xref: /openbmc/linux/kernel/bpf/devmap.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	struct bpf_prog *xdp_prog;
61 	unsigned int count;
62 };
63 
64 struct bpf_dtab_netdev {
65 	struct net_device *dev; /* must be first member, due to tracepoint */
66 	struct hlist_node index_hlist;
67 	struct bpf_dtab *dtab;
68 	struct bpf_prog *xdp_prog;
69 	struct rcu_head rcu;
70 	unsigned int idx;
71 	struct bpf_devmap_val val;
72 };
73 
74 struct bpf_dtab {
75 	struct bpf_map map;
76 	struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */
77 	struct list_head list;
78 
79 	/* these are only used for DEVMAP_HASH type maps */
80 	struct hlist_head *dev_index_head;
81 	spinlock_t index_lock;
82 	unsigned int items;
83 	u32 n_buckets;
84 };
85 
86 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
87 static DEFINE_SPINLOCK(dev_map_lock);
88 static LIST_HEAD(dev_map_list);
89 
90 static struct hlist_head *dev_map_create_hash(unsigned int entries,
91 					      int numa_node)
92 {
93 	int i;
94 	struct hlist_head *hash;
95 
96 	hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
97 	if (hash != NULL)
98 		for (i = 0; i < entries; i++)
99 			INIT_HLIST_HEAD(&hash[i]);
100 
101 	return hash;
102 }
103 
104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
105 						    int idx)
106 {
107 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
108 }
109 
110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
111 {
112 	u32 valsize = attr->value_size;
113 
114 	/* check sanity of attributes. 2 value sizes supported:
115 	 * 4 bytes: ifindex
116 	 * 8 bytes: ifindex + prog fd
117 	 */
118 	if (attr->max_entries == 0 || attr->key_size != 4 ||
119 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
120 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
121 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
122 		return -EINVAL;
123 
124 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
125 	 * verifier prevents writes from the BPF side
126 	 */
127 	attr->map_flags |= BPF_F_RDONLY_PROG;
128 
129 
130 	bpf_map_init_from_attr(&dtab->map, attr);
131 
132 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
133 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
134 
135 		if (!dtab->n_buckets) /* Overflow check */
136 			return -EINVAL;
137 	}
138 
139 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
140 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
141 							   dtab->map.numa_node);
142 		if (!dtab->dev_index_head)
143 			return -ENOMEM;
144 
145 		spin_lock_init(&dtab->index_lock);
146 	} else {
147 		dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
148 						      sizeof(struct bpf_dtab_netdev *),
149 						      dtab->map.numa_node);
150 		if (!dtab->netdev_map)
151 			return -ENOMEM;
152 	}
153 
154 	return 0;
155 }
156 
157 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
158 {
159 	struct bpf_dtab *dtab;
160 	int err;
161 
162 	if (!capable(CAP_NET_ADMIN))
163 		return ERR_PTR(-EPERM);
164 
165 	dtab = kzalloc(sizeof(*dtab), GFP_USER | __GFP_ACCOUNT);
166 	if (!dtab)
167 		return ERR_PTR(-ENOMEM);
168 
169 	err = dev_map_init_map(dtab, attr);
170 	if (err) {
171 		kfree(dtab);
172 		return ERR_PTR(err);
173 	}
174 
175 	spin_lock(&dev_map_lock);
176 	list_add_tail_rcu(&dtab->list, &dev_map_list);
177 	spin_unlock(&dev_map_lock);
178 
179 	return &dtab->map;
180 }
181 
182 static void dev_map_free(struct bpf_map *map)
183 {
184 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
185 	int i;
186 
187 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
188 	 * so the programs (can be more than one that used this map) were
189 	 * disconnected from events. The following synchronize_rcu() guarantees
190 	 * both rcu read critical sections complete and waits for
191 	 * preempt-disable regions (NAPI being the relevant context here) so we
192 	 * are certain there will be no further reads against the netdev_map and
193 	 * all flush operations are complete. Flush operations can only be done
194 	 * from NAPI context for this reason.
195 	 */
196 
197 	spin_lock(&dev_map_lock);
198 	list_del_rcu(&dtab->list);
199 	spin_unlock(&dev_map_lock);
200 
201 	bpf_clear_redirect_map(map);
202 	synchronize_rcu();
203 
204 	/* Make sure prior __dev_map_entry_free() have completed. */
205 	rcu_barrier();
206 
207 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
208 		for (i = 0; i < dtab->n_buckets; i++) {
209 			struct bpf_dtab_netdev *dev;
210 			struct hlist_head *head;
211 			struct hlist_node *next;
212 
213 			head = dev_map_index_hash(dtab, i);
214 
215 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
216 				hlist_del_rcu(&dev->index_hlist);
217 				if (dev->xdp_prog)
218 					bpf_prog_put(dev->xdp_prog);
219 				dev_put(dev->dev);
220 				kfree(dev);
221 			}
222 		}
223 
224 		bpf_map_area_free(dtab->dev_index_head);
225 	} else {
226 		for (i = 0; i < dtab->map.max_entries; i++) {
227 			struct bpf_dtab_netdev *dev;
228 
229 			dev = rcu_dereference_raw(dtab->netdev_map[i]);
230 			if (!dev)
231 				continue;
232 
233 			if (dev->xdp_prog)
234 				bpf_prog_put(dev->xdp_prog);
235 			dev_put(dev->dev);
236 			kfree(dev);
237 		}
238 
239 		bpf_map_area_free(dtab->netdev_map);
240 	}
241 
242 	kfree(dtab);
243 }
244 
245 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
246 {
247 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
248 	u32 index = key ? *(u32 *)key : U32_MAX;
249 	u32 *next = next_key;
250 
251 	if (index >= dtab->map.max_entries) {
252 		*next = 0;
253 		return 0;
254 	}
255 
256 	if (index == dtab->map.max_entries - 1)
257 		return -ENOENT;
258 	*next = index + 1;
259 	return 0;
260 }
261 
262 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
263  * by local_bh_disable() (from XDP calls inside NAPI). The
264  * rcu_read_lock_bh_held() below makes lockdep accept both.
265  */
266 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
267 {
268 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
269 	struct hlist_head *head = dev_map_index_hash(dtab, key);
270 	struct bpf_dtab_netdev *dev;
271 
272 	hlist_for_each_entry_rcu(dev, head, index_hlist,
273 				 lockdep_is_held(&dtab->index_lock))
274 		if (dev->idx == key)
275 			return dev;
276 
277 	return NULL;
278 }
279 
280 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
281 				    void *next_key)
282 {
283 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
284 	u32 idx, *next = next_key;
285 	struct bpf_dtab_netdev *dev, *next_dev;
286 	struct hlist_head *head;
287 	int i = 0;
288 
289 	if (!key)
290 		goto find_first;
291 
292 	idx = *(u32 *)key;
293 
294 	dev = __dev_map_hash_lookup_elem(map, idx);
295 	if (!dev)
296 		goto find_first;
297 
298 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
299 				    struct bpf_dtab_netdev, index_hlist);
300 
301 	if (next_dev) {
302 		*next = next_dev->idx;
303 		return 0;
304 	}
305 
306 	i = idx & (dtab->n_buckets - 1);
307 	i++;
308 
309  find_first:
310 	for (; i < dtab->n_buckets; i++) {
311 		head = dev_map_index_hash(dtab, i);
312 
313 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
314 					    struct bpf_dtab_netdev,
315 					    index_hlist);
316 		if (next_dev) {
317 			*next = next_dev->idx;
318 			return 0;
319 		}
320 	}
321 
322 	return -ENOENT;
323 }
324 
325 bool dev_map_can_have_prog(struct bpf_map *map)
326 {
327 	if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
328 	     map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
329 	    map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
330 		return true;
331 
332 	return false;
333 }
334 
335 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog,
336 				struct xdp_frame **frames, int n,
337 				struct net_device *dev)
338 {
339 	struct xdp_txq_info txq = { .dev = dev };
340 	struct xdp_buff xdp;
341 	int i, nframes = 0;
342 
343 	for (i = 0; i < n; i++) {
344 		struct xdp_frame *xdpf = frames[i];
345 		u32 act;
346 		int err;
347 
348 		xdp_convert_frame_to_buff(xdpf, &xdp);
349 		xdp.txq = &txq;
350 
351 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
352 		switch (act) {
353 		case XDP_PASS:
354 			err = xdp_update_frame_from_buff(&xdp, xdpf);
355 			if (unlikely(err < 0))
356 				xdp_return_frame_rx_napi(xdpf);
357 			else
358 				frames[nframes++] = xdpf;
359 			break;
360 		default:
361 			bpf_warn_invalid_xdp_action(act);
362 			fallthrough;
363 		case XDP_ABORTED:
364 			trace_xdp_exception(dev, xdp_prog, act);
365 			fallthrough;
366 		case XDP_DROP:
367 			xdp_return_frame_rx_napi(xdpf);
368 			break;
369 		}
370 	}
371 	return nframes; /* sent frames count */
372 }
373 
374 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
375 {
376 	struct net_device *dev = bq->dev;
377 	unsigned int cnt = bq->count;
378 	int sent = 0, err = 0;
379 	int to_send = cnt;
380 	int i;
381 
382 	if (unlikely(!cnt))
383 		return;
384 
385 	for (i = 0; i < cnt; i++) {
386 		struct xdp_frame *xdpf = bq->q[i];
387 
388 		prefetch(xdpf);
389 	}
390 
391 	if (bq->xdp_prog) {
392 		to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev);
393 		if (!to_send)
394 			goto out;
395 	}
396 
397 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags);
398 	if (sent < 0) {
399 		/* If ndo_xdp_xmit fails with an errno, no frames have
400 		 * been xmit'ed.
401 		 */
402 		err = sent;
403 		sent = 0;
404 	}
405 
406 	/* If not all frames have been transmitted, it is our
407 	 * responsibility to free them
408 	 */
409 	for (i = sent; unlikely(i < to_send); i++)
410 		xdp_return_frame_rx_napi(bq->q[i]);
411 
412 out:
413 	bq->count = 0;
414 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err);
415 }
416 
417 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the
418  * driver before returning from its napi->poll() routine. See the comment above
419  * xdp_do_flush() in filter.c.
420  */
421 void __dev_flush(void)
422 {
423 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
424 	struct xdp_dev_bulk_queue *bq, *tmp;
425 
426 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
427 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
428 		bq->dev_rx = NULL;
429 		bq->xdp_prog = NULL;
430 		__list_del_clearprev(&bq->flush_node);
431 	}
432 }
433 
434 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
435  * by local_bh_disable() (from XDP calls inside NAPI). The
436  * rcu_read_lock_bh_held() below makes lockdep accept both.
437  */
438 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
439 {
440 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
441 	struct bpf_dtab_netdev *obj;
442 
443 	if (key >= map->max_entries)
444 		return NULL;
445 
446 	obj = rcu_dereference_check(dtab->netdev_map[key],
447 				    rcu_read_lock_bh_held());
448 	return obj;
449 }
450 
451 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu
452  * variable access, and map elements stick around. See comment above
453  * xdp_do_flush() in filter.c.
454  */
455 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
456 		       struct net_device *dev_rx, struct bpf_prog *xdp_prog)
457 {
458 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
459 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
460 
461 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
462 		bq_xmit_all(bq, 0);
463 
464 	/* Ingress dev_rx will be the same for all xdp_frame's in
465 	 * bulk_queue, because bq stored per-CPU and must be flushed
466 	 * from net_device drivers NAPI func end.
467 	 *
468 	 * Do the same with xdp_prog and flush_list since these fields
469 	 * are only ever modified together.
470 	 */
471 	if (!bq->dev_rx) {
472 		bq->dev_rx = dev_rx;
473 		bq->xdp_prog = xdp_prog;
474 		list_add(&bq->flush_node, flush_list);
475 	}
476 
477 	bq->q[bq->count++] = xdpf;
478 }
479 
480 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
481 				struct net_device *dev_rx,
482 				struct bpf_prog *xdp_prog)
483 {
484 	struct xdp_frame *xdpf;
485 	int err;
486 
487 	if (!dev->netdev_ops->ndo_xdp_xmit)
488 		return -EOPNOTSUPP;
489 
490 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
491 	if (unlikely(err))
492 		return err;
493 
494 	xdpf = xdp_convert_buff_to_frame(xdp);
495 	if (unlikely(!xdpf))
496 		return -EOVERFLOW;
497 
498 	bq_enqueue(dev, xdpf, dev_rx, xdp_prog);
499 	return 0;
500 }
501 
502 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
503 		    struct net_device *dev_rx)
504 {
505 	return __xdp_enqueue(dev, xdp, dev_rx, NULL);
506 }
507 
508 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
509 		    struct net_device *dev_rx)
510 {
511 	struct net_device *dev = dst->dev;
512 
513 	return __xdp_enqueue(dev, xdp, dev_rx, dst->xdp_prog);
514 }
515 
516 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_buff *xdp,
517 			 int exclude_ifindex)
518 {
519 	if (!obj || obj->dev->ifindex == exclude_ifindex ||
520 	    !obj->dev->netdev_ops->ndo_xdp_xmit)
521 		return false;
522 
523 	if (xdp_ok_fwd_dev(obj->dev, xdp->data_end - xdp->data))
524 		return false;
525 
526 	return true;
527 }
528 
529 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj,
530 				 struct net_device *dev_rx,
531 				 struct xdp_frame *xdpf)
532 {
533 	struct xdp_frame *nxdpf;
534 
535 	nxdpf = xdpf_clone(xdpf);
536 	if (!nxdpf)
537 		return -ENOMEM;
538 
539 	bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog);
540 
541 	return 0;
542 }
543 
544 int dev_map_enqueue_multi(struct xdp_buff *xdp, struct net_device *dev_rx,
545 			  struct bpf_map *map, bool exclude_ingress)
546 {
547 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
548 	int exclude_ifindex = exclude_ingress ? dev_rx->ifindex : 0;
549 	struct bpf_dtab_netdev *dst, *last_dst = NULL;
550 	struct hlist_head *head;
551 	struct xdp_frame *xdpf;
552 	unsigned int i;
553 	int err;
554 
555 	xdpf = xdp_convert_buff_to_frame(xdp);
556 	if (unlikely(!xdpf))
557 		return -EOVERFLOW;
558 
559 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
560 		for (i = 0; i < map->max_entries; i++) {
561 			dst = READ_ONCE(dtab->netdev_map[i]);
562 			if (!is_valid_dst(dst, xdp, exclude_ifindex))
563 				continue;
564 
565 			/* we only need n-1 clones; last_dst enqueued below */
566 			if (!last_dst) {
567 				last_dst = dst;
568 				continue;
569 			}
570 
571 			err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
572 			if (err)
573 				return err;
574 
575 			last_dst = dst;
576 		}
577 	} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
578 		for (i = 0; i < dtab->n_buckets; i++) {
579 			head = dev_map_index_hash(dtab, i);
580 			hlist_for_each_entry_rcu(dst, head, index_hlist,
581 						 lockdep_is_held(&dtab->index_lock)) {
582 				if (!is_valid_dst(dst, xdp, exclude_ifindex))
583 					continue;
584 
585 				/* we only need n-1 clones; last_dst enqueued below */
586 				if (!last_dst) {
587 					last_dst = dst;
588 					continue;
589 				}
590 
591 				err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
592 				if (err)
593 					return err;
594 
595 				last_dst = dst;
596 			}
597 		}
598 	}
599 
600 	/* consume the last copy of the frame */
601 	if (last_dst)
602 		bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog);
603 	else
604 		xdp_return_frame_rx_napi(xdpf); /* dtab is empty */
605 
606 	return 0;
607 }
608 
609 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
610 			     struct bpf_prog *xdp_prog)
611 {
612 	int err;
613 
614 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
615 	if (unlikely(err))
616 		return err;
617 	skb->dev = dst->dev;
618 	generic_xdp_tx(skb, xdp_prog);
619 
620 	return 0;
621 }
622 
623 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst,
624 				  struct sk_buff *skb,
625 				  struct bpf_prog *xdp_prog)
626 {
627 	struct sk_buff *nskb;
628 	int err;
629 
630 	nskb = skb_clone(skb, GFP_ATOMIC);
631 	if (!nskb)
632 		return -ENOMEM;
633 
634 	err = dev_map_generic_redirect(dst, nskb, xdp_prog);
635 	if (unlikely(err)) {
636 		consume_skb(nskb);
637 		return err;
638 	}
639 
640 	return 0;
641 }
642 
643 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
644 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
645 			   bool exclude_ingress)
646 {
647 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
648 	int exclude_ifindex = exclude_ingress ? dev->ifindex : 0;
649 	struct bpf_dtab_netdev *dst, *last_dst = NULL;
650 	struct hlist_head *head;
651 	struct hlist_node *next;
652 	unsigned int i;
653 	int err;
654 
655 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
656 		for (i = 0; i < map->max_entries; i++) {
657 			dst = READ_ONCE(dtab->netdev_map[i]);
658 			if (!dst || dst->dev->ifindex == exclude_ifindex)
659 				continue;
660 
661 			/* we only need n-1 clones; last_dst enqueued below */
662 			if (!last_dst) {
663 				last_dst = dst;
664 				continue;
665 			}
666 
667 			err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
668 			if (err)
669 				return err;
670 
671 			last_dst = dst;
672 		}
673 	} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
674 		for (i = 0; i < dtab->n_buckets; i++) {
675 			head = dev_map_index_hash(dtab, i);
676 			hlist_for_each_entry_safe(dst, next, head, index_hlist) {
677 				if (!dst || dst->dev->ifindex == exclude_ifindex)
678 					continue;
679 
680 				/* we only need n-1 clones; last_dst enqueued below */
681 				if (!last_dst) {
682 					last_dst = dst;
683 					continue;
684 				}
685 
686 				err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
687 				if (err)
688 					return err;
689 
690 				last_dst = dst;
691 			}
692 		}
693 	}
694 
695 	/* consume the first skb and return */
696 	if (last_dst)
697 		return dev_map_generic_redirect(last_dst, skb, xdp_prog);
698 
699 	/* dtab is empty */
700 	consume_skb(skb);
701 	return 0;
702 }
703 
704 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
705 {
706 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
707 
708 	return obj ? &obj->val : NULL;
709 }
710 
711 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
712 {
713 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
714 								*(u32 *)key);
715 	return obj ? &obj->val : NULL;
716 }
717 
718 static void __dev_map_entry_free(struct rcu_head *rcu)
719 {
720 	struct bpf_dtab_netdev *dev;
721 
722 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
723 	if (dev->xdp_prog)
724 		bpf_prog_put(dev->xdp_prog);
725 	dev_put(dev->dev);
726 	kfree(dev);
727 }
728 
729 static int dev_map_delete_elem(struct bpf_map *map, void *key)
730 {
731 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
732 	struct bpf_dtab_netdev *old_dev;
733 	int k = *(u32 *)key;
734 
735 	if (k >= map->max_entries)
736 		return -EINVAL;
737 
738 	old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL));
739 	if (old_dev)
740 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
741 	return 0;
742 }
743 
744 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
745 {
746 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
747 	struct bpf_dtab_netdev *old_dev;
748 	int k = *(u32 *)key;
749 	unsigned long flags;
750 	int ret = -ENOENT;
751 
752 	spin_lock_irqsave(&dtab->index_lock, flags);
753 
754 	old_dev = __dev_map_hash_lookup_elem(map, k);
755 	if (old_dev) {
756 		dtab->items--;
757 		hlist_del_init_rcu(&old_dev->index_hlist);
758 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
759 		ret = 0;
760 	}
761 	spin_unlock_irqrestore(&dtab->index_lock, flags);
762 
763 	return ret;
764 }
765 
766 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
767 						    struct bpf_dtab *dtab,
768 						    struct bpf_devmap_val *val,
769 						    unsigned int idx)
770 {
771 	struct bpf_prog *prog = NULL;
772 	struct bpf_dtab_netdev *dev;
773 
774 	dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
775 				   GFP_ATOMIC | __GFP_NOWARN,
776 				   dtab->map.numa_node);
777 	if (!dev)
778 		return ERR_PTR(-ENOMEM);
779 
780 	dev->dev = dev_get_by_index(net, val->ifindex);
781 	if (!dev->dev)
782 		goto err_out;
783 
784 	if (val->bpf_prog.fd > 0) {
785 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
786 					     BPF_PROG_TYPE_XDP, false);
787 		if (IS_ERR(prog))
788 			goto err_put_dev;
789 		if (prog->expected_attach_type != BPF_XDP_DEVMAP)
790 			goto err_put_prog;
791 	}
792 
793 	dev->idx = idx;
794 	dev->dtab = dtab;
795 	if (prog) {
796 		dev->xdp_prog = prog;
797 		dev->val.bpf_prog.id = prog->aux->id;
798 	} else {
799 		dev->xdp_prog = NULL;
800 		dev->val.bpf_prog.id = 0;
801 	}
802 	dev->val.ifindex = val->ifindex;
803 
804 	return dev;
805 err_put_prog:
806 	bpf_prog_put(prog);
807 err_put_dev:
808 	dev_put(dev->dev);
809 err_out:
810 	kfree(dev);
811 	return ERR_PTR(-EINVAL);
812 }
813 
814 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
815 				 void *key, void *value, u64 map_flags)
816 {
817 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
818 	struct bpf_dtab_netdev *dev, *old_dev;
819 	struct bpf_devmap_val val = {};
820 	u32 i = *(u32 *)key;
821 
822 	if (unlikely(map_flags > BPF_EXIST))
823 		return -EINVAL;
824 	if (unlikely(i >= dtab->map.max_entries))
825 		return -E2BIG;
826 	if (unlikely(map_flags == BPF_NOEXIST))
827 		return -EEXIST;
828 
829 	/* already verified value_size <= sizeof val */
830 	memcpy(&val, value, map->value_size);
831 
832 	if (!val.ifindex) {
833 		dev = NULL;
834 		/* can not specify fd if ifindex is 0 */
835 		if (val.bpf_prog.fd > 0)
836 			return -EINVAL;
837 	} else {
838 		dev = __dev_map_alloc_node(net, dtab, &val, i);
839 		if (IS_ERR(dev))
840 			return PTR_ERR(dev);
841 	}
842 
843 	/* Use call_rcu() here to ensure rcu critical sections have completed
844 	 * Remembering the driver side flush operation will happen before the
845 	 * net device is removed.
846 	 */
847 	old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev)));
848 	if (old_dev)
849 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
850 
851 	return 0;
852 }
853 
854 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
855 			       u64 map_flags)
856 {
857 	return __dev_map_update_elem(current->nsproxy->net_ns,
858 				     map, key, value, map_flags);
859 }
860 
861 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
862 				     void *key, void *value, u64 map_flags)
863 {
864 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
865 	struct bpf_dtab_netdev *dev, *old_dev;
866 	struct bpf_devmap_val val = {};
867 	u32 idx = *(u32 *)key;
868 	unsigned long flags;
869 	int err = -EEXIST;
870 
871 	/* already verified value_size <= sizeof val */
872 	memcpy(&val, value, map->value_size);
873 
874 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
875 		return -EINVAL;
876 
877 	spin_lock_irqsave(&dtab->index_lock, flags);
878 
879 	old_dev = __dev_map_hash_lookup_elem(map, idx);
880 	if (old_dev && (map_flags & BPF_NOEXIST))
881 		goto out_err;
882 
883 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
884 	if (IS_ERR(dev)) {
885 		err = PTR_ERR(dev);
886 		goto out_err;
887 	}
888 
889 	if (old_dev) {
890 		hlist_del_rcu(&old_dev->index_hlist);
891 	} else {
892 		if (dtab->items >= dtab->map.max_entries) {
893 			spin_unlock_irqrestore(&dtab->index_lock, flags);
894 			call_rcu(&dev->rcu, __dev_map_entry_free);
895 			return -E2BIG;
896 		}
897 		dtab->items++;
898 	}
899 
900 	hlist_add_head_rcu(&dev->index_hlist,
901 			   dev_map_index_hash(dtab, idx));
902 	spin_unlock_irqrestore(&dtab->index_lock, flags);
903 
904 	if (old_dev)
905 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
906 
907 	return 0;
908 
909 out_err:
910 	spin_unlock_irqrestore(&dtab->index_lock, flags);
911 	return err;
912 }
913 
914 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
915 				   u64 map_flags)
916 {
917 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
918 					 map, key, value, map_flags);
919 }
920 
921 static int dev_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
922 {
923 	return __bpf_xdp_redirect_map(map, ifindex, flags,
924 				      BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
925 				      __dev_map_lookup_elem);
926 }
927 
928 static int dev_hash_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
929 {
930 	return __bpf_xdp_redirect_map(map, ifindex, flags,
931 				      BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
932 				      __dev_map_hash_lookup_elem);
933 }
934 
935 static int dev_map_btf_id;
936 const struct bpf_map_ops dev_map_ops = {
937 	.map_meta_equal = bpf_map_meta_equal,
938 	.map_alloc = dev_map_alloc,
939 	.map_free = dev_map_free,
940 	.map_get_next_key = dev_map_get_next_key,
941 	.map_lookup_elem = dev_map_lookup_elem,
942 	.map_update_elem = dev_map_update_elem,
943 	.map_delete_elem = dev_map_delete_elem,
944 	.map_check_btf = map_check_no_btf,
945 	.map_btf_name = "bpf_dtab",
946 	.map_btf_id = &dev_map_btf_id,
947 	.map_redirect = dev_map_redirect,
948 };
949 
950 static int dev_map_hash_map_btf_id;
951 const struct bpf_map_ops dev_map_hash_ops = {
952 	.map_meta_equal = bpf_map_meta_equal,
953 	.map_alloc = dev_map_alloc,
954 	.map_free = dev_map_free,
955 	.map_get_next_key = dev_map_hash_get_next_key,
956 	.map_lookup_elem = dev_map_hash_lookup_elem,
957 	.map_update_elem = dev_map_hash_update_elem,
958 	.map_delete_elem = dev_map_hash_delete_elem,
959 	.map_check_btf = map_check_no_btf,
960 	.map_btf_name = "bpf_dtab",
961 	.map_btf_id = &dev_map_hash_map_btf_id,
962 	.map_redirect = dev_hash_map_redirect,
963 };
964 
965 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
966 				       struct net_device *netdev)
967 {
968 	unsigned long flags;
969 	u32 i;
970 
971 	spin_lock_irqsave(&dtab->index_lock, flags);
972 	for (i = 0; i < dtab->n_buckets; i++) {
973 		struct bpf_dtab_netdev *dev;
974 		struct hlist_head *head;
975 		struct hlist_node *next;
976 
977 		head = dev_map_index_hash(dtab, i);
978 
979 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
980 			if (netdev != dev->dev)
981 				continue;
982 
983 			dtab->items--;
984 			hlist_del_rcu(&dev->index_hlist);
985 			call_rcu(&dev->rcu, __dev_map_entry_free);
986 		}
987 	}
988 	spin_unlock_irqrestore(&dtab->index_lock, flags);
989 }
990 
991 static int dev_map_notification(struct notifier_block *notifier,
992 				ulong event, void *ptr)
993 {
994 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
995 	struct bpf_dtab *dtab;
996 	int i, cpu;
997 
998 	switch (event) {
999 	case NETDEV_REGISTER:
1000 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
1001 			break;
1002 
1003 		/* will be freed in free_netdev() */
1004 		netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
1005 		if (!netdev->xdp_bulkq)
1006 			return NOTIFY_BAD;
1007 
1008 		for_each_possible_cpu(cpu)
1009 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
1010 		break;
1011 	case NETDEV_UNREGISTER:
1012 		/* This rcu_read_lock/unlock pair is needed because
1013 		 * dev_map_list is an RCU list AND to ensure a delete
1014 		 * operation does not free a netdev_map entry while we
1015 		 * are comparing it against the netdev being unregistered.
1016 		 */
1017 		rcu_read_lock();
1018 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
1019 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
1020 				dev_map_hash_remove_netdev(dtab, netdev);
1021 				continue;
1022 			}
1023 
1024 			for (i = 0; i < dtab->map.max_entries; i++) {
1025 				struct bpf_dtab_netdev *dev, *odev;
1026 
1027 				dev = rcu_dereference(dtab->netdev_map[i]);
1028 				if (!dev || netdev != dev->dev)
1029 					continue;
1030 				odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL));
1031 				if (dev == odev)
1032 					call_rcu(&dev->rcu,
1033 						 __dev_map_entry_free);
1034 			}
1035 		}
1036 		rcu_read_unlock();
1037 		break;
1038 	default:
1039 		break;
1040 	}
1041 	return NOTIFY_OK;
1042 }
1043 
1044 static struct notifier_block dev_map_notifier = {
1045 	.notifier_call = dev_map_notification,
1046 };
1047 
1048 static int __init dev_map_init(void)
1049 {
1050 	int cpu;
1051 
1052 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
1053 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
1054 		     offsetof(struct _bpf_dtab_netdev, dev));
1055 	register_netdevice_notifier(&dev_map_notifier);
1056 
1057 	for_each_possible_cpu(cpu)
1058 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
1059 	return 0;
1060 }
1061 
1062 subsys_initcall(dev_map_init);
1063