xref: /openbmc/linux/kernel/auditsc.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /* auditsc.c -- System-call auditing support -*- linux-c -*-
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * All Rights Reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
22  *
23  * Many of the ideas implemented here are from Stephen C. Tweedie,
24  * especially the idea of avoiding a copy by using getname.
25  *
26  * The method for actual interception of syscall entry and exit (not in
27  * this file -- see entry.S) is based on a GPL'd patch written by
28  * okir@suse.de and Copyright 2003 SuSE Linux AG.
29  *
30  */
31 
32 #include <linux/init.h>
33 #include <asm/atomic.h>
34 #include <asm/types.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 
38 #include <linux/audit.h>
39 #include <linux/personality.h>
40 #include <linux/time.h>
41 #include <asm/unistd.h>
42 
43 /* 0 = no checking
44    1 = put_count checking
45    2 = verbose put_count checking
46 */
47 #define AUDIT_DEBUG 0
48 
49 /* No syscall auditing will take place unless audit_enabled != 0. */
50 extern int audit_enabled;
51 
52 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
53  * for saving names from getname(). */
54 #define AUDIT_NAMES    20
55 
56 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
57  * audit_context from being used for nameless inodes from
58  * path_lookup. */
59 #define AUDIT_NAMES_RESERVED 7
60 
61 /* At task start time, the audit_state is set in the audit_context using
62    a per-task filter.  At syscall entry, the audit_state is augmented by
63    the syscall filter. */
64 enum audit_state {
65 	AUDIT_DISABLED,		/* Do not create per-task audit_context.
66 				 * No syscall-specific audit records can
67 				 * be generated. */
68 	AUDIT_SETUP_CONTEXT,	/* Create the per-task audit_context,
69 				 * but don't necessarily fill it in at
70 				 * syscall entry time (i.e., filter
71 				 * instead). */
72 	AUDIT_BUILD_CONTEXT,	/* Create the per-task audit_context,
73 				 * and always fill it in at syscall
74 				 * entry time.  This makes a full
75 				 * syscall record available if some
76 				 * other part of the kernel decides it
77 				 * should be recorded. */
78 	AUDIT_RECORD_CONTEXT	/* Create the per-task audit_context,
79 				 * always fill it in at syscall entry
80 				 * time, and always write out the audit
81 				 * record at syscall exit time.  */
82 };
83 
84 /* When fs/namei.c:getname() is called, we store the pointer in name and
85  * we don't let putname() free it (instead we free all of the saved
86  * pointers at syscall exit time).
87  *
88  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
89 struct audit_names {
90 	const char	*name;
91 	unsigned long	ino;
92 	dev_t		dev;
93 	umode_t		mode;
94 	uid_t		uid;
95 	gid_t		gid;
96 	dev_t		rdev;
97 };
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 struct audit_aux_data_ipcctl {
107 	struct audit_aux_data	d;
108 	struct ipc_perm		p;
109 	unsigned long		qbytes;
110 	uid_t			uid;
111 	gid_t			gid;
112 	mode_t			mode;
113 };
114 
115 
116 /* The per-task audit context. */
117 struct audit_context {
118 	int		    in_syscall;	/* 1 if task is in a syscall */
119 	enum audit_state    state;
120 	unsigned int	    serial;     /* serial number for record */
121 	struct timespec	    ctime;      /* time of syscall entry */
122 	uid_t		    loginuid;   /* login uid (identity) */
123 	int		    major;      /* syscall number */
124 	unsigned long	    argv[4];    /* syscall arguments */
125 	int		    return_valid; /* return code is valid */
126 	int		    return_code;/* syscall return code */
127 	int		    auditable;  /* 1 if record should be written */
128 	int		    name_count;
129 	struct audit_names  names[AUDIT_NAMES];
130 	struct audit_context *previous; /* For nested syscalls */
131 	struct audit_aux_data *aux;
132 
133 				/* Save things to print about task_struct */
134 	pid_t		    pid;
135 	uid_t		    uid, euid, suid, fsuid;
136 	gid_t		    gid, egid, sgid, fsgid;
137 	unsigned long	    personality;
138 
139 #if AUDIT_DEBUG
140 	int		    put_count;
141 	int		    ino_count;
142 #endif
143 };
144 
145 				/* Public API */
146 /* There are three lists of rules -- one to search at task creation
147  * time, one to search at syscall entry time, and another to search at
148  * syscall exit time. */
149 static LIST_HEAD(audit_tsklist);
150 static LIST_HEAD(audit_entlist);
151 static LIST_HEAD(audit_extlist);
152 
153 struct audit_entry {
154 	struct list_head  list;
155 	struct rcu_head   rcu;
156 	struct audit_rule rule;
157 };
158 
159 /* Check to see if two rules are identical.  It is called from
160  * audit_del_rule during AUDIT_DEL. */
161 static int audit_compare_rule(struct audit_rule *a, struct audit_rule *b)
162 {
163 	int i;
164 
165 	if (a->flags != b->flags)
166 		return 1;
167 
168 	if (a->action != b->action)
169 		return 1;
170 
171 	if (a->field_count != b->field_count)
172 		return 1;
173 
174 	for (i = 0; i < a->field_count; i++) {
175 		if (a->fields[i] != b->fields[i]
176 		    || a->values[i] != b->values[i])
177 			return 1;
178 	}
179 
180 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
181 		if (a->mask[i] != b->mask[i])
182 			return 1;
183 
184 	return 0;
185 }
186 
187 /* Note that audit_add_rule and audit_del_rule are called via
188  * audit_receive() in audit.c, and are protected by
189  * audit_netlink_sem. */
190 static inline int audit_add_rule(struct audit_entry *entry,
191 				 struct list_head *list)
192 {
193 	if (entry->rule.flags & AUDIT_PREPEND) {
194 		entry->rule.flags &= ~AUDIT_PREPEND;
195 		list_add_rcu(&entry->list, list);
196 	} else {
197 		list_add_tail_rcu(&entry->list, list);
198 	}
199 	return 0;
200 }
201 
202 static void audit_free_rule(struct rcu_head *head)
203 {
204 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
205 	kfree(e);
206 }
207 
208 /* Note that audit_add_rule and audit_del_rule are called via
209  * audit_receive() in audit.c, and are protected by
210  * audit_netlink_sem. */
211 static inline int audit_del_rule(struct audit_rule *rule,
212 				 struct list_head *list)
213 {
214 	struct audit_entry  *e;
215 
216 	/* Do not use the _rcu iterator here, since this is the only
217 	 * deletion routine. */
218 	list_for_each_entry(e, list, list) {
219 		if (!audit_compare_rule(rule, &e->rule)) {
220 			list_del_rcu(&e->list);
221 			call_rcu(&e->rcu, audit_free_rule);
222 			return 0;
223 		}
224 	}
225 	return -EFAULT;		/* No matching rule */
226 }
227 
228 #ifdef CONFIG_NET
229 /* Copy rule from user-space to kernel-space.  Called during
230  * AUDIT_ADD. */
231 static int audit_copy_rule(struct audit_rule *d, struct audit_rule *s)
232 {
233 	int i;
234 
235 	if (s->action != AUDIT_NEVER
236 	    && s->action != AUDIT_POSSIBLE
237 	    && s->action != AUDIT_ALWAYS)
238 		return -1;
239 	if (s->field_count < 0 || s->field_count > AUDIT_MAX_FIELDS)
240 		return -1;
241 
242 	d->flags	= s->flags;
243 	d->action	= s->action;
244 	d->field_count	= s->field_count;
245 	for (i = 0; i < d->field_count; i++) {
246 		d->fields[i] = s->fields[i];
247 		d->values[i] = s->values[i];
248 	}
249 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) d->mask[i] = s->mask[i];
250 	return 0;
251 }
252 
253 int audit_receive_filter(int type, int pid, int uid, int seq, void *data)
254 {
255 	u32		   flags;
256 	struct audit_entry *entry;
257 	int		   err = 0;
258 
259 	switch (type) {
260 	case AUDIT_LIST:
261 		/* The *_rcu iterators not needed here because we are
262 		   always called with audit_netlink_sem held. */
263 		list_for_each_entry(entry, &audit_tsklist, list)
264 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
265 					 &entry->rule, sizeof(entry->rule));
266 		list_for_each_entry(entry, &audit_entlist, list)
267 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
268 					 &entry->rule, sizeof(entry->rule));
269 		list_for_each_entry(entry, &audit_extlist, list)
270 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
271 					 &entry->rule, sizeof(entry->rule));
272 		audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
273 		break;
274 	case AUDIT_ADD:
275 		if (!(entry = kmalloc(sizeof(*entry), GFP_KERNEL)))
276 			return -ENOMEM;
277 		if (audit_copy_rule(&entry->rule, data)) {
278 			kfree(entry);
279 			return -EINVAL;
280 		}
281 		flags = entry->rule.flags;
282 		if (!err && (flags & AUDIT_PER_TASK))
283 			err = audit_add_rule(entry, &audit_tsklist);
284 		if (!err && (flags & AUDIT_AT_ENTRY))
285 			err = audit_add_rule(entry, &audit_entlist);
286 		if (!err && (flags & AUDIT_AT_EXIT))
287 			err = audit_add_rule(entry, &audit_extlist);
288 		break;
289 	case AUDIT_DEL:
290 		flags =((struct audit_rule *)data)->flags;
291 		if (!err && (flags & AUDIT_PER_TASK))
292 			err = audit_del_rule(data, &audit_tsklist);
293 		if (!err && (flags & AUDIT_AT_ENTRY))
294 			err = audit_del_rule(data, &audit_entlist);
295 		if (!err && (flags & AUDIT_AT_EXIT))
296 			err = audit_del_rule(data, &audit_extlist);
297 		break;
298 	default:
299 		return -EINVAL;
300 	}
301 
302 	return err;
303 }
304 #endif
305 
306 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
307  * otherwise. */
308 static int audit_filter_rules(struct task_struct *tsk,
309 			      struct audit_rule *rule,
310 			      struct audit_context *ctx,
311 			      enum audit_state *state)
312 {
313 	int i, j;
314 
315 	for (i = 0; i < rule->field_count; i++) {
316 		u32 field  = rule->fields[i] & ~AUDIT_NEGATE;
317 		u32 value  = rule->values[i];
318 		int result = 0;
319 
320 		switch (field) {
321 		case AUDIT_PID:
322 			result = (tsk->pid == value);
323 			break;
324 		case AUDIT_UID:
325 			result = (tsk->uid == value);
326 			break;
327 		case AUDIT_EUID:
328 			result = (tsk->euid == value);
329 			break;
330 		case AUDIT_SUID:
331 			result = (tsk->suid == value);
332 			break;
333 		case AUDIT_FSUID:
334 			result = (tsk->fsuid == value);
335 			break;
336 		case AUDIT_GID:
337 			result = (tsk->gid == value);
338 			break;
339 		case AUDIT_EGID:
340 			result = (tsk->egid == value);
341 			break;
342 		case AUDIT_SGID:
343 			result = (tsk->sgid == value);
344 			break;
345 		case AUDIT_FSGID:
346 			result = (tsk->fsgid == value);
347 			break;
348 		case AUDIT_PERS:
349 			result = (tsk->personality == value);
350 			break;
351 
352 		case AUDIT_EXIT:
353 			if (ctx && ctx->return_valid)
354 				result = (ctx->return_code == value);
355 			break;
356 		case AUDIT_SUCCESS:
357 			if (ctx && ctx->return_valid)
358 				result = (ctx->return_code >= 0);
359 			break;
360 		case AUDIT_DEVMAJOR:
361 			if (ctx) {
362 				for (j = 0; j < ctx->name_count; j++) {
363 					if (MAJOR(ctx->names[j].dev)==value) {
364 						++result;
365 						break;
366 					}
367 				}
368 			}
369 			break;
370 		case AUDIT_DEVMINOR:
371 			if (ctx) {
372 				for (j = 0; j < ctx->name_count; j++) {
373 					if (MINOR(ctx->names[j].dev)==value) {
374 						++result;
375 						break;
376 					}
377 				}
378 			}
379 			break;
380 		case AUDIT_INODE:
381 			if (ctx) {
382 				for (j = 0; j < ctx->name_count; j++) {
383 					if (ctx->names[j].ino == value) {
384 						++result;
385 						break;
386 					}
387 				}
388 			}
389 			break;
390 		case AUDIT_LOGINUID:
391 			result = 0;
392 			if (ctx)
393 				result = (ctx->loginuid == value);
394 			break;
395 		case AUDIT_ARG0:
396 		case AUDIT_ARG1:
397 		case AUDIT_ARG2:
398 		case AUDIT_ARG3:
399 			if (ctx)
400 				result = (ctx->argv[field-AUDIT_ARG0]==value);
401 			break;
402 		}
403 
404 		if (rule->fields[i] & AUDIT_NEGATE)
405 			result = !result;
406 		if (!result)
407 			return 0;
408 	}
409 	switch (rule->action) {
410 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
411 	case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT;  break;
412 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
413 	}
414 	return 1;
415 }
416 
417 /* At process creation time, we can determine if system-call auditing is
418  * completely disabled for this task.  Since we only have the task
419  * structure at this point, we can only check uid and gid.
420  */
421 static enum audit_state audit_filter_task(struct task_struct *tsk)
422 {
423 	struct audit_entry *e;
424 	enum audit_state   state;
425 
426 	rcu_read_lock();
427 	list_for_each_entry_rcu(e, &audit_tsklist, list) {
428 		if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
429 			rcu_read_unlock();
430 			return state;
431 		}
432 	}
433 	rcu_read_unlock();
434 	return AUDIT_BUILD_CONTEXT;
435 }
436 
437 /* At syscall entry and exit time, this filter is called if the
438  * audit_state is not low enough that auditing cannot take place, but is
439  * also not high enough that we already know we have to write and audit
440  * record (i.e., the state is AUDIT_SETUP_CONTEXT or  AUDIT_BUILD_CONTEXT).
441  */
442 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
443 					     struct audit_context *ctx,
444 					     struct list_head *list)
445 {
446 	struct audit_entry *e;
447 	enum audit_state   state;
448 	int		   word = AUDIT_WORD(ctx->major);
449 	int		   bit  = AUDIT_BIT(ctx->major);
450 
451 	rcu_read_lock();
452 	list_for_each_entry_rcu(e, list, list) {
453 		if ((e->rule.mask[word] & bit) == bit
454  		    && audit_filter_rules(tsk, &e->rule, ctx, &state)) {
455 			rcu_read_unlock();
456 			return state;
457 		}
458 	}
459 	rcu_read_unlock();
460 	return AUDIT_BUILD_CONTEXT;
461 }
462 
463 /* This should be called with task_lock() held. */
464 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
465 						      int return_valid,
466 						      int return_code)
467 {
468 	struct audit_context *context = tsk->audit_context;
469 
470 	if (likely(!context))
471 		return NULL;
472 	context->return_valid = return_valid;
473 	context->return_code  = return_code;
474 
475 	if (context->in_syscall && !context->auditable) {
476 		enum audit_state state;
477 		state = audit_filter_syscall(tsk, context, &audit_extlist);
478 		if (state == AUDIT_RECORD_CONTEXT)
479 			context->auditable = 1;
480 	}
481 
482 	context->pid = tsk->pid;
483 	context->uid = tsk->uid;
484 	context->gid = tsk->gid;
485 	context->euid = tsk->euid;
486 	context->suid = tsk->suid;
487 	context->fsuid = tsk->fsuid;
488 	context->egid = tsk->egid;
489 	context->sgid = tsk->sgid;
490 	context->fsgid = tsk->fsgid;
491 	context->personality = tsk->personality;
492 	tsk->audit_context = NULL;
493 	return context;
494 }
495 
496 static inline void audit_free_names(struct audit_context *context)
497 {
498 	int i;
499 
500 #if AUDIT_DEBUG == 2
501 	if (context->auditable
502 	    ||context->put_count + context->ino_count != context->name_count) {
503 		printk(KERN_ERR "audit.c:%d(:%d): major=%d in_syscall=%d"
504 		       " name_count=%d put_count=%d"
505 		       " ino_count=%d [NOT freeing]\n",
506 		       __LINE__,
507 		       context->serial, context->major, context->in_syscall,
508 		       context->name_count, context->put_count,
509 		       context->ino_count);
510 		for (i = 0; i < context->name_count; i++)
511 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
512 			       context->names[i].name,
513 			       context->names[i].name);
514 		dump_stack();
515 		return;
516 	}
517 #endif
518 #if AUDIT_DEBUG
519 	context->put_count  = 0;
520 	context->ino_count  = 0;
521 #endif
522 
523 	for (i = 0; i < context->name_count; i++)
524 		if (context->names[i].name)
525 			__putname(context->names[i].name);
526 	context->name_count = 0;
527 }
528 
529 static inline void audit_free_aux(struct audit_context *context)
530 {
531 	struct audit_aux_data *aux;
532 
533 	while ((aux = context->aux)) {
534 		context->aux = aux->next;
535 		kfree(aux);
536 	}
537 }
538 
539 static inline void audit_zero_context(struct audit_context *context,
540 				      enum audit_state state)
541 {
542 	uid_t loginuid = context->loginuid;
543 
544 	memset(context, 0, sizeof(*context));
545 	context->state      = state;
546 	context->loginuid   = loginuid;
547 }
548 
549 static inline struct audit_context *audit_alloc_context(enum audit_state state)
550 {
551 	struct audit_context *context;
552 
553 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
554 		return NULL;
555 	audit_zero_context(context, state);
556 	return context;
557 }
558 
559 /* Filter on the task information and allocate a per-task audit context
560  * if necessary.  Doing so turns on system call auditing for the
561  * specified task.  This is called from copy_process, so no lock is
562  * needed. */
563 int audit_alloc(struct task_struct *tsk)
564 {
565 	struct audit_context *context;
566 	enum audit_state     state;
567 
568 	if (likely(!audit_enabled))
569 		return 0; /* Return if not auditing. */
570 
571 	state = audit_filter_task(tsk);
572 	if (likely(state == AUDIT_DISABLED))
573 		return 0;
574 
575 	if (!(context = audit_alloc_context(state))) {
576 		audit_log_lost("out of memory in audit_alloc");
577 		return -ENOMEM;
578 	}
579 
580 				/* Preserve login uid */
581 	context->loginuid = -1;
582 	if (current->audit_context)
583 		context->loginuid = current->audit_context->loginuid;
584 
585 	tsk->audit_context  = context;
586 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
587 	return 0;
588 }
589 
590 static inline void audit_free_context(struct audit_context *context)
591 {
592 	struct audit_context *previous;
593 	int		     count = 0;
594 
595 	do {
596 		previous = context->previous;
597 		if (previous || (count &&  count < 10)) {
598 			++count;
599 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
600 			       " freeing multiple contexts (%d)\n",
601 			       context->serial, context->major,
602 			       context->name_count, count);
603 		}
604 		audit_free_names(context);
605 		audit_free_aux(context);
606 		kfree(context);
607 		context  = previous;
608 	} while (context);
609 	if (count >= 10)
610 		printk(KERN_ERR "audit: freed %d contexts\n", count);
611 }
612 
613 static void audit_log_exit(struct audit_context *context)
614 {
615 	int i;
616 	struct audit_buffer *ab;
617 
618 	ab = audit_log_start(context);
619 	if (!ab)
620 		return;		/* audit_panic has been called */
621 	audit_log_format(ab, "syscall=%d", context->major);
622 	if (context->personality != PER_LINUX)
623 		audit_log_format(ab, " per=%lx", context->personality);
624 	if (context->return_valid)
625 		audit_log_format(ab, " exit=%d", context->return_code);
626 	audit_log_format(ab,
627 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
628 		  " pid=%d loginuid=%d uid=%d gid=%d"
629 		  " euid=%d suid=%d fsuid=%d"
630 		  " egid=%d sgid=%d fsgid=%d",
631 		  context->argv[0],
632 		  context->argv[1],
633 		  context->argv[2],
634 		  context->argv[3],
635 		  context->name_count,
636 		  context->pid,
637 		  context->loginuid,
638 		  context->uid,
639 		  context->gid,
640 		  context->euid, context->suid, context->fsuid,
641 		  context->egid, context->sgid, context->fsgid);
642 	audit_log_end(ab);
643 	while (context->aux) {
644 		struct audit_aux_data *aux;
645 
646 		ab = audit_log_start(context);
647 		if (!ab)
648 			continue; /* audit_panic has been called */
649 
650 		aux = context->aux;
651 		context->aux = aux->next;
652 
653 		audit_log_format(ab, "auxitem=%d", aux->type);
654 		switch (aux->type) {
655 		case AUDIT_AUX_IPCPERM: {
656 			struct audit_aux_data_ipcctl *axi = (void *)aux;
657 			audit_log_format(ab,
658 					 " qbytes=%lx uid=%d gid=%d mode=%x",
659 					 axi->qbytes, axi->uid, axi->gid, axi->mode);
660 			}
661 		}
662 		audit_log_end(ab);
663 		kfree(aux);
664 	}
665 
666 	for (i = 0; i < context->name_count; i++) {
667 		ab = audit_log_start(context);
668 		if (!ab)
669 			continue; /* audit_panic has been called */
670 		audit_log_format(ab, "item=%d", i);
671 		if (context->names[i].name)
672 			audit_log_format(ab, " name=%s",
673 					 context->names[i].name);
674 		if (context->names[i].ino != (unsigned long)-1)
675 			audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#o"
676 					     " uid=%d gid=%d rdev=%02x:%02x",
677 					 context->names[i].ino,
678 					 MAJOR(context->names[i].dev),
679 					 MINOR(context->names[i].dev),
680 					 context->names[i].mode,
681 					 context->names[i].uid,
682 					 context->names[i].gid,
683 					 MAJOR(context->names[i].rdev),
684 					 MINOR(context->names[i].rdev));
685 		audit_log_end(ab);
686 	}
687 }
688 
689 /* Free a per-task audit context.  Called from copy_process and
690  * __put_task_struct. */
691 void audit_free(struct task_struct *tsk)
692 {
693 	struct audit_context *context;
694 
695 	task_lock(tsk);
696 	context = audit_get_context(tsk, 0, 0);
697 	task_unlock(tsk);
698 
699 	if (likely(!context))
700 		return;
701 
702 	/* Check for system calls that do not go through the exit
703 	 * function (e.g., exit_group), then free context block. */
704 	if (context->in_syscall && context->auditable)
705 		audit_log_exit(context);
706 
707 	audit_free_context(context);
708 }
709 
710 /* Compute a serial number for the audit record.  Audit records are
711  * written to user-space as soon as they are generated, so a complete
712  * audit record may be written in several pieces.  The timestamp of the
713  * record and this serial number are used by the user-space daemon to
714  * determine which pieces belong to the same audit record.  The
715  * (timestamp,serial) tuple is unique for each syscall and is live from
716  * syscall entry to syscall exit.
717  *
718  * Atomic values are only guaranteed to be 24-bit, so we count down.
719  *
720  * NOTE: Another possibility is to store the formatted records off the
721  * audit context (for those records that have a context), and emit them
722  * all at syscall exit.  However, this could delay the reporting of
723  * significant errors until syscall exit (or never, if the system
724  * halts). */
725 static inline unsigned int audit_serial(void)
726 {
727 	static atomic_t serial = ATOMIC_INIT(0xffffff);
728 	unsigned int a, b;
729 
730 	do {
731 		a = atomic_read(&serial);
732 		if (atomic_dec_and_test(&serial))
733 			atomic_set(&serial, 0xffffff);
734 		b = atomic_read(&serial);
735 	} while (b != a - 1);
736 
737 	return 0xffffff - b;
738 }
739 
740 /* Fill in audit context at syscall entry.  This only happens if the
741  * audit context was created when the task was created and the state or
742  * filters demand the audit context be built.  If the state from the
743  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
744  * then the record will be written at syscall exit time (otherwise, it
745  * will only be written if another part of the kernel requests that it
746  * be written). */
747 void audit_syscall_entry(struct task_struct *tsk, int major,
748 			 unsigned long a1, unsigned long a2,
749 			 unsigned long a3, unsigned long a4)
750 {
751 	struct audit_context *context = tsk->audit_context;
752 	enum audit_state     state;
753 
754 	BUG_ON(!context);
755 
756 	/* This happens only on certain architectures that make system
757 	 * calls in kernel_thread via the entry.S interface, instead of
758 	 * with direct calls.  (If you are porting to a new
759 	 * architecture, hitting this condition can indicate that you
760 	 * got the _exit/_leave calls backward in entry.S.)
761 	 *
762 	 * i386     no
763 	 * x86_64   no
764 	 * ppc64    yes (see arch/ppc64/kernel/misc.S)
765 	 *
766 	 * This also happens with vm86 emulation in a non-nested manner
767 	 * (entries without exits), so this case must be caught.
768 	 */
769 	if (context->in_syscall) {
770 		struct audit_context *newctx;
771 
772 #if defined(__NR_vm86) && defined(__NR_vm86old)
773 		/* vm86 mode should only be entered once */
774 		if (major == __NR_vm86 || major == __NR_vm86old)
775 			return;
776 #endif
777 #if AUDIT_DEBUG
778 		printk(KERN_ERR
779 		       "audit(:%d) pid=%d in syscall=%d;"
780 		       " entering syscall=%d\n",
781 		       context->serial, tsk->pid, context->major, major);
782 #endif
783 		newctx = audit_alloc_context(context->state);
784 		if (newctx) {
785 			newctx->previous   = context;
786 			context		   = newctx;
787 			tsk->audit_context = newctx;
788 		} else	{
789 			/* If we can't alloc a new context, the best we
790 			 * can do is to leak memory (any pending putname
791 			 * will be lost).  The only other alternative is
792 			 * to abandon auditing. */
793 			audit_zero_context(context, context->state);
794 		}
795 	}
796 	BUG_ON(context->in_syscall || context->name_count);
797 
798 	if (!audit_enabled)
799 		return;
800 
801 	context->major      = major;
802 	context->argv[0]    = a1;
803 	context->argv[1]    = a2;
804 	context->argv[2]    = a3;
805 	context->argv[3]    = a4;
806 
807 	state = context->state;
808 	if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)
809 		state = audit_filter_syscall(tsk, context, &audit_entlist);
810 	if (likely(state == AUDIT_DISABLED))
811 		return;
812 
813 	context->serial     = audit_serial();
814 	context->ctime      = CURRENT_TIME;
815 	context->in_syscall = 1;
816 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
817 }
818 
819 /* Tear down after system call.  If the audit context has been marked as
820  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
821  * filtering, or because some other part of the kernel write an audit
822  * message), then write out the syscall information.  In call cases,
823  * free the names stored from getname(). */
824 void audit_syscall_exit(struct task_struct *tsk, int return_code)
825 {
826 	struct audit_context *context;
827 
828 	get_task_struct(tsk);
829 	task_lock(tsk);
830 	context = audit_get_context(tsk, 1, return_code);
831 	task_unlock(tsk);
832 
833 	/* Not having a context here is ok, since the parent may have
834 	 * called __put_task_struct. */
835 	if (likely(!context))
836 		return;
837 
838 	if (context->in_syscall && context->auditable)
839 		audit_log_exit(context);
840 
841 	context->in_syscall = 0;
842 	context->auditable  = 0;
843 	if (context->previous) {
844 		struct audit_context *new_context = context->previous;
845 		context->previous  = NULL;
846 		audit_free_context(context);
847 		tsk->audit_context = new_context;
848 	} else {
849 		audit_free_names(context);
850 		audit_free_aux(context);
851 		audit_zero_context(context, context->state);
852 		tsk->audit_context = context;
853 	}
854 	put_task_struct(tsk);
855 }
856 
857 /* Add a name to the list.  Called from fs/namei.c:getname(). */
858 void audit_getname(const char *name)
859 {
860 	struct audit_context *context = current->audit_context;
861 
862 	if (!context || IS_ERR(name) || !name)
863 		return;
864 
865 	if (!context->in_syscall) {
866 #if AUDIT_DEBUG == 2
867 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
868 		       __FILE__, __LINE__, context->serial, name);
869 		dump_stack();
870 #endif
871 		return;
872 	}
873 	BUG_ON(context->name_count >= AUDIT_NAMES);
874 	context->names[context->name_count].name = name;
875 	context->names[context->name_count].ino  = (unsigned long)-1;
876 	++context->name_count;
877 }
878 
879 /* Intercept a putname request.  Called from
880  * include/linux/fs.h:putname().  If we have stored the name from
881  * getname in the audit context, then we delay the putname until syscall
882  * exit. */
883 void audit_putname(const char *name)
884 {
885 	struct audit_context *context = current->audit_context;
886 
887 	BUG_ON(!context);
888 	if (!context->in_syscall) {
889 #if AUDIT_DEBUG == 2
890 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
891 		       __FILE__, __LINE__, context->serial, name);
892 		if (context->name_count) {
893 			int i;
894 			for (i = 0; i < context->name_count; i++)
895 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
896 				       context->names[i].name,
897 				       context->names[i].name);
898 		}
899 #endif
900 		__putname(name);
901 	}
902 #if AUDIT_DEBUG
903 	else {
904 		++context->put_count;
905 		if (context->put_count > context->name_count) {
906 			printk(KERN_ERR "%s:%d(:%d): major=%d"
907 			       " in_syscall=%d putname(%p) name_count=%d"
908 			       " put_count=%d\n",
909 			       __FILE__, __LINE__,
910 			       context->serial, context->major,
911 			       context->in_syscall, name, context->name_count,
912 			       context->put_count);
913 			dump_stack();
914 		}
915 	}
916 #endif
917 }
918 
919 /* Store the inode and device from a lookup.  Called from
920  * fs/namei.c:path_lookup(). */
921 void audit_inode(const char *name, const struct inode *inode)
922 {
923 	int idx;
924 	struct audit_context *context = current->audit_context;
925 
926 	if (!context->in_syscall)
927 		return;
928 	if (context->name_count
929 	    && context->names[context->name_count-1].name
930 	    && context->names[context->name_count-1].name == name)
931 		idx = context->name_count - 1;
932 	else if (context->name_count > 1
933 		 && context->names[context->name_count-2].name
934 		 && context->names[context->name_count-2].name == name)
935 		idx = context->name_count - 2;
936 	else {
937 		/* FIXME: how much do we care about inodes that have no
938 		 * associated name? */
939 		if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
940 			return;
941 		idx = context->name_count++;
942 		context->names[idx].name = NULL;
943 #if AUDIT_DEBUG
944 		++context->ino_count;
945 #endif
946 	}
947 	context->names[idx].ino  = inode->i_ino;
948 	context->names[idx].dev	 = inode->i_sb->s_dev;
949 	context->names[idx].mode = inode->i_mode;
950 	context->names[idx].uid  = inode->i_uid;
951 	context->names[idx].gid  = inode->i_gid;
952 	context->names[idx].rdev = inode->i_rdev;
953 }
954 
955 void audit_get_stamp(struct audit_context *ctx,
956 		     struct timespec *t, int *serial)
957 {
958 	if (ctx) {
959 		t->tv_sec  = ctx->ctime.tv_sec;
960 		t->tv_nsec = ctx->ctime.tv_nsec;
961 		*serial    = ctx->serial;
962 		ctx->auditable = 1;
963 	} else {
964 		*t      = CURRENT_TIME;
965 		*serial = 0;
966 	}
967 }
968 
969 extern int audit_set_type(struct audit_buffer *ab, int type);
970 
971 int audit_set_loginuid(struct audit_context *ctx, uid_t loginuid)
972 {
973 	if (ctx) {
974 		struct audit_buffer *ab;
975 
976 		ab = audit_log_start(NULL);
977 		if (ab) {
978 			audit_log_format(ab, "login pid=%d uid=%u "
979 				"old loginuid=%u new loginuid=%u",
980 				ctx->pid, ctx->uid, ctx->loginuid, loginuid);
981 			audit_set_type(ab, AUDIT_LOGIN);
982 			audit_log_end(ab);
983 		}
984 		ctx->loginuid = loginuid;
985 	}
986 	return 0;
987 }
988 
989 uid_t audit_get_loginuid(struct audit_context *ctx)
990 {
991 	return ctx ? ctx->loginuid : -1;
992 }
993 
994 int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
995 {
996 	struct audit_aux_data_ipcctl *ax;
997 	struct audit_context *context = current->audit_context;
998 
999 	if (likely(!context))
1000 		return 0;
1001 
1002 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1003 	if (!ax)
1004 		return -ENOMEM;
1005 
1006 	ax->qbytes = qbytes;
1007 	ax->uid = uid;
1008 	ax->gid = gid;
1009 	ax->mode = mode;
1010 
1011 	ax->d.type = AUDIT_AUX_IPCPERM;
1012 	ax->d.next = context->aux;
1013 	context->aux = (void *)ax;
1014 	return 0;
1015 }
1016