1934 	}
1935 }
1936 
1937 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1938  * 'rb_node *', so field name of rb_node within containing struct is not
1939  * needed.
1940  *
1941  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1942  * graph_root.node_offset, it's not necessary to know field name
1943  * or type of node struct
1944  */
1945 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1946 	for (pos = rb_first_postorder(root); \
1947 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
1948 	    pos = n)
1949 
1950 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1951 		      struct bpf_spin_lock *spin_lock)
1952 {
1953 	struct rb_root_cached orig_root, *root = rb_root;
1954 	struct rb_node *pos, *n;
1955 	void *obj;
1956 
1957 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1958 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1959 
1960 	__bpf_spin_lock_irqsave(spin_lock);
1961 	orig_root = *root;
1962 	*root = RB_ROOT_CACHED;
1963 	__bpf_spin_unlock_irqrestore(spin_lock);
1964 
1965 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1966 		obj = pos;
1967 		obj -= field->graph_root.node_offset;
1968 
1969 
1970 		migrate_disable();
1971 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1972 		migrate_enable();
1973 	}
1974 }
1975 
1976 __diag_push();
1977 __diag_ignore_all("-Wmissing-prototypes",
1978 		  "Global functions as their definitions will be in vmlinux BTF");
1979 
1980 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1981 {
1982 	struct btf_struct_meta *meta = meta__ign;
1983 	u64 size = local_type_id__k;
1984 	void *p;
1985 
1986 	p = bpf_mem_alloc(&bpf_global_ma, size);
1987 	if (!p)
1988 		return NULL;
1989 	if (meta)
1990 		bpf_obj_init(meta->record, p);
1991 	return p;
1992 }
1993 
1994 /* Must be called under migrate_disable(), as required by bpf_mem_free */
1995 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec)
1996 {
1997 	if (rec && rec->refcount_off >= 0 &&
1998 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
1999 		/* Object is refcounted and refcount_dec didn't result in 0
2000 		 * refcount. Return without freeing the object
2001 		 */
2002 		return;
2003 	}
2004 
2005 	if (rec)
2006 		bpf_obj_free_fields(rec, p);
2007 
2008 	if (rec && rec->refcount_off >= 0)
2009 		bpf_mem_free_rcu(&bpf_global_ma, p);
2010 	else
2011 		bpf_mem_free(&bpf_global_ma, p);
2012 }
2013 
2014 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2015 {
2016 	struct btf_struct_meta *meta = meta__ign;
2017 	void *p = p__alloc;
2018 
2019 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL);
2020 }
2021 
2022 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2023 {
2024 	struct btf_struct_meta *meta = meta__ign;
2025 	struct bpf_refcount *ref;
2026 
2027 	/* Could just cast directly to refcount_t *, but need some code using
2028 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2029 	 */
2030 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2031 	if (!refcount_inc_not_zero((refcount_t *)ref))
2032 		return NULL;
2033 
2034 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2035 	 * in verifier.c
2036 	 */
2037 	return (void *)p__refcounted_kptr;
2038 }
2039 
2040 static int __bpf_list_add(struct bpf_list_node_kern *node,
2041 			  struct bpf_list_head *head,
2042 			  bool tail, struct btf_record *rec, u64 off)
2043 {
2044 	struct list_head *n = &node->list_head, *h = (void *)head;
2045 
2046 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2047 	 * called on its fields, so init here
2048 	 */
2049 	if (unlikely(!h->next))
2050 		INIT_LIST_HEAD(h);
2051 
2052 	/* node->owner != NULL implies !list_empty(n), no need to separately
2053 	 * check the latter
2054 	 */
2055 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2056 		/* Only called from BPF prog, no need to migrate_disable */
2057 		__bpf_obj_drop_impl((void *)n - off, rec);
2058 		return -EINVAL;
2059 	}
2060 
2061 	tail ? list_add_tail(n, h) : list_add(n, h);
2062 	WRITE_ONCE(node->owner, head);
2063 
2064 	return 0;
2065 }
2066 
2067 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2068 					 struct bpf_list_node *node,
2069 					 void *meta__ign, u64 off)
2070 {
2071 	struct bpf_list_node_kern *n = (void *)node;
2072 	struct btf_struct_meta *meta = meta__ign;
2073 
2074 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2075 }
2076 
2077 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2078 					struct bpf_list_node *node,
2079 					void *meta__ign, u64 off)
2080 {
2081 	struct bpf_list_node_kern *n = (void *)node;
2082 	struct btf_struct_meta *meta = meta__ign;
2083 
2084 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2085 }
2086 
2087 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2088 {
2089 	struct list_head *n, *h = (void *)head;
2090 	struct bpf_list_node_kern *node;
2091 
2092 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2093 	 * called on its fields, so init here
2094 	 */
2095 	if (unlikely(!h->next))
2096 		INIT_LIST_HEAD(h);
2097 	if (list_empty(h))
2098 		return NULL;
2099 
2100 	n = tail ? h->prev : h->next;
2101 	node = container_of(n, struct bpf_list_node_kern, list_head);
2102 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2103 		return NULL;
2104 
2105 	list_del_init(n);
2106 	WRITE_ONCE(node->owner, NULL);
2107 	return (struct bpf_list_node *)n;
2108 }
2109 
2110 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2111 {
2112 	return __bpf_list_del(head, false);
2113 }
2114 
2115 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2116 {
2117 	return __bpf_list_del(head, true);
2118 }
2119 
2120 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2121 						  struct bpf_rb_node *node)
2122 {
2123 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2124 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2125 	struct rb_node *n = &node_internal->rb_node;
2126 
2127 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2128 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2129 	 */
2130 	if (READ_ONCE(node_internal->owner) != root)
2131 		return NULL;
2132 
2133 	rb_erase_cached(n, r);
2134 	RB_CLEAR_NODE(n);
2135 	WRITE_ONCE(node_internal->owner, NULL);
2136 	return (struct bpf_rb_node *)n;
2137 }
2138 
2139 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2140  * program
2141  */
2142 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2143 			    struct bpf_rb_node_kern *node,
2144 			    void *less, struct btf_record *rec, u64 off)
2145 {
2146 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2147 	struct rb_node *parent = NULL, *n = &node->rb_node;
2148 	bpf_callback_t cb = (bpf_callback_t)less;
2149 	bool leftmost = true;
2150 
2151 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2152 	 * check the latter
2153 	 */
2154 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2155 		/* Only called from BPF prog, no need to migrate_disable */
2156 		__bpf_obj_drop_impl((void *)n - off, rec);
2157 		return -EINVAL;
2158 	}
2159 
2160 	while (*link) {
2161 		parent = *link;
2162 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2163 			link = &parent->rb_left;
2164 		} else {
2165 			link = &parent->rb_right;
2166 			leftmost = false;
2167 		}
2168 	}
2169 
2170 	rb_link_node(n, parent, link);
2171 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2172 	WRITE_ONCE(node->owner, root);
2173 	return 0;
2174 }
2175 
2176 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2177 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2178 				    void *meta__ign, u64 off)
2179 {
2180 	struct btf_struct_meta *meta = meta__ign;
2181 	struct bpf_rb_node_kern *n = (void *)node;
2182 
2183 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2184 }
2185 
2186 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2187 {
2188 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2189 
2190 	return (struct bpf_rb_node *)rb_first_cached(r);
2191 }
2192 
2193 /**
2194  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2195  * kfunc which is not stored in a map as a kptr, must be released by calling
2196  * bpf_task_release().
2197  * @p: The task on which a reference is being acquired.
2198  */
2199 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2200 {
2201 	if (refcount_inc_not_zero(&p->rcu_users))
2202 		return p;
2203 	return NULL;
2204 }
2205 
2206 /**
2207  * bpf_task_release - Release the reference acquired on a task.
2208  * @p: The task on which a reference is being released.
2209  */
2210 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2211 {
2212 	put_task_struct_rcu_user(p);
2213 }
2214 
2215 #ifdef CONFIG_CGROUPS
2216 /**
2217  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2218  * this kfunc which is not stored in a map as a kptr, must be released by
2219  * calling bpf_cgroup_release().
2220  * @cgrp: The cgroup on which a reference is being acquired.
2221  */
2222 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2223 {
2224 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2225 }
2226 
2227 /**
2228  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2229  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2230  * not be freed until the current grace period has ended, even if its refcount
2231  * drops to 0.
2232  * @cgrp: The cgroup on which a reference is being released.
2233  */
2234 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2235 {
2236 	cgroup_put(cgrp);
2237 }
2238 
2239 /**
2240  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2241  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2242  * map, must be released by calling bpf_cgroup_release().
2243  * @cgrp: The cgroup for which we're performing a lookup.
2244  * @level: The level of ancestor to look up.
2245  */
2246 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2247 {
2248 	struct cgroup *ancestor;
2249 
2250 	if (level > cgrp->level || level < 0)
2251 		return NULL;
2252 
2253 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2254 	ancestor = cgrp->ancestors[level];
2255 	if (!cgroup_tryget(ancestor))
2256 		return NULL;
2257 	return ancestor;
2258 }
2259 
2260 /**
2261  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2262  * kfunc which is not subsequently stored in a map, must be released by calling
2263  * bpf_cgroup_release().
2264  * @cgid: cgroup id.
2265  */
2266 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2267 {
2268 	struct cgroup *cgrp;
2269 
2270 	cgrp = cgroup_get_from_id(cgid);
2271 	if (IS_ERR(cgrp))
2272 		return NULL;
2273 	return cgrp;
2274 }
2275 
2276 /**
2277  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2278  * task's membership of cgroup ancestry.
2279  * @task: the task to be tested
2280  * @ancestor: possible ancestor of @task's cgroup
2281  *
2282  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2283  * It follows all the same rules as cgroup_is_descendant, and only applies
2284  * to the default hierarchy.
2285  */
2286 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2287 				       struct cgroup *ancestor)
2288 {
2289 	long ret;
2290 
2291 	rcu_read_lock();
2292 	ret = task_under_cgroup_hierarchy(task, ancestor);
2293 	rcu_read_unlock();
2294 	return ret;
2295 }
2296 #endif /* CONFIG_CGROUPS */
2297 
2298 /**
2299  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2300  * in the root pid namespace idr. If a task is returned, it must either be
2301  * stored in a map, or released with bpf_task_release().
2302  * @pid: The pid of the task being looked up.
2303  */
2304 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2305 {
2306 	struct task_struct *p;
2307 
2308 	rcu_read_lock();
2309 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2310 	if (p)
2311 		p = bpf_task_acquire(p);
2312 	rcu_read_unlock();
2313 
2314 	return p;
2315 }
2316 
2317 /**
2318  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2319  * @ptr: The dynptr whose data slice to retrieve
2320  * @offset: Offset into the dynptr
2321  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2322  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2323  *               length of the requested slice. This must be a constant.
2324  *
2325  * For non-skb and non-xdp type dynptrs, there is no difference between
2326  * bpf_dynptr_slice and bpf_dynptr_data.
2327  *
2328  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2329  *
2330  * If the intention is to write to the data slice, please use
2331  * bpf_dynptr_slice_rdwr.
2332  *
2333  * The user must check that the returned pointer is not null before using it.
2334  *
2335  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2336  * does not change the underlying packet data pointers, so a call to
2337  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2338  * the bpf program.
2339  *
2340  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2341  * data slice (can be either direct pointer to the data or a pointer to the user
2342  * provided buffer, with its contents containing the data, if unable to obtain
2343  * direct pointer)
2344  */
2345 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2346 				   void *buffer__opt, u32 buffer__szk)
2347 {
2348 	enum bpf_dynptr_type type;
2349 	u32 len = buffer__szk;
2350 	int err;
2351 
2352 	if (!ptr->data)
2353 		return NULL;
2354 
2355 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2356 	if (err)
2357 		return NULL;
2358 
2359 	type = bpf_dynptr_get_type(ptr);
2360 
2361 	switch (type) {
2362 	case BPF_DYNPTR_TYPE_LOCAL:
2363 	case BPF_DYNPTR_TYPE_RINGBUF:
2364 		return ptr->data + ptr->offset + offset;
2365 	case BPF_DYNPTR_TYPE_SKB:
2366 		if (buffer__opt)
2367 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2368 		else
2369 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2370 	case BPF_DYNPTR_TYPE_XDP:
2371 	{
2372 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2373 		if (!IS_ERR_OR_NULL(xdp_ptr))
2374 			return xdp_ptr;
2375 
2376 		if (!buffer__opt)
2377 			return NULL;
2378 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2379 		return buffer__opt;
2380 	}
2381 	default:
2382 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2383 		return NULL;
2384 	}
2385 }
2386 
2387 /**
2388  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2389  * @ptr: The dynptr whose data slice to retrieve
2390  * @offset: Offset into the dynptr
2391  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2392  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2393  *               length of the requested slice. This must be a constant.
2394  *
2395  * For non-skb and non-xdp type dynptrs, there is no difference between
2396  * bpf_dynptr_slice and bpf_dynptr_data.
2397  *
2398  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2399  *
2400  * The returned pointer is writable and may point to either directly the dynptr
2401  * data at the requested offset or to the buffer if unable to obtain a direct
2402  * data pointer to (example: the requested slice is to the paged area of an skb
2403  * packet). In the case where the returned pointer is to the buffer, the user
2404  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2405  * usually looks something like this pattern:
2406  *
2407  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2408  * if (!eth)
2409  *	return TC_ACT_SHOT;
2410  *
2411  * // mutate eth header //
2412  *
2413  * if (eth == buffer)
2414  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2415  *
2416  * Please note that, as in the example above, the user must check that the
2417  * returned pointer is not null before using it.
2418  *
2419  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2420  * does not change the underlying packet data pointers, so a call to
2421  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2422  * the bpf program.
2423  *
2424  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2425  * data slice (can be either direct pointer to the data or a pointer to the user
2426  * provided buffer, with its contents containing the data, if unable to obtain
2427  * direct pointer)
2428  */
2429 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2430 					void *buffer__opt, u32 buffer__szk)
2431 {
2432 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2433 		return NULL;
2434 
2435 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2436 	 *
2437 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2438 	 * if the bpf program allows skb data writes. There are two possiblities
2439 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2440 	 *
2441 	 * 1) The requested slice is in the head of the skb. In this case, the
2442 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2443 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2444 	 * The pointer can be directly written into.
2445 	 *
2446 	 * 2) Some portion of the requested slice is in the paged buffer area.
2447 	 * In this case, the requested data will be copied out into the buffer
2448 	 * and the returned pointer will be a pointer to the buffer. The skb
2449 	 * will not be pulled. To persist the write, the user will need to call
2450 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2451 	 *
2452 	 * Similarly for xdp programs, if the requested slice is not across xdp
2453 	 * fragments, then a direct pointer will be returned, otherwise the data
2454 	 * will be copied out into the buffer and the user will need to call
2455 	 * bpf_dynptr_write() to commit changes.
2456 	 */
2457 	return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2458 }
2459 
2460 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2461 {
2462 	u32 size;
2463 
2464 	if (!ptr->data || start > end)
2465 		return -EINVAL;
2466 
2467 	size = __bpf_dynptr_size(ptr);
2468 
2469 	if (start > size || end > size)
2470 		return -ERANGE;
2471 
2472 	ptr->offset += start;
2473 	bpf_dynptr_set_size(ptr, end - start);
2474 
2475 	return 0;
2476 }
2477 
2478 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2479 {
2480 	return !ptr->data;
2481 }
2482 
2483 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2484 {
2485 	if (!ptr->data)
2486 		return false;
2487 
2488 	return __bpf_dynptr_is_rdonly(ptr);
2489 }
2490 
2491 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2492 {
2493 	if (!ptr->data)
2494 		return -EINVAL;
2495 
2496 	return __bpf_dynptr_size(ptr);
2497 }
2498 
2499 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2500 				 struct bpf_dynptr_kern *clone__uninit)
2501 {
2502 	if (!ptr->data) {
2503 		bpf_dynptr_set_null(clone__uninit);
2504 		return -EINVAL;
2505 	}
2506 
2507 	*clone__uninit = *ptr;
2508 
2509 	return 0;
2510 }
2511 
2512 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2513 {
2514 	return obj;
2515 }
2516 
2517 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2518 {
2519 	return obj__ign;
2520 }
2521 
2522 __bpf_kfunc void bpf_rcu_read_lock(void)
2523 {
2524 	rcu_read_lock();
2525 }
2526 
2527 __bpf_kfunc void bpf_rcu_read_unlock(void)
2528 {
2529 	rcu_read_unlock();
2530 }
2531 
2532 __diag_pop();
2533 
2534 BTF_SET8_START(generic_btf_ids)
2535 #ifdef CONFIG_KEXEC_CORE
2536 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2537 #endif
2538 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2539 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2540 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL)
2541 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2542 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2543 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2544 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2545 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2546 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2547 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2548 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2549 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2550 
2551 #ifdef CONFIG_CGROUPS
2552 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2553 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2554 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2555 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2556 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2557 #endif
2558 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2559 BTF_SET8_END(generic_btf_ids)
2560 
2561 static const struct btf_kfunc_id_set generic_kfunc_set = {
2562 	.owner = THIS_MODULE,
2563 	.set   = &generic_btf_ids,
2564 };
2565 
2566 
2567 BTF_ID_LIST(generic_dtor_ids)
2568 BTF_ID(struct, task_struct)
2569 BTF_ID(func, bpf_task_release)
2570 #ifdef CONFIG_CGROUPS
2571 BTF_ID(struct, cgroup)
2572 BTF_ID(func, bpf_cgroup_release)
2573 #endif
2574 
2575 BTF_SET8_START(common_btf_ids)
2576 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2577 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2578 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2579 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2580 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2581 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2582 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2583 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2584 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2585 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2586 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2587 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2588 BTF_ID_FLAGS(func, bpf_dynptr_size)
2589 BTF_ID_FLAGS(func, bpf_dynptr_clone)
2590 BTF_SET8_END(common_btf_ids)
2591 
2592 static const struct btf_kfunc_id_set common_kfunc_set = {
2593 	.owner = THIS_MODULE,
2594 	.set   = &common_btf_ids,
2595 };
2596 
2597 static int __init kfunc_init(void)
2598 {
2599 	int ret;
2600 	const struct btf_id_dtor_kfunc generic_dtors[] = {
2601 		{
2602 			.btf_id       = generic_dtor_ids[0],
2603 			.kfunc_btf_id = generic_dtor_ids[1]
2604 		},
2605 #ifdef CONFIG_CGROUPS
2606 		{
2607 			.btf_id       = generic_dtor_ids[2],
2608 			.kfunc_btf_id = generic_dtor_ids[3]
2609 		},
2610 #endif
2611 	};
2612 
2613 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2614 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2615 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2616 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2617 						  ARRAY_SIZE(generic_dtors),
2618 						  THIS_MODULE);
2619 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2620 }
2621 
2622 late_initcall(kfunc_init);
2623