xref: /openbmc/linux/kernel/auditsc.c (revision e868d61272caa648214046a096e5a6bfc068dc8c)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 
70 #include "audit.h"
71 
72 extern struct list_head audit_filter_list[];
73 
74 /* No syscall auditing will take place unless audit_enabled != 0. */
75 extern int audit_enabled;
76 
77 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
78  * for saving names from getname(). */
79 #define AUDIT_NAMES    20
80 
81 /* Indicates that audit should log the full pathname. */
82 #define AUDIT_NAME_FULL -1
83 
84 /* number of audit rules */
85 int audit_n_rules;
86 
87 /* determines whether we collect data for signals sent */
88 int audit_signals;
89 
90 /* When fs/namei.c:getname() is called, we store the pointer in name and
91  * we don't let putname() free it (instead we free all of the saved
92  * pointers at syscall exit time).
93  *
94  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
95 struct audit_names {
96 	const char	*name;
97 	int		name_len;	/* number of name's characters to log */
98 	unsigned	name_put;	/* call __putname() for this name */
99 	unsigned long	ino;
100 	dev_t		dev;
101 	umode_t		mode;
102 	uid_t		uid;
103 	gid_t		gid;
104 	dev_t		rdev;
105 	u32		osid;
106 };
107 
108 struct audit_aux_data {
109 	struct audit_aux_data	*next;
110 	int			type;
111 };
112 
113 #define AUDIT_AUX_IPCPERM	0
114 
115 /* Number of target pids per aux struct. */
116 #define AUDIT_AUX_PIDS	16
117 
118 struct audit_aux_data_mq_open {
119 	struct audit_aux_data	d;
120 	int			oflag;
121 	mode_t			mode;
122 	struct mq_attr		attr;
123 };
124 
125 struct audit_aux_data_mq_sendrecv {
126 	struct audit_aux_data	d;
127 	mqd_t			mqdes;
128 	size_t			msg_len;
129 	unsigned int		msg_prio;
130 	struct timespec		abs_timeout;
131 };
132 
133 struct audit_aux_data_mq_notify {
134 	struct audit_aux_data	d;
135 	mqd_t			mqdes;
136 	struct sigevent 	notification;
137 };
138 
139 struct audit_aux_data_mq_getsetattr {
140 	struct audit_aux_data	d;
141 	mqd_t			mqdes;
142 	struct mq_attr 		mqstat;
143 };
144 
145 struct audit_aux_data_ipcctl {
146 	struct audit_aux_data	d;
147 	struct ipc_perm		p;
148 	unsigned long		qbytes;
149 	uid_t			uid;
150 	gid_t			gid;
151 	mode_t			mode;
152 	u32			osid;
153 };
154 
155 struct audit_aux_data_execve {
156 	struct audit_aux_data	d;
157 	int argc;
158 	int envc;
159 	char mem[0];
160 };
161 
162 struct audit_aux_data_socketcall {
163 	struct audit_aux_data	d;
164 	int			nargs;
165 	unsigned long		args[0];
166 };
167 
168 struct audit_aux_data_sockaddr {
169 	struct audit_aux_data	d;
170 	int			len;
171 	char			a[0];
172 };
173 
174 struct audit_aux_data_fd_pair {
175 	struct	audit_aux_data d;
176 	int	fd[2];
177 };
178 
179 struct audit_aux_data_path {
180 	struct audit_aux_data	d;
181 	struct dentry		*dentry;
182 	struct vfsmount		*mnt;
183 };
184 
185 struct audit_aux_data_pids {
186 	struct audit_aux_data	d;
187 	pid_t			target_pid[AUDIT_AUX_PIDS];
188 	u32			target_sid[AUDIT_AUX_PIDS];
189 	int			pid_count;
190 };
191 
192 /* The per-task audit context. */
193 struct audit_context {
194 	int		    dummy;	/* must be the first element */
195 	int		    in_syscall;	/* 1 if task is in a syscall */
196 	enum audit_state    state;
197 	unsigned int	    serial;     /* serial number for record */
198 	struct timespec	    ctime;      /* time of syscall entry */
199 	uid_t		    loginuid;   /* login uid (identity) */
200 	int		    major;      /* syscall number */
201 	unsigned long	    argv[4];    /* syscall arguments */
202 	int		    return_valid; /* return code is valid */
203 	long		    return_code;/* syscall return code */
204 	int		    auditable;  /* 1 if record should be written */
205 	int		    name_count;
206 	struct audit_names  names[AUDIT_NAMES];
207 	char *		    filterkey;	/* key for rule that triggered record */
208 	struct dentry *	    pwd;
209 	struct vfsmount *   pwdmnt;
210 	struct audit_context *previous; /* For nested syscalls */
211 	struct audit_aux_data *aux;
212 	struct audit_aux_data *aux_pids;
213 
214 				/* Save things to print about task_struct */
215 	pid_t		    pid, ppid;
216 	uid_t		    uid, euid, suid, fsuid;
217 	gid_t		    gid, egid, sgid, fsgid;
218 	unsigned long	    personality;
219 	int		    arch;
220 
221 	pid_t		    target_pid;
222 	u32		    target_sid;
223 
224 #if AUDIT_DEBUG
225 	int		    put_count;
226 	int		    ino_count;
227 #endif
228 };
229 
230 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
231 static inline int open_arg(int flags, int mask)
232 {
233 	int n = ACC_MODE(flags);
234 	if (flags & (O_TRUNC | O_CREAT))
235 		n |= AUDIT_PERM_WRITE;
236 	return n & mask;
237 }
238 
239 static int audit_match_perm(struct audit_context *ctx, int mask)
240 {
241 	unsigned n = ctx->major;
242 	switch (audit_classify_syscall(ctx->arch, n)) {
243 	case 0:	/* native */
244 		if ((mask & AUDIT_PERM_WRITE) &&
245 		     audit_match_class(AUDIT_CLASS_WRITE, n))
246 			return 1;
247 		if ((mask & AUDIT_PERM_READ) &&
248 		     audit_match_class(AUDIT_CLASS_READ, n))
249 			return 1;
250 		if ((mask & AUDIT_PERM_ATTR) &&
251 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
252 			return 1;
253 		return 0;
254 	case 1: /* 32bit on biarch */
255 		if ((mask & AUDIT_PERM_WRITE) &&
256 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
257 			return 1;
258 		if ((mask & AUDIT_PERM_READ) &&
259 		     audit_match_class(AUDIT_CLASS_READ_32, n))
260 			return 1;
261 		if ((mask & AUDIT_PERM_ATTR) &&
262 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
263 			return 1;
264 		return 0;
265 	case 2: /* open */
266 		return mask & ACC_MODE(ctx->argv[1]);
267 	case 3: /* openat */
268 		return mask & ACC_MODE(ctx->argv[2]);
269 	case 4: /* socketcall */
270 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
271 	case 5: /* execve */
272 		return mask & AUDIT_PERM_EXEC;
273 	default:
274 		return 0;
275 	}
276 }
277 
278 /* Determine if any context name data matches a rule's watch data */
279 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
280  * otherwise. */
281 static int audit_filter_rules(struct task_struct *tsk,
282 			      struct audit_krule *rule,
283 			      struct audit_context *ctx,
284 			      struct audit_names *name,
285 			      enum audit_state *state)
286 {
287 	int i, j, need_sid = 1;
288 	u32 sid;
289 
290 	for (i = 0; i < rule->field_count; i++) {
291 		struct audit_field *f = &rule->fields[i];
292 		int result = 0;
293 
294 		switch (f->type) {
295 		case AUDIT_PID:
296 			result = audit_comparator(tsk->pid, f->op, f->val);
297 			break;
298 		case AUDIT_PPID:
299 			if (ctx) {
300 				if (!ctx->ppid)
301 					ctx->ppid = sys_getppid();
302 				result = audit_comparator(ctx->ppid, f->op, f->val);
303 			}
304 			break;
305 		case AUDIT_UID:
306 			result = audit_comparator(tsk->uid, f->op, f->val);
307 			break;
308 		case AUDIT_EUID:
309 			result = audit_comparator(tsk->euid, f->op, f->val);
310 			break;
311 		case AUDIT_SUID:
312 			result = audit_comparator(tsk->suid, f->op, f->val);
313 			break;
314 		case AUDIT_FSUID:
315 			result = audit_comparator(tsk->fsuid, f->op, f->val);
316 			break;
317 		case AUDIT_GID:
318 			result = audit_comparator(tsk->gid, f->op, f->val);
319 			break;
320 		case AUDIT_EGID:
321 			result = audit_comparator(tsk->egid, f->op, f->val);
322 			break;
323 		case AUDIT_SGID:
324 			result = audit_comparator(tsk->sgid, f->op, f->val);
325 			break;
326 		case AUDIT_FSGID:
327 			result = audit_comparator(tsk->fsgid, f->op, f->val);
328 			break;
329 		case AUDIT_PERS:
330 			result = audit_comparator(tsk->personality, f->op, f->val);
331 			break;
332 		case AUDIT_ARCH:
333  			if (ctx)
334 				result = audit_comparator(ctx->arch, f->op, f->val);
335 			break;
336 
337 		case AUDIT_EXIT:
338 			if (ctx && ctx->return_valid)
339 				result = audit_comparator(ctx->return_code, f->op, f->val);
340 			break;
341 		case AUDIT_SUCCESS:
342 			if (ctx && ctx->return_valid) {
343 				if (f->val)
344 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
345 				else
346 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
347 			}
348 			break;
349 		case AUDIT_DEVMAJOR:
350 			if (name)
351 				result = audit_comparator(MAJOR(name->dev),
352 							  f->op, f->val);
353 			else if (ctx) {
354 				for (j = 0; j < ctx->name_count; j++) {
355 					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
356 						++result;
357 						break;
358 					}
359 				}
360 			}
361 			break;
362 		case AUDIT_DEVMINOR:
363 			if (name)
364 				result = audit_comparator(MINOR(name->dev),
365 							  f->op, f->val);
366 			else if (ctx) {
367 				for (j = 0; j < ctx->name_count; j++) {
368 					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
369 						++result;
370 						break;
371 					}
372 				}
373 			}
374 			break;
375 		case AUDIT_INODE:
376 			if (name)
377 				result = (name->ino == f->val);
378 			else if (ctx) {
379 				for (j = 0; j < ctx->name_count; j++) {
380 					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
381 						++result;
382 						break;
383 					}
384 				}
385 			}
386 			break;
387 		case AUDIT_WATCH:
388 			if (name && rule->watch->ino != (unsigned long)-1)
389 				result = (name->dev == rule->watch->dev &&
390 					  name->ino == rule->watch->ino);
391 			break;
392 		case AUDIT_LOGINUID:
393 			result = 0;
394 			if (ctx)
395 				result = audit_comparator(ctx->loginuid, f->op, f->val);
396 			break;
397 		case AUDIT_SUBJ_USER:
398 		case AUDIT_SUBJ_ROLE:
399 		case AUDIT_SUBJ_TYPE:
400 		case AUDIT_SUBJ_SEN:
401 		case AUDIT_SUBJ_CLR:
402 			/* NOTE: this may return negative values indicating
403 			   a temporary error.  We simply treat this as a
404 			   match for now to avoid losing information that
405 			   may be wanted.   An error message will also be
406 			   logged upon error */
407 			if (f->se_rule) {
408 				if (need_sid) {
409 					selinux_get_task_sid(tsk, &sid);
410 					need_sid = 0;
411 				}
412 				result = selinux_audit_rule_match(sid, f->type,
413 				                                  f->op,
414 				                                  f->se_rule,
415 				                                  ctx);
416 			}
417 			break;
418 		case AUDIT_OBJ_USER:
419 		case AUDIT_OBJ_ROLE:
420 		case AUDIT_OBJ_TYPE:
421 		case AUDIT_OBJ_LEV_LOW:
422 		case AUDIT_OBJ_LEV_HIGH:
423 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
424 			   also applies here */
425 			if (f->se_rule) {
426 				/* Find files that match */
427 				if (name) {
428 					result = selinux_audit_rule_match(
429 					           name->osid, f->type, f->op,
430 					           f->se_rule, ctx);
431 				} else if (ctx) {
432 					for (j = 0; j < ctx->name_count; j++) {
433 						if (selinux_audit_rule_match(
434 						      ctx->names[j].osid,
435 						      f->type, f->op,
436 						      f->se_rule, ctx)) {
437 							++result;
438 							break;
439 						}
440 					}
441 				}
442 				/* Find ipc objects that match */
443 				if (ctx) {
444 					struct audit_aux_data *aux;
445 					for (aux = ctx->aux; aux;
446 					     aux = aux->next) {
447 						if (aux->type == AUDIT_IPC) {
448 							struct audit_aux_data_ipcctl *axi = (void *)aux;
449 							if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
450 								++result;
451 								break;
452 							}
453 						}
454 					}
455 				}
456 			}
457 			break;
458 		case AUDIT_ARG0:
459 		case AUDIT_ARG1:
460 		case AUDIT_ARG2:
461 		case AUDIT_ARG3:
462 			if (ctx)
463 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
464 			break;
465 		case AUDIT_FILTERKEY:
466 			/* ignore this field for filtering */
467 			result = 1;
468 			break;
469 		case AUDIT_PERM:
470 			result = audit_match_perm(ctx, f->val);
471 			break;
472 		}
473 
474 		if (!result)
475 			return 0;
476 	}
477 	if (rule->filterkey)
478 		ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
479 	switch (rule->action) {
480 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
481 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
482 	}
483 	return 1;
484 }
485 
486 /* At process creation time, we can determine if system-call auditing is
487  * completely disabled for this task.  Since we only have the task
488  * structure at this point, we can only check uid and gid.
489  */
490 static enum audit_state audit_filter_task(struct task_struct *tsk)
491 {
492 	struct audit_entry *e;
493 	enum audit_state   state;
494 
495 	rcu_read_lock();
496 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
497 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
498 			rcu_read_unlock();
499 			return state;
500 		}
501 	}
502 	rcu_read_unlock();
503 	return AUDIT_BUILD_CONTEXT;
504 }
505 
506 /* At syscall entry and exit time, this filter is called if the
507  * audit_state is not low enough that auditing cannot take place, but is
508  * also not high enough that we already know we have to write an audit
509  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
510  */
511 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
512 					     struct audit_context *ctx,
513 					     struct list_head *list)
514 {
515 	struct audit_entry *e;
516 	enum audit_state state;
517 
518 	if (audit_pid && tsk->tgid == audit_pid)
519 		return AUDIT_DISABLED;
520 
521 	rcu_read_lock();
522 	if (!list_empty(list)) {
523 		int word = AUDIT_WORD(ctx->major);
524 		int bit  = AUDIT_BIT(ctx->major);
525 
526 		list_for_each_entry_rcu(e, list, list) {
527 			if ((e->rule.mask[word] & bit) == bit &&
528 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
529 					       &state)) {
530 				rcu_read_unlock();
531 				return state;
532 			}
533 		}
534 	}
535 	rcu_read_unlock();
536 	return AUDIT_BUILD_CONTEXT;
537 }
538 
539 /* At syscall exit time, this filter is called if any audit_names[] have been
540  * collected during syscall processing.  We only check rules in sublists at hash
541  * buckets applicable to the inode numbers in audit_names[].
542  * Regarding audit_state, same rules apply as for audit_filter_syscall().
543  */
544 enum audit_state audit_filter_inodes(struct task_struct *tsk,
545 				     struct audit_context *ctx)
546 {
547 	int i;
548 	struct audit_entry *e;
549 	enum audit_state state;
550 
551 	if (audit_pid && tsk->tgid == audit_pid)
552 		return AUDIT_DISABLED;
553 
554 	rcu_read_lock();
555 	for (i = 0; i < ctx->name_count; i++) {
556 		int word = AUDIT_WORD(ctx->major);
557 		int bit  = AUDIT_BIT(ctx->major);
558 		struct audit_names *n = &ctx->names[i];
559 		int h = audit_hash_ino((u32)n->ino);
560 		struct list_head *list = &audit_inode_hash[h];
561 
562 		if (list_empty(list))
563 			continue;
564 
565 		list_for_each_entry_rcu(e, list, list) {
566 			if ((e->rule.mask[word] & bit) == bit &&
567 			    audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
568 				rcu_read_unlock();
569 				return state;
570 			}
571 		}
572 	}
573 	rcu_read_unlock();
574 	return AUDIT_BUILD_CONTEXT;
575 }
576 
577 void audit_set_auditable(struct audit_context *ctx)
578 {
579 	ctx->auditable = 1;
580 }
581 
582 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
583 						      int return_valid,
584 						      int return_code)
585 {
586 	struct audit_context *context = tsk->audit_context;
587 
588 	if (likely(!context))
589 		return NULL;
590 	context->return_valid = return_valid;
591 	context->return_code  = return_code;
592 
593 	if (context->in_syscall && !context->dummy && !context->auditable) {
594 		enum audit_state state;
595 
596 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
597 		if (state == AUDIT_RECORD_CONTEXT) {
598 			context->auditable = 1;
599 			goto get_context;
600 		}
601 
602 		state = audit_filter_inodes(tsk, context);
603 		if (state == AUDIT_RECORD_CONTEXT)
604 			context->auditable = 1;
605 
606 	}
607 
608 get_context:
609 
610 	tsk->audit_context = NULL;
611 	return context;
612 }
613 
614 static inline void audit_free_names(struct audit_context *context)
615 {
616 	int i;
617 
618 #if AUDIT_DEBUG == 2
619 	if (context->auditable
620 	    ||context->put_count + context->ino_count != context->name_count) {
621 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
622 		       " name_count=%d put_count=%d"
623 		       " ino_count=%d [NOT freeing]\n",
624 		       __FILE__, __LINE__,
625 		       context->serial, context->major, context->in_syscall,
626 		       context->name_count, context->put_count,
627 		       context->ino_count);
628 		for (i = 0; i < context->name_count; i++) {
629 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
630 			       context->names[i].name,
631 			       context->names[i].name ?: "(null)");
632 		}
633 		dump_stack();
634 		return;
635 	}
636 #endif
637 #if AUDIT_DEBUG
638 	context->put_count  = 0;
639 	context->ino_count  = 0;
640 #endif
641 
642 	for (i = 0; i < context->name_count; i++) {
643 		if (context->names[i].name && context->names[i].name_put)
644 			__putname(context->names[i].name);
645 	}
646 	context->name_count = 0;
647 	if (context->pwd)
648 		dput(context->pwd);
649 	if (context->pwdmnt)
650 		mntput(context->pwdmnt);
651 	context->pwd = NULL;
652 	context->pwdmnt = NULL;
653 }
654 
655 static inline void audit_free_aux(struct audit_context *context)
656 {
657 	struct audit_aux_data *aux;
658 
659 	while ((aux = context->aux)) {
660 		if (aux->type == AUDIT_AVC_PATH) {
661 			struct audit_aux_data_path *axi = (void *)aux;
662 			dput(axi->dentry);
663 			mntput(axi->mnt);
664 		}
665 
666 		context->aux = aux->next;
667 		kfree(aux);
668 	}
669 	while ((aux = context->aux_pids)) {
670 		context->aux_pids = aux->next;
671 		kfree(aux);
672 	}
673 }
674 
675 static inline void audit_zero_context(struct audit_context *context,
676 				      enum audit_state state)
677 {
678 	uid_t loginuid = context->loginuid;
679 
680 	memset(context, 0, sizeof(*context));
681 	context->state      = state;
682 	context->loginuid   = loginuid;
683 }
684 
685 static inline struct audit_context *audit_alloc_context(enum audit_state state)
686 {
687 	struct audit_context *context;
688 
689 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
690 		return NULL;
691 	audit_zero_context(context, state);
692 	return context;
693 }
694 
695 /**
696  * audit_alloc - allocate an audit context block for a task
697  * @tsk: task
698  *
699  * Filter on the task information and allocate a per-task audit context
700  * if necessary.  Doing so turns on system call auditing for the
701  * specified task.  This is called from copy_process, so no lock is
702  * needed.
703  */
704 int audit_alloc(struct task_struct *tsk)
705 {
706 	struct audit_context *context;
707 	enum audit_state     state;
708 
709 	if (likely(!audit_enabled))
710 		return 0; /* Return if not auditing. */
711 
712 	state = audit_filter_task(tsk);
713 	if (likely(state == AUDIT_DISABLED))
714 		return 0;
715 
716 	if (!(context = audit_alloc_context(state))) {
717 		audit_log_lost("out of memory in audit_alloc");
718 		return -ENOMEM;
719 	}
720 
721 				/* Preserve login uid */
722 	context->loginuid = -1;
723 	if (current->audit_context)
724 		context->loginuid = current->audit_context->loginuid;
725 
726 	tsk->audit_context  = context;
727 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
728 	return 0;
729 }
730 
731 static inline void audit_free_context(struct audit_context *context)
732 {
733 	struct audit_context *previous;
734 	int		     count = 0;
735 
736 	do {
737 		previous = context->previous;
738 		if (previous || (count &&  count < 10)) {
739 			++count;
740 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
741 			       " freeing multiple contexts (%d)\n",
742 			       context->serial, context->major,
743 			       context->name_count, count);
744 		}
745 		audit_free_names(context);
746 		audit_free_aux(context);
747 		kfree(context->filterkey);
748 		kfree(context);
749 		context  = previous;
750 	} while (context);
751 	if (count >= 10)
752 		printk(KERN_ERR "audit: freed %d contexts\n", count);
753 }
754 
755 void audit_log_task_context(struct audit_buffer *ab)
756 {
757 	char *ctx = NULL;
758 	unsigned len;
759 	int error;
760 	u32 sid;
761 
762 	selinux_get_task_sid(current, &sid);
763 	if (!sid)
764 		return;
765 
766 	error = selinux_sid_to_string(sid, &ctx, &len);
767 	if (error) {
768 		if (error != -EINVAL)
769 			goto error_path;
770 		return;
771 	}
772 
773 	audit_log_format(ab, " subj=%s", ctx);
774 	kfree(ctx);
775 	return;
776 
777 error_path:
778 	audit_panic("error in audit_log_task_context");
779 	return;
780 }
781 
782 EXPORT_SYMBOL(audit_log_task_context);
783 
784 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
785 {
786 	char name[sizeof(tsk->comm)];
787 	struct mm_struct *mm = tsk->mm;
788 	struct vm_area_struct *vma;
789 
790 	/* tsk == current */
791 
792 	get_task_comm(name, tsk);
793 	audit_log_format(ab, " comm=");
794 	audit_log_untrustedstring(ab, name);
795 
796 	if (mm) {
797 		down_read(&mm->mmap_sem);
798 		vma = mm->mmap;
799 		while (vma) {
800 			if ((vma->vm_flags & VM_EXECUTABLE) &&
801 			    vma->vm_file) {
802 				audit_log_d_path(ab, "exe=",
803 						 vma->vm_file->f_path.dentry,
804 						 vma->vm_file->f_path.mnt);
805 				break;
806 			}
807 			vma = vma->vm_next;
808 		}
809 		up_read(&mm->mmap_sem);
810 	}
811 	audit_log_task_context(ab);
812 }
813 
814 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
815 				 u32 sid)
816 {
817 	struct audit_buffer *ab;
818 	char *s = NULL;
819 	u32 len;
820 	int rc = 0;
821 
822 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
823 	if (!ab)
824 		return 1;
825 
826 	if (selinux_sid_to_string(sid, &s, &len)) {
827 		audit_log_format(ab, "opid=%d obj=(none)", pid);
828 		rc = 1;
829 	} else
830 		audit_log_format(ab, "opid=%d  obj=%s", pid, s);
831 	audit_log_end(ab);
832 	kfree(s);
833 
834 	return rc;
835 }
836 
837 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
838 {
839 	int i, call_panic = 0;
840 	struct audit_buffer *ab;
841 	struct audit_aux_data *aux;
842 	const char *tty;
843 
844 	/* tsk == current */
845 	context->pid = tsk->pid;
846 	if (!context->ppid)
847 		context->ppid = sys_getppid();
848 	context->uid = tsk->uid;
849 	context->gid = tsk->gid;
850 	context->euid = tsk->euid;
851 	context->suid = tsk->suid;
852 	context->fsuid = tsk->fsuid;
853 	context->egid = tsk->egid;
854 	context->sgid = tsk->sgid;
855 	context->fsgid = tsk->fsgid;
856 	context->personality = tsk->personality;
857 
858 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
859 	if (!ab)
860 		return;		/* audit_panic has been called */
861 	audit_log_format(ab, "arch=%x syscall=%d",
862 			 context->arch, context->major);
863 	if (context->personality != PER_LINUX)
864 		audit_log_format(ab, " per=%lx", context->personality);
865 	if (context->return_valid)
866 		audit_log_format(ab, " success=%s exit=%ld",
867 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
868 				 context->return_code);
869 
870 	mutex_lock(&tty_mutex);
871 	read_lock(&tasklist_lock);
872 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
873 		tty = tsk->signal->tty->name;
874 	else
875 		tty = "(none)";
876 	read_unlock(&tasklist_lock);
877 	audit_log_format(ab,
878 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
879 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
880 		  " euid=%u suid=%u fsuid=%u"
881 		  " egid=%u sgid=%u fsgid=%u tty=%s",
882 		  context->argv[0],
883 		  context->argv[1],
884 		  context->argv[2],
885 		  context->argv[3],
886 		  context->name_count,
887 		  context->ppid,
888 		  context->pid,
889 		  context->loginuid,
890 		  context->uid,
891 		  context->gid,
892 		  context->euid, context->suid, context->fsuid,
893 		  context->egid, context->sgid, context->fsgid, tty);
894 
895 	mutex_unlock(&tty_mutex);
896 
897 	audit_log_task_info(ab, tsk);
898 	if (context->filterkey) {
899 		audit_log_format(ab, " key=");
900 		audit_log_untrustedstring(ab, context->filterkey);
901 	} else
902 		audit_log_format(ab, " key=(null)");
903 	audit_log_end(ab);
904 
905 	for (aux = context->aux; aux; aux = aux->next) {
906 
907 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
908 		if (!ab)
909 			continue; /* audit_panic has been called */
910 
911 		switch (aux->type) {
912 		case AUDIT_MQ_OPEN: {
913 			struct audit_aux_data_mq_open *axi = (void *)aux;
914 			audit_log_format(ab,
915 				"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
916 				"mq_msgsize=%ld mq_curmsgs=%ld",
917 				axi->oflag, axi->mode, axi->attr.mq_flags,
918 				axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
919 				axi->attr.mq_curmsgs);
920 			break; }
921 
922 		case AUDIT_MQ_SENDRECV: {
923 			struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
924 			audit_log_format(ab,
925 				"mqdes=%d msg_len=%zd msg_prio=%u "
926 				"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
927 				axi->mqdes, axi->msg_len, axi->msg_prio,
928 				axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
929 			break; }
930 
931 		case AUDIT_MQ_NOTIFY: {
932 			struct audit_aux_data_mq_notify *axi = (void *)aux;
933 			audit_log_format(ab,
934 				"mqdes=%d sigev_signo=%d",
935 				axi->mqdes,
936 				axi->notification.sigev_signo);
937 			break; }
938 
939 		case AUDIT_MQ_GETSETATTR: {
940 			struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
941 			audit_log_format(ab,
942 				"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
943 				"mq_curmsgs=%ld ",
944 				axi->mqdes,
945 				axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
946 				axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
947 			break; }
948 
949 		case AUDIT_IPC: {
950 			struct audit_aux_data_ipcctl *axi = (void *)aux;
951 			audit_log_format(ab,
952 				 "ouid=%u ogid=%u mode=%x",
953 				 axi->uid, axi->gid, axi->mode);
954 			if (axi->osid != 0) {
955 				char *ctx = NULL;
956 				u32 len;
957 				if (selinux_sid_to_string(
958 						axi->osid, &ctx, &len)) {
959 					audit_log_format(ab, " osid=%u",
960 							axi->osid);
961 					call_panic = 1;
962 				} else
963 					audit_log_format(ab, " obj=%s", ctx);
964 				kfree(ctx);
965 			}
966 			break; }
967 
968 		case AUDIT_IPC_SET_PERM: {
969 			struct audit_aux_data_ipcctl *axi = (void *)aux;
970 			audit_log_format(ab,
971 				"qbytes=%lx ouid=%u ogid=%u mode=%x",
972 				axi->qbytes, axi->uid, axi->gid, axi->mode);
973 			break; }
974 
975 		case AUDIT_EXECVE: {
976 			struct audit_aux_data_execve *axi = (void *)aux;
977 			int i;
978 			const char *p;
979 			for (i = 0, p = axi->mem; i < axi->argc; i++) {
980 				audit_log_format(ab, "a%d=", i);
981 				p = audit_log_untrustedstring(ab, p);
982 				audit_log_format(ab, "\n");
983 			}
984 			break; }
985 
986 		case AUDIT_SOCKETCALL: {
987 			int i;
988 			struct audit_aux_data_socketcall *axs = (void *)aux;
989 			audit_log_format(ab, "nargs=%d", axs->nargs);
990 			for (i=0; i<axs->nargs; i++)
991 				audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
992 			break; }
993 
994 		case AUDIT_SOCKADDR: {
995 			struct audit_aux_data_sockaddr *axs = (void *)aux;
996 
997 			audit_log_format(ab, "saddr=");
998 			audit_log_hex(ab, axs->a, axs->len);
999 			break; }
1000 
1001 		case AUDIT_AVC_PATH: {
1002 			struct audit_aux_data_path *axi = (void *)aux;
1003 			audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
1004 			break; }
1005 
1006 		case AUDIT_FD_PAIR: {
1007 			struct audit_aux_data_fd_pair *axs = (void *)aux;
1008 			audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1009 			break; }
1010 
1011 		}
1012 		audit_log_end(ab);
1013 	}
1014 
1015 	for (aux = context->aux_pids; aux; aux = aux->next) {
1016 		struct audit_aux_data_pids *axs = (void *)aux;
1017 		int i;
1018 
1019 		for (i = 0; i < axs->pid_count; i++)
1020 			if (audit_log_pid_context(context, axs->target_pid[i],
1021 						  axs->target_sid[i]))
1022 				call_panic = 1;
1023 	}
1024 
1025 	if (context->target_pid &&
1026 	    audit_log_pid_context(context, context->target_pid,
1027 				  context->target_sid))
1028 			call_panic = 1;
1029 
1030 	if (context->pwd && context->pwdmnt) {
1031 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1032 		if (ab) {
1033 			audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1034 			audit_log_end(ab);
1035 		}
1036 	}
1037 	for (i = 0; i < context->name_count; i++) {
1038 		struct audit_names *n = &context->names[i];
1039 
1040 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1041 		if (!ab)
1042 			continue; /* audit_panic has been called */
1043 
1044 		audit_log_format(ab, "item=%d", i);
1045 
1046 		if (n->name) {
1047 			switch(n->name_len) {
1048 			case AUDIT_NAME_FULL:
1049 				/* log the full path */
1050 				audit_log_format(ab, " name=");
1051 				audit_log_untrustedstring(ab, n->name);
1052 				break;
1053 			case 0:
1054 				/* name was specified as a relative path and the
1055 				 * directory component is the cwd */
1056 				audit_log_d_path(ab, " name=", context->pwd,
1057 						 context->pwdmnt);
1058 				break;
1059 			default:
1060 				/* log the name's directory component */
1061 				audit_log_format(ab, " name=");
1062 				audit_log_n_untrustedstring(ab, n->name_len,
1063 							    n->name);
1064 			}
1065 		} else
1066 			audit_log_format(ab, " name=(null)");
1067 
1068 		if (n->ino != (unsigned long)-1) {
1069 			audit_log_format(ab, " inode=%lu"
1070 					 " dev=%02x:%02x mode=%#o"
1071 					 " ouid=%u ogid=%u rdev=%02x:%02x",
1072 					 n->ino,
1073 					 MAJOR(n->dev),
1074 					 MINOR(n->dev),
1075 					 n->mode,
1076 					 n->uid,
1077 					 n->gid,
1078 					 MAJOR(n->rdev),
1079 					 MINOR(n->rdev));
1080 		}
1081 		if (n->osid != 0) {
1082 			char *ctx = NULL;
1083 			u32 len;
1084 			if (selinux_sid_to_string(
1085 				n->osid, &ctx, &len)) {
1086 				audit_log_format(ab, " osid=%u", n->osid);
1087 				call_panic = 2;
1088 			} else
1089 				audit_log_format(ab, " obj=%s", ctx);
1090 			kfree(ctx);
1091 		}
1092 
1093 		audit_log_end(ab);
1094 	}
1095 	if (call_panic)
1096 		audit_panic("error converting sid to string");
1097 }
1098 
1099 /**
1100  * audit_free - free a per-task audit context
1101  * @tsk: task whose audit context block to free
1102  *
1103  * Called from copy_process and do_exit
1104  */
1105 void audit_free(struct task_struct *tsk)
1106 {
1107 	struct audit_context *context;
1108 
1109 	context = audit_get_context(tsk, 0, 0);
1110 	if (likely(!context))
1111 		return;
1112 
1113 	/* Check for system calls that do not go through the exit
1114 	 * function (e.g., exit_group), then free context block.
1115 	 * We use GFP_ATOMIC here because we might be doing this
1116 	 * in the context of the idle thread */
1117 	/* that can happen only if we are called from do_exit() */
1118 	if (context->in_syscall && context->auditable)
1119 		audit_log_exit(context, tsk);
1120 
1121 	audit_free_context(context);
1122 }
1123 
1124 /**
1125  * audit_syscall_entry - fill in an audit record at syscall entry
1126  * @tsk: task being audited
1127  * @arch: architecture type
1128  * @major: major syscall type (function)
1129  * @a1: additional syscall register 1
1130  * @a2: additional syscall register 2
1131  * @a3: additional syscall register 3
1132  * @a4: additional syscall register 4
1133  *
1134  * Fill in audit context at syscall entry.  This only happens if the
1135  * audit context was created when the task was created and the state or
1136  * filters demand the audit context be built.  If the state from the
1137  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1138  * then the record will be written at syscall exit time (otherwise, it
1139  * will only be written if another part of the kernel requests that it
1140  * be written).
1141  */
1142 void audit_syscall_entry(int arch, int major,
1143 			 unsigned long a1, unsigned long a2,
1144 			 unsigned long a3, unsigned long a4)
1145 {
1146 	struct task_struct *tsk = current;
1147 	struct audit_context *context = tsk->audit_context;
1148 	enum audit_state     state;
1149 
1150 	BUG_ON(!context);
1151 
1152 	/*
1153 	 * This happens only on certain architectures that make system
1154 	 * calls in kernel_thread via the entry.S interface, instead of
1155 	 * with direct calls.  (If you are porting to a new
1156 	 * architecture, hitting this condition can indicate that you
1157 	 * got the _exit/_leave calls backward in entry.S.)
1158 	 *
1159 	 * i386     no
1160 	 * x86_64   no
1161 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1162 	 *
1163 	 * This also happens with vm86 emulation in a non-nested manner
1164 	 * (entries without exits), so this case must be caught.
1165 	 */
1166 	if (context->in_syscall) {
1167 		struct audit_context *newctx;
1168 
1169 #if AUDIT_DEBUG
1170 		printk(KERN_ERR
1171 		       "audit(:%d) pid=%d in syscall=%d;"
1172 		       " entering syscall=%d\n",
1173 		       context->serial, tsk->pid, context->major, major);
1174 #endif
1175 		newctx = audit_alloc_context(context->state);
1176 		if (newctx) {
1177 			newctx->previous   = context;
1178 			context		   = newctx;
1179 			tsk->audit_context = newctx;
1180 		} else	{
1181 			/* If we can't alloc a new context, the best we
1182 			 * can do is to leak memory (any pending putname
1183 			 * will be lost).  The only other alternative is
1184 			 * to abandon auditing. */
1185 			audit_zero_context(context, context->state);
1186 		}
1187 	}
1188 	BUG_ON(context->in_syscall || context->name_count);
1189 
1190 	if (!audit_enabled)
1191 		return;
1192 
1193 	context->arch	    = arch;
1194 	context->major      = major;
1195 	context->argv[0]    = a1;
1196 	context->argv[1]    = a2;
1197 	context->argv[2]    = a3;
1198 	context->argv[3]    = a4;
1199 
1200 	state = context->state;
1201 	context->dummy = !audit_n_rules;
1202 	if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1203 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1204 	if (likely(state == AUDIT_DISABLED))
1205 		return;
1206 
1207 	context->serial     = 0;
1208 	context->ctime      = CURRENT_TIME;
1209 	context->in_syscall = 1;
1210 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
1211 	context->ppid       = 0;
1212 }
1213 
1214 /**
1215  * audit_syscall_exit - deallocate audit context after a system call
1216  * @tsk: task being audited
1217  * @valid: success/failure flag
1218  * @return_code: syscall return value
1219  *
1220  * Tear down after system call.  If the audit context has been marked as
1221  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1222  * filtering, or because some other part of the kernel write an audit
1223  * message), then write out the syscall information.  In call cases,
1224  * free the names stored from getname().
1225  */
1226 void audit_syscall_exit(int valid, long return_code)
1227 {
1228 	struct task_struct *tsk = current;
1229 	struct audit_context *context;
1230 
1231 	context = audit_get_context(tsk, valid, return_code);
1232 
1233 	if (likely(!context))
1234 		return;
1235 
1236 	if (context->in_syscall && context->auditable)
1237 		audit_log_exit(context, tsk);
1238 
1239 	context->in_syscall = 0;
1240 	context->auditable  = 0;
1241 
1242 	if (context->previous) {
1243 		struct audit_context *new_context = context->previous;
1244 		context->previous  = NULL;
1245 		audit_free_context(context);
1246 		tsk->audit_context = new_context;
1247 	} else {
1248 		audit_free_names(context);
1249 		audit_free_aux(context);
1250 		context->aux = NULL;
1251 		context->aux_pids = NULL;
1252 		context->target_pid = 0;
1253 		context->target_sid = 0;
1254 		kfree(context->filterkey);
1255 		context->filterkey = NULL;
1256 		tsk->audit_context = context;
1257 	}
1258 }
1259 
1260 /**
1261  * audit_getname - add a name to the list
1262  * @name: name to add
1263  *
1264  * Add a name to the list of audit names for this context.
1265  * Called from fs/namei.c:getname().
1266  */
1267 void __audit_getname(const char *name)
1268 {
1269 	struct audit_context *context = current->audit_context;
1270 
1271 	if (IS_ERR(name) || !name)
1272 		return;
1273 
1274 	if (!context->in_syscall) {
1275 #if AUDIT_DEBUG == 2
1276 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1277 		       __FILE__, __LINE__, context->serial, name);
1278 		dump_stack();
1279 #endif
1280 		return;
1281 	}
1282 	BUG_ON(context->name_count >= AUDIT_NAMES);
1283 	context->names[context->name_count].name = name;
1284 	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1285 	context->names[context->name_count].name_put = 1;
1286 	context->names[context->name_count].ino  = (unsigned long)-1;
1287 	context->names[context->name_count].osid = 0;
1288 	++context->name_count;
1289 	if (!context->pwd) {
1290 		read_lock(&current->fs->lock);
1291 		context->pwd = dget(current->fs->pwd);
1292 		context->pwdmnt = mntget(current->fs->pwdmnt);
1293 		read_unlock(&current->fs->lock);
1294 	}
1295 
1296 }
1297 
1298 /* audit_putname - intercept a putname request
1299  * @name: name to intercept and delay for putname
1300  *
1301  * If we have stored the name from getname in the audit context,
1302  * then we delay the putname until syscall exit.
1303  * Called from include/linux/fs.h:putname().
1304  */
1305 void audit_putname(const char *name)
1306 {
1307 	struct audit_context *context = current->audit_context;
1308 
1309 	BUG_ON(!context);
1310 	if (!context->in_syscall) {
1311 #if AUDIT_DEBUG == 2
1312 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1313 		       __FILE__, __LINE__, context->serial, name);
1314 		if (context->name_count) {
1315 			int i;
1316 			for (i = 0; i < context->name_count; i++)
1317 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1318 				       context->names[i].name,
1319 				       context->names[i].name ?: "(null)");
1320 		}
1321 #endif
1322 		__putname(name);
1323 	}
1324 #if AUDIT_DEBUG
1325 	else {
1326 		++context->put_count;
1327 		if (context->put_count > context->name_count) {
1328 			printk(KERN_ERR "%s:%d(:%d): major=%d"
1329 			       " in_syscall=%d putname(%p) name_count=%d"
1330 			       " put_count=%d\n",
1331 			       __FILE__, __LINE__,
1332 			       context->serial, context->major,
1333 			       context->in_syscall, name, context->name_count,
1334 			       context->put_count);
1335 			dump_stack();
1336 		}
1337 	}
1338 #endif
1339 }
1340 
1341 static int audit_inc_name_count(struct audit_context *context,
1342 				const struct inode *inode)
1343 {
1344 	if (context->name_count >= AUDIT_NAMES) {
1345 		if (inode)
1346 			printk(KERN_DEBUG "name_count maxed, losing inode data: "
1347 			       "dev=%02x:%02x, inode=%lu",
1348 			       MAJOR(inode->i_sb->s_dev),
1349 			       MINOR(inode->i_sb->s_dev),
1350 			       inode->i_ino);
1351 
1352 		else
1353 			printk(KERN_DEBUG "name_count maxed, losing inode data");
1354 		return 1;
1355 	}
1356 	context->name_count++;
1357 #if AUDIT_DEBUG
1358 	context->ino_count++;
1359 #endif
1360 	return 0;
1361 }
1362 
1363 /* Copy inode data into an audit_names. */
1364 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1365 {
1366 	name->ino   = inode->i_ino;
1367 	name->dev   = inode->i_sb->s_dev;
1368 	name->mode  = inode->i_mode;
1369 	name->uid   = inode->i_uid;
1370 	name->gid   = inode->i_gid;
1371 	name->rdev  = inode->i_rdev;
1372 	selinux_get_inode_sid(inode, &name->osid);
1373 }
1374 
1375 /**
1376  * audit_inode - store the inode and device from a lookup
1377  * @name: name being audited
1378  * @inode: inode being audited
1379  *
1380  * Called from fs/namei.c:path_lookup().
1381  */
1382 void __audit_inode(const char *name, const struct inode *inode)
1383 {
1384 	int idx;
1385 	struct audit_context *context = current->audit_context;
1386 
1387 	if (!context->in_syscall)
1388 		return;
1389 	if (context->name_count
1390 	    && context->names[context->name_count-1].name
1391 	    && context->names[context->name_count-1].name == name)
1392 		idx = context->name_count - 1;
1393 	else if (context->name_count > 1
1394 		 && context->names[context->name_count-2].name
1395 		 && context->names[context->name_count-2].name == name)
1396 		idx = context->name_count - 2;
1397 	else {
1398 		/* FIXME: how much do we care about inodes that have no
1399 		 * associated name? */
1400 		if (audit_inc_name_count(context, inode))
1401 			return;
1402 		idx = context->name_count - 1;
1403 		context->names[idx].name = NULL;
1404 	}
1405 	audit_copy_inode(&context->names[idx], inode);
1406 }
1407 
1408 /**
1409  * audit_inode_child - collect inode info for created/removed objects
1410  * @dname: inode's dentry name
1411  * @inode: inode being audited
1412  * @parent: inode of dentry parent
1413  *
1414  * For syscalls that create or remove filesystem objects, audit_inode
1415  * can only collect information for the filesystem object's parent.
1416  * This call updates the audit context with the child's information.
1417  * Syscalls that create a new filesystem object must be hooked after
1418  * the object is created.  Syscalls that remove a filesystem object
1419  * must be hooked prior, in order to capture the target inode during
1420  * unsuccessful attempts.
1421  */
1422 void __audit_inode_child(const char *dname, const struct inode *inode,
1423 			 const struct inode *parent)
1424 {
1425 	int idx;
1426 	struct audit_context *context = current->audit_context;
1427 	const char *found_parent = NULL, *found_child = NULL;
1428 	int dirlen = 0;
1429 
1430 	if (!context->in_syscall)
1431 		return;
1432 
1433 	/* determine matching parent */
1434 	if (!dname)
1435 		goto add_names;
1436 
1437 	/* parent is more likely, look for it first */
1438 	for (idx = 0; idx < context->name_count; idx++) {
1439 		struct audit_names *n = &context->names[idx];
1440 
1441 		if (!n->name)
1442 			continue;
1443 
1444 		if (n->ino == parent->i_ino &&
1445 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
1446 			n->name_len = dirlen; /* update parent data in place */
1447 			found_parent = n->name;
1448 			goto add_names;
1449 		}
1450 	}
1451 
1452 	/* no matching parent, look for matching child */
1453 	for (idx = 0; idx < context->name_count; idx++) {
1454 		struct audit_names *n = &context->names[idx];
1455 
1456 		if (!n->name)
1457 			continue;
1458 
1459 		/* strcmp() is the more likely scenario */
1460 		if (!strcmp(dname, n->name) ||
1461 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
1462 			if (inode)
1463 				audit_copy_inode(n, inode);
1464 			else
1465 				n->ino = (unsigned long)-1;
1466 			found_child = n->name;
1467 			goto add_names;
1468 		}
1469 	}
1470 
1471 add_names:
1472 	if (!found_parent) {
1473 		if (audit_inc_name_count(context, parent))
1474 			return;
1475 		idx = context->name_count - 1;
1476 		context->names[idx].name = NULL;
1477 		audit_copy_inode(&context->names[idx], parent);
1478 	}
1479 
1480 	if (!found_child) {
1481 		if (audit_inc_name_count(context, inode))
1482 			return;
1483 		idx = context->name_count - 1;
1484 
1485 		/* Re-use the name belonging to the slot for a matching parent
1486 		 * directory. All names for this context are relinquished in
1487 		 * audit_free_names() */
1488 		if (found_parent) {
1489 			context->names[idx].name = found_parent;
1490 			context->names[idx].name_len = AUDIT_NAME_FULL;
1491 			/* don't call __putname() */
1492 			context->names[idx].name_put = 0;
1493 		} else {
1494 			context->names[idx].name = NULL;
1495 		}
1496 
1497 		if (inode)
1498 			audit_copy_inode(&context->names[idx], inode);
1499 		else
1500 			context->names[idx].ino = (unsigned long)-1;
1501 	}
1502 }
1503 
1504 /**
1505  * auditsc_get_stamp - get local copies of audit_context values
1506  * @ctx: audit_context for the task
1507  * @t: timespec to store time recorded in the audit_context
1508  * @serial: serial value that is recorded in the audit_context
1509  *
1510  * Also sets the context as auditable.
1511  */
1512 void auditsc_get_stamp(struct audit_context *ctx,
1513 		       struct timespec *t, unsigned int *serial)
1514 {
1515 	if (!ctx->serial)
1516 		ctx->serial = audit_serial();
1517 	t->tv_sec  = ctx->ctime.tv_sec;
1518 	t->tv_nsec = ctx->ctime.tv_nsec;
1519 	*serial    = ctx->serial;
1520 	ctx->auditable = 1;
1521 }
1522 
1523 /**
1524  * audit_set_loginuid - set a task's audit_context loginuid
1525  * @task: task whose audit context is being modified
1526  * @loginuid: loginuid value
1527  *
1528  * Returns 0.
1529  *
1530  * Called (set) from fs/proc/base.c::proc_loginuid_write().
1531  */
1532 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1533 {
1534 	struct audit_context *context = task->audit_context;
1535 
1536 	if (context) {
1537 		/* Only log if audit is enabled */
1538 		if (context->in_syscall) {
1539 			struct audit_buffer *ab;
1540 
1541 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1542 			if (ab) {
1543 				audit_log_format(ab, "login pid=%d uid=%u "
1544 					"old auid=%u new auid=%u",
1545 					task->pid, task->uid,
1546 					context->loginuid, loginuid);
1547 				audit_log_end(ab);
1548 			}
1549 		}
1550 		context->loginuid = loginuid;
1551 	}
1552 	return 0;
1553 }
1554 
1555 /**
1556  * audit_get_loginuid - get the loginuid for an audit_context
1557  * @ctx: the audit_context
1558  *
1559  * Returns the context's loginuid or -1 if @ctx is NULL.
1560  */
1561 uid_t audit_get_loginuid(struct audit_context *ctx)
1562 {
1563 	return ctx ? ctx->loginuid : -1;
1564 }
1565 
1566 EXPORT_SYMBOL(audit_get_loginuid);
1567 
1568 /**
1569  * __audit_mq_open - record audit data for a POSIX MQ open
1570  * @oflag: open flag
1571  * @mode: mode bits
1572  * @u_attr: queue attributes
1573  *
1574  * Returns 0 for success or NULL context or < 0 on error.
1575  */
1576 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1577 {
1578 	struct audit_aux_data_mq_open *ax;
1579 	struct audit_context *context = current->audit_context;
1580 
1581 	if (!audit_enabled)
1582 		return 0;
1583 
1584 	if (likely(!context))
1585 		return 0;
1586 
1587 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1588 	if (!ax)
1589 		return -ENOMEM;
1590 
1591 	if (u_attr != NULL) {
1592 		if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1593 			kfree(ax);
1594 			return -EFAULT;
1595 		}
1596 	} else
1597 		memset(&ax->attr, 0, sizeof(ax->attr));
1598 
1599 	ax->oflag = oflag;
1600 	ax->mode = mode;
1601 
1602 	ax->d.type = AUDIT_MQ_OPEN;
1603 	ax->d.next = context->aux;
1604 	context->aux = (void *)ax;
1605 	return 0;
1606 }
1607 
1608 /**
1609  * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1610  * @mqdes: MQ descriptor
1611  * @msg_len: Message length
1612  * @msg_prio: Message priority
1613  * @u_abs_timeout: Message timeout in absolute time
1614  *
1615  * Returns 0 for success or NULL context or < 0 on error.
1616  */
1617 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1618 			const struct timespec __user *u_abs_timeout)
1619 {
1620 	struct audit_aux_data_mq_sendrecv *ax;
1621 	struct audit_context *context = current->audit_context;
1622 
1623 	if (!audit_enabled)
1624 		return 0;
1625 
1626 	if (likely(!context))
1627 		return 0;
1628 
1629 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1630 	if (!ax)
1631 		return -ENOMEM;
1632 
1633 	if (u_abs_timeout != NULL) {
1634 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1635 			kfree(ax);
1636 			return -EFAULT;
1637 		}
1638 	} else
1639 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1640 
1641 	ax->mqdes = mqdes;
1642 	ax->msg_len = msg_len;
1643 	ax->msg_prio = msg_prio;
1644 
1645 	ax->d.type = AUDIT_MQ_SENDRECV;
1646 	ax->d.next = context->aux;
1647 	context->aux = (void *)ax;
1648 	return 0;
1649 }
1650 
1651 /**
1652  * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1653  * @mqdes: MQ descriptor
1654  * @msg_len: Message length
1655  * @u_msg_prio: Message priority
1656  * @u_abs_timeout: Message timeout in absolute time
1657  *
1658  * Returns 0 for success or NULL context or < 0 on error.
1659  */
1660 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1661 				unsigned int __user *u_msg_prio,
1662 				const struct timespec __user *u_abs_timeout)
1663 {
1664 	struct audit_aux_data_mq_sendrecv *ax;
1665 	struct audit_context *context = current->audit_context;
1666 
1667 	if (!audit_enabled)
1668 		return 0;
1669 
1670 	if (likely(!context))
1671 		return 0;
1672 
1673 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1674 	if (!ax)
1675 		return -ENOMEM;
1676 
1677 	if (u_msg_prio != NULL) {
1678 		if (get_user(ax->msg_prio, u_msg_prio)) {
1679 			kfree(ax);
1680 			return -EFAULT;
1681 		}
1682 	} else
1683 		ax->msg_prio = 0;
1684 
1685 	if (u_abs_timeout != NULL) {
1686 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1687 			kfree(ax);
1688 			return -EFAULT;
1689 		}
1690 	} else
1691 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1692 
1693 	ax->mqdes = mqdes;
1694 	ax->msg_len = msg_len;
1695 
1696 	ax->d.type = AUDIT_MQ_SENDRECV;
1697 	ax->d.next = context->aux;
1698 	context->aux = (void *)ax;
1699 	return 0;
1700 }
1701 
1702 /**
1703  * __audit_mq_notify - record audit data for a POSIX MQ notify
1704  * @mqdes: MQ descriptor
1705  * @u_notification: Notification event
1706  *
1707  * Returns 0 for success or NULL context or < 0 on error.
1708  */
1709 
1710 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1711 {
1712 	struct audit_aux_data_mq_notify *ax;
1713 	struct audit_context *context = current->audit_context;
1714 
1715 	if (!audit_enabled)
1716 		return 0;
1717 
1718 	if (likely(!context))
1719 		return 0;
1720 
1721 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1722 	if (!ax)
1723 		return -ENOMEM;
1724 
1725 	if (u_notification != NULL) {
1726 		if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1727 			kfree(ax);
1728 			return -EFAULT;
1729 		}
1730 	} else
1731 		memset(&ax->notification, 0, sizeof(ax->notification));
1732 
1733 	ax->mqdes = mqdes;
1734 
1735 	ax->d.type = AUDIT_MQ_NOTIFY;
1736 	ax->d.next = context->aux;
1737 	context->aux = (void *)ax;
1738 	return 0;
1739 }
1740 
1741 /**
1742  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1743  * @mqdes: MQ descriptor
1744  * @mqstat: MQ flags
1745  *
1746  * Returns 0 for success or NULL context or < 0 on error.
1747  */
1748 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1749 {
1750 	struct audit_aux_data_mq_getsetattr *ax;
1751 	struct audit_context *context = current->audit_context;
1752 
1753 	if (!audit_enabled)
1754 		return 0;
1755 
1756 	if (likely(!context))
1757 		return 0;
1758 
1759 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1760 	if (!ax)
1761 		return -ENOMEM;
1762 
1763 	ax->mqdes = mqdes;
1764 	ax->mqstat = *mqstat;
1765 
1766 	ax->d.type = AUDIT_MQ_GETSETATTR;
1767 	ax->d.next = context->aux;
1768 	context->aux = (void *)ax;
1769 	return 0;
1770 }
1771 
1772 /**
1773  * audit_ipc_obj - record audit data for ipc object
1774  * @ipcp: ipc permissions
1775  *
1776  * Returns 0 for success or NULL context or < 0 on error.
1777  */
1778 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1779 {
1780 	struct audit_aux_data_ipcctl *ax;
1781 	struct audit_context *context = current->audit_context;
1782 
1783 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1784 	if (!ax)
1785 		return -ENOMEM;
1786 
1787 	ax->uid = ipcp->uid;
1788 	ax->gid = ipcp->gid;
1789 	ax->mode = ipcp->mode;
1790 	selinux_get_ipc_sid(ipcp, &ax->osid);
1791 
1792 	ax->d.type = AUDIT_IPC;
1793 	ax->d.next = context->aux;
1794 	context->aux = (void *)ax;
1795 	return 0;
1796 }
1797 
1798 /**
1799  * audit_ipc_set_perm - record audit data for new ipc permissions
1800  * @qbytes: msgq bytes
1801  * @uid: msgq user id
1802  * @gid: msgq group id
1803  * @mode: msgq mode (permissions)
1804  *
1805  * Returns 0 for success or NULL context or < 0 on error.
1806  */
1807 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1808 {
1809 	struct audit_aux_data_ipcctl *ax;
1810 	struct audit_context *context = current->audit_context;
1811 
1812 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1813 	if (!ax)
1814 		return -ENOMEM;
1815 
1816 	ax->qbytes = qbytes;
1817 	ax->uid = uid;
1818 	ax->gid = gid;
1819 	ax->mode = mode;
1820 
1821 	ax->d.type = AUDIT_IPC_SET_PERM;
1822 	ax->d.next = context->aux;
1823 	context->aux = (void *)ax;
1824 	return 0;
1825 }
1826 
1827 int audit_bprm(struct linux_binprm *bprm)
1828 {
1829 	struct audit_aux_data_execve *ax;
1830 	struct audit_context *context = current->audit_context;
1831 	unsigned long p, next;
1832 	void *to;
1833 
1834 	if (likely(!audit_enabled || !context || context->dummy))
1835 		return 0;
1836 
1837 	ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1838 				GFP_KERNEL);
1839 	if (!ax)
1840 		return -ENOMEM;
1841 
1842 	ax->argc = bprm->argc;
1843 	ax->envc = bprm->envc;
1844 	for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1845 		struct page *page = bprm->page[p / PAGE_SIZE];
1846 		void *kaddr = kmap(page);
1847 		next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1848 		memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1849 		to += next - p;
1850 		kunmap(page);
1851 	}
1852 
1853 	ax->d.type = AUDIT_EXECVE;
1854 	ax->d.next = context->aux;
1855 	context->aux = (void *)ax;
1856 	return 0;
1857 }
1858 
1859 
1860 /**
1861  * audit_socketcall - record audit data for sys_socketcall
1862  * @nargs: number of args
1863  * @args: args array
1864  *
1865  * Returns 0 for success or NULL context or < 0 on error.
1866  */
1867 int audit_socketcall(int nargs, unsigned long *args)
1868 {
1869 	struct audit_aux_data_socketcall *ax;
1870 	struct audit_context *context = current->audit_context;
1871 
1872 	if (likely(!context || context->dummy))
1873 		return 0;
1874 
1875 	ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1876 	if (!ax)
1877 		return -ENOMEM;
1878 
1879 	ax->nargs = nargs;
1880 	memcpy(ax->args, args, nargs * sizeof(unsigned long));
1881 
1882 	ax->d.type = AUDIT_SOCKETCALL;
1883 	ax->d.next = context->aux;
1884 	context->aux = (void *)ax;
1885 	return 0;
1886 }
1887 
1888 /**
1889  * __audit_fd_pair - record audit data for pipe and socketpair
1890  * @fd1: the first file descriptor
1891  * @fd2: the second file descriptor
1892  *
1893  * Returns 0 for success or NULL context or < 0 on error.
1894  */
1895 int __audit_fd_pair(int fd1, int fd2)
1896 {
1897 	struct audit_context *context = current->audit_context;
1898 	struct audit_aux_data_fd_pair *ax;
1899 
1900 	if (likely(!context)) {
1901 		return 0;
1902 	}
1903 
1904 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1905 	if (!ax) {
1906 		return -ENOMEM;
1907 	}
1908 
1909 	ax->fd[0] = fd1;
1910 	ax->fd[1] = fd2;
1911 
1912 	ax->d.type = AUDIT_FD_PAIR;
1913 	ax->d.next = context->aux;
1914 	context->aux = (void *)ax;
1915 	return 0;
1916 }
1917 
1918 /**
1919  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1920  * @len: data length in user space
1921  * @a: data address in kernel space
1922  *
1923  * Returns 0 for success or NULL context or < 0 on error.
1924  */
1925 int audit_sockaddr(int len, void *a)
1926 {
1927 	struct audit_aux_data_sockaddr *ax;
1928 	struct audit_context *context = current->audit_context;
1929 
1930 	if (likely(!context || context->dummy))
1931 		return 0;
1932 
1933 	ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1934 	if (!ax)
1935 		return -ENOMEM;
1936 
1937 	ax->len = len;
1938 	memcpy(ax->a, a, len);
1939 
1940 	ax->d.type = AUDIT_SOCKADDR;
1941 	ax->d.next = context->aux;
1942 	context->aux = (void *)ax;
1943 	return 0;
1944 }
1945 
1946 void __audit_ptrace(struct task_struct *t)
1947 {
1948 	struct audit_context *context = current->audit_context;
1949 
1950 	context->target_pid = t->pid;
1951 	selinux_get_task_sid(t, &context->target_sid);
1952 }
1953 
1954 /**
1955  * audit_avc_path - record the granting or denial of permissions
1956  * @dentry: dentry to record
1957  * @mnt: mnt to record
1958  *
1959  * Returns 0 for success or NULL context or < 0 on error.
1960  *
1961  * Called from security/selinux/avc.c::avc_audit()
1962  */
1963 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1964 {
1965 	struct audit_aux_data_path *ax;
1966 	struct audit_context *context = current->audit_context;
1967 
1968 	if (likely(!context))
1969 		return 0;
1970 
1971 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1972 	if (!ax)
1973 		return -ENOMEM;
1974 
1975 	ax->dentry = dget(dentry);
1976 	ax->mnt = mntget(mnt);
1977 
1978 	ax->d.type = AUDIT_AVC_PATH;
1979 	ax->d.next = context->aux;
1980 	context->aux = (void *)ax;
1981 	return 0;
1982 }
1983 
1984 /**
1985  * audit_signal_info - record signal info for shutting down audit subsystem
1986  * @sig: signal value
1987  * @t: task being signaled
1988  *
1989  * If the audit subsystem is being terminated, record the task (pid)
1990  * and uid that is doing that.
1991  */
1992 int __audit_signal_info(int sig, struct task_struct *t)
1993 {
1994 	struct audit_aux_data_pids *axp;
1995 	struct task_struct *tsk = current;
1996 	struct audit_context *ctx = tsk->audit_context;
1997 	extern pid_t audit_sig_pid;
1998 	extern uid_t audit_sig_uid;
1999 	extern u32 audit_sig_sid;
2000 
2001 	if (audit_pid && t->tgid == audit_pid &&
2002 	    (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1)) {
2003 		audit_sig_pid = tsk->pid;
2004 		if (ctx)
2005 			audit_sig_uid = ctx->loginuid;
2006 		else
2007 			audit_sig_uid = tsk->uid;
2008 		selinux_get_task_sid(tsk, &audit_sig_sid);
2009 	}
2010 
2011 	if (!audit_signals) /* audit_context checked in wrapper */
2012 		return 0;
2013 
2014 	/* optimize the common case by putting first signal recipient directly
2015 	 * in audit_context */
2016 	if (!ctx->target_pid) {
2017 		ctx->target_pid = t->tgid;
2018 		selinux_get_task_sid(t, &ctx->target_sid);
2019 		return 0;
2020 	}
2021 
2022 	axp = (void *)ctx->aux_pids;
2023 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2024 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2025 		if (!axp)
2026 			return -ENOMEM;
2027 
2028 		axp->d.type = AUDIT_OBJ_PID;
2029 		axp->d.next = ctx->aux_pids;
2030 		ctx->aux_pids = (void *)axp;
2031 	}
2032 	BUG_ON(axp->pid_count > AUDIT_AUX_PIDS);
2033 
2034 	axp->target_pid[axp->pid_count] = t->tgid;
2035 	selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2036 	axp->pid_count++;
2037 
2038 	return 0;
2039 }
2040 
2041 /**
2042  * audit_core_dumps - record information about processes that end abnormally
2043  * @sig: signal value
2044  *
2045  * If a process ends with a core dump, something fishy is going on and we
2046  * should record the event for investigation.
2047  */
2048 void audit_core_dumps(long signr)
2049 {
2050 	struct audit_buffer *ab;
2051 	u32 sid;
2052 
2053 	if (!audit_enabled)
2054 		return;
2055 
2056 	if (signr == SIGQUIT)	/* don't care for those */
2057 		return;
2058 
2059 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2060 	audit_log_format(ab, "auid=%u uid=%u gid=%u",
2061 			audit_get_loginuid(current->audit_context),
2062 			current->uid, current->gid);
2063 	selinux_get_task_sid(current, &sid);
2064 	if (sid) {
2065 		char *ctx = NULL;
2066 		u32 len;
2067 
2068 		if (selinux_sid_to_string(sid, &ctx, &len))
2069 			audit_log_format(ab, " ssid=%u", sid);
2070 		else
2071 			audit_log_format(ab, " subj=%s", ctx);
2072 		kfree(ctx);
2073 	}
2074 	audit_log_format(ab, " pid=%d comm=", current->pid);
2075 	audit_log_untrustedstring(ab, current->comm);
2076 	audit_log_format(ab, " sig=%ld", signr);
2077 	audit_log_end(ab);
2078 }
2079