xref: /openbmc/linux/kernel/auditsc.c (revision e68b75a027bb94066576139ee33676264f867b87)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69 
70 #include "audit.h"
71 
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73  * for saving names from getname(). */
74 #define AUDIT_NAMES    20
75 
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78 
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81 
82 /* number of audit rules */
83 int audit_n_rules;
84 
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87 
88 struct audit_cap_data {
89 	kernel_cap_t		permitted;
90 	kernel_cap_t		inheritable;
91 	union {
92 		unsigned int	fE;		/* effective bit of a file capability */
93 		kernel_cap_t	effective;	/* effective set of a process */
94 	};
95 };
96 
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98  * we don't let putname() free it (instead we free all of the saved
99  * pointers at syscall exit time).
100  *
101  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 	const char	*name;
104 	int		name_len;	/* number of name's characters to log */
105 	unsigned	name_put;	/* call __putname() for this name */
106 	unsigned long	ino;
107 	dev_t		dev;
108 	umode_t		mode;
109 	uid_t		uid;
110 	gid_t		gid;
111 	dev_t		rdev;
112 	u32		osid;
113 	struct audit_cap_data fcap;
114 	unsigned int	fcap_ver;
115 };
116 
117 struct audit_aux_data {
118 	struct audit_aux_data	*next;
119 	int			type;
120 };
121 
122 #define AUDIT_AUX_IPCPERM	0
123 
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS	16
126 
127 struct audit_aux_data_mq_open {
128 	struct audit_aux_data	d;
129 	int			oflag;
130 	mode_t			mode;
131 	struct mq_attr		attr;
132 };
133 
134 struct audit_aux_data_mq_sendrecv {
135 	struct audit_aux_data	d;
136 	mqd_t			mqdes;
137 	size_t			msg_len;
138 	unsigned int		msg_prio;
139 	struct timespec		abs_timeout;
140 };
141 
142 struct audit_aux_data_mq_notify {
143 	struct audit_aux_data	d;
144 	mqd_t			mqdes;
145 	struct sigevent 	notification;
146 };
147 
148 struct audit_aux_data_mq_getsetattr {
149 	struct audit_aux_data	d;
150 	mqd_t			mqdes;
151 	struct mq_attr 		mqstat;
152 };
153 
154 struct audit_aux_data_ipcctl {
155 	struct audit_aux_data	d;
156 	struct ipc_perm		p;
157 	unsigned long		qbytes;
158 	uid_t			uid;
159 	gid_t			gid;
160 	mode_t			mode;
161 	u32			osid;
162 };
163 
164 struct audit_aux_data_execve {
165 	struct audit_aux_data	d;
166 	int argc;
167 	int envc;
168 	struct mm_struct *mm;
169 };
170 
171 struct audit_aux_data_socketcall {
172 	struct audit_aux_data	d;
173 	int			nargs;
174 	unsigned long		args[0];
175 };
176 
177 struct audit_aux_data_sockaddr {
178 	struct audit_aux_data	d;
179 	int			len;
180 	char			a[0];
181 };
182 
183 struct audit_aux_data_fd_pair {
184 	struct	audit_aux_data d;
185 	int	fd[2];
186 };
187 
188 struct audit_aux_data_pids {
189 	struct audit_aux_data	d;
190 	pid_t			target_pid[AUDIT_AUX_PIDS];
191 	uid_t			target_auid[AUDIT_AUX_PIDS];
192 	uid_t			target_uid[AUDIT_AUX_PIDS];
193 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
194 	u32			target_sid[AUDIT_AUX_PIDS];
195 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
196 	int			pid_count;
197 };
198 
199 struct audit_aux_data_bprm_fcaps {
200 	struct audit_aux_data	d;
201 	struct audit_cap_data	fcap;
202 	unsigned int		fcap_ver;
203 	struct audit_cap_data	old_pcap;
204 	struct audit_cap_data	new_pcap;
205 };
206 
207 struct audit_aux_data_capset {
208 	struct audit_aux_data	d;
209 	pid_t			pid;
210 	struct audit_cap_data	cap;
211 };
212 
213 struct audit_tree_refs {
214 	struct audit_tree_refs *next;
215 	struct audit_chunk *c[31];
216 };
217 
218 /* The per-task audit context. */
219 struct audit_context {
220 	int		    dummy;	/* must be the first element */
221 	int		    in_syscall;	/* 1 if task is in a syscall */
222 	enum audit_state    state;
223 	unsigned int	    serial;     /* serial number for record */
224 	struct timespec	    ctime;      /* time of syscall entry */
225 	int		    major;      /* syscall number */
226 	unsigned long	    argv[4];    /* syscall arguments */
227 	int		    return_valid; /* return code is valid */
228 	long		    return_code;/* syscall return code */
229 	int		    auditable;  /* 1 if record should be written */
230 	int		    name_count;
231 	struct audit_names  names[AUDIT_NAMES];
232 	char *		    filterkey;	/* key for rule that triggered record */
233 	struct path	    pwd;
234 	struct audit_context *previous; /* For nested syscalls */
235 	struct audit_aux_data *aux;
236 	struct audit_aux_data *aux_pids;
237 
238 				/* Save things to print about task_struct */
239 	pid_t		    pid, ppid;
240 	uid_t		    uid, euid, suid, fsuid;
241 	gid_t		    gid, egid, sgid, fsgid;
242 	unsigned long	    personality;
243 	int		    arch;
244 
245 	pid_t		    target_pid;
246 	uid_t		    target_auid;
247 	uid_t		    target_uid;
248 	unsigned int	    target_sessionid;
249 	u32		    target_sid;
250 	char		    target_comm[TASK_COMM_LEN];
251 
252 	struct audit_tree_refs *trees, *first_trees;
253 	int tree_count;
254 
255 #if AUDIT_DEBUG
256 	int		    put_count;
257 	int		    ino_count;
258 #endif
259 };
260 
261 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
262 static inline int open_arg(int flags, int mask)
263 {
264 	int n = ACC_MODE(flags);
265 	if (flags & (O_TRUNC | O_CREAT))
266 		n |= AUDIT_PERM_WRITE;
267 	return n & mask;
268 }
269 
270 static int audit_match_perm(struct audit_context *ctx, int mask)
271 {
272 	unsigned n;
273 	if (unlikely(!ctx))
274 		return 0;
275 	n = ctx->major;
276 
277 	switch (audit_classify_syscall(ctx->arch, n)) {
278 	case 0:	/* native */
279 		if ((mask & AUDIT_PERM_WRITE) &&
280 		     audit_match_class(AUDIT_CLASS_WRITE, n))
281 			return 1;
282 		if ((mask & AUDIT_PERM_READ) &&
283 		     audit_match_class(AUDIT_CLASS_READ, n))
284 			return 1;
285 		if ((mask & AUDIT_PERM_ATTR) &&
286 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
287 			return 1;
288 		return 0;
289 	case 1: /* 32bit on biarch */
290 		if ((mask & AUDIT_PERM_WRITE) &&
291 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
292 			return 1;
293 		if ((mask & AUDIT_PERM_READ) &&
294 		     audit_match_class(AUDIT_CLASS_READ_32, n))
295 			return 1;
296 		if ((mask & AUDIT_PERM_ATTR) &&
297 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
298 			return 1;
299 		return 0;
300 	case 2: /* open */
301 		return mask & ACC_MODE(ctx->argv[1]);
302 	case 3: /* openat */
303 		return mask & ACC_MODE(ctx->argv[2]);
304 	case 4: /* socketcall */
305 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
306 	case 5: /* execve */
307 		return mask & AUDIT_PERM_EXEC;
308 	default:
309 		return 0;
310 	}
311 }
312 
313 static int audit_match_filetype(struct audit_context *ctx, int which)
314 {
315 	unsigned index = which & ~S_IFMT;
316 	mode_t mode = which & S_IFMT;
317 
318 	if (unlikely(!ctx))
319 		return 0;
320 
321 	if (index >= ctx->name_count)
322 		return 0;
323 	if (ctx->names[index].ino == -1)
324 		return 0;
325 	if ((ctx->names[index].mode ^ mode) & S_IFMT)
326 		return 0;
327 	return 1;
328 }
329 
330 /*
331  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
332  * ->first_trees points to its beginning, ->trees - to the current end of data.
333  * ->tree_count is the number of free entries in array pointed to by ->trees.
334  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
335  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
336  * it's going to remain 1-element for almost any setup) until we free context itself.
337  * References in it _are_ dropped - at the same time we free/drop aux stuff.
338  */
339 
340 #ifdef CONFIG_AUDIT_TREE
341 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
342 {
343 	struct audit_tree_refs *p = ctx->trees;
344 	int left = ctx->tree_count;
345 	if (likely(left)) {
346 		p->c[--left] = chunk;
347 		ctx->tree_count = left;
348 		return 1;
349 	}
350 	if (!p)
351 		return 0;
352 	p = p->next;
353 	if (p) {
354 		p->c[30] = chunk;
355 		ctx->trees = p;
356 		ctx->tree_count = 30;
357 		return 1;
358 	}
359 	return 0;
360 }
361 
362 static int grow_tree_refs(struct audit_context *ctx)
363 {
364 	struct audit_tree_refs *p = ctx->trees;
365 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
366 	if (!ctx->trees) {
367 		ctx->trees = p;
368 		return 0;
369 	}
370 	if (p)
371 		p->next = ctx->trees;
372 	else
373 		ctx->first_trees = ctx->trees;
374 	ctx->tree_count = 31;
375 	return 1;
376 }
377 #endif
378 
379 static void unroll_tree_refs(struct audit_context *ctx,
380 		      struct audit_tree_refs *p, int count)
381 {
382 #ifdef CONFIG_AUDIT_TREE
383 	struct audit_tree_refs *q;
384 	int n;
385 	if (!p) {
386 		/* we started with empty chain */
387 		p = ctx->first_trees;
388 		count = 31;
389 		/* if the very first allocation has failed, nothing to do */
390 		if (!p)
391 			return;
392 	}
393 	n = count;
394 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
395 		while (n--) {
396 			audit_put_chunk(q->c[n]);
397 			q->c[n] = NULL;
398 		}
399 	}
400 	while (n-- > ctx->tree_count) {
401 		audit_put_chunk(q->c[n]);
402 		q->c[n] = NULL;
403 	}
404 	ctx->trees = p;
405 	ctx->tree_count = count;
406 #endif
407 }
408 
409 static void free_tree_refs(struct audit_context *ctx)
410 {
411 	struct audit_tree_refs *p, *q;
412 	for (p = ctx->first_trees; p; p = q) {
413 		q = p->next;
414 		kfree(p);
415 	}
416 }
417 
418 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
419 {
420 #ifdef CONFIG_AUDIT_TREE
421 	struct audit_tree_refs *p;
422 	int n;
423 	if (!tree)
424 		return 0;
425 	/* full ones */
426 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
427 		for (n = 0; n < 31; n++)
428 			if (audit_tree_match(p->c[n], tree))
429 				return 1;
430 	}
431 	/* partial */
432 	if (p) {
433 		for (n = ctx->tree_count; n < 31; n++)
434 			if (audit_tree_match(p->c[n], tree))
435 				return 1;
436 	}
437 #endif
438 	return 0;
439 }
440 
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
443  * otherwise. */
444 static int audit_filter_rules(struct task_struct *tsk,
445 			      struct audit_krule *rule,
446 			      struct audit_context *ctx,
447 			      struct audit_names *name,
448 			      enum audit_state *state)
449 {
450 	int i, j, need_sid = 1;
451 	u32 sid;
452 
453 	for (i = 0; i < rule->field_count; i++) {
454 		struct audit_field *f = &rule->fields[i];
455 		int result = 0;
456 
457 		switch (f->type) {
458 		case AUDIT_PID:
459 			result = audit_comparator(tsk->pid, f->op, f->val);
460 			break;
461 		case AUDIT_PPID:
462 			if (ctx) {
463 				if (!ctx->ppid)
464 					ctx->ppid = sys_getppid();
465 				result = audit_comparator(ctx->ppid, f->op, f->val);
466 			}
467 			break;
468 		case AUDIT_UID:
469 			result = audit_comparator(tsk->uid, f->op, f->val);
470 			break;
471 		case AUDIT_EUID:
472 			result = audit_comparator(tsk->euid, f->op, f->val);
473 			break;
474 		case AUDIT_SUID:
475 			result = audit_comparator(tsk->suid, f->op, f->val);
476 			break;
477 		case AUDIT_FSUID:
478 			result = audit_comparator(tsk->fsuid, f->op, f->val);
479 			break;
480 		case AUDIT_GID:
481 			result = audit_comparator(tsk->gid, f->op, f->val);
482 			break;
483 		case AUDIT_EGID:
484 			result = audit_comparator(tsk->egid, f->op, f->val);
485 			break;
486 		case AUDIT_SGID:
487 			result = audit_comparator(tsk->sgid, f->op, f->val);
488 			break;
489 		case AUDIT_FSGID:
490 			result = audit_comparator(tsk->fsgid, f->op, f->val);
491 			break;
492 		case AUDIT_PERS:
493 			result = audit_comparator(tsk->personality, f->op, f->val);
494 			break;
495 		case AUDIT_ARCH:
496 			if (ctx)
497 				result = audit_comparator(ctx->arch, f->op, f->val);
498 			break;
499 
500 		case AUDIT_EXIT:
501 			if (ctx && ctx->return_valid)
502 				result = audit_comparator(ctx->return_code, f->op, f->val);
503 			break;
504 		case AUDIT_SUCCESS:
505 			if (ctx && ctx->return_valid) {
506 				if (f->val)
507 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
508 				else
509 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
510 			}
511 			break;
512 		case AUDIT_DEVMAJOR:
513 			if (name)
514 				result = audit_comparator(MAJOR(name->dev),
515 							  f->op, f->val);
516 			else if (ctx) {
517 				for (j = 0; j < ctx->name_count; j++) {
518 					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
519 						++result;
520 						break;
521 					}
522 				}
523 			}
524 			break;
525 		case AUDIT_DEVMINOR:
526 			if (name)
527 				result = audit_comparator(MINOR(name->dev),
528 							  f->op, f->val);
529 			else if (ctx) {
530 				for (j = 0; j < ctx->name_count; j++) {
531 					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
532 						++result;
533 						break;
534 					}
535 				}
536 			}
537 			break;
538 		case AUDIT_INODE:
539 			if (name)
540 				result = (name->ino == f->val);
541 			else if (ctx) {
542 				for (j = 0; j < ctx->name_count; j++) {
543 					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
544 						++result;
545 						break;
546 					}
547 				}
548 			}
549 			break;
550 		case AUDIT_WATCH:
551 			if (name && rule->watch->ino != (unsigned long)-1)
552 				result = (name->dev == rule->watch->dev &&
553 					  name->ino == rule->watch->ino);
554 			break;
555 		case AUDIT_DIR:
556 			if (ctx)
557 				result = match_tree_refs(ctx, rule->tree);
558 			break;
559 		case AUDIT_LOGINUID:
560 			result = 0;
561 			if (ctx)
562 				result = audit_comparator(tsk->loginuid, f->op, f->val);
563 			break;
564 		case AUDIT_SUBJ_USER:
565 		case AUDIT_SUBJ_ROLE:
566 		case AUDIT_SUBJ_TYPE:
567 		case AUDIT_SUBJ_SEN:
568 		case AUDIT_SUBJ_CLR:
569 			/* NOTE: this may return negative values indicating
570 			   a temporary error.  We simply treat this as a
571 			   match for now to avoid losing information that
572 			   may be wanted.   An error message will also be
573 			   logged upon error */
574 			if (f->lsm_rule) {
575 				if (need_sid) {
576 					security_task_getsecid(tsk, &sid);
577 					need_sid = 0;
578 				}
579 				result = security_audit_rule_match(sid, f->type,
580 				                                  f->op,
581 				                                  f->lsm_rule,
582 				                                  ctx);
583 			}
584 			break;
585 		case AUDIT_OBJ_USER:
586 		case AUDIT_OBJ_ROLE:
587 		case AUDIT_OBJ_TYPE:
588 		case AUDIT_OBJ_LEV_LOW:
589 		case AUDIT_OBJ_LEV_HIGH:
590 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
591 			   also applies here */
592 			if (f->lsm_rule) {
593 				/* Find files that match */
594 				if (name) {
595 					result = security_audit_rule_match(
596 					           name->osid, f->type, f->op,
597 					           f->lsm_rule, ctx);
598 				} else if (ctx) {
599 					for (j = 0; j < ctx->name_count; j++) {
600 						if (security_audit_rule_match(
601 						      ctx->names[j].osid,
602 						      f->type, f->op,
603 						      f->lsm_rule, ctx)) {
604 							++result;
605 							break;
606 						}
607 					}
608 				}
609 				/* Find ipc objects that match */
610 				if (ctx) {
611 					struct audit_aux_data *aux;
612 					for (aux = ctx->aux; aux;
613 					     aux = aux->next) {
614 						if (aux->type == AUDIT_IPC) {
615 							struct audit_aux_data_ipcctl *axi = (void *)aux;
616 							if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
617 								++result;
618 								break;
619 							}
620 						}
621 					}
622 				}
623 			}
624 			break;
625 		case AUDIT_ARG0:
626 		case AUDIT_ARG1:
627 		case AUDIT_ARG2:
628 		case AUDIT_ARG3:
629 			if (ctx)
630 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
631 			break;
632 		case AUDIT_FILTERKEY:
633 			/* ignore this field for filtering */
634 			result = 1;
635 			break;
636 		case AUDIT_PERM:
637 			result = audit_match_perm(ctx, f->val);
638 			break;
639 		case AUDIT_FILETYPE:
640 			result = audit_match_filetype(ctx, f->val);
641 			break;
642 		}
643 
644 		if (!result)
645 			return 0;
646 	}
647 	if (rule->filterkey && ctx)
648 		ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
649 	switch (rule->action) {
650 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
651 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
652 	}
653 	return 1;
654 }
655 
656 /* At process creation time, we can determine if system-call auditing is
657  * completely disabled for this task.  Since we only have the task
658  * structure at this point, we can only check uid and gid.
659  */
660 static enum audit_state audit_filter_task(struct task_struct *tsk)
661 {
662 	struct audit_entry *e;
663 	enum audit_state   state;
664 
665 	rcu_read_lock();
666 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
667 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
668 			rcu_read_unlock();
669 			return state;
670 		}
671 	}
672 	rcu_read_unlock();
673 	return AUDIT_BUILD_CONTEXT;
674 }
675 
676 /* At syscall entry and exit time, this filter is called if the
677  * audit_state is not low enough that auditing cannot take place, but is
678  * also not high enough that we already know we have to write an audit
679  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
680  */
681 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
682 					     struct audit_context *ctx,
683 					     struct list_head *list)
684 {
685 	struct audit_entry *e;
686 	enum audit_state state;
687 
688 	if (audit_pid && tsk->tgid == audit_pid)
689 		return AUDIT_DISABLED;
690 
691 	rcu_read_lock();
692 	if (!list_empty(list)) {
693 		int word = AUDIT_WORD(ctx->major);
694 		int bit  = AUDIT_BIT(ctx->major);
695 
696 		list_for_each_entry_rcu(e, list, list) {
697 			if ((e->rule.mask[word] & bit) == bit &&
698 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
699 					       &state)) {
700 				rcu_read_unlock();
701 				return state;
702 			}
703 		}
704 	}
705 	rcu_read_unlock();
706 	return AUDIT_BUILD_CONTEXT;
707 }
708 
709 /* At syscall exit time, this filter is called if any audit_names[] have been
710  * collected during syscall processing.  We only check rules in sublists at hash
711  * buckets applicable to the inode numbers in audit_names[].
712  * Regarding audit_state, same rules apply as for audit_filter_syscall().
713  */
714 enum audit_state audit_filter_inodes(struct task_struct *tsk,
715 				     struct audit_context *ctx)
716 {
717 	int i;
718 	struct audit_entry *e;
719 	enum audit_state state;
720 
721 	if (audit_pid && tsk->tgid == audit_pid)
722 		return AUDIT_DISABLED;
723 
724 	rcu_read_lock();
725 	for (i = 0; i < ctx->name_count; i++) {
726 		int word = AUDIT_WORD(ctx->major);
727 		int bit  = AUDIT_BIT(ctx->major);
728 		struct audit_names *n = &ctx->names[i];
729 		int h = audit_hash_ino((u32)n->ino);
730 		struct list_head *list = &audit_inode_hash[h];
731 
732 		if (list_empty(list))
733 			continue;
734 
735 		list_for_each_entry_rcu(e, list, list) {
736 			if ((e->rule.mask[word] & bit) == bit &&
737 			    audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
738 				rcu_read_unlock();
739 				return state;
740 			}
741 		}
742 	}
743 	rcu_read_unlock();
744 	return AUDIT_BUILD_CONTEXT;
745 }
746 
747 void audit_set_auditable(struct audit_context *ctx)
748 {
749 	ctx->auditable = 1;
750 }
751 
752 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
753 						      int return_valid,
754 						      int return_code)
755 {
756 	struct audit_context *context = tsk->audit_context;
757 
758 	if (likely(!context))
759 		return NULL;
760 	context->return_valid = return_valid;
761 
762 	/*
763 	 * we need to fix up the return code in the audit logs if the actual
764 	 * return codes are later going to be fixed up by the arch specific
765 	 * signal handlers
766 	 *
767 	 * This is actually a test for:
768 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
769 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
770 	 *
771 	 * but is faster than a bunch of ||
772 	 */
773 	if (unlikely(return_code <= -ERESTARTSYS) &&
774 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
775 	    (return_code != -ENOIOCTLCMD))
776 		context->return_code = -EINTR;
777 	else
778 		context->return_code  = return_code;
779 
780 	if (context->in_syscall && !context->dummy && !context->auditable) {
781 		enum audit_state state;
782 
783 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
784 		if (state == AUDIT_RECORD_CONTEXT) {
785 			context->auditable = 1;
786 			goto get_context;
787 		}
788 
789 		state = audit_filter_inodes(tsk, context);
790 		if (state == AUDIT_RECORD_CONTEXT)
791 			context->auditable = 1;
792 
793 	}
794 
795 get_context:
796 
797 	tsk->audit_context = NULL;
798 	return context;
799 }
800 
801 static inline void audit_free_names(struct audit_context *context)
802 {
803 	int i;
804 
805 #if AUDIT_DEBUG == 2
806 	if (context->auditable
807 	    ||context->put_count + context->ino_count != context->name_count) {
808 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
809 		       " name_count=%d put_count=%d"
810 		       " ino_count=%d [NOT freeing]\n",
811 		       __FILE__, __LINE__,
812 		       context->serial, context->major, context->in_syscall,
813 		       context->name_count, context->put_count,
814 		       context->ino_count);
815 		for (i = 0; i < context->name_count; i++) {
816 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
817 			       context->names[i].name,
818 			       context->names[i].name ?: "(null)");
819 		}
820 		dump_stack();
821 		return;
822 	}
823 #endif
824 #if AUDIT_DEBUG
825 	context->put_count  = 0;
826 	context->ino_count  = 0;
827 #endif
828 
829 	for (i = 0; i < context->name_count; i++) {
830 		if (context->names[i].name && context->names[i].name_put)
831 			__putname(context->names[i].name);
832 	}
833 	context->name_count = 0;
834 	path_put(&context->pwd);
835 	context->pwd.dentry = NULL;
836 	context->pwd.mnt = NULL;
837 }
838 
839 static inline void audit_free_aux(struct audit_context *context)
840 {
841 	struct audit_aux_data *aux;
842 
843 	while ((aux = context->aux)) {
844 		context->aux = aux->next;
845 		kfree(aux);
846 	}
847 	while ((aux = context->aux_pids)) {
848 		context->aux_pids = aux->next;
849 		kfree(aux);
850 	}
851 }
852 
853 static inline void audit_zero_context(struct audit_context *context,
854 				      enum audit_state state)
855 {
856 	memset(context, 0, sizeof(*context));
857 	context->state      = state;
858 }
859 
860 static inline struct audit_context *audit_alloc_context(enum audit_state state)
861 {
862 	struct audit_context *context;
863 
864 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
865 		return NULL;
866 	audit_zero_context(context, state);
867 	return context;
868 }
869 
870 /**
871  * audit_alloc - allocate an audit context block for a task
872  * @tsk: task
873  *
874  * Filter on the task information and allocate a per-task audit context
875  * if necessary.  Doing so turns on system call auditing for the
876  * specified task.  This is called from copy_process, so no lock is
877  * needed.
878  */
879 int audit_alloc(struct task_struct *tsk)
880 {
881 	struct audit_context *context;
882 	enum audit_state     state;
883 
884 	if (likely(!audit_ever_enabled))
885 		return 0; /* Return if not auditing. */
886 
887 	state = audit_filter_task(tsk);
888 	if (likely(state == AUDIT_DISABLED))
889 		return 0;
890 
891 	if (!(context = audit_alloc_context(state))) {
892 		audit_log_lost("out of memory in audit_alloc");
893 		return -ENOMEM;
894 	}
895 
896 	tsk->audit_context  = context;
897 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
898 	return 0;
899 }
900 
901 static inline void audit_free_context(struct audit_context *context)
902 {
903 	struct audit_context *previous;
904 	int		     count = 0;
905 
906 	do {
907 		previous = context->previous;
908 		if (previous || (count &&  count < 10)) {
909 			++count;
910 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
911 			       " freeing multiple contexts (%d)\n",
912 			       context->serial, context->major,
913 			       context->name_count, count);
914 		}
915 		audit_free_names(context);
916 		unroll_tree_refs(context, NULL, 0);
917 		free_tree_refs(context);
918 		audit_free_aux(context);
919 		kfree(context->filterkey);
920 		kfree(context);
921 		context  = previous;
922 	} while (context);
923 	if (count >= 10)
924 		printk(KERN_ERR "audit: freed %d contexts\n", count);
925 }
926 
927 void audit_log_task_context(struct audit_buffer *ab)
928 {
929 	char *ctx = NULL;
930 	unsigned len;
931 	int error;
932 	u32 sid;
933 
934 	security_task_getsecid(current, &sid);
935 	if (!sid)
936 		return;
937 
938 	error = security_secid_to_secctx(sid, &ctx, &len);
939 	if (error) {
940 		if (error != -EINVAL)
941 			goto error_path;
942 		return;
943 	}
944 
945 	audit_log_format(ab, " subj=%s", ctx);
946 	security_release_secctx(ctx, len);
947 	return;
948 
949 error_path:
950 	audit_panic("error in audit_log_task_context");
951 	return;
952 }
953 
954 EXPORT_SYMBOL(audit_log_task_context);
955 
956 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
957 {
958 	char name[sizeof(tsk->comm)];
959 	struct mm_struct *mm = tsk->mm;
960 	struct vm_area_struct *vma;
961 
962 	/* tsk == current */
963 
964 	get_task_comm(name, tsk);
965 	audit_log_format(ab, " comm=");
966 	audit_log_untrustedstring(ab, name);
967 
968 	if (mm) {
969 		down_read(&mm->mmap_sem);
970 		vma = mm->mmap;
971 		while (vma) {
972 			if ((vma->vm_flags & VM_EXECUTABLE) &&
973 			    vma->vm_file) {
974 				audit_log_d_path(ab, "exe=",
975 						 &vma->vm_file->f_path);
976 				break;
977 			}
978 			vma = vma->vm_next;
979 		}
980 		up_read(&mm->mmap_sem);
981 	}
982 	audit_log_task_context(ab);
983 }
984 
985 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
986 				 uid_t auid, uid_t uid, unsigned int sessionid,
987 				 u32 sid, char *comm)
988 {
989 	struct audit_buffer *ab;
990 	char *ctx = NULL;
991 	u32 len;
992 	int rc = 0;
993 
994 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
995 	if (!ab)
996 		return rc;
997 
998 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
999 			 uid, sessionid);
1000 	if (security_secid_to_secctx(sid, &ctx, &len)) {
1001 		audit_log_format(ab, " obj=(none)");
1002 		rc = 1;
1003 	} else {
1004 		audit_log_format(ab, " obj=%s", ctx);
1005 		security_release_secctx(ctx, len);
1006 	}
1007 	audit_log_format(ab, " ocomm=");
1008 	audit_log_untrustedstring(ab, comm);
1009 	audit_log_end(ab);
1010 
1011 	return rc;
1012 }
1013 
1014 /*
1015  * to_send and len_sent accounting are very loose estimates.  We aren't
1016  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1017  * within about 500 bytes (next page boundry)
1018  *
1019  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1020  * logging that a[%d]= was going to be 16 characters long we would be wasting
1021  * space in every audit message.  In one 7500 byte message we can log up to
1022  * about 1000 min size arguments.  That comes down to about 50% waste of space
1023  * if we didn't do the snprintf to find out how long arg_num_len was.
1024  */
1025 static int audit_log_single_execve_arg(struct audit_context *context,
1026 					struct audit_buffer **ab,
1027 					int arg_num,
1028 					size_t *len_sent,
1029 					const char __user *p,
1030 					char *buf)
1031 {
1032 	char arg_num_len_buf[12];
1033 	const char __user *tmp_p = p;
1034 	/* how many digits are in arg_num? 3 is the length of a=\n */
1035 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1036 	size_t len, len_left, to_send;
1037 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1038 	unsigned int i, has_cntl = 0, too_long = 0;
1039 	int ret;
1040 
1041 	/* strnlen_user includes the null we don't want to send */
1042 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043 
1044 	/*
1045 	 * We just created this mm, if we can't find the strings
1046 	 * we just copied into it something is _very_ wrong. Similar
1047 	 * for strings that are too long, we should not have created
1048 	 * any.
1049 	 */
1050 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1051 		WARN_ON(1);
1052 		send_sig(SIGKILL, current, 0);
1053 		return -1;
1054 	}
1055 
1056 	/* walk the whole argument looking for non-ascii chars */
1057 	do {
1058 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1059 			to_send = MAX_EXECVE_AUDIT_LEN;
1060 		else
1061 			to_send = len_left;
1062 		ret = copy_from_user(buf, tmp_p, to_send);
1063 		/*
1064 		 * There is no reason for this copy to be short. We just
1065 		 * copied them here, and the mm hasn't been exposed to user-
1066 		 * space yet.
1067 		 */
1068 		if (ret) {
1069 			WARN_ON(1);
1070 			send_sig(SIGKILL, current, 0);
1071 			return -1;
1072 		}
1073 		buf[to_send] = '\0';
1074 		has_cntl = audit_string_contains_control(buf, to_send);
1075 		if (has_cntl) {
1076 			/*
1077 			 * hex messages get logged as 2 bytes, so we can only
1078 			 * send half as much in each message
1079 			 */
1080 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1081 			break;
1082 		}
1083 		len_left -= to_send;
1084 		tmp_p += to_send;
1085 	} while (len_left > 0);
1086 
1087 	len_left = len;
1088 
1089 	if (len > max_execve_audit_len)
1090 		too_long = 1;
1091 
1092 	/* rewalk the argument actually logging the message */
1093 	for (i = 0; len_left > 0; i++) {
1094 		int room_left;
1095 
1096 		if (len_left > max_execve_audit_len)
1097 			to_send = max_execve_audit_len;
1098 		else
1099 			to_send = len_left;
1100 
1101 		/* do we have space left to send this argument in this ab? */
1102 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1103 		if (has_cntl)
1104 			room_left -= (to_send * 2);
1105 		else
1106 			room_left -= to_send;
1107 		if (room_left < 0) {
1108 			*len_sent = 0;
1109 			audit_log_end(*ab);
1110 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1111 			if (!*ab)
1112 				return 0;
1113 		}
1114 
1115 		/*
1116 		 * first record needs to say how long the original string was
1117 		 * so we can be sure nothing was lost.
1118 		 */
1119 		if ((i == 0) && (too_long))
1120 			audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1121 					 has_cntl ? 2*len : len);
1122 
1123 		/*
1124 		 * normally arguments are small enough to fit and we already
1125 		 * filled buf above when we checked for control characters
1126 		 * so don't bother with another copy_from_user
1127 		 */
1128 		if (len >= max_execve_audit_len)
1129 			ret = copy_from_user(buf, p, to_send);
1130 		else
1131 			ret = 0;
1132 		if (ret) {
1133 			WARN_ON(1);
1134 			send_sig(SIGKILL, current, 0);
1135 			return -1;
1136 		}
1137 		buf[to_send] = '\0';
1138 
1139 		/* actually log it */
1140 		audit_log_format(*ab, "a%d", arg_num);
1141 		if (too_long)
1142 			audit_log_format(*ab, "[%d]", i);
1143 		audit_log_format(*ab, "=");
1144 		if (has_cntl)
1145 			audit_log_n_hex(*ab, buf, to_send);
1146 		else
1147 			audit_log_format(*ab, "\"%s\"", buf);
1148 		audit_log_format(*ab, "\n");
1149 
1150 		p += to_send;
1151 		len_left -= to_send;
1152 		*len_sent += arg_num_len;
1153 		if (has_cntl)
1154 			*len_sent += to_send * 2;
1155 		else
1156 			*len_sent += to_send;
1157 	}
1158 	/* include the null we didn't log */
1159 	return len + 1;
1160 }
1161 
1162 static void audit_log_execve_info(struct audit_context *context,
1163 				  struct audit_buffer **ab,
1164 				  struct audit_aux_data_execve *axi)
1165 {
1166 	int i;
1167 	size_t len, len_sent = 0;
1168 	const char __user *p;
1169 	char *buf;
1170 
1171 	if (axi->mm != current->mm)
1172 		return; /* execve failed, no additional info */
1173 
1174 	p = (const char __user *)axi->mm->arg_start;
1175 
1176 	audit_log_format(*ab, "argc=%d ", axi->argc);
1177 
1178 	/*
1179 	 * we need some kernel buffer to hold the userspace args.  Just
1180 	 * allocate one big one rather than allocating one of the right size
1181 	 * for every single argument inside audit_log_single_execve_arg()
1182 	 * should be <8k allocation so should be pretty safe.
1183 	 */
1184 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1185 	if (!buf) {
1186 		audit_panic("out of memory for argv string\n");
1187 		return;
1188 	}
1189 
1190 	for (i = 0; i < axi->argc; i++) {
1191 		len = audit_log_single_execve_arg(context, ab, i,
1192 						  &len_sent, p, buf);
1193 		if (len <= 0)
1194 			break;
1195 		p += len;
1196 	}
1197 	kfree(buf);
1198 }
1199 
1200 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1201 {
1202 	int i;
1203 
1204 	audit_log_format(ab, " %s=", prefix);
1205 	CAP_FOR_EACH_U32(i) {
1206 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1207 	}
1208 }
1209 
1210 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1211 {
1212 	kernel_cap_t *perm = &name->fcap.permitted;
1213 	kernel_cap_t *inh = &name->fcap.inheritable;
1214 	int log = 0;
1215 
1216 	if (!cap_isclear(*perm)) {
1217 		audit_log_cap(ab, "cap_fp", perm);
1218 		log = 1;
1219 	}
1220 	if (!cap_isclear(*inh)) {
1221 		audit_log_cap(ab, "cap_fi", inh);
1222 		log = 1;
1223 	}
1224 
1225 	if (log)
1226 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1227 }
1228 
1229 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1230 {
1231 	int i, call_panic = 0;
1232 	struct audit_buffer *ab;
1233 	struct audit_aux_data *aux;
1234 	const char *tty;
1235 
1236 	/* tsk == current */
1237 	context->pid = tsk->pid;
1238 	if (!context->ppid)
1239 		context->ppid = sys_getppid();
1240 	context->uid = tsk->uid;
1241 	context->gid = tsk->gid;
1242 	context->euid = tsk->euid;
1243 	context->suid = tsk->suid;
1244 	context->fsuid = tsk->fsuid;
1245 	context->egid = tsk->egid;
1246 	context->sgid = tsk->sgid;
1247 	context->fsgid = tsk->fsgid;
1248 	context->personality = tsk->personality;
1249 
1250 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1251 	if (!ab)
1252 		return;		/* audit_panic has been called */
1253 	audit_log_format(ab, "arch=%x syscall=%d",
1254 			 context->arch, context->major);
1255 	if (context->personality != PER_LINUX)
1256 		audit_log_format(ab, " per=%lx", context->personality);
1257 	if (context->return_valid)
1258 		audit_log_format(ab, " success=%s exit=%ld",
1259 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1260 				 context->return_code);
1261 
1262 	spin_lock_irq(&tsk->sighand->siglock);
1263 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1264 		tty = tsk->signal->tty->name;
1265 	else
1266 		tty = "(none)";
1267 	spin_unlock_irq(&tsk->sighand->siglock);
1268 
1269 	audit_log_format(ab,
1270 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1271 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1272 		  " euid=%u suid=%u fsuid=%u"
1273 		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1274 		  context->argv[0],
1275 		  context->argv[1],
1276 		  context->argv[2],
1277 		  context->argv[3],
1278 		  context->name_count,
1279 		  context->ppid,
1280 		  context->pid,
1281 		  tsk->loginuid,
1282 		  context->uid,
1283 		  context->gid,
1284 		  context->euid, context->suid, context->fsuid,
1285 		  context->egid, context->sgid, context->fsgid, tty,
1286 		  tsk->sessionid);
1287 
1288 
1289 	audit_log_task_info(ab, tsk);
1290 	if (context->filterkey) {
1291 		audit_log_format(ab, " key=");
1292 		audit_log_untrustedstring(ab, context->filterkey);
1293 	} else
1294 		audit_log_format(ab, " key=(null)");
1295 	audit_log_end(ab);
1296 
1297 	for (aux = context->aux; aux; aux = aux->next) {
1298 
1299 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1300 		if (!ab)
1301 			continue; /* audit_panic has been called */
1302 
1303 		switch (aux->type) {
1304 		case AUDIT_MQ_OPEN: {
1305 			struct audit_aux_data_mq_open *axi = (void *)aux;
1306 			audit_log_format(ab,
1307 				"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1308 				"mq_msgsize=%ld mq_curmsgs=%ld",
1309 				axi->oflag, axi->mode, axi->attr.mq_flags,
1310 				axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1311 				axi->attr.mq_curmsgs);
1312 			break; }
1313 
1314 		case AUDIT_MQ_SENDRECV: {
1315 			struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1316 			audit_log_format(ab,
1317 				"mqdes=%d msg_len=%zd msg_prio=%u "
1318 				"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1319 				axi->mqdes, axi->msg_len, axi->msg_prio,
1320 				axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1321 			break; }
1322 
1323 		case AUDIT_MQ_NOTIFY: {
1324 			struct audit_aux_data_mq_notify *axi = (void *)aux;
1325 			audit_log_format(ab,
1326 				"mqdes=%d sigev_signo=%d",
1327 				axi->mqdes,
1328 				axi->notification.sigev_signo);
1329 			break; }
1330 
1331 		case AUDIT_MQ_GETSETATTR: {
1332 			struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1333 			audit_log_format(ab,
1334 				"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1335 				"mq_curmsgs=%ld ",
1336 				axi->mqdes,
1337 				axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1338 				axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1339 			break; }
1340 
1341 		case AUDIT_IPC: {
1342 			struct audit_aux_data_ipcctl *axi = (void *)aux;
1343 			audit_log_format(ab,
1344 				 "ouid=%u ogid=%u mode=%#o",
1345 				 axi->uid, axi->gid, axi->mode);
1346 			if (axi->osid != 0) {
1347 				char *ctx = NULL;
1348 				u32 len;
1349 				if (security_secid_to_secctx(
1350 						axi->osid, &ctx, &len)) {
1351 					audit_log_format(ab, " osid=%u",
1352 							axi->osid);
1353 					call_panic = 1;
1354 				} else {
1355 					audit_log_format(ab, " obj=%s", ctx);
1356 					security_release_secctx(ctx, len);
1357 				}
1358 			}
1359 			break; }
1360 
1361 		case AUDIT_IPC_SET_PERM: {
1362 			struct audit_aux_data_ipcctl *axi = (void *)aux;
1363 			audit_log_format(ab,
1364 				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1365 				axi->qbytes, axi->uid, axi->gid, axi->mode);
1366 			break; }
1367 
1368 		case AUDIT_EXECVE: {
1369 			struct audit_aux_data_execve *axi = (void *)aux;
1370 			audit_log_execve_info(context, &ab, axi);
1371 			break; }
1372 
1373 		case AUDIT_SOCKETCALL: {
1374 			struct audit_aux_data_socketcall *axs = (void *)aux;
1375 			audit_log_format(ab, "nargs=%d", axs->nargs);
1376 			for (i=0; i<axs->nargs; i++)
1377 				audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1378 			break; }
1379 
1380 		case AUDIT_SOCKADDR: {
1381 			struct audit_aux_data_sockaddr *axs = (void *)aux;
1382 
1383 			audit_log_format(ab, "saddr=");
1384 			audit_log_n_hex(ab, axs->a, axs->len);
1385 			break; }
1386 
1387 		case AUDIT_FD_PAIR: {
1388 			struct audit_aux_data_fd_pair *axs = (void *)aux;
1389 			audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1390 			break; }
1391 
1392 		case AUDIT_BPRM_FCAPS: {
1393 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1394 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1395 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1396 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1397 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1398 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1399 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1400 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1401 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1402 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1403 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1404 			break; }
1405 
1406 		case AUDIT_CAPSET: {
1407 			struct audit_aux_data_capset *axs = (void *)aux;
1408 			audit_log_format(ab, "pid=%d", axs->pid);
1409 			audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1410 			audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1411 			audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1412 			break; }
1413 
1414 		}
1415 		audit_log_end(ab);
1416 	}
1417 
1418 	for (aux = context->aux_pids; aux; aux = aux->next) {
1419 		struct audit_aux_data_pids *axs = (void *)aux;
1420 
1421 		for (i = 0; i < axs->pid_count; i++)
1422 			if (audit_log_pid_context(context, axs->target_pid[i],
1423 						  axs->target_auid[i],
1424 						  axs->target_uid[i],
1425 						  axs->target_sessionid[i],
1426 						  axs->target_sid[i],
1427 						  axs->target_comm[i]))
1428 				call_panic = 1;
1429 	}
1430 
1431 	if (context->target_pid &&
1432 	    audit_log_pid_context(context, context->target_pid,
1433 				  context->target_auid, context->target_uid,
1434 				  context->target_sessionid,
1435 				  context->target_sid, context->target_comm))
1436 			call_panic = 1;
1437 
1438 	if (context->pwd.dentry && context->pwd.mnt) {
1439 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1440 		if (ab) {
1441 			audit_log_d_path(ab, "cwd=", &context->pwd);
1442 			audit_log_end(ab);
1443 		}
1444 	}
1445 	for (i = 0; i < context->name_count; i++) {
1446 		struct audit_names *n = &context->names[i];
1447 
1448 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1449 		if (!ab)
1450 			continue; /* audit_panic has been called */
1451 
1452 		audit_log_format(ab, "item=%d", i);
1453 
1454 		if (n->name) {
1455 			switch(n->name_len) {
1456 			case AUDIT_NAME_FULL:
1457 				/* log the full path */
1458 				audit_log_format(ab, " name=");
1459 				audit_log_untrustedstring(ab, n->name);
1460 				break;
1461 			case 0:
1462 				/* name was specified as a relative path and the
1463 				 * directory component is the cwd */
1464 				audit_log_d_path(ab, " name=", &context->pwd);
1465 				break;
1466 			default:
1467 				/* log the name's directory component */
1468 				audit_log_format(ab, " name=");
1469 				audit_log_n_untrustedstring(ab, n->name,
1470 							    n->name_len);
1471 			}
1472 		} else
1473 			audit_log_format(ab, " name=(null)");
1474 
1475 		if (n->ino != (unsigned long)-1) {
1476 			audit_log_format(ab, " inode=%lu"
1477 					 " dev=%02x:%02x mode=%#o"
1478 					 " ouid=%u ogid=%u rdev=%02x:%02x",
1479 					 n->ino,
1480 					 MAJOR(n->dev),
1481 					 MINOR(n->dev),
1482 					 n->mode,
1483 					 n->uid,
1484 					 n->gid,
1485 					 MAJOR(n->rdev),
1486 					 MINOR(n->rdev));
1487 		}
1488 		if (n->osid != 0) {
1489 			char *ctx = NULL;
1490 			u32 len;
1491 			if (security_secid_to_secctx(
1492 				n->osid, &ctx, &len)) {
1493 				audit_log_format(ab, " osid=%u", n->osid);
1494 				call_panic = 2;
1495 			} else {
1496 				audit_log_format(ab, " obj=%s", ctx);
1497 				security_release_secctx(ctx, len);
1498 			}
1499 		}
1500 
1501 		audit_log_fcaps(ab, n);
1502 
1503 		audit_log_end(ab);
1504 	}
1505 
1506 	/* Send end of event record to help user space know we are finished */
1507 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1508 	if (ab)
1509 		audit_log_end(ab);
1510 	if (call_panic)
1511 		audit_panic("error converting sid to string");
1512 }
1513 
1514 /**
1515  * audit_free - free a per-task audit context
1516  * @tsk: task whose audit context block to free
1517  *
1518  * Called from copy_process and do_exit
1519  */
1520 void audit_free(struct task_struct *tsk)
1521 {
1522 	struct audit_context *context;
1523 
1524 	context = audit_get_context(tsk, 0, 0);
1525 	if (likely(!context))
1526 		return;
1527 
1528 	/* Check for system calls that do not go through the exit
1529 	 * function (e.g., exit_group), then free context block.
1530 	 * We use GFP_ATOMIC here because we might be doing this
1531 	 * in the context of the idle thread */
1532 	/* that can happen only if we are called from do_exit() */
1533 	if (context->in_syscall && context->auditable)
1534 		audit_log_exit(context, tsk);
1535 
1536 	audit_free_context(context);
1537 }
1538 
1539 /**
1540  * audit_syscall_entry - fill in an audit record at syscall entry
1541  * @tsk: task being audited
1542  * @arch: architecture type
1543  * @major: major syscall type (function)
1544  * @a1: additional syscall register 1
1545  * @a2: additional syscall register 2
1546  * @a3: additional syscall register 3
1547  * @a4: additional syscall register 4
1548  *
1549  * Fill in audit context at syscall entry.  This only happens if the
1550  * audit context was created when the task was created and the state or
1551  * filters demand the audit context be built.  If the state from the
1552  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1553  * then the record will be written at syscall exit time (otherwise, it
1554  * will only be written if another part of the kernel requests that it
1555  * be written).
1556  */
1557 void audit_syscall_entry(int arch, int major,
1558 			 unsigned long a1, unsigned long a2,
1559 			 unsigned long a3, unsigned long a4)
1560 {
1561 	struct task_struct *tsk = current;
1562 	struct audit_context *context = tsk->audit_context;
1563 	enum audit_state     state;
1564 
1565 	if (unlikely(!context))
1566 		return;
1567 
1568 	/*
1569 	 * This happens only on certain architectures that make system
1570 	 * calls in kernel_thread via the entry.S interface, instead of
1571 	 * with direct calls.  (If you are porting to a new
1572 	 * architecture, hitting this condition can indicate that you
1573 	 * got the _exit/_leave calls backward in entry.S.)
1574 	 *
1575 	 * i386     no
1576 	 * x86_64   no
1577 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1578 	 *
1579 	 * This also happens with vm86 emulation in a non-nested manner
1580 	 * (entries without exits), so this case must be caught.
1581 	 */
1582 	if (context->in_syscall) {
1583 		struct audit_context *newctx;
1584 
1585 #if AUDIT_DEBUG
1586 		printk(KERN_ERR
1587 		       "audit(:%d) pid=%d in syscall=%d;"
1588 		       " entering syscall=%d\n",
1589 		       context->serial, tsk->pid, context->major, major);
1590 #endif
1591 		newctx = audit_alloc_context(context->state);
1592 		if (newctx) {
1593 			newctx->previous   = context;
1594 			context		   = newctx;
1595 			tsk->audit_context = newctx;
1596 		} else	{
1597 			/* If we can't alloc a new context, the best we
1598 			 * can do is to leak memory (any pending putname
1599 			 * will be lost).  The only other alternative is
1600 			 * to abandon auditing. */
1601 			audit_zero_context(context, context->state);
1602 		}
1603 	}
1604 	BUG_ON(context->in_syscall || context->name_count);
1605 
1606 	if (!audit_enabled)
1607 		return;
1608 
1609 	context->arch	    = arch;
1610 	context->major      = major;
1611 	context->argv[0]    = a1;
1612 	context->argv[1]    = a2;
1613 	context->argv[2]    = a3;
1614 	context->argv[3]    = a4;
1615 
1616 	state = context->state;
1617 	context->dummy = !audit_n_rules;
1618 	if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1619 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1620 	if (likely(state == AUDIT_DISABLED))
1621 		return;
1622 
1623 	context->serial     = 0;
1624 	context->ctime      = CURRENT_TIME;
1625 	context->in_syscall = 1;
1626 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
1627 	context->ppid       = 0;
1628 }
1629 
1630 /**
1631  * audit_syscall_exit - deallocate audit context after a system call
1632  * @tsk: task being audited
1633  * @valid: success/failure flag
1634  * @return_code: syscall return value
1635  *
1636  * Tear down after system call.  If the audit context has been marked as
1637  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1638  * filtering, or because some other part of the kernel write an audit
1639  * message), then write out the syscall information.  In call cases,
1640  * free the names stored from getname().
1641  */
1642 void audit_syscall_exit(int valid, long return_code)
1643 {
1644 	struct task_struct *tsk = current;
1645 	struct audit_context *context;
1646 
1647 	context = audit_get_context(tsk, valid, return_code);
1648 
1649 	if (likely(!context))
1650 		return;
1651 
1652 	if (context->in_syscall && context->auditable)
1653 		audit_log_exit(context, tsk);
1654 
1655 	context->in_syscall = 0;
1656 	context->auditable  = 0;
1657 
1658 	if (context->previous) {
1659 		struct audit_context *new_context = context->previous;
1660 		context->previous  = NULL;
1661 		audit_free_context(context);
1662 		tsk->audit_context = new_context;
1663 	} else {
1664 		audit_free_names(context);
1665 		unroll_tree_refs(context, NULL, 0);
1666 		audit_free_aux(context);
1667 		context->aux = NULL;
1668 		context->aux_pids = NULL;
1669 		context->target_pid = 0;
1670 		context->target_sid = 0;
1671 		kfree(context->filterkey);
1672 		context->filterkey = NULL;
1673 		tsk->audit_context = context;
1674 	}
1675 }
1676 
1677 static inline void handle_one(const struct inode *inode)
1678 {
1679 #ifdef CONFIG_AUDIT_TREE
1680 	struct audit_context *context;
1681 	struct audit_tree_refs *p;
1682 	struct audit_chunk *chunk;
1683 	int count;
1684 	if (likely(list_empty(&inode->inotify_watches)))
1685 		return;
1686 	context = current->audit_context;
1687 	p = context->trees;
1688 	count = context->tree_count;
1689 	rcu_read_lock();
1690 	chunk = audit_tree_lookup(inode);
1691 	rcu_read_unlock();
1692 	if (!chunk)
1693 		return;
1694 	if (likely(put_tree_ref(context, chunk)))
1695 		return;
1696 	if (unlikely(!grow_tree_refs(context))) {
1697 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1698 		audit_set_auditable(context);
1699 		audit_put_chunk(chunk);
1700 		unroll_tree_refs(context, p, count);
1701 		return;
1702 	}
1703 	put_tree_ref(context, chunk);
1704 #endif
1705 }
1706 
1707 static void handle_path(const struct dentry *dentry)
1708 {
1709 #ifdef CONFIG_AUDIT_TREE
1710 	struct audit_context *context;
1711 	struct audit_tree_refs *p;
1712 	const struct dentry *d, *parent;
1713 	struct audit_chunk *drop;
1714 	unsigned long seq;
1715 	int count;
1716 
1717 	context = current->audit_context;
1718 	p = context->trees;
1719 	count = context->tree_count;
1720 retry:
1721 	drop = NULL;
1722 	d = dentry;
1723 	rcu_read_lock();
1724 	seq = read_seqbegin(&rename_lock);
1725 	for(;;) {
1726 		struct inode *inode = d->d_inode;
1727 		if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1728 			struct audit_chunk *chunk;
1729 			chunk = audit_tree_lookup(inode);
1730 			if (chunk) {
1731 				if (unlikely(!put_tree_ref(context, chunk))) {
1732 					drop = chunk;
1733 					break;
1734 				}
1735 			}
1736 		}
1737 		parent = d->d_parent;
1738 		if (parent == d)
1739 			break;
1740 		d = parent;
1741 	}
1742 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1743 		rcu_read_unlock();
1744 		if (!drop) {
1745 			/* just a race with rename */
1746 			unroll_tree_refs(context, p, count);
1747 			goto retry;
1748 		}
1749 		audit_put_chunk(drop);
1750 		if (grow_tree_refs(context)) {
1751 			/* OK, got more space */
1752 			unroll_tree_refs(context, p, count);
1753 			goto retry;
1754 		}
1755 		/* too bad */
1756 		printk(KERN_WARNING
1757 			"out of memory, audit has lost a tree reference\n");
1758 		unroll_tree_refs(context, p, count);
1759 		audit_set_auditable(context);
1760 		return;
1761 	}
1762 	rcu_read_unlock();
1763 #endif
1764 }
1765 
1766 /**
1767  * audit_getname - add a name to the list
1768  * @name: name to add
1769  *
1770  * Add a name to the list of audit names for this context.
1771  * Called from fs/namei.c:getname().
1772  */
1773 void __audit_getname(const char *name)
1774 {
1775 	struct audit_context *context = current->audit_context;
1776 
1777 	if (IS_ERR(name) || !name)
1778 		return;
1779 
1780 	if (!context->in_syscall) {
1781 #if AUDIT_DEBUG == 2
1782 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1783 		       __FILE__, __LINE__, context->serial, name);
1784 		dump_stack();
1785 #endif
1786 		return;
1787 	}
1788 	BUG_ON(context->name_count >= AUDIT_NAMES);
1789 	context->names[context->name_count].name = name;
1790 	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1791 	context->names[context->name_count].name_put = 1;
1792 	context->names[context->name_count].ino  = (unsigned long)-1;
1793 	context->names[context->name_count].osid = 0;
1794 	++context->name_count;
1795 	if (!context->pwd.dentry) {
1796 		read_lock(&current->fs->lock);
1797 		context->pwd = current->fs->pwd;
1798 		path_get(&current->fs->pwd);
1799 		read_unlock(&current->fs->lock);
1800 	}
1801 
1802 }
1803 
1804 /* audit_putname - intercept a putname request
1805  * @name: name to intercept and delay for putname
1806  *
1807  * If we have stored the name from getname in the audit context,
1808  * then we delay the putname until syscall exit.
1809  * Called from include/linux/fs.h:putname().
1810  */
1811 void audit_putname(const char *name)
1812 {
1813 	struct audit_context *context = current->audit_context;
1814 
1815 	BUG_ON(!context);
1816 	if (!context->in_syscall) {
1817 #if AUDIT_DEBUG == 2
1818 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1819 		       __FILE__, __LINE__, context->serial, name);
1820 		if (context->name_count) {
1821 			int i;
1822 			for (i = 0; i < context->name_count; i++)
1823 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1824 				       context->names[i].name,
1825 				       context->names[i].name ?: "(null)");
1826 		}
1827 #endif
1828 		__putname(name);
1829 	}
1830 #if AUDIT_DEBUG
1831 	else {
1832 		++context->put_count;
1833 		if (context->put_count > context->name_count) {
1834 			printk(KERN_ERR "%s:%d(:%d): major=%d"
1835 			       " in_syscall=%d putname(%p) name_count=%d"
1836 			       " put_count=%d\n",
1837 			       __FILE__, __LINE__,
1838 			       context->serial, context->major,
1839 			       context->in_syscall, name, context->name_count,
1840 			       context->put_count);
1841 			dump_stack();
1842 		}
1843 	}
1844 #endif
1845 }
1846 
1847 static int audit_inc_name_count(struct audit_context *context,
1848 				const struct inode *inode)
1849 {
1850 	if (context->name_count >= AUDIT_NAMES) {
1851 		if (inode)
1852 			printk(KERN_DEBUG "name_count maxed, losing inode data: "
1853 			       "dev=%02x:%02x, inode=%lu\n",
1854 			       MAJOR(inode->i_sb->s_dev),
1855 			       MINOR(inode->i_sb->s_dev),
1856 			       inode->i_ino);
1857 
1858 		else
1859 			printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1860 		return 1;
1861 	}
1862 	context->name_count++;
1863 #if AUDIT_DEBUG
1864 	context->ino_count++;
1865 #endif
1866 	return 0;
1867 }
1868 
1869 
1870 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1871 {
1872 	struct cpu_vfs_cap_data caps;
1873 	int rc;
1874 
1875 	memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1876 	memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1877 	name->fcap.fE = 0;
1878 	name->fcap_ver = 0;
1879 
1880 	if (!dentry)
1881 		return 0;
1882 
1883 	rc = get_vfs_caps_from_disk(dentry, &caps);
1884 	if (rc)
1885 		return rc;
1886 
1887 	name->fcap.permitted = caps.permitted;
1888 	name->fcap.inheritable = caps.inheritable;
1889 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1890 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1891 
1892 	return 0;
1893 }
1894 
1895 
1896 /* Copy inode data into an audit_names. */
1897 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1898 			     const struct inode *inode)
1899 {
1900 	name->ino   = inode->i_ino;
1901 	name->dev   = inode->i_sb->s_dev;
1902 	name->mode  = inode->i_mode;
1903 	name->uid   = inode->i_uid;
1904 	name->gid   = inode->i_gid;
1905 	name->rdev  = inode->i_rdev;
1906 	security_inode_getsecid(inode, &name->osid);
1907 	audit_copy_fcaps(name, dentry);
1908 }
1909 
1910 /**
1911  * audit_inode - store the inode and device from a lookup
1912  * @name: name being audited
1913  * @dentry: dentry being audited
1914  *
1915  * Called from fs/namei.c:path_lookup().
1916  */
1917 void __audit_inode(const char *name, const struct dentry *dentry)
1918 {
1919 	int idx;
1920 	struct audit_context *context = current->audit_context;
1921 	const struct inode *inode = dentry->d_inode;
1922 
1923 	if (!context->in_syscall)
1924 		return;
1925 	if (context->name_count
1926 	    && context->names[context->name_count-1].name
1927 	    && context->names[context->name_count-1].name == name)
1928 		idx = context->name_count - 1;
1929 	else if (context->name_count > 1
1930 		 && context->names[context->name_count-2].name
1931 		 && context->names[context->name_count-2].name == name)
1932 		idx = context->name_count - 2;
1933 	else {
1934 		/* FIXME: how much do we care about inodes that have no
1935 		 * associated name? */
1936 		if (audit_inc_name_count(context, inode))
1937 			return;
1938 		idx = context->name_count - 1;
1939 		context->names[idx].name = NULL;
1940 	}
1941 	handle_path(dentry);
1942 	audit_copy_inode(&context->names[idx], dentry, inode);
1943 }
1944 
1945 /**
1946  * audit_inode_child - collect inode info for created/removed objects
1947  * @dname: inode's dentry name
1948  * @dentry: dentry being audited
1949  * @parent: inode of dentry parent
1950  *
1951  * For syscalls that create or remove filesystem objects, audit_inode
1952  * can only collect information for the filesystem object's parent.
1953  * This call updates the audit context with the child's information.
1954  * Syscalls that create a new filesystem object must be hooked after
1955  * the object is created.  Syscalls that remove a filesystem object
1956  * must be hooked prior, in order to capture the target inode during
1957  * unsuccessful attempts.
1958  */
1959 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1960 			 const struct inode *parent)
1961 {
1962 	int idx;
1963 	struct audit_context *context = current->audit_context;
1964 	const char *found_parent = NULL, *found_child = NULL;
1965 	const struct inode *inode = dentry->d_inode;
1966 	int dirlen = 0;
1967 
1968 	if (!context->in_syscall)
1969 		return;
1970 
1971 	if (inode)
1972 		handle_one(inode);
1973 	/* determine matching parent */
1974 	if (!dname)
1975 		goto add_names;
1976 
1977 	/* parent is more likely, look for it first */
1978 	for (idx = 0; idx < context->name_count; idx++) {
1979 		struct audit_names *n = &context->names[idx];
1980 
1981 		if (!n->name)
1982 			continue;
1983 
1984 		if (n->ino == parent->i_ino &&
1985 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
1986 			n->name_len = dirlen; /* update parent data in place */
1987 			found_parent = n->name;
1988 			goto add_names;
1989 		}
1990 	}
1991 
1992 	/* no matching parent, look for matching child */
1993 	for (idx = 0; idx < context->name_count; idx++) {
1994 		struct audit_names *n = &context->names[idx];
1995 
1996 		if (!n->name)
1997 			continue;
1998 
1999 		/* strcmp() is the more likely scenario */
2000 		if (!strcmp(dname, n->name) ||
2001 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2002 			if (inode)
2003 				audit_copy_inode(n, NULL, inode);
2004 			else
2005 				n->ino = (unsigned long)-1;
2006 			found_child = n->name;
2007 			goto add_names;
2008 		}
2009 	}
2010 
2011 add_names:
2012 	if (!found_parent) {
2013 		if (audit_inc_name_count(context, parent))
2014 			return;
2015 		idx = context->name_count - 1;
2016 		context->names[idx].name = NULL;
2017 		audit_copy_inode(&context->names[idx], NULL, parent);
2018 	}
2019 
2020 	if (!found_child) {
2021 		if (audit_inc_name_count(context, inode))
2022 			return;
2023 		idx = context->name_count - 1;
2024 
2025 		/* Re-use the name belonging to the slot for a matching parent
2026 		 * directory. All names for this context are relinquished in
2027 		 * audit_free_names() */
2028 		if (found_parent) {
2029 			context->names[idx].name = found_parent;
2030 			context->names[idx].name_len = AUDIT_NAME_FULL;
2031 			/* don't call __putname() */
2032 			context->names[idx].name_put = 0;
2033 		} else {
2034 			context->names[idx].name = NULL;
2035 		}
2036 
2037 		if (inode)
2038 			audit_copy_inode(&context->names[idx], NULL, inode);
2039 		else
2040 			context->names[idx].ino = (unsigned long)-1;
2041 	}
2042 }
2043 EXPORT_SYMBOL_GPL(__audit_inode_child);
2044 
2045 /**
2046  * auditsc_get_stamp - get local copies of audit_context values
2047  * @ctx: audit_context for the task
2048  * @t: timespec to store time recorded in the audit_context
2049  * @serial: serial value that is recorded in the audit_context
2050  *
2051  * Also sets the context as auditable.
2052  */
2053 void auditsc_get_stamp(struct audit_context *ctx,
2054 		       struct timespec *t, unsigned int *serial)
2055 {
2056 	if (!ctx->serial)
2057 		ctx->serial = audit_serial();
2058 	t->tv_sec  = ctx->ctime.tv_sec;
2059 	t->tv_nsec = ctx->ctime.tv_nsec;
2060 	*serial    = ctx->serial;
2061 	ctx->auditable = 1;
2062 }
2063 
2064 /* global counter which is incremented every time something logs in */
2065 static atomic_t session_id = ATOMIC_INIT(0);
2066 
2067 /**
2068  * audit_set_loginuid - set a task's audit_context loginuid
2069  * @task: task whose audit context is being modified
2070  * @loginuid: loginuid value
2071  *
2072  * Returns 0.
2073  *
2074  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2075  */
2076 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2077 {
2078 	unsigned int sessionid = atomic_inc_return(&session_id);
2079 	struct audit_context *context = task->audit_context;
2080 
2081 	if (context && context->in_syscall) {
2082 		struct audit_buffer *ab;
2083 
2084 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2085 		if (ab) {
2086 			audit_log_format(ab, "login pid=%d uid=%u "
2087 				"old auid=%u new auid=%u"
2088 				" old ses=%u new ses=%u",
2089 				task->pid, task->uid,
2090 				task->loginuid, loginuid,
2091 				task->sessionid, sessionid);
2092 			audit_log_end(ab);
2093 		}
2094 	}
2095 	task->sessionid = sessionid;
2096 	task->loginuid = loginuid;
2097 	return 0;
2098 }
2099 
2100 /**
2101  * __audit_mq_open - record audit data for a POSIX MQ open
2102  * @oflag: open flag
2103  * @mode: mode bits
2104  * @u_attr: queue attributes
2105  *
2106  * Returns 0 for success or NULL context or < 0 on error.
2107  */
2108 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2109 {
2110 	struct audit_aux_data_mq_open *ax;
2111 	struct audit_context *context = current->audit_context;
2112 
2113 	if (!audit_enabled)
2114 		return 0;
2115 
2116 	if (likely(!context))
2117 		return 0;
2118 
2119 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2120 	if (!ax)
2121 		return -ENOMEM;
2122 
2123 	if (u_attr != NULL) {
2124 		if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2125 			kfree(ax);
2126 			return -EFAULT;
2127 		}
2128 	} else
2129 		memset(&ax->attr, 0, sizeof(ax->attr));
2130 
2131 	ax->oflag = oflag;
2132 	ax->mode = mode;
2133 
2134 	ax->d.type = AUDIT_MQ_OPEN;
2135 	ax->d.next = context->aux;
2136 	context->aux = (void *)ax;
2137 	return 0;
2138 }
2139 
2140 /**
2141  * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2142  * @mqdes: MQ descriptor
2143  * @msg_len: Message length
2144  * @msg_prio: Message priority
2145  * @u_abs_timeout: Message timeout in absolute time
2146  *
2147  * Returns 0 for success or NULL context or < 0 on error.
2148  */
2149 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2150 			const struct timespec __user *u_abs_timeout)
2151 {
2152 	struct audit_aux_data_mq_sendrecv *ax;
2153 	struct audit_context *context = current->audit_context;
2154 
2155 	if (!audit_enabled)
2156 		return 0;
2157 
2158 	if (likely(!context))
2159 		return 0;
2160 
2161 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2162 	if (!ax)
2163 		return -ENOMEM;
2164 
2165 	if (u_abs_timeout != NULL) {
2166 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2167 			kfree(ax);
2168 			return -EFAULT;
2169 		}
2170 	} else
2171 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2172 
2173 	ax->mqdes = mqdes;
2174 	ax->msg_len = msg_len;
2175 	ax->msg_prio = msg_prio;
2176 
2177 	ax->d.type = AUDIT_MQ_SENDRECV;
2178 	ax->d.next = context->aux;
2179 	context->aux = (void *)ax;
2180 	return 0;
2181 }
2182 
2183 /**
2184  * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2185  * @mqdes: MQ descriptor
2186  * @msg_len: Message length
2187  * @u_msg_prio: Message priority
2188  * @u_abs_timeout: Message timeout in absolute time
2189  *
2190  * Returns 0 for success or NULL context or < 0 on error.
2191  */
2192 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2193 				unsigned int __user *u_msg_prio,
2194 				const struct timespec __user *u_abs_timeout)
2195 {
2196 	struct audit_aux_data_mq_sendrecv *ax;
2197 	struct audit_context *context = current->audit_context;
2198 
2199 	if (!audit_enabled)
2200 		return 0;
2201 
2202 	if (likely(!context))
2203 		return 0;
2204 
2205 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2206 	if (!ax)
2207 		return -ENOMEM;
2208 
2209 	if (u_msg_prio != NULL) {
2210 		if (get_user(ax->msg_prio, u_msg_prio)) {
2211 			kfree(ax);
2212 			return -EFAULT;
2213 		}
2214 	} else
2215 		ax->msg_prio = 0;
2216 
2217 	if (u_abs_timeout != NULL) {
2218 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2219 			kfree(ax);
2220 			return -EFAULT;
2221 		}
2222 	} else
2223 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2224 
2225 	ax->mqdes = mqdes;
2226 	ax->msg_len = msg_len;
2227 
2228 	ax->d.type = AUDIT_MQ_SENDRECV;
2229 	ax->d.next = context->aux;
2230 	context->aux = (void *)ax;
2231 	return 0;
2232 }
2233 
2234 /**
2235  * __audit_mq_notify - record audit data for a POSIX MQ notify
2236  * @mqdes: MQ descriptor
2237  * @u_notification: Notification event
2238  *
2239  * Returns 0 for success or NULL context or < 0 on error.
2240  */
2241 
2242 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2243 {
2244 	struct audit_aux_data_mq_notify *ax;
2245 	struct audit_context *context = current->audit_context;
2246 
2247 	if (!audit_enabled)
2248 		return 0;
2249 
2250 	if (likely(!context))
2251 		return 0;
2252 
2253 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2254 	if (!ax)
2255 		return -ENOMEM;
2256 
2257 	if (u_notification != NULL) {
2258 		if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2259 			kfree(ax);
2260 			return -EFAULT;
2261 		}
2262 	} else
2263 		memset(&ax->notification, 0, sizeof(ax->notification));
2264 
2265 	ax->mqdes = mqdes;
2266 
2267 	ax->d.type = AUDIT_MQ_NOTIFY;
2268 	ax->d.next = context->aux;
2269 	context->aux = (void *)ax;
2270 	return 0;
2271 }
2272 
2273 /**
2274  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2275  * @mqdes: MQ descriptor
2276  * @mqstat: MQ flags
2277  *
2278  * Returns 0 for success or NULL context or < 0 on error.
2279  */
2280 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2281 {
2282 	struct audit_aux_data_mq_getsetattr *ax;
2283 	struct audit_context *context = current->audit_context;
2284 
2285 	if (!audit_enabled)
2286 		return 0;
2287 
2288 	if (likely(!context))
2289 		return 0;
2290 
2291 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2292 	if (!ax)
2293 		return -ENOMEM;
2294 
2295 	ax->mqdes = mqdes;
2296 	ax->mqstat = *mqstat;
2297 
2298 	ax->d.type = AUDIT_MQ_GETSETATTR;
2299 	ax->d.next = context->aux;
2300 	context->aux = (void *)ax;
2301 	return 0;
2302 }
2303 
2304 /**
2305  * audit_ipc_obj - record audit data for ipc object
2306  * @ipcp: ipc permissions
2307  *
2308  * Returns 0 for success or NULL context or < 0 on error.
2309  */
2310 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2311 {
2312 	struct audit_aux_data_ipcctl *ax;
2313 	struct audit_context *context = current->audit_context;
2314 
2315 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2316 	if (!ax)
2317 		return -ENOMEM;
2318 
2319 	ax->uid = ipcp->uid;
2320 	ax->gid = ipcp->gid;
2321 	ax->mode = ipcp->mode;
2322 	security_ipc_getsecid(ipcp, &ax->osid);
2323 	ax->d.type = AUDIT_IPC;
2324 	ax->d.next = context->aux;
2325 	context->aux = (void *)ax;
2326 	return 0;
2327 }
2328 
2329 /**
2330  * audit_ipc_set_perm - record audit data for new ipc permissions
2331  * @qbytes: msgq bytes
2332  * @uid: msgq user id
2333  * @gid: msgq group id
2334  * @mode: msgq mode (permissions)
2335  *
2336  * Returns 0 for success or NULL context or < 0 on error.
2337  */
2338 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2339 {
2340 	struct audit_aux_data_ipcctl *ax;
2341 	struct audit_context *context = current->audit_context;
2342 
2343 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2344 	if (!ax)
2345 		return -ENOMEM;
2346 
2347 	ax->qbytes = qbytes;
2348 	ax->uid = uid;
2349 	ax->gid = gid;
2350 	ax->mode = mode;
2351 
2352 	ax->d.type = AUDIT_IPC_SET_PERM;
2353 	ax->d.next = context->aux;
2354 	context->aux = (void *)ax;
2355 	return 0;
2356 }
2357 
2358 int audit_bprm(struct linux_binprm *bprm)
2359 {
2360 	struct audit_aux_data_execve *ax;
2361 	struct audit_context *context = current->audit_context;
2362 
2363 	if (likely(!audit_enabled || !context || context->dummy))
2364 		return 0;
2365 
2366 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2367 	if (!ax)
2368 		return -ENOMEM;
2369 
2370 	ax->argc = bprm->argc;
2371 	ax->envc = bprm->envc;
2372 	ax->mm = bprm->mm;
2373 	ax->d.type = AUDIT_EXECVE;
2374 	ax->d.next = context->aux;
2375 	context->aux = (void *)ax;
2376 	return 0;
2377 }
2378 
2379 
2380 /**
2381  * audit_socketcall - record audit data for sys_socketcall
2382  * @nargs: number of args
2383  * @args: args array
2384  *
2385  * Returns 0 for success or NULL context or < 0 on error.
2386  */
2387 int audit_socketcall(int nargs, unsigned long *args)
2388 {
2389 	struct audit_aux_data_socketcall *ax;
2390 	struct audit_context *context = current->audit_context;
2391 
2392 	if (likely(!context || context->dummy))
2393 		return 0;
2394 
2395 	ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2396 	if (!ax)
2397 		return -ENOMEM;
2398 
2399 	ax->nargs = nargs;
2400 	memcpy(ax->args, args, nargs * sizeof(unsigned long));
2401 
2402 	ax->d.type = AUDIT_SOCKETCALL;
2403 	ax->d.next = context->aux;
2404 	context->aux = (void *)ax;
2405 	return 0;
2406 }
2407 
2408 /**
2409  * __audit_fd_pair - record audit data for pipe and socketpair
2410  * @fd1: the first file descriptor
2411  * @fd2: the second file descriptor
2412  *
2413  * Returns 0 for success or NULL context or < 0 on error.
2414  */
2415 int __audit_fd_pair(int fd1, int fd2)
2416 {
2417 	struct audit_context *context = current->audit_context;
2418 	struct audit_aux_data_fd_pair *ax;
2419 
2420 	if (likely(!context)) {
2421 		return 0;
2422 	}
2423 
2424 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2425 	if (!ax) {
2426 		return -ENOMEM;
2427 	}
2428 
2429 	ax->fd[0] = fd1;
2430 	ax->fd[1] = fd2;
2431 
2432 	ax->d.type = AUDIT_FD_PAIR;
2433 	ax->d.next = context->aux;
2434 	context->aux = (void *)ax;
2435 	return 0;
2436 }
2437 
2438 /**
2439  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2440  * @len: data length in user space
2441  * @a: data address in kernel space
2442  *
2443  * Returns 0 for success or NULL context or < 0 on error.
2444  */
2445 int audit_sockaddr(int len, void *a)
2446 {
2447 	struct audit_aux_data_sockaddr *ax;
2448 	struct audit_context *context = current->audit_context;
2449 
2450 	if (likely(!context || context->dummy))
2451 		return 0;
2452 
2453 	ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2454 	if (!ax)
2455 		return -ENOMEM;
2456 
2457 	ax->len = len;
2458 	memcpy(ax->a, a, len);
2459 
2460 	ax->d.type = AUDIT_SOCKADDR;
2461 	ax->d.next = context->aux;
2462 	context->aux = (void *)ax;
2463 	return 0;
2464 }
2465 
2466 void __audit_ptrace(struct task_struct *t)
2467 {
2468 	struct audit_context *context = current->audit_context;
2469 
2470 	context->target_pid = t->pid;
2471 	context->target_auid = audit_get_loginuid(t);
2472 	context->target_uid = t->uid;
2473 	context->target_sessionid = audit_get_sessionid(t);
2474 	security_task_getsecid(t, &context->target_sid);
2475 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2476 }
2477 
2478 /**
2479  * audit_signal_info - record signal info for shutting down audit subsystem
2480  * @sig: signal value
2481  * @t: task being signaled
2482  *
2483  * If the audit subsystem is being terminated, record the task (pid)
2484  * and uid that is doing that.
2485  */
2486 int __audit_signal_info(int sig, struct task_struct *t)
2487 {
2488 	struct audit_aux_data_pids *axp;
2489 	struct task_struct *tsk = current;
2490 	struct audit_context *ctx = tsk->audit_context;
2491 
2492 	if (audit_pid && t->tgid == audit_pid) {
2493 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2494 			audit_sig_pid = tsk->pid;
2495 			if (tsk->loginuid != -1)
2496 				audit_sig_uid = tsk->loginuid;
2497 			else
2498 				audit_sig_uid = tsk->uid;
2499 			security_task_getsecid(tsk, &audit_sig_sid);
2500 		}
2501 		if (!audit_signals || audit_dummy_context())
2502 			return 0;
2503 	}
2504 
2505 	/* optimize the common case by putting first signal recipient directly
2506 	 * in audit_context */
2507 	if (!ctx->target_pid) {
2508 		ctx->target_pid = t->tgid;
2509 		ctx->target_auid = audit_get_loginuid(t);
2510 		ctx->target_uid = t->uid;
2511 		ctx->target_sessionid = audit_get_sessionid(t);
2512 		security_task_getsecid(t, &ctx->target_sid);
2513 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2514 		return 0;
2515 	}
2516 
2517 	axp = (void *)ctx->aux_pids;
2518 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2519 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2520 		if (!axp)
2521 			return -ENOMEM;
2522 
2523 		axp->d.type = AUDIT_OBJ_PID;
2524 		axp->d.next = ctx->aux_pids;
2525 		ctx->aux_pids = (void *)axp;
2526 	}
2527 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2528 
2529 	axp->target_pid[axp->pid_count] = t->tgid;
2530 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2531 	axp->target_uid[axp->pid_count] = t->uid;
2532 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2533 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2534 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2535 	axp->pid_count++;
2536 
2537 	return 0;
2538 }
2539 
2540 /**
2541  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2542  * @bprm pointer to the bprm being processed
2543  * @caps the caps read from the disk
2544  *
2545  * Simply check if the proc already has the caps given by the file and if not
2546  * store the priv escalation info for later auditing at the end of the syscall
2547  *
2548  * this can fail and we don't care.  See the note in audit.h for
2549  * audit_log_bprm_fcaps() for my explaination....
2550  *
2551  * -Eric
2552  */
2553 void __audit_log_bprm_fcaps(struct linux_binprm *bprm, kernel_cap_t *pP, kernel_cap_t *pE)
2554 {
2555 	struct audit_aux_data_bprm_fcaps *ax;
2556 	struct audit_context *context = current->audit_context;
2557 	struct cpu_vfs_cap_data vcaps;
2558 	struct dentry *dentry;
2559 
2560 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2561 	if (!ax)
2562 		return;
2563 
2564 	ax->d.type = AUDIT_BPRM_FCAPS;
2565 	ax->d.next = context->aux;
2566 	context->aux = (void *)ax;
2567 
2568 	dentry = dget(bprm->file->f_dentry);
2569 	get_vfs_caps_from_disk(dentry, &vcaps);
2570 	dput(dentry);
2571 
2572 	ax->fcap.permitted = vcaps.permitted;
2573 	ax->fcap.inheritable = vcaps.inheritable;
2574 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2575 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2576 
2577 	ax->old_pcap.permitted = *pP;
2578 	ax->old_pcap.inheritable = current->cap_inheritable;
2579 	ax->old_pcap.effective = *pE;
2580 
2581 	ax->new_pcap.permitted = current->cap_permitted;
2582 	ax->new_pcap.inheritable = current->cap_inheritable;
2583 	ax->new_pcap.effective = current->cap_effective;
2584 }
2585 
2586 /**
2587  * __audit_log_capset - store information about the arguments to the capset syscall
2588  * @pid target pid of the capset call
2589  * @eff effective cap set
2590  * @inh inheritible cap set
2591  * @perm permited cap set
2592  *
2593  * Record the aguments userspace sent to sys_capset for later printing by the
2594  * audit system if applicable
2595  */
2596 int __audit_log_capset(pid_t pid, kernel_cap_t *eff, kernel_cap_t *inh, kernel_cap_t *perm)
2597 {
2598 	struct audit_aux_data_capset *ax;
2599 	struct audit_context *context = current->audit_context;
2600 
2601 	if (likely(!audit_enabled || !context || context->dummy))
2602 		return 0;
2603 
2604 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2605 	if (!ax)
2606 		return -ENOMEM;
2607 
2608 	ax->d.type = AUDIT_CAPSET;
2609 	ax->d.next = context->aux;
2610 	context->aux = (void *)ax;
2611 
2612 	ax->pid = pid;
2613 	ax->cap.effective = *eff;
2614 	ax->cap.inheritable = *eff;
2615 	ax->cap.permitted = *perm;
2616 
2617 	return 0;
2618 }
2619 
2620 /**
2621  * audit_core_dumps - record information about processes that end abnormally
2622  * @signr: signal value
2623  *
2624  * If a process ends with a core dump, something fishy is going on and we
2625  * should record the event for investigation.
2626  */
2627 void audit_core_dumps(long signr)
2628 {
2629 	struct audit_buffer *ab;
2630 	u32 sid;
2631 	uid_t auid = audit_get_loginuid(current);
2632 	unsigned int sessionid = audit_get_sessionid(current);
2633 
2634 	if (!audit_enabled)
2635 		return;
2636 
2637 	if (signr == SIGQUIT)	/* don't care for those */
2638 		return;
2639 
2640 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2641 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2642 			auid, current->uid, current->gid, sessionid);
2643 	security_task_getsecid(current, &sid);
2644 	if (sid) {
2645 		char *ctx = NULL;
2646 		u32 len;
2647 
2648 		if (security_secid_to_secctx(sid, &ctx, &len))
2649 			audit_log_format(ab, " ssid=%u", sid);
2650 		else {
2651 			audit_log_format(ab, " subj=%s", ctx);
2652 			security_release_secctx(ctx, len);
2653 		}
2654 	}
2655 	audit_log_format(ab, " pid=%d comm=", current->pid);
2656 	audit_log_untrustedstring(ab, current->comm);
2657 	audit_log_format(ab, " sig=%ld", signr);
2658 	audit_log_end(ab);
2659 }
2660