xref: /openbmc/linux/kernel/bpf/hashtab.c (revision 37c881cd18f428b08cf46c5a9d67cfd2db2c4a32)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16 
17 #define HTAB_CREATE_FLAG_MASK						\
18 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
19 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 
21 #define BATCH_OPS(_name)			\
22 	.map_lookup_batch =			\
23 	_name##_map_lookup_batch,		\
24 	.map_lookup_and_delete_batch =		\
25 	_name##_map_lookup_and_delete_batch,	\
26 	.map_update_batch =			\
27 	generic_map_update_batch,		\
28 	.map_delete_batch =			\
29 	generic_map_delete_batch
30 
31 /*
32  * The bucket lock has two protection scopes:
33  *
34  * 1) Serializing concurrent operations from BPF programs on different
35  *    CPUs
36  *
37  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38  *
39  * BPF programs can execute in any context including perf, kprobes and
40  * tracing. As there are almost no limits where perf, kprobes and tracing
41  * can be invoked from the lock operations need to be protected against
42  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43  * the lock held section when functions which acquire this lock are invoked
44  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45  * variable bpf_prog_active, which prevents BPF programs attached to perf
46  * events, kprobes and tracing to be invoked before the prior invocation
47  * from one of these contexts completed. sys_bpf() uses the same mechanism
48  * by pinning the task to the current CPU and incrementing the recursion
49  * protection accross the map operation.
50  *
51  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52  * operations like memory allocations (even with GFP_ATOMIC) from atomic
53  * contexts. This is required because even with GFP_ATOMIC the memory
54  * allocator calls into code pathes which acquire locks with long held lock
55  * sections. To ensure the deterministic behaviour these locks are regular
56  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57  * true atomic contexts on an RT kernel are the low level hardware
58  * handling, scheduling, low level interrupt handling, NMIs etc. None of
59  * these contexts should ever do memory allocations.
60  *
61  * As regular device interrupt handlers and soft interrupts are forced into
62  * thread context, the existing code which does
63  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64  * just works.
65  *
66  * In theory the BPF locks could be converted to regular spinlocks as well,
67  * but the bucket locks and percpu_freelist locks can be taken from
68  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69  * atomic contexts even on RT. These mechanisms require preallocated maps,
70  * so there is no need to invoke memory allocations within the lock held
71  * sections.
72  *
73  * BPF maps which need dynamic allocation are only used from (forced)
74  * thread context on RT and can therefore use regular spinlocks which in
75  * turn allows to invoke memory allocations from the lock held section.
76  *
77  * On a non RT kernel this distinction is neither possible nor required.
78  * spinlock maps to raw_spinlock and the extra code is optimized out by the
79  * compiler.
80  */
81 struct bucket {
82 	struct hlist_nulls_head head;
83 	union {
84 		raw_spinlock_t raw_lock;
85 		spinlock_t     lock;
86 	};
87 };
88 
89 #define HASHTAB_MAP_LOCK_COUNT 8
90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
91 
92 struct bpf_htab {
93 	struct bpf_map map;
94 	struct bucket *buckets;
95 	void *elems;
96 	union {
97 		struct pcpu_freelist freelist;
98 		struct bpf_lru lru;
99 	};
100 	struct htab_elem *__percpu *extra_elems;
101 	atomic_t count;	/* number of elements in this hashtable */
102 	u32 n_buckets;	/* number of hash buckets */
103 	u32 elem_size;	/* size of each element in bytes */
104 	u32 hashrnd;
105 	struct lock_class_key lockdep_key;
106 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
107 };
108 
109 /* each htab element is struct htab_elem + key + value */
110 struct htab_elem {
111 	union {
112 		struct hlist_nulls_node hash_node;
113 		struct {
114 			void *padding;
115 			union {
116 				struct bpf_htab *htab;
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		struct rcu_head rcu;
124 		struct bpf_lru_node lru_node;
125 	};
126 	u32 hash;
127 	char key[] __aligned(8);
128 };
129 
130 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
131 {
132 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
133 }
134 
135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
136 {
137 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
138 }
139 
140 static void htab_init_buckets(struct bpf_htab *htab)
141 {
142 	unsigned i;
143 
144 	for (i = 0; i < htab->n_buckets; i++) {
145 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
146 		if (htab_use_raw_lock(htab)) {
147 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
148 			lockdep_set_class(&htab->buckets[i].raw_lock,
149 					  &htab->lockdep_key);
150 		} else {
151 			spin_lock_init(&htab->buckets[i].lock);
152 			lockdep_set_class(&htab->buckets[i].lock,
153 					  &htab->lockdep_key);
154 		}
155 		cond_resched();
156 	}
157 }
158 
159 static inline int htab_lock_bucket(const struct bpf_htab *htab,
160 				   struct bucket *b, u32 hash,
161 				   unsigned long *pflags)
162 {
163 	unsigned long flags;
164 
165 	hash = hash & HASHTAB_MAP_LOCK_MASK;
166 
167 	migrate_disable();
168 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
169 		__this_cpu_dec(*(htab->map_locked[hash]));
170 		migrate_enable();
171 		return -EBUSY;
172 	}
173 
174 	if (htab_use_raw_lock(htab))
175 		raw_spin_lock_irqsave(&b->raw_lock, flags);
176 	else
177 		spin_lock_irqsave(&b->lock, flags);
178 	*pflags = flags;
179 
180 	return 0;
181 }
182 
183 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
184 				      struct bucket *b, u32 hash,
185 				      unsigned long flags)
186 {
187 	hash = hash & HASHTAB_MAP_LOCK_MASK;
188 	if (htab_use_raw_lock(htab))
189 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
190 	else
191 		spin_unlock_irqrestore(&b->lock, flags);
192 	__this_cpu_dec(*(htab->map_locked[hash]));
193 	migrate_enable();
194 }
195 
196 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
197 
198 static bool htab_is_lru(const struct bpf_htab *htab)
199 {
200 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
201 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
202 }
203 
204 static bool htab_is_percpu(const struct bpf_htab *htab)
205 {
206 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
207 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
208 }
209 
210 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
211 				     void __percpu *pptr)
212 {
213 	*(void __percpu **)(l->key + key_size) = pptr;
214 }
215 
216 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
217 {
218 	return *(void __percpu **)(l->key + key_size);
219 }
220 
221 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
222 {
223 	return *(void **)(l->key + roundup(map->key_size, 8));
224 }
225 
226 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
227 {
228 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
229 }
230 
231 static void htab_free_elems(struct bpf_htab *htab)
232 {
233 	int i;
234 
235 	if (!htab_is_percpu(htab))
236 		goto free_elems;
237 
238 	for (i = 0; i < htab->map.max_entries; i++) {
239 		void __percpu *pptr;
240 
241 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
242 					 htab->map.key_size);
243 		free_percpu(pptr);
244 		cond_resched();
245 	}
246 free_elems:
247 	bpf_map_area_free(htab->elems);
248 }
249 
250 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
251  * (bucket_lock). If both locks need to be acquired together, the lock
252  * order is always lru_lock -> bucket_lock and this only happens in
253  * bpf_lru_list.c logic. For example, certain code path of
254  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
255  * will acquire lru_lock first followed by acquiring bucket_lock.
256  *
257  * In hashtab.c, to avoid deadlock, lock acquisition of
258  * bucket_lock followed by lru_lock is not allowed. In such cases,
259  * bucket_lock needs to be released first before acquiring lru_lock.
260  */
261 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
262 					  u32 hash)
263 {
264 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
265 	struct htab_elem *l;
266 
267 	if (node) {
268 		l = container_of(node, struct htab_elem, lru_node);
269 		memcpy(l->key, key, htab->map.key_size);
270 		return l;
271 	}
272 
273 	return NULL;
274 }
275 
276 static int prealloc_init(struct bpf_htab *htab)
277 {
278 	u32 num_entries = htab->map.max_entries;
279 	int err = -ENOMEM, i;
280 
281 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
282 		num_entries += num_possible_cpus();
283 
284 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
285 					 htab->map.numa_node);
286 	if (!htab->elems)
287 		return -ENOMEM;
288 
289 	if (!htab_is_percpu(htab))
290 		goto skip_percpu_elems;
291 
292 	for (i = 0; i < num_entries; i++) {
293 		u32 size = round_up(htab->map.value_size, 8);
294 		void __percpu *pptr;
295 
296 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
297 					    GFP_USER | __GFP_NOWARN);
298 		if (!pptr)
299 			goto free_elems;
300 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
301 				  pptr);
302 		cond_resched();
303 	}
304 
305 skip_percpu_elems:
306 	if (htab_is_lru(htab))
307 		err = bpf_lru_init(&htab->lru,
308 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
309 				   offsetof(struct htab_elem, hash) -
310 				   offsetof(struct htab_elem, lru_node),
311 				   htab_lru_map_delete_node,
312 				   htab);
313 	else
314 		err = pcpu_freelist_init(&htab->freelist);
315 
316 	if (err)
317 		goto free_elems;
318 
319 	if (htab_is_lru(htab))
320 		bpf_lru_populate(&htab->lru, htab->elems,
321 				 offsetof(struct htab_elem, lru_node),
322 				 htab->elem_size, num_entries);
323 	else
324 		pcpu_freelist_populate(&htab->freelist,
325 				       htab->elems + offsetof(struct htab_elem, fnode),
326 				       htab->elem_size, num_entries);
327 
328 	return 0;
329 
330 free_elems:
331 	htab_free_elems(htab);
332 	return err;
333 }
334 
335 static void prealloc_destroy(struct bpf_htab *htab)
336 {
337 	htab_free_elems(htab);
338 
339 	if (htab_is_lru(htab))
340 		bpf_lru_destroy(&htab->lru);
341 	else
342 		pcpu_freelist_destroy(&htab->freelist);
343 }
344 
345 static int alloc_extra_elems(struct bpf_htab *htab)
346 {
347 	struct htab_elem *__percpu *pptr, *l_new;
348 	struct pcpu_freelist_node *l;
349 	int cpu;
350 
351 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
352 				    GFP_USER | __GFP_NOWARN);
353 	if (!pptr)
354 		return -ENOMEM;
355 
356 	for_each_possible_cpu(cpu) {
357 		l = pcpu_freelist_pop(&htab->freelist);
358 		/* pop will succeed, since prealloc_init()
359 		 * preallocated extra num_possible_cpus elements
360 		 */
361 		l_new = container_of(l, struct htab_elem, fnode);
362 		*per_cpu_ptr(pptr, cpu) = l_new;
363 	}
364 	htab->extra_elems = pptr;
365 	return 0;
366 }
367 
368 /* Called from syscall */
369 static int htab_map_alloc_check(union bpf_attr *attr)
370 {
371 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
372 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
373 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
374 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
375 	/* percpu_lru means each cpu has its own LRU list.
376 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
377 	 * the map's value itself is percpu.  percpu_lru has
378 	 * nothing to do with the map's value.
379 	 */
380 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
381 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
382 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
383 	int numa_node = bpf_map_attr_numa_node(attr);
384 
385 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
386 		     offsetof(struct htab_elem, hash_node.pprev));
387 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
388 		     offsetof(struct htab_elem, hash_node.pprev));
389 
390 	if (lru && !bpf_capable())
391 		/* LRU implementation is much complicated than other
392 		 * maps.  Hence, limit to CAP_BPF.
393 		 */
394 		return -EPERM;
395 
396 	if (zero_seed && !capable(CAP_SYS_ADMIN))
397 		/* Guard against local DoS, and discourage production use. */
398 		return -EPERM;
399 
400 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
401 	    !bpf_map_flags_access_ok(attr->map_flags))
402 		return -EINVAL;
403 
404 	if (!lru && percpu_lru)
405 		return -EINVAL;
406 
407 	if (lru && !prealloc)
408 		return -ENOTSUPP;
409 
410 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
411 		return -EINVAL;
412 
413 	/* check sanity of attributes.
414 	 * value_size == 0 may be allowed in the future to use map as a set
415 	 */
416 	if (attr->max_entries == 0 || attr->key_size == 0 ||
417 	    attr->value_size == 0)
418 		return -EINVAL;
419 
420 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
421 	   sizeof(struct htab_elem))
422 		/* if key_size + value_size is bigger, the user space won't be
423 		 * able to access the elements via bpf syscall. This check
424 		 * also makes sure that the elem_size doesn't overflow and it's
425 		 * kmalloc-able later in htab_map_update_elem()
426 		 */
427 		return -E2BIG;
428 
429 	return 0;
430 }
431 
432 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
433 {
434 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
435 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
436 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
437 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
438 	/* percpu_lru means each cpu has its own LRU list.
439 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
440 	 * the map's value itself is percpu.  percpu_lru has
441 	 * nothing to do with the map's value.
442 	 */
443 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
444 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
445 	struct bpf_htab *htab;
446 	int err, i;
447 
448 	htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
449 	if (!htab)
450 		return ERR_PTR(-ENOMEM);
451 
452 	lockdep_register_key(&htab->lockdep_key);
453 
454 	bpf_map_init_from_attr(&htab->map, attr);
455 
456 	if (percpu_lru) {
457 		/* ensure each CPU's lru list has >=1 elements.
458 		 * since we are at it, make each lru list has the same
459 		 * number of elements.
460 		 */
461 		htab->map.max_entries = roundup(attr->max_entries,
462 						num_possible_cpus());
463 		if (htab->map.max_entries < attr->max_entries)
464 			htab->map.max_entries = rounddown(attr->max_entries,
465 							  num_possible_cpus());
466 	}
467 
468 	/* hash table size must be power of 2 */
469 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
470 
471 	htab->elem_size = sizeof(struct htab_elem) +
472 			  round_up(htab->map.key_size, 8);
473 	if (percpu)
474 		htab->elem_size += sizeof(void *);
475 	else
476 		htab->elem_size += round_up(htab->map.value_size, 8);
477 
478 	err = -E2BIG;
479 	/* prevent zero size kmalloc and check for u32 overflow */
480 	if (htab->n_buckets == 0 ||
481 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
482 		goto free_htab;
483 
484 	err = -ENOMEM;
485 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
486 					   sizeof(struct bucket),
487 					   htab->map.numa_node);
488 	if (!htab->buckets)
489 		goto free_htab;
490 
491 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
492 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
493 							   sizeof(int),
494 							   sizeof(int),
495 							   GFP_USER);
496 		if (!htab->map_locked[i])
497 			goto free_map_locked;
498 	}
499 
500 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
501 		htab->hashrnd = 0;
502 	else
503 		htab->hashrnd = get_random_int();
504 
505 	htab_init_buckets(htab);
506 
507 	if (prealloc) {
508 		err = prealloc_init(htab);
509 		if (err)
510 			goto free_map_locked;
511 
512 		if (!percpu && !lru) {
513 			/* lru itself can remove the least used element, so
514 			 * there is no need for an extra elem during map_update.
515 			 */
516 			err = alloc_extra_elems(htab);
517 			if (err)
518 				goto free_prealloc;
519 		}
520 	}
521 
522 	return &htab->map;
523 
524 free_prealloc:
525 	prealloc_destroy(htab);
526 free_map_locked:
527 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
528 		free_percpu(htab->map_locked[i]);
529 	bpf_map_area_free(htab->buckets);
530 free_htab:
531 	lockdep_unregister_key(&htab->lockdep_key);
532 	kfree(htab);
533 	return ERR_PTR(err);
534 }
535 
536 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
537 {
538 	return jhash(key, key_len, hashrnd);
539 }
540 
541 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
542 {
543 	return &htab->buckets[hash & (htab->n_buckets - 1)];
544 }
545 
546 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
547 {
548 	return &__select_bucket(htab, hash)->head;
549 }
550 
551 /* this lookup function can only be called with bucket lock taken */
552 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
553 					 void *key, u32 key_size)
554 {
555 	struct hlist_nulls_node *n;
556 	struct htab_elem *l;
557 
558 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
559 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
560 			return l;
561 
562 	return NULL;
563 }
564 
565 /* can be called without bucket lock. it will repeat the loop in
566  * the unlikely event when elements moved from one bucket into another
567  * while link list is being walked
568  */
569 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
570 					       u32 hash, void *key,
571 					       u32 key_size, u32 n_buckets)
572 {
573 	struct hlist_nulls_node *n;
574 	struct htab_elem *l;
575 
576 again:
577 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
578 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
579 			return l;
580 
581 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
582 		goto again;
583 
584 	return NULL;
585 }
586 
587 /* Called from syscall or from eBPF program directly, so
588  * arguments have to match bpf_map_lookup_elem() exactly.
589  * The return value is adjusted by BPF instructions
590  * in htab_map_gen_lookup().
591  */
592 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
593 {
594 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
595 	struct hlist_nulls_head *head;
596 	struct htab_elem *l;
597 	u32 hash, key_size;
598 
599 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
600 
601 	key_size = map->key_size;
602 
603 	hash = htab_map_hash(key, key_size, htab->hashrnd);
604 
605 	head = select_bucket(htab, hash);
606 
607 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
608 
609 	return l;
610 }
611 
612 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
613 {
614 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
615 
616 	if (l)
617 		return l->key + round_up(map->key_size, 8);
618 
619 	return NULL;
620 }
621 
622 /* inline bpf_map_lookup_elem() call.
623  * Instead of:
624  * bpf_prog
625  *   bpf_map_lookup_elem
626  *     map->ops->map_lookup_elem
627  *       htab_map_lookup_elem
628  *         __htab_map_lookup_elem
629  * do:
630  * bpf_prog
631  *   __htab_map_lookup_elem
632  */
633 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
634 {
635 	struct bpf_insn *insn = insn_buf;
636 	const int ret = BPF_REG_0;
637 
638 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
639 		     (void *(*)(struct bpf_map *map, void *key))NULL));
640 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
641 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
642 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
643 				offsetof(struct htab_elem, key) +
644 				round_up(map->key_size, 8));
645 	return insn - insn_buf;
646 }
647 
648 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
649 							void *key, const bool mark)
650 {
651 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
652 
653 	if (l) {
654 		if (mark)
655 			bpf_lru_node_set_ref(&l->lru_node);
656 		return l->key + round_up(map->key_size, 8);
657 	}
658 
659 	return NULL;
660 }
661 
662 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
663 {
664 	return __htab_lru_map_lookup_elem(map, key, true);
665 }
666 
667 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
668 {
669 	return __htab_lru_map_lookup_elem(map, key, false);
670 }
671 
672 static int htab_lru_map_gen_lookup(struct bpf_map *map,
673 				   struct bpf_insn *insn_buf)
674 {
675 	struct bpf_insn *insn = insn_buf;
676 	const int ret = BPF_REG_0;
677 	const int ref_reg = BPF_REG_1;
678 
679 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
680 		     (void *(*)(struct bpf_map *map, void *key))NULL));
681 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
682 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
683 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
684 			      offsetof(struct htab_elem, lru_node) +
685 			      offsetof(struct bpf_lru_node, ref));
686 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
687 	*insn++ = BPF_ST_MEM(BPF_B, ret,
688 			     offsetof(struct htab_elem, lru_node) +
689 			     offsetof(struct bpf_lru_node, ref),
690 			     1);
691 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
692 				offsetof(struct htab_elem, key) +
693 				round_up(map->key_size, 8));
694 	return insn - insn_buf;
695 }
696 
697 /* It is called from the bpf_lru_list when the LRU needs to delete
698  * older elements from the htab.
699  */
700 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
701 {
702 	struct bpf_htab *htab = (struct bpf_htab *)arg;
703 	struct htab_elem *l = NULL, *tgt_l;
704 	struct hlist_nulls_head *head;
705 	struct hlist_nulls_node *n;
706 	unsigned long flags;
707 	struct bucket *b;
708 	int ret;
709 
710 	tgt_l = container_of(node, struct htab_elem, lru_node);
711 	b = __select_bucket(htab, tgt_l->hash);
712 	head = &b->head;
713 
714 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
715 	if (ret)
716 		return false;
717 
718 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
719 		if (l == tgt_l) {
720 			hlist_nulls_del_rcu(&l->hash_node);
721 			break;
722 		}
723 
724 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
725 
726 	return l == tgt_l;
727 }
728 
729 /* Called from syscall */
730 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
731 {
732 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
733 	struct hlist_nulls_head *head;
734 	struct htab_elem *l, *next_l;
735 	u32 hash, key_size;
736 	int i = 0;
737 
738 	WARN_ON_ONCE(!rcu_read_lock_held());
739 
740 	key_size = map->key_size;
741 
742 	if (!key)
743 		goto find_first_elem;
744 
745 	hash = htab_map_hash(key, key_size, htab->hashrnd);
746 
747 	head = select_bucket(htab, hash);
748 
749 	/* lookup the key */
750 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
751 
752 	if (!l)
753 		goto find_first_elem;
754 
755 	/* key was found, get next key in the same bucket */
756 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
757 				  struct htab_elem, hash_node);
758 
759 	if (next_l) {
760 		/* if next elem in this hash list is non-zero, just return it */
761 		memcpy(next_key, next_l->key, key_size);
762 		return 0;
763 	}
764 
765 	/* no more elements in this hash list, go to the next bucket */
766 	i = hash & (htab->n_buckets - 1);
767 	i++;
768 
769 find_first_elem:
770 	/* iterate over buckets */
771 	for (; i < htab->n_buckets; i++) {
772 		head = select_bucket(htab, i);
773 
774 		/* pick first element in the bucket */
775 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
776 					  struct htab_elem, hash_node);
777 		if (next_l) {
778 			/* if it's not empty, just return it */
779 			memcpy(next_key, next_l->key, key_size);
780 			return 0;
781 		}
782 	}
783 
784 	/* iterated over all buckets and all elements */
785 	return -ENOENT;
786 }
787 
788 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
789 {
790 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
791 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
792 	kfree(l);
793 }
794 
795 static void htab_elem_free_rcu(struct rcu_head *head)
796 {
797 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
798 	struct bpf_htab *htab = l->htab;
799 
800 	htab_elem_free(htab, l);
801 }
802 
803 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
804 {
805 	struct bpf_map *map = &htab->map;
806 	void *ptr;
807 
808 	if (map->ops->map_fd_put_ptr) {
809 		ptr = fd_htab_map_get_ptr(map, l);
810 		map->ops->map_fd_put_ptr(ptr);
811 	}
812 }
813 
814 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
815 {
816 	htab_put_fd_value(htab, l);
817 
818 	if (htab_is_prealloc(htab)) {
819 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
820 	} else {
821 		atomic_dec(&htab->count);
822 		l->htab = htab;
823 		call_rcu(&l->rcu, htab_elem_free_rcu);
824 	}
825 }
826 
827 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
828 			    void *value, bool onallcpus)
829 {
830 	if (!onallcpus) {
831 		/* copy true value_size bytes */
832 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
833 	} else {
834 		u32 size = round_up(htab->map.value_size, 8);
835 		int off = 0, cpu;
836 
837 		for_each_possible_cpu(cpu) {
838 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
839 					value + off, size);
840 			off += size;
841 		}
842 	}
843 }
844 
845 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
846 			    void *value, bool onallcpus)
847 {
848 	/* When using prealloc and not setting the initial value on all cpus,
849 	 * zero-fill element values for other cpus (just as what happens when
850 	 * not using prealloc). Otherwise, bpf program has no way to ensure
851 	 * known initial values for cpus other than current one
852 	 * (onallcpus=false always when coming from bpf prog).
853 	 */
854 	if (htab_is_prealloc(htab) && !onallcpus) {
855 		u32 size = round_up(htab->map.value_size, 8);
856 		int current_cpu = raw_smp_processor_id();
857 		int cpu;
858 
859 		for_each_possible_cpu(cpu) {
860 			if (cpu == current_cpu)
861 				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
862 						size);
863 			else
864 				memset(per_cpu_ptr(pptr, cpu), 0, size);
865 		}
866 	} else {
867 		pcpu_copy_value(htab, pptr, value, onallcpus);
868 	}
869 }
870 
871 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
872 {
873 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
874 	       BITS_PER_LONG == 64;
875 }
876 
877 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
878 					 void *value, u32 key_size, u32 hash,
879 					 bool percpu, bool onallcpus,
880 					 struct htab_elem *old_elem)
881 {
882 	u32 size = htab->map.value_size;
883 	bool prealloc = htab_is_prealloc(htab);
884 	struct htab_elem *l_new, **pl_new;
885 	void __percpu *pptr;
886 
887 	if (prealloc) {
888 		if (old_elem) {
889 			/* if we're updating the existing element,
890 			 * use per-cpu extra elems to avoid freelist_pop/push
891 			 */
892 			pl_new = this_cpu_ptr(htab->extra_elems);
893 			l_new = *pl_new;
894 			htab_put_fd_value(htab, old_elem);
895 			*pl_new = old_elem;
896 		} else {
897 			struct pcpu_freelist_node *l;
898 
899 			l = __pcpu_freelist_pop(&htab->freelist);
900 			if (!l)
901 				return ERR_PTR(-E2BIG);
902 			l_new = container_of(l, struct htab_elem, fnode);
903 		}
904 	} else {
905 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
906 			if (!old_elem) {
907 				/* when map is full and update() is replacing
908 				 * old element, it's ok to allocate, since
909 				 * old element will be freed immediately.
910 				 * Otherwise return an error
911 				 */
912 				l_new = ERR_PTR(-E2BIG);
913 				goto dec_count;
914 			}
915 		l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
916 					     GFP_ATOMIC | __GFP_NOWARN,
917 					     htab->map.numa_node);
918 		if (!l_new) {
919 			l_new = ERR_PTR(-ENOMEM);
920 			goto dec_count;
921 		}
922 		check_and_init_map_lock(&htab->map,
923 					l_new->key + round_up(key_size, 8));
924 	}
925 
926 	memcpy(l_new->key, key, key_size);
927 	if (percpu) {
928 		size = round_up(size, 8);
929 		if (prealloc) {
930 			pptr = htab_elem_get_ptr(l_new, key_size);
931 		} else {
932 			/* alloc_percpu zero-fills */
933 			pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
934 						    GFP_ATOMIC | __GFP_NOWARN);
935 			if (!pptr) {
936 				kfree(l_new);
937 				l_new = ERR_PTR(-ENOMEM);
938 				goto dec_count;
939 			}
940 		}
941 
942 		pcpu_init_value(htab, pptr, value, onallcpus);
943 
944 		if (!prealloc)
945 			htab_elem_set_ptr(l_new, key_size, pptr);
946 	} else if (fd_htab_map_needs_adjust(htab)) {
947 		size = round_up(size, 8);
948 		memcpy(l_new->key + round_up(key_size, 8), value, size);
949 	} else {
950 		copy_map_value(&htab->map,
951 			       l_new->key + round_up(key_size, 8),
952 			       value);
953 	}
954 
955 	l_new->hash = hash;
956 	return l_new;
957 dec_count:
958 	atomic_dec(&htab->count);
959 	return l_new;
960 }
961 
962 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
963 		       u64 map_flags)
964 {
965 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
966 		/* elem already exists */
967 		return -EEXIST;
968 
969 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
970 		/* elem doesn't exist, cannot update it */
971 		return -ENOENT;
972 
973 	return 0;
974 }
975 
976 /* Called from syscall or from eBPF program */
977 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
978 				u64 map_flags)
979 {
980 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
981 	struct htab_elem *l_new = NULL, *l_old;
982 	struct hlist_nulls_head *head;
983 	unsigned long flags;
984 	struct bucket *b;
985 	u32 key_size, hash;
986 	int ret;
987 
988 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
989 		/* unknown flags */
990 		return -EINVAL;
991 
992 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
993 
994 	key_size = map->key_size;
995 
996 	hash = htab_map_hash(key, key_size, htab->hashrnd);
997 
998 	b = __select_bucket(htab, hash);
999 	head = &b->head;
1000 
1001 	if (unlikely(map_flags & BPF_F_LOCK)) {
1002 		if (unlikely(!map_value_has_spin_lock(map)))
1003 			return -EINVAL;
1004 		/* find an element without taking the bucket lock */
1005 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1006 					      htab->n_buckets);
1007 		ret = check_flags(htab, l_old, map_flags);
1008 		if (ret)
1009 			return ret;
1010 		if (l_old) {
1011 			/* grab the element lock and update value in place */
1012 			copy_map_value_locked(map,
1013 					      l_old->key + round_up(key_size, 8),
1014 					      value, false);
1015 			return 0;
1016 		}
1017 		/* fall through, grab the bucket lock and lookup again.
1018 		 * 99.9% chance that the element won't be found,
1019 		 * but second lookup under lock has to be done.
1020 		 */
1021 	}
1022 
1023 	ret = htab_lock_bucket(htab, b, hash, &flags);
1024 	if (ret)
1025 		return ret;
1026 
1027 	l_old = lookup_elem_raw(head, hash, key, key_size);
1028 
1029 	ret = check_flags(htab, l_old, map_flags);
1030 	if (ret)
1031 		goto err;
1032 
1033 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1034 		/* first lookup without the bucket lock didn't find the element,
1035 		 * but second lookup with the bucket lock found it.
1036 		 * This case is highly unlikely, but has to be dealt with:
1037 		 * grab the element lock in addition to the bucket lock
1038 		 * and update element in place
1039 		 */
1040 		copy_map_value_locked(map,
1041 				      l_old->key + round_up(key_size, 8),
1042 				      value, false);
1043 		ret = 0;
1044 		goto err;
1045 	}
1046 
1047 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1048 				l_old);
1049 	if (IS_ERR(l_new)) {
1050 		/* all pre-allocated elements are in use or memory exhausted */
1051 		ret = PTR_ERR(l_new);
1052 		goto err;
1053 	}
1054 
1055 	/* add new element to the head of the list, so that
1056 	 * concurrent search will find it before old elem
1057 	 */
1058 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1059 	if (l_old) {
1060 		hlist_nulls_del_rcu(&l_old->hash_node);
1061 		if (!htab_is_prealloc(htab))
1062 			free_htab_elem(htab, l_old);
1063 	}
1064 	ret = 0;
1065 err:
1066 	htab_unlock_bucket(htab, b, hash, flags);
1067 	return ret;
1068 }
1069 
1070 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1071 				    u64 map_flags)
1072 {
1073 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1074 	struct htab_elem *l_new, *l_old = NULL;
1075 	struct hlist_nulls_head *head;
1076 	unsigned long flags;
1077 	struct bucket *b;
1078 	u32 key_size, hash;
1079 	int ret;
1080 
1081 	if (unlikely(map_flags > BPF_EXIST))
1082 		/* unknown flags */
1083 		return -EINVAL;
1084 
1085 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1086 
1087 	key_size = map->key_size;
1088 
1089 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1090 
1091 	b = __select_bucket(htab, hash);
1092 	head = &b->head;
1093 
1094 	/* For LRU, we need to alloc before taking bucket's
1095 	 * spinlock because getting free nodes from LRU may need
1096 	 * to remove older elements from htab and this removal
1097 	 * operation will need a bucket lock.
1098 	 */
1099 	l_new = prealloc_lru_pop(htab, key, hash);
1100 	if (!l_new)
1101 		return -ENOMEM;
1102 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1103 
1104 	ret = htab_lock_bucket(htab, b, hash, &flags);
1105 	if (ret)
1106 		return ret;
1107 
1108 	l_old = lookup_elem_raw(head, hash, key, key_size);
1109 
1110 	ret = check_flags(htab, l_old, map_flags);
1111 	if (ret)
1112 		goto err;
1113 
1114 	/* add new element to the head of the list, so that
1115 	 * concurrent search will find it before old elem
1116 	 */
1117 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1118 	if (l_old) {
1119 		bpf_lru_node_set_ref(&l_new->lru_node);
1120 		hlist_nulls_del_rcu(&l_old->hash_node);
1121 	}
1122 	ret = 0;
1123 
1124 err:
1125 	htab_unlock_bucket(htab, b, hash, flags);
1126 
1127 	if (ret)
1128 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1129 	else if (l_old)
1130 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1131 
1132 	return ret;
1133 }
1134 
1135 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1136 					 void *value, u64 map_flags,
1137 					 bool onallcpus)
1138 {
1139 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1140 	struct htab_elem *l_new = NULL, *l_old;
1141 	struct hlist_nulls_head *head;
1142 	unsigned long flags;
1143 	struct bucket *b;
1144 	u32 key_size, hash;
1145 	int ret;
1146 
1147 	if (unlikely(map_flags > BPF_EXIST))
1148 		/* unknown flags */
1149 		return -EINVAL;
1150 
1151 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1152 
1153 	key_size = map->key_size;
1154 
1155 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1156 
1157 	b = __select_bucket(htab, hash);
1158 	head = &b->head;
1159 
1160 	ret = htab_lock_bucket(htab, b, hash, &flags);
1161 	if (ret)
1162 		return ret;
1163 
1164 	l_old = lookup_elem_raw(head, hash, key, key_size);
1165 
1166 	ret = check_flags(htab, l_old, map_flags);
1167 	if (ret)
1168 		goto err;
1169 
1170 	if (l_old) {
1171 		/* per-cpu hash map can update value in-place */
1172 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1173 				value, onallcpus);
1174 	} else {
1175 		l_new = alloc_htab_elem(htab, key, value, key_size,
1176 					hash, true, onallcpus, NULL);
1177 		if (IS_ERR(l_new)) {
1178 			ret = PTR_ERR(l_new);
1179 			goto err;
1180 		}
1181 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1182 	}
1183 	ret = 0;
1184 err:
1185 	htab_unlock_bucket(htab, b, hash, flags);
1186 	return ret;
1187 }
1188 
1189 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1190 					     void *value, u64 map_flags,
1191 					     bool onallcpus)
1192 {
1193 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1194 	struct htab_elem *l_new = NULL, *l_old;
1195 	struct hlist_nulls_head *head;
1196 	unsigned long flags;
1197 	struct bucket *b;
1198 	u32 key_size, hash;
1199 	int ret;
1200 
1201 	if (unlikely(map_flags > BPF_EXIST))
1202 		/* unknown flags */
1203 		return -EINVAL;
1204 
1205 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1206 
1207 	key_size = map->key_size;
1208 
1209 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1210 
1211 	b = __select_bucket(htab, hash);
1212 	head = &b->head;
1213 
1214 	/* For LRU, we need to alloc before taking bucket's
1215 	 * spinlock because LRU's elem alloc may need
1216 	 * to remove older elem from htab and this removal
1217 	 * operation will need a bucket lock.
1218 	 */
1219 	if (map_flags != BPF_EXIST) {
1220 		l_new = prealloc_lru_pop(htab, key, hash);
1221 		if (!l_new)
1222 			return -ENOMEM;
1223 	}
1224 
1225 	ret = htab_lock_bucket(htab, b, hash, &flags);
1226 	if (ret)
1227 		return ret;
1228 
1229 	l_old = lookup_elem_raw(head, hash, key, key_size);
1230 
1231 	ret = check_flags(htab, l_old, map_flags);
1232 	if (ret)
1233 		goto err;
1234 
1235 	if (l_old) {
1236 		bpf_lru_node_set_ref(&l_old->lru_node);
1237 
1238 		/* per-cpu hash map can update value in-place */
1239 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1240 				value, onallcpus);
1241 	} else {
1242 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1243 				value, onallcpus);
1244 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1245 		l_new = NULL;
1246 	}
1247 	ret = 0;
1248 err:
1249 	htab_unlock_bucket(htab, b, hash, flags);
1250 	if (l_new)
1251 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1252 	return ret;
1253 }
1254 
1255 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1256 				       void *value, u64 map_flags)
1257 {
1258 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1259 }
1260 
1261 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1262 					   void *value, u64 map_flags)
1263 {
1264 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1265 						 false);
1266 }
1267 
1268 /* Called from syscall or from eBPF program */
1269 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1270 {
1271 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1272 	struct hlist_nulls_head *head;
1273 	struct bucket *b;
1274 	struct htab_elem *l;
1275 	unsigned long flags;
1276 	u32 hash, key_size;
1277 	int ret;
1278 
1279 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1280 
1281 	key_size = map->key_size;
1282 
1283 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1284 	b = __select_bucket(htab, hash);
1285 	head = &b->head;
1286 
1287 	ret = htab_lock_bucket(htab, b, hash, &flags);
1288 	if (ret)
1289 		return ret;
1290 
1291 	l = lookup_elem_raw(head, hash, key, key_size);
1292 
1293 	if (l) {
1294 		hlist_nulls_del_rcu(&l->hash_node);
1295 		free_htab_elem(htab, l);
1296 	} else {
1297 		ret = -ENOENT;
1298 	}
1299 
1300 	htab_unlock_bucket(htab, b, hash, flags);
1301 	return ret;
1302 }
1303 
1304 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1305 {
1306 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1307 	struct hlist_nulls_head *head;
1308 	struct bucket *b;
1309 	struct htab_elem *l;
1310 	unsigned long flags;
1311 	u32 hash, key_size;
1312 	int ret;
1313 
1314 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1315 
1316 	key_size = map->key_size;
1317 
1318 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1319 	b = __select_bucket(htab, hash);
1320 	head = &b->head;
1321 
1322 	ret = htab_lock_bucket(htab, b, hash, &flags);
1323 	if (ret)
1324 		return ret;
1325 
1326 	l = lookup_elem_raw(head, hash, key, key_size);
1327 
1328 	if (l)
1329 		hlist_nulls_del_rcu(&l->hash_node);
1330 	else
1331 		ret = -ENOENT;
1332 
1333 	htab_unlock_bucket(htab, b, hash, flags);
1334 	if (l)
1335 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1336 	return ret;
1337 }
1338 
1339 static void delete_all_elements(struct bpf_htab *htab)
1340 {
1341 	int i;
1342 
1343 	for (i = 0; i < htab->n_buckets; i++) {
1344 		struct hlist_nulls_head *head = select_bucket(htab, i);
1345 		struct hlist_nulls_node *n;
1346 		struct htab_elem *l;
1347 
1348 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1349 			hlist_nulls_del_rcu(&l->hash_node);
1350 			htab_elem_free(htab, l);
1351 		}
1352 	}
1353 }
1354 
1355 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1356 static void htab_map_free(struct bpf_map *map)
1357 {
1358 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1359 	int i;
1360 
1361 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1362 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1363 	 * There is no need to synchronize_rcu() here to protect map elements.
1364 	 */
1365 
1366 	/* some of free_htab_elem() callbacks for elements of this map may
1367 	 * not have executed. Wait for them.
1368 	 */
1369 	rcu_barrier();
1370 	if (!htab_is_prealloc(htab))
1371 		delete_all_elements(htab);
1372 	else
1373 		prealloc_destroy(htab);
1374 
1375 	free_percpu(htab->extra_elems);
1376 	bpf_map_area_free(htab->buckets);
1377 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1378 		free_percpu(htab->map_locked[i]);
1379 	lockdep_unregister_key(&htab->lockdep_key);
1380 	kfree(htab);
1381 }
1382 
1383 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1384 				   struct seq_file *m)
1385 {
1386 	void *value;
1387 
1388 	rcu_read_lock();
1389 
1390 	value = htab_map_lookup_elem(map, key);
1391 	if (!value) {
1392 		rcu_read_unlock();
1393 		return;
1394 	}
1395 
1396 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1397 	seq_puts(m, ": ");
1398 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1399 	seq_puts(m, "\n");
1400 
1401 	rcu_read_unlock();
1402 }
1403 
1404 static int
1405 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1406 				   const union bpf_attr *attr,
1407 				   union bpf_attr __user *uattr,
1408 				   bool do_delete, bool is_lru_map,
1409 				   bool is_percpu)
1410 {
1411 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1412 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1413 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1414 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1415 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1416 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1417 	u32 batch, max_count, size, bucket_size;
1418 	struct htab_elem *node_to_free = NULL;
1419 	u64 elem_map_flags, map_flags;
1420 	struct hlist_nulls_head *head;
1421 	struct hlist_nulls_node *n;
1422 	unsigned long flags = 0;
1423 	bool locked = false;
1424 	struct htab_elem *l;
1425 	struct bucket *b;
1426 	int ret = 0;
1427 
1428 	elem_map_flags = attr->batch.elem_flags;
1429 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1430 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1431 		return -EINVAL;
1432 
1433 	map_flags = attr->batch.flags;
1434 	if (map_flags)
1435 		return -EINVAL;
1436 
1437 	max_count = attr->batch.count;
1438 	if (!max_count)
1439 		return 0;
1440 
1441 	if (put_user(0, &uattr->batch.count))
1442 		return -EFAULT;
1443 
1444 	batch = 0;
1445 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1446 		return -EFAULT;
1447 
1448 	if (batch >= htab->n_buckets)
1449 		return -ENOENT;
1450 
1451 	key_size = htab->map.key_size;
1452 	roundup_key_size = round_up(htab->map.key_size, 8);
1453 	value_size = htab->map.value_size;
1454 	size = round_up(value_size, 8);
1455 	if (is_percpu)
1456 		value_size = size * num_possible_cpus();
1457 	total = 0;
1458 	/* while experimenting with hash tables with sizes ranging from 10 to
1459 	 * 1000, it was observed that a bucket can have upto 5 entries.
1460 	 */
1461 	bucket_size = 5;
1462 
1463 alloc:
1464 	/* We cannot do copy_from_user or copy_to_user inside
1465 	 * the rcu_read_lock. Allocate enough space here.
1466 	 */
1467 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1468 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1469 	if (!keys || !values) {
1470 		ret = -ENOMEM;
1471 		goto after_loop;
1472 	}
1473 
1474 again:
1475 	bpf_disable_instrumentation();
1476 	rcu_read_lock();
1477 again_nocopy:
1478 	dst_key = keys;
1479 	dst_val = values;
1480 	b = &htab->buckets[batch];
1481 	head = &b->head;
1482 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1483 	if (locked) {
1484 		ret = htab_lock_bucket(htab, b, batch, &flags);
1485 		if (ret)
1486 			goto next_batch;
1487 	}
1488 
1489 	bucket_cnt = 0;
1490 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1491 		bucket_cnt++;
1492 
1493 	if (bucket_cnt && !locked) {
1494 		locked = true;
1495 		goto again_nocopy;
1496 	}
1497 
1498 	if (bucket_cnt > (max_count - total)) {
1499 		if (total == 0)
1500 			ret = -ENOSPC;
1501 		/* Note that since bucket_cnt > 0 here, it is implicit
1502 		 * that the locked was grabbed, so release it.
1503 		 */
1504 		htab_unlock_bucket(htab, b, batch, flags);
1505 		rcu_read_unlock();
1506 		bpf_enable_instrumentation();
1507 		goto after_loop;
1508 	}
1509 
1510 	if (bucket_cnt > bucket_size) {
1511 		bucket_size = bucket_cnt;
1512 		/* Note that since bucket_cnt > 0 here, it is implicit
1513 		 * that the locked was grabbed, so release it.
1514 		 */
1515 		htab_unlock_bucket(htab, b, batch, flags);
1516 		rcu_read_unlock();
1517 		bpf_enable_instrumentation();
1518 		kvfree(keys);
1519 		kvfree(values);
1520 		goto alloc;
1521 	}
1522 
1523 	/* Next block is only safe to run if you have grabbed the lock */
1524 	if (!locked)
1525 		goto next_batch;
1526 
1527 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1528 		memcpy(dst_key, l->key, key_size);
1529 
1530 		if (is_percpu) {
1531 			int off = 0, cpu;
1532 			void __percpu *pptr;
1533 
1534 			pptr = htab_elem_get_ptr(l, map->key_size);
1535 			for_each_possible_cpu(cpu) {
1536 				bpf_long_memcpy(dst_val + off,
1537 						per_cpu_ptr(pptr, cpu), size);
1538 				off += size;
1539 			}
1540 		} else {
1541 			value = l->key + roundup_key_size;
1542 			if (elem_map_flags & BPF_F_LOCK)
1543 				copy_map_value_locked(map, dst_val, value,
1544 						      true);
1545 			else
1546 				copy_map_value(map, dst_val, value);
1547 			check_and_init_map_lock(map, dst_val);
1548 		}
1549 		if (do_delete) {
1550 			hlist_nulls_del_rcu(&l->hash_node);
1551 
1552 			/* bpf_lru_push_free() will acquire lru_lock, which
1553 			 * may cause deadlock. See comments in function
1554 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1555 			 * after releasing the bucket lock.
1556 			 */
1557 			if (is_lru_map) {
1558 				l->batch_flink = node_to_free;
1559 				node_to_free = l;
1560 			} else {
1561 				free_htab_elem(htab, l);
1562 			}
1563 		}
1564 		dst_key += key_size;
1565 		dst_val += value_size;
1566 	}
1567 
1568 	htab_unlock_bucket(htab, b, batch, flags);
1569 	locked = false;
1570 
1571 	while (node_to_free) {
1572 		l = node_to_free;
1573 		node_to_free = node_to_free->batch_flink;
1574 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1575 	}
1576 
1577 next_batch:
1578 	/* If we are not copying data, we can go to next bucket and avoid
1579 	 * unlocking the rcu.
1580 	 */
1581 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1582 		batch++;
1583 		goto again_nocopy;
1584 	}
1585 
1586 	rcu_read_unlock();
1587 	bpf_enable_instrumentation();
1588 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1589 	    key_size * bucket_cnt) ||
1590 	    copy_to_user(uvalues + total * value_size, values,
1591 	    value_size * bucket_cnt))) {
1592 		ret = -EFAULT;
1593 		goto after_loop;
1594 	}
1595 
1596 	total += bucket_cnt;
1597 	batch++;
1598 	if (batch >= htab->n_buckets) {
1599 		ret = -ENOENT;
1600 		goto after_loop;
1601 	}
1602 	goto again;
1603 
1604 after_loop:
1605 	if (ret == -EFAULT)
1606 		goto out;
1607 
1608 	/* copy # of entries and next batch */
1609 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1610 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1611 	    put_user(total, &uattr->batch.count))
1612 		ret = -EFAULT;
1613 
1614 out:
1615 	kvfree(keys);
1616 	kvfree(values);
1617 	return ret;
1618 }
1619 
1620 static int
1621 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1622 			     union bpf_attr __user *uattr)
1623 {
1624 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1625 						  false, true);
1626 }
1627 
1628 static int
1629 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1630 					const union bpf_attr *attr,
1631 					union bpf_attr __user *uattr)
1632 {
1633 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1634 						  false, true);
1635 }
1636 
1637 static int
1638 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1639 		      union bpf_attr __user *uattr)
1640 {
1641 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1642 						  false, false);
1643 }
1644 
1645 static int
1646 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1647 				 const union bpf_attr *attr,
1648 				 union bpf_attr __user *uattr)
1649 {
1650 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1651 						  false, false);
1652 }
1653 
1654 static int
1655 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1656 				 const union bpf_attr *attr,
1657 				 union bpf_attr __user *uattr)
1658 {
1659 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1660 						  true, true);
1661 }
1662 
1663 static int
1664 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1665 					    const union bpf_attr *attr,
1666 					    union bpf_attr __user *uattr)
1667 {
1668 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1669 						  true, true);
1670 }
1671 
1672 static int
1673 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1674 			  union bpf_attr __user *uattr)
1675 {
1676 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1677 						  true, false);
1678 }
1679 
1680 static int
1681 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1682 				     const union bpf_attr *attr,
1683 				     union bpf_attr __user *uattr)
1684 {
1685 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1686 						  true, false);
1687 }
1688 
1689 struct bpf_iter_seq_hash_map_info {
1690 	struct bpf_map *map;
1691 	struct bpf_htab *htab;
1692 	void *percpu_value_buf; // non-zero means percpu hash
1693 	u32 bucket_id;
1694 	u32 skip_elems;
1695 };
1696 
1697 static struct htab_elem *
1698 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1699 			   struct htab_elem *prev_elem)
1700 {
1701 	const struct bpf_htab *htab = info->htab;
1702 	u32 skip_elems = info->skip_elems;
1703 	u32 bucket_id = info->bucket_id;
1704 	struct hlist_nulls_head *head;
1705 	struct hlist_nulls_node *n;
1706 	struct htab_elem *elem;
1707 	struct bucket *b;
1708 	u32 i, count;
1709 
1710 	if (bucket_id >= htab->n_buckets)
1711 		return NULL;
1712 
1713 	/* try to find next elem in the same bucket */
1714 	if (prev_elem) {
1715 		/* no update/deletion on this bucket, prev_elem should be still valid
1716 		 * and we won't skip elements.
1717 		 */
1718 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1719 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1720 		if (elem)
1721 			return elem;
1722 
1723 		/* not found, unlock and go to the next bucket */
1724 		b = &htab->buckets[bucket_id++];
1725 		rcu_read_unlock();
1726 		skip_elems = 0;
1727 	}
1728 
1729 	for (i = bucket_id; i < htab->n_buckets; i++) {
1730 		b = &htab->buckets[i];
1731 		rcu_read_lock();
1732 
1733 		count = 0;
1734 		head = &b->head;
1735 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1736 			if (count >= skip_elems) {
1737 				info->bucket_id = i;
1738 				info->skip_elems = count;
1739 				return elem;
1740 			}
1741 			count++;
1742 		}
1743 
1744 		rcu_read_unlock();
1745 		skip_elems = 0;
1746 	}
1747 
1748 	info->bucket_id = i;
1749 	info->skip_elems = 0;
1750 	return NULL;
1751 }
1752 
1753 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1754 {
1755 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1756 	struct htab_elem *elem;
1757 
1758 	elem = bpf_hash_map_seq_find_next(info, NULL);
1759 	if (!elem)
1760 		return NULL;
1761 
1762 	if (*pos == 0)
1763 		++*pos;
1764 	return elem;
1765 }
1766 
1767 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1768 {
1769 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1770 
1771 	++*pos;
1772 	++info->skip_elems;
1773 	return bpf_hash_map_seq_find_next(info, v);
1774 }
1775 
1776 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1777 {
1778 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1779 	u32 roundup_key_size, roundup_value_size;
1780 	struct bpf_iter__bpf_map_elem ctx = {};
1781 	struct bpf_map *map = info->map;
1782 	struct bpf_iter_meta meta;
1783 	int ret = 0, off = 0, cpu;
1784 	struct bpf_prog *prog;
1785 	void __percpu *pptr;
1786 
1787 	meta.seq = seq;
1788 	prog = bpf_iter_get_info(&meta, elem == NULL);
1789 	if (prog) {
1790 		ctx.meta = &meta;
1791 		ctx.map = info->map;
1792 		if (elem) {
1793 			roundup_key_size = round_up(map->key_size, 8);
1794 			ctx.key = elem->key;
1795 			if (!info->percpu_value_buf) {
1796 				ctx.value = elem->key + roundup_key_size;
1797 			} else {
1798 				roundup_value_size = round_up(map->value_size, 8);
1799 				pptr = htab_elem_get_ptr(elem, map->key_size);
1800 				for_each_possible_cpu(cpu) {
1801 					bpf_long_memcpy(info->percpu_value_buf + off,
1802 							per_cpu_ptr(pptr, cpu),
1803 							roundup_value_size);
1804 					off += roundup_value_size;
1805 				}
1806 				ctx.value = info->percpu_value_buf;
1807 			}
1808 		}
1809 		ret = bpf_iter_run_prog(prog, &ctx);
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1816 {
1817 	return __bpf_hash_map_seq_show(seq, v);
1818 }
1819 
1820 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1821 {
1822 	if (!v)
1823 		(void)__bpf_hash_map_seq_show(seq, NULL);
1824 	else
1825 		rcu_read_unlock();
1826 }
1827 
1828 static int bpf_iter_init_hash_map(void *priv_data,
1829 				  struct bpf_iter_aux_info *aux)
1830 {
1831 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1832 	struct bpf_map *map = aux->map;
1833 	void *value_buf;
1834 	u32 buf_size;
1835 
1836 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1837 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1838 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1839 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1840 		if (!value_buf)
1841 			return -ENOMEM;
1842 
1843 		seq_info->percpu_value_buf = value_buf;
1844 	}
1845 
1846 	seq_info->map = map;
1847 	seq_info->htab = container_of(map, struct bpf_htab, map);
1848 	return 0;
1849 }
1850 
1851 static void bpf_iter_fini_hash_map(void *priv_data)
1852 {
1853 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1854 
1855 	kfree(seq_info->percpu_value_buf);
1856 }
1857 
1858 static const struct seq_operations bpf_hash_map_seq_ops = {
1859 	.start	= bpf_hash_map_seq_start,
1860 	.next	= bpf_hash_map_seq_next,
1861 	.stop	= bpf_hash_map_seq_stop,
1862 	.show	= bpf_hash_map_seq_show,
1863 };
1864 
1865 static const struct bpf_iter_seq_info iter_seq_info = {
1866 	.seq_ops		= &bpf_hash_map_seq_ops,
1867 	.init_seq_private	= bpf_iter_init_hash_map,
1868 	.fini_seq_private	= bpf_iter_fini_hash_map,
1869 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1870 };
1871 
1872 static int bpf_for_each_hash_elem(struct bpf_map *map, void *callback_fn,
1873 				  void *callback_ctx, u64 flags)
1874 {
1875 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1876 	struct hlist_nulls_head *head;
1877 	struct hlist_nulls_node *n;
1878 	struct htab_elem *elem;
1879 	u32 roundup_key_size;
1880 	int i, num_elems = 0;
1881 	void __percpu *pptr;
1882 	struct bucket *b;
1883 	void *key, *val;
1884 	bool is_percpu;
1885 	u64 ret = 0;
1886 
1887 	if (flags != 0)
1888 		return -EINVAL;
1889 
1890 	is_percpu = htab_is_percpu(htab);
1891 
1892 	roundup_key_size = round_up(map->key_size, 8);
1893 	/* disable migration so percpu value prepared here will be the
1894 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
1895 	 */
1896 	if (is_percpu)
1897 		migrate_disable();
1898 	for (i = 0; i < htab->n_buckets; i++) {
1899 		b = &htab->buckets[i];
1900 		rcu_read_lock();
1901 		head = &b->head;
1902 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1903 			key = elem->key;
1904 			if (is_percpu) {
1905 				/* current cpu value for percpu map */
1906 				pptr = htab_elem_get_ptr(elem, map->key_size);
1907 				val = this_cpu_ptr(pptr);
1908 			} else {
1909 				val = elem->key + roundup_key_size;
1910 			}
1911 			num_elems++;
1912 			ret = BPF_CAST_CALL(callback_fn)((u64)(long)map,
1913 					(u64)(long)key, (u64)(long)val,
1914 					(u64)(long)callback_ctx, 0);
1915 			/* return value: 0 - continue, 1 - stop and return */
1916 			if (ret) {
1917 				rcu_read_unlock();
1918 				goto out;
1919 			}
1920 		}
1921 		rcu_read_unlock();
1922 	}
1923 out:
1924 	if (is_percpu)
1925 		migrate_enable();
1926 	return num_elems;
1927 }
1928 
1929 static int htab_map_btf_id;
1930 const struct bpf_map_ops htab_map_ops = {
1931 	.map_meta_equal = bpf_map_meta_equal,
1932 	.map_alloc_check = htab_map_alloc_check,
1933 	.map_alloc = htab_map_alloc,
1934 	.map_free = htab_map_free,
1935 	.map_get_next_key = htab_map_get_next_key,
1936 	.map_lookup_elem = htab_map_lookup_elem,
1937 	.map_update_elem = htab_map_update_elem,
1938 	.map_delete_elem = htab_map_delete_elem,
1939 	.map_gen_lookup = htab_map_gen_lookup,
1940 	.map_seq_show_elem = htab_map_seq_show_elem,
1941 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
1942 	.map_for_each_callback = bpf_for_each_hash_elem,
1943 	BATCH_OPS(htab),
1944 	.map_btf_name = "bpf_htab",
1945 	.map_btf_id = &htab_map_btf_id,
1946 	.iter_seq_info = &iter_seq_info,
1947 };
1948 
1949 static int htab_lru_map_btf_id;
1950 const struct bpf_map_ops htab_lru_map_ops = {
1951 	.map_meta_equal = bpf_map_meta_equal,
1952 	.map_alloc_check = htab_map_alloc_check,
1953 	.map_alloc = htab_map_alloc,
1954 	.map_free = htab_map_free,
1955 	.map_get_next_key = htab_map_get_next_key,
1956 	.map_lookup_elem = htab_lru_map_lookup_elem,
1957 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1958 	.map_update_elem = htab_lru_map_update_elem,
1959 	.map_delete_elem = htab_lru_map_delete_elem,
1960 	.map_gen_lookup = htab_lru_map_gen_lookup,
1961 	.map_seq_show_elem = htab_map_seq_show_elem,
1962 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
1963 	.map_for_each_callback = bpf_for_each_hash_elem,
1964 	BATCH_OPS(htab_lru),
1965 	.map_btf_name = "bpf_htab",
1966 	.map_btf_id = &htab_lru_map_btf_id,
1967 	.iter_seq_info = &iter_seq_info,
1968 };
1969 
1970 /* Called from eBPF program */
1971 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1972 {
1973 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1974 
1975 	if (l)
1976 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1977 	else
1978 		return NULL;
1979 }
1980 
1981 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1982 {
1983 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1984 
1985 	if (l) {
1986 		bpf_lru_node_set_ref(&l->lru_node);
1987 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1988 	}
1989 
1990 	return NULL;
1991 }
1992 
1993 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1994 {
1995 	struct htab_elem *l;
1996 	void __percpu *pptr;
1997 	int ret = -ENOENT;
1998 	int cpu, off = 0;
1999 	u32 size;
2000 
2001 	/* per_cpu areas are zero-filled and bpf programs can only
2002 	 * access 'value_size' of them, so copying rounded areas
2003 	 * will not leak any kernel data
2004 	 */
2005 	size = round_up(map->value_size, 8);
2006 	rcu_read_lock();
2007 	l = __htab_map_lookup_elem(map, key);
2008 	if (!l)
2009 		goto out;
2010 	/* We do not mark LRU map element here in order to not mess up
2011 	 * eviction heuristics when user space does a map walk.
2012 	 */
2013 	pptr = htab_elem_get_ptr(l, map->key_size);
2014 	for_each_possible_cpu(cpu) {
2015 		bpf_long_memcpy(value + off,
2016 				per_cpu_ptr(pptr, cpu), size);
2017 		off += size;
2018 	}
2019 	ret = 0;
2020 out:
2021 	rcu_read_unlock();
2022 	return ret;
2023 }
2024 
2025 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2026 			   u64 map_flags)
2027 {
2028 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2029 	int ret;
2030 
2031 	rcu_read_lock();
2032 	if (htab_is_lru(htab))
2033 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2034 							map_flags, true);
2035 	else
2036 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2037 						    true);
2038 	rcu_read_unlock();
2039 
2040 	return ret;
2041 }
2042 
2043 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2044 					  struct seq_file *m)
2045 {
2046 	struct htab_elem *l;
2047 	void __percpu *pptr;
2048 	int cpu;
2049 
2050 	rcu_read_lock();
2051 
2052 	l = __htab_map_lookup_elem(map, key);
2053 	if (!l) {
2054 		rcu_read_unlock();
2055 		return;
2056 	}
2057 
2058 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2059 	seq_puts(m, ": {\n");
2060 	pptr = htab_elem_get_ptr(l, map->key_size);
2061 	for_each_possible_cpu(cpu) {
2062 		seq_printf(m, "\tcpu%d: ", cpu);
2063 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2064 				  per_cpu_ptr(pptr, cpu), m);
2065 		seq_puts(m, "\n");
2066 	}
2067 	seq_puts(m, "}\n");
2068 
2069 	rcu_read_unlock();
2070 }
2071 
2072 static int htab_percpu_map_btf_id;
2073 const struct bpf_map_ops htab_percpu_map_ops = {
2074 	.map_meta_equal = bpf_map_meta_equal,
2075 	.map_alloc_check = htab_map_alloc_check,
2076 	.map_alloc = htab_map_alloc,
2077 	.map_free = htab_map_free,
2078 	.map_get_next_key = htab_map_get_next_key,
2079 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2080 	.map_update_elem = htab_percpu_map_update_elem,
2081 	.map_delete_elem = htab_map_delete_elem,
2082 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2083 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2084 	.map_for_each_callback = bpf_for_each_hash_elem,
2085 	BATCH_OPS(htab_percpu),
2086 	.map_btf_name = "bpf_htab",
2087 	.map_btf_id = &htab_percpu_map_btf_id,
2088 	.iter_seq_info = &iter_seq_info,
2089 };
2090 
2091 static int htab_lru_percpu_map_btf_id;
2092 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2093 	.map_meta_equal = bpf_map_meta_equal,
2094 	.map_alloc_check = htab_map_alloc_check,
2095 	.map_alloc = htab_map_alloc,
2096 	.map_free = htab_map_free,
2097 	.map_get_next_key = htab_map_get_next_key,
2098 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2099 	.map_update_elem = htab_lru_percpu_map_update_elem,
2100 	.map_delete_elem = htab_lru_map_delete_elem,
2101 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2102 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2103 	.map_for_each_callback = bpf_for_each_hash_elem,
2104 	BATCH_OPS(htab_lru_percpu),
2105 	.map_btf_name = "bpf_htab",
2106 	.map_btf_id = &htab_lru_percpu_map_btf_id,
2107 	.iter_seq_info = &iter_seq_info,
2108 };
2109 
2110 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2111 {
2112 	if (attr->value_size != sizeof(u32))
2113 		return -EINVAL;
2114 	return htab_map_alloc_check(attr);
2115 }
2116 
2117 static void fd_htab_map_free(struct bpf_map *map)
2118 {
2119 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2120 	struct hlist_nulls_node *n;
2121 	struct hlist_nulls_head *head;
2122 	struct htab_elem *l;
2123 	int i;
2124 
2125 	for (i = 0; i < htab->n_buckets; i++) {
2126 		head = select_bucket(htab, i);
2127 
2128 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2129 			void *ptr = fd_htab_map_get_ptr(map, l);
2130 
2131 			map->ops->map_fd_put_ptr(ptr);
2132 		}
2133 	}
2134 
2135 	htab_map_free(map);
2136 }
2137 
2138 /* only called from syscall */
2139 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2140 {
2141 	void **ptr;
2142 	int ret = 0;
2143 
2144 	if (!map->ops->map_fd_sys_lookup_elem)
2145 		return -ENOTSUPP;
2146 
2147 	rcu_read_lock();
2148 	ptr = htab_map_lookup_elem(map, key);
2149 	if (ptr)
2150 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2151 	else
2152 		ret = -ENOENT;
2153 	rcu_read_unlock();
2154 
2155 	return ret;
2156 }
2157 
2158 /* only called from syscall */
2159 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2160 				void *key, void *value, u64 map_flags)
2161 {
2162 	void *ptr;
2163 	int ret;
2164 	u32 ufd = *(u32 *)value;
2165 
2166 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2167 	if (IS_ERR(ptr))
2168 		return PTR_ERR(ptr);
2169 
2170 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2171 	if (ret)
2172 		map->ops->map_fd_put_ptr(ptr);
2173 
2174 	return ret;
2175 }
2176 
2177 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2178 {
2179 	struct bpf_map *map, *inner_map_meta;
2180 
2181 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2182 	if (IS_ERR(inner_map_meta))
2183 		return inner_map_meta;
2184 
2185 	map = htab_map_alloc(attr);
2186 	if (IS_ERR(map)) {
2187 		bpf_map_meta_free(inner_map_meta);
2188 		return map;
2189 	}
2190 
2191 	map->inner_map_meta = inner_map_meta;
2192 
2193 	return map;
2194 }
2195 
2196 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2197 {
2198 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2199 
2200 	if (!inner_map)
2201 		return NULL;
2202 
2203 	return READ_ONCE(*inner_map);
2204 }
2205 
2206 static int htab_of_map_gen_lookup(struct bpf_map *map,
2207 				  struct bpf_insn *insn_buf)
2208 {
2209 	struct bpf_insn *insn = insn_buf;
2210 	const int ret = BPF_REG_0;
2211 
2212 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2213 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2214 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2215 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2216 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2217 				offsetof(struct htab_elem, key) +
2218 				round_up(map->key_size, 8));
2219 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2220 
2221 	return insn - insn_buf;
2222 }
2223 
2224 static void htab_of_map_free(struct bpf_map *map)
2225 {
2226 	bpf_map_meta_free(map->inner_map_meta);
2227 	fd_htab_map_free(map);
2228 }
2229 
2230 static int htab_of_maps_map_btf_id;
2231 const struct bpf_map_ops htab_of_maps_map_ops = {
2232 	.map_alloc_check = fd_htab_map_alloc_check,
2233 	.map_alloc = htab_of_map_alloc,
2234 	.map_free = htab_of_map_free,
2235 	.map_get_next_key = htab_map_get_next_key,
2236 	.map_lookup_elem = htab_of_map_lookup_elem,
2237 	.map_delete_elem = htab_map_delete_elem,
2238 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2239 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2240 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2241 	.map_gen_lookup = htab_of_map_gen_lookup,
2242 	.map_check_btf = map_check_no_btf,
2243 	.map_btf_name = "bpf_htab",
2244 	.map_btf_id = &htab_of_maps_map_btf_id,
2245 };
2246