1 /* auditsc.c -- System-call auditing support -*- linux-c -*- 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * All Rights Reserved. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 22 * 23 * Many of the ideas implemented here are from Stephen C. Tweedie, 24 * especially the idea of avoiding a copy by using getname. 25 * 26 * The method for actual interception of syscall entry and exit (not in 27 * this file -- see entry.S) is based on a GPL'd patch written by 28 * okir@suse.de and Copyright 2003 SuSE Linux AG. 29 * 30 */ 31 32 #include <linux/init.h> 33 #include <asm/atomic.h> 34 #include <asm/types.h> 35 #include <linux/mm.h> 36 #include <linux/module.h> 37 38 #include <linux/audit.h> 39 #include <linux/personality.h> 40 #include <linux/time.h> 41 #include <asm/unistd.h> 42 43 /* 0 = no checking 44 1 = put_count checking 45 2 = verbose put_count checking 46 */ 47 #define AUDIT_DEBUG 0 48 49 /* No syscall auditing will take place unless audit_enabled != 0. */ 50 extern int audit_enabled; 51 52 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 53 * for saving names from getname(). */ 54 #define AUDIT_NAMES 20 55 56 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the 57 * audit_context from being used for nameless inodes from 58 * path_lookup. */ 59 #define AUDIT_NAMES_RESERVED 7 60 61 /* At task start time, the audit_state is set in the audit_context using 62 a per-task filter. At syscall entry, the audit_state is augmented by 63 the syscall filter. */ 64 enum audit_state { 65 AUDIT_DISABLED, /* Do not create per-task audit_context. 66 * No syscall-specific audit records can 67 * be generated. */ 68 AUDIT_SETUP_CONTEXT, /* Create the per-task audit_context, 69 * but don't necessarily fill it in at 70 * syscall entry time (i.e., filter 71 * instead). */ 72 AUDIT_BUILD_CONTEXT, /* Create the per-task audit_context, 73 * and always fill it in at syscall 74 * entry time. This makes a full 75 * syscall record available if some 76 * other part of the kernel decides it 77 * should be recorded. */ 78 AUDIT_RECORD_CONTEXT /* Create the per-task audit_context, 79 * always fill it in at syscall entry 80 * time, and always write out the audit 81 * record at syscall exit time. */ 82 }; 83 84 /* When fs/namei.c:getname() is called, we store the pointer in name and 85 * we don't let putname() free it (instead we free all of the saved 86 * pointers at syscall exit time). 87 * 88 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 89 struct audit_names { 90 const char *name; 91 unsigned long ino; 92 dev_t dev; 93 umode_t mode; 94 uid_t uid; 95 gid_t gid; 96 dev_t rdev; 97 }; 98 99 struct audit_aux_data { 100 struct audit_aux_data *next; 101 int type; 102 }; 103 104 #define AUDIT_AUX_IPCPERM 0 105 106 struct audit_aux_data_ipcctl { 107 struct audit_aux_data d; 108 struct ipc_perm p; 109 unsigned long qbytes; 110 uid_t uid; 111 gid_t gid; 112 mode_t mode; 113 }; 114 115 116 /* The per-task audit context. */ 117 struct audit_context { 118 int in_syscall; /* 1 if task is in a syscall */ 119 enum audit_state state; 120 unsigned int serial; /* serial number for record */ 121 struct timespec ctime; /* time of syscall entry */ 122 uid_t loginuid; /* login uid (identity) */ 123 int major; /* syscall number */ 124 unsigned long argv[4]; /* syscall arguments */ 125 int return_valid; /* return code is valid */ 126 int return_code;/* syscall return code */ 127 int auditable; /* 1 if record should be written */ 128 int name_count; 129 struct audit_names names[AUDIT_NAMES]; 130 struct audit_context *previous; /* For nested syscalls */ 131 struct audit_aux_data *aux; 132 133 /* Save things to print about task_struct */ 134 pid_t pid; 135 uid_t uid, euid, suid, fsuid; 136 gid_t gid, egid, sgid, fsgid; 137 unsigned long personality; 138 139 #if AUDIT_DEBUG 140 int put_count; 141 int ino_count; 142 #endif 143 }; 144 145 /* Public API */ 146 /* There are three lists of rules -- one to search at task creation 147 * time, one to search at syscall entry time, and another to search at 148 * syscall exit time. */ 149 static LIST_HEAD(audit_tsklist); 150 static LIST_HEAD(audit_entlist); 151 static LIST_HEAD(audit_extlist); 152 153 struct audit_entry { 154 struct list_head list; 155 struct rcu_head rcu; 156 struct audit_rule rule; 157 }; 158 159 /* Check to see if two rules are identical. It is called from 160 * audit_del_rule during AUDIT_DEL. */ 161 static int audit_compare_rule(struct audit_rule *a, struct audit_rule *b) 162 { 163 int i; 164 165 if (a->flags != b->flags) 166 return 1; 167 168 if (a->action != b->action) 169 return 1; 170 171 if (a->field_count != b->field_count) 172 return 1; 173 174 for (i = 0; i < a->field_count; i++) { 175 if (a->fields[i] != b->fields[i] 176 || a->values[i] != b->values[i]) 177 return 1; 178 } 179 180 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 181 if (a->mask[i] != b->mask[i]) 182 return 1; 183 184 return 0; 185 } 186 187 /* Note that audit_add_rule and audit_del_rule are called via 188 * audit_receive() in audit.c, and are protected by 189 * audit_netlink_sem. */ 190 static inline int audit_add_rule(struct audit_entry *entry, 191 struct list_head *list) 192 { 193 if (entry->rule.flags & AUDIT_PREPEND) { 194 entry->rule.flags &= ~AUDIT_PREPEND; 195 list_add_rcu(&entry->list, list); 196 } else { 197 list_add_tail_rcu(&entry->list, list); 198 } 199 return 0; 200 } 201 202 static void audit_free_rule(struct rcu_head *head) 203 { 204 struct audit_entry *e = container_of(head, struct audit_entry, rcu); 205 kfree(e); 206 } 207 208 /* Note that audit_add_rule and audit_del_rule are called via 209 * audit_receive() in audit.c, and are protected by 210 * audit_netlink_sem. */ 211 static inline int audit_del_rule(struct audit_rule *rule, 212 struct list_head *list) 213 { 214 struct audit_entry *e; 215 216 /* Do not use the _rcu iterator here, since this is the only 217 * deletion routine. */ 218 list_for_each_entry(e, list, list) { 219 if (!audit_compare_rule(rule, &e->rule)) { 220 list_del_rcu(&e->list); 221 call_rcu(&e->rcu, audit_free_rule); 222 return 0; 223 } 224 } 225 return -EFAULT; /* No matching rule */ 226 } 227 228 #ifdef CONFIG_NET 229 /* Copy rule from user-space to kernel-space. Called during 230 * AUDIT_ADD. */ 231 static int audit_copy_rule(struct audit_rule *d, struct audit_rule *s) 232 { 233 int i; 234 235 if (s->action != AUDIT_NEVER 236 && s->action != AUDIT_POSSIBLE 237 && s->action != AUDIT_ALWAYS) 238 return -1; 239 if (s->field_count < 0 || s->field_count > AUDIT_MAX_FIELDS) 240 return -1; 241 242 d->flags = s->flags; 243 d->action = s->action; 244 d->field_count = s->field_count; 245 for (i = 0; i < d->field_count; i++) { 246 d->fields[i] = s->fields[i]; 247 d->values[i] = s->values[i]; 248 } 249 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) d->mask[i] = s->mask[i]; 250 return 0; 251 } 252 253 int audit_receive_filter(int type, int pid, int uid, int seq, void *data) 254 { 255 u32 flags; 256 struct audit_entry *entry; 257 int err = 0; 258 259 switch (type) { 260 case AUDIT_LIST: 261 /* The *_rcu iterators not needed here because we are 262 always called with audit_netlink_sem held. */ 263 list_for_each_entry(entry, &audit_tsklist, list) 264 audit_send_reply(pid, seq, AUDIT_LIST, 0, 1, 265 &entry->rule, sizeof(entry->rule)); 266 list_for_each_entry(entry, &audit_entlist, list) 267 audit_send_reply(pid, seq, AUDIT_LIST, 0, 1, 268 &entry->rule, sizeof(entry->rule)); 269 list_for_each_entry(entry, &audit_extlist, list) 270 audit_send_reply(pid, seq, AUDIT_LIST, 0, 1, 271 &entry->rule, sizeof(entry->rule)); 272 audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0); 273 break; 274 case AUDIT_ADD: 275 if (!(entry = kmalloc(sizeof(*entry), GFP_KERNEL))) 276 return -ENOMEM; 277 if (audit_copy_rule(&entry->rule, data)) { 278 kfree(entry); 279 return -EINVAL; 280 } 281 flags = entry->rule.flags; 282 if (!err && (flags & AUDIT_PER_TASK)) 283 err = audit_add_rule(entry, &audit_tsklist); 284 if (!err && (flags & AUDIT_AT_ENTRY)) 285 err = audit_add_rule(entry, &audit_entlist); 286 if (!err && (flags & AUDIT_AT_EXIT)) 287 err = audit_add_rule(entry, &audit_extlist); 288 break; 289 case AUDIT_DEL: 290 flags =((struct audit_rule *)data)->flags; 291 if (!err && (flags & AUDIT_PER_TASK)) 292 err = audit_del_rule(data, &audit_tsklist); 293 if (!err && (flags & AUDIT_AT_ENTRY)) 294 err = audit_del_rule(data, &audit_entlist); 295 if (!err && (flags & AUDIT_AT_EXIT)) 296 err = audit_del_rule(data, &audit_extlist); 297 break; 298 default: 299 return -EINVAL; 300 } 301 302 return err; 303 } 304 #endif 305 306 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 307 * otherwise. */ 308 static int audit_filter_rules(struct task_struct *tsk, 309 struct audit_rule *rule, 310 struct audit_context *ctx, 311 enum audit_state *state) 312 { 313 int i, j; 314 315 for (i = 0; i < rule->field_count; i++) { 316 u32 field = rule->fields[i] & ~AUDIT_NEGATE; 317 u32 value = rule->values[i]; 318 int result = 0; 319 320 switch (field) { 321 case AUDIT_PID: 322 result = (tsk->pid == value); 323 break; 324 case AUDIT_UID: 325 result = (tsk->uid == value); 326 break; 327 case AUDIT_EUID: 328 result = (tsk->euid == value); 329 break; 330 case AUDIT_SUID: 331 result = (tsk->suid == value); 332 break; 333 case AUDIT_FSUID: 334 result = (tsk->fsuid == value); 335 break; 336 case AUDIT_GID: 337 result = (tsk->gid == value); 338 break; 339 case AUDIT_EGID: 340 result = (tsk->egid == value); 341 break; 342 case AUDIT_SGID: 343 result = (tsk->sgid == value); 344 break; 345 case AUDIT_FSGID: 346 result = (tsk->fsgid == value); 347 break; 348 case AUDIT_PERS: 349 result = (tsk->personality == value); 350 break; 351 352 case AUDIT_EXIT: 353 if (ctx && ctx->return_valid) 354 result = (ctx->return_code == value); 355 break; 356 case AUDIT_SUCCESS: 357 if (ctx && ctx->return_valid) 358 result = (ctx->return_code >= 0); 359 break; 360 case AUDIT_DEVMAJOR: 361 if (ctx) { 362 for (j = 0; j < ctx->name_count; j++) { 363 if (MAJOR(ctx->names[j].dev)==value) { 364 ++result; 365 break; 366 } 367 } 368 } 369 break; 370 case AUDIT_DEVMINOR: 371 if (ctx) { 372 for (j = 0; j < ctx->name_count; j++) { 373 if (MINOR(ctx->names[j].dev)==value) { 374 ++result; 375 break; 376 } 377 } 378 } 379 break; 380 case AUDIT_INODE: 381 if (ctx) { 382 for (j = 0; j < ctx->name_count; j++) { 383 if (ctx->names[j].ino == value) { 384 ++result; 385 break; 386 } 387 } 388 } 389 break; 390 case AUDIT_LOGINUID: 391 result = 0; 392 if (ctx) 393 result = (ctx->loginuid == value); 394 break; 395 case AUDIT_ARG0: 396 case AUDIT_ARG1: 397 case AUDIT_ARG2: 398 case AUDIT_ARG3: 399 if (ctx) 400 result = (ctx->argv[field-AUDIT_ARG0]==value); 401 break; 402 } 403 404 if (rule->fields[i] & AUDIT_NEGATE) 405 result = !result; 406 if (!result) 407 return 0; 408 } 409 switch (rule->action) { 410 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 411 case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT; break; 412 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 413 } 414 return 1; 415 } 416 417 /* At process creation time, we can determine if system-call auditing is 418 * completely disabled for this task. Since we only have the task 419 * structure at this point, we can only check uid and gid. 420 */ 421 static enum audit_state audit_filter_task(struct task_struct *tsk) 422 { 423 struct audit_entry *e; 424 enum audit_state state; 425 426 rcu_read_lock(); 427 list_for_each_entry_rcu(e, &audit_tsklist, list) { 428 if (audit_filter_rules(tsk, &e->rule, NULL, &state)) { 429 rcu_read_unlock(); 430 return state; 431 } 432 } 433 rcu_read_unlock(); 434 return AUDIT_BUILD_CONTEXT; 435 } 436 437 /* At syscall entry and exit time, this filter is called if the 438 * audit_state is not low enough that auditing cannot take place, but is 439 * also not high enough that we already know we have to write and audit 440 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 441 */ 442 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 443 struct audit_context *ctx, 444 struct list_head *list) 445 { 446 struct audit_entry *e; 447 enum audit_state state; 448 int word = AUDIT_WORD(ctx->major); 449 int bit = AUDIT_BIT(ctx->major); 450 451 rcu_read_lock(); 452 list_for_each_entry_rcu(e, list, list) { 453 if ((e->rule.mask[word] & bit) == bit 454 && audit_filter_rules(tsk, &e->rule, ctx, &state)) { 455 rcu_read_unlock(); 456 return state; 457 } 458 } 459 rcu_read_unlock(); 460 return AUDIT_BUILD_CONTEXT; 461 } 462 463 /* This should be called with task_lock() held. */ 464 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 465 int return_valid, 466 int return_code) 467 { 468 struct audit_context *context = tsk->audit_context; 469 470 if (likely(!context)) 471 return NULL; 472 context->return_valid = return_valid; 473 context->return_code = return_code; 474 475 if (context->in_syscall && !context->auditable) { 476 enum audit_state state; 477 state = audit_filter_syscall(tsk, context, &audit_extlist); 478 if (state == AUDIT_RECORD_CONTEXT) 479 context->auditable = 1; 480 } 481 482 context->pid = tsk->pid; 483 context->uid = tsk->uid; 484 context->gid = tsk->gid; 485 context->euid = tsk->euid; 486 context->suid = tsk->suid; 487 context->fsuid = tsk->fsuid; 488 context->egid = tsk->egid; 489 context->sgid = tsk->sgid; 490 context->fsgid = tsk->fsgid; 491 context->personality = tsk->personality; 492 tsk->audit_context = NULL; 493 return context; 494 } 495 496 static inline void audit_free_names(struct audit_context *context) 497 { 498 int i; 499 500 #if AUDIT_DEBUG == 2 501 if (context->auditable 502 ||context->put_count + context->ino_count != context->name_count) { 503 printk(KERN_ERR "audit.c:%d(:%d): major=%d in_syscall=%d" 504 " name_count=%d put_count=%d" 505 " ino_count=%d [NOT freeing]\n", 506 __LINE__, 507 context->serial, context->major, context->in_syscall, 508 context->name_count, context->put_count, 509 context->ino_count); 510 for (i = 0; i < context->name_count; i++) 511 printk(KERN_ERR "names[%d] = %p = %s\n", i, 512 context->names[i].name, 513 context->names[i].name); 514 dump_stack(); 515 return; 516 } 517 #endif 518 #if AUDIT_DEBUG 519 context->put_count = 0; 520 context->ino_count = 0; 521 #endif 522 523 for (i = 0; i < context->name_count; i++) 524 if (context->names[i].name) 525 __putname(context->names[i].name); 526 context->name_count = 0; 527 } 528 529 static inline void audit_free_aux(struct audit_context *context) 530 { 531 struct audit_aux_data *aux; 532 533 while ((aux = context->aux)) { 534 context->aux = aux->next; 535 kfree(aux); 536 } 537 } 538 539 static inline void audit_zero_context(struct audit_context *context, 540 enum audit_state state) 541 { 542 uid_t loginuid = context->loginuid; 543 544 memset(context, 0, sizeof(*context)); 545 context->state = state; 546 context->loginuid = loginuid; 547 } 548 549 static inline struct audit_context *audit_alloc_context(enum audit_state state) 550 { 551 struct audit_context *context; 552 553 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 554 return NULL; 555 audit_zero_context(context, state); 556 return context; 557 } 558 559 /* Filter on the task information and allocate a per-task audit context 560 * if necessary. Doing so turns on system call auditing for the 561 * specified task. This is called from copy_process, so no lock is 562 * needed. */ 563 int audit_alloc(struct task_struct *tsk) 564 { 565 struct audit_context *context; 566 enum audit_state state; 567 568 if (likely(!audit_enabled)) 569 return 0; /* Return if not auditing. */ 570 571 state = audit_filter_task(tsk); 572 if (likely(state == AUDIT_DISABLED)) 573 return 0; 574 575 if (!(context = audit_alloc_context(state))) { 576 audit_log_lost("out of memory in audit_alloc"); 577 return -ENOMEM; 578 } 579 580 /* Preserve login uid */ 581 context->loginuid = -1; 582 if (current->audit_context) 583 context->loginuid = current->audit_context->loginuid; 584 585 tsk->audit_context = context; 586 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 587 return 0; 588 } 589 590 static inline void audit_free_context(struct audit_context *context) 591 { 592 struct audit_context *previous; 593 int count = 0; 594 595 do { 596 previous = context->previous; 597 if (previous || (count && count < 10)) { 598 ++count; 599 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 600 " freeing multiple contexts (%d)\n", 601 context->serial, context->major, 602 context->name_count, count); 603 } 604 audit_free_names(context); 605 audit_free_aux(context); 606 kfree(context); 607 context = previous; 608 } while (context); 609 if (count >= 10) 610 printk(KERN_ERR "audit: freed %d contexts\n", count); 611 } 612 613 static void audit_log_exit(struct audit_context *context) 614 { 615 int i; 616 struct audit_buffer *ab; 617 618 ab = audit_log_start(context); 619 if (!ab) 620 return; /* audit_panic has been called */ 621 audit_log_format(ab, "syscall=%d", context->major); 622 if (context->personality != PER_LINUX) 623 audit_log_format(ab, " per=%lx", context->personality); 624 if (context->return_valid) 625 audit_log_format(ab, " exit=%d", context->return_code); 626 audit_log_format(ab, 627 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 628 " pid=%d loginuid=%d uid=%d gid=%d" 629 " euid=%d suid=%d fsuid=%d" 630 " egid=%d sgid=%d fsgid=%d", 631 context->argv[0], 632 context->argv[1], 633 context->argv[2], 634 context->argv[3], 635 context->name_count, 636 context->pid, 637 context->loginuid, 638 context->uid, 639 context->gid, 640 context->euid, context->suid, context->fsuid, 641 context->egid, context->sgid, context->fsgid); 642 audit_log_end(ab); 643 while (context->aux) { 644 struct audit_aux_data *aux; 645 646 ab = audit_log_start(context); 647 if (!ab) 648 continue; /* audit_panic has been called */ 649 650 aux = context->aux; 651 context->aux = aux->next; 652 653 audit_log_format(ab, "auxitem=%d", aux->type); 654 switch (aux->type) { 655 case AUDIT_AUX_IPCPERM: { 656 struct audit_aux_data_ipcctl *axi = (void *)aux; 657 audit_log_format(ab, 658 " qbytes=%lx uid=%d gid=%d mode=%x", 659 axi->qbytes, axi->uid, axi->gid, axi->mode); 660 } 661 } 662 audit_log_end(ab); 663 kfree(aux); 664 } 665 666 for (i = 0; i < context->name_count; i++) { 667 ab = audit_log_start(context); 668 if (!ab) 669 continue; /* audit_panic has been called */ 670 audit_log_format(ab, "item=%d", i); 671 if (context->names[i].name) 672 audit_log_format(ab, " name=%s", 673 context->names[i].name); 674 if (context->names[i].ino != (unsigned long)-1) 675 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#o" 676 " uid=%d gid=%d rdev=%02x:%02x", 677 context->names[i].ino, 678 MAJOR(context->names[i].dev), 679 MINOR(context->names[i].dev), 680 context->names[i].mode, 681 context->names[i].uid, 682 context->names[i].gid, 683 MAJOR(context->names[i].rdev), 684 MINOR(context->names[i].rdev)); 685 audit_log_end(ab); 686 } 687 } 688 689 /* Free a per-task audit context. Called from copy_process and 690 * __put_task_struct. */ 691 void audit_free(struct task_struct *tsk) 692 { 693 struct audit_context *context; 694 695 task_lock(tsk); 696 context = audit_get_context(tsk, 0, 0); 697 task_unlock(tsk); 698 699 if (likely(!context)) 700 return; 701 702 /* Check for system calls that do not go through the exit 703 * function (e.g., exit_group), then free context block. */ 704 if (context->in_syscall && context->auditable) 705 audit_log_exit(context); 706 707 audit_free_context(context); 708 } 709 710 /* Compute a serial number for the audit record. Audit records are 711 * written to user-space as soon as they are generated, so a complete 712 * audit record may be written in several pieces. The timestamp of the 713 * record and this serial number are used by the user-space daemon to 714 * determine which pieces belong to the same audit record. The 715 * (timestamp,serial) tuple is unique for each syscall and is live from 716 * syscall entry to syscall exit. 717 * 718 * Atomic values are only guaranteed to be 24-bit, so we count down. 719 * 720 * NOTE: Another possibility is to store the formatted records off the 721 * audit context (for those records that have a context), and emit them 722 * all at syscall exit. However, this could delay the reporting of 723 * significant errors until syscall exit (or never, if the system 724 * halts). */ 725 static inline unsigned int audit_serial(void) 726 { 727 static atomic_t serial = ATOMIC_INIT(0xffffff); 728 unsigned int a, b; 729 730 do { 731 a = atomic_read(&serial); 732 if (atomic_dec_and_test(&serial)) 733 atomic_set(&serial, 0xffffff); 734 b = atomic_read(&serial); 735 } while (b != a - 1); 736 737 return 0xffffff - b; 738 } 739 740 /* Fill in audit context at syscall entry. This only happens if the 741 * audit context was created when the task was created and the state or 742 * filters demand the audit context be built. If the state from the 743 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 744 * then the record will be written at syscall exit time (otherwise, it 745 * will only be written if another part of the kernel requests that it 746 * be written). */ 747 void audit_syscall_entry(struct task_struct *tsk, int major, 748 unsigned long a1, unsigned long a2, 749 unsigned long a3, unsigned long a4) 750 { 751 struct audit_context *context = tsk->audit_context; 752 enum audit_state state; 753 754 BUG_ON(!context); 755 756 /* This happens only on certain architectures that make system 757 * calls in kernel_thread via the entry.S interface, instead of 758 * with direct calls. (If you are porting to a new 759 * architecture, hitting this condition can indicate that you 760 * got the _exit/_leave calls backward in entry.S.) 761 * 762 * i386 no 763 * x86_64 no 764 * ppc64 yes (see arch/ppc64/kernel/misc.S) 765 * 766 * This also happens with vm86 emulation in a non-nested manner 767 * (entries without exits), so this case must be caught. 768 */ 769 if (context->in_syscall) { 770 struct audit_context *newctx; 771 772 #if defined(__NR_vm86) && defined(__NR_vm86old) 773 /* vm86 mode should only be entered once */ 774 if (major == __NR_vm86 || major == __NR_vm86old) 775 return; 776 #endif 777 #if AUDIT_DEBUG 778 printk(KERN_ERR 779 "audit(:%d) pid=%d in syscall=%d;" 780 " entering syscall=%d\n", 781 context->serial, tsk->pid, context->major, major); 782 #endif 783 newctx = audit_alloc_context(context->state); 784 if (newctx) { 785 newctx->previous = context; 786 context = newctx; 787 tsk->audit_context = newctx; 788 } else { 789 /* If we can't alloc a new context, the best we 790 * can do is to leak memory (any pending putname 791 * will be lost). The only other alternative is 792 * to abandon auditing. */ 793 audit_zero_context(context, context->state); 794 } 795 } 796 BUG_ON(context->in_syscall || context->name_count); 797 798 if (!audit_enabled) 799 return; 800 801 context->major = major; 802 context->argv[0] = a1; 803 context->argv[1] = a2; 804 context->argv[2] = a3; 805 context->argv[3] = a4; 806 807 state = context->state; 808 if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT) 809 state = audit_filter_syscall(tsk, context, &audit_entlist); 810 if (likely(state == AUDIT_DISABLED)) 811 return; 812 813 context->serial = audit_serial(); 814 context->ctime = CURRENT_TIME; 815 context->in_syscall = 1; 816 context->auditable = !!(state == AUDIT_RECORD_CONTEXT); 817 } 818 819 /* Tear down after system call. If the audit context has been marked as 820 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 821 * filtering, or because some other part of the kernel write an audit 822 * message), then write out the syscall information. In call cases, 823 * free the names stored from getname(). */ 824 void audit_syscall_exit(struct task_struct *tsk, int return_code) 825 { 826 struct audit_context *context; 827 828 get_task_struct(tsk); 829 task_lock(tsk); 830 context = audit_get_context(tsk, 1, return_code); 831 task_unlock(tsk); 832 833 /* Not having a context here is ok, since the parent may have 834 * called __put_task_struct. */ 835 if (likely(!context)) 836 return; 837 838 if (context->in_syscall && context->auditable) 839 audit_log_exit(context); 840 841 context->in_syscall = 0; 842 context->auditable = 0; 843 if (context->previous) { 844 struct audit_context *new_context = context->previous; 845 context->previous = NULL; 846 audit_free_context(context); 847 tsk->audit_context = new_context; 848 } else { 849 audit_free_names(context); 850 audit_free_aux(context); 851 audit_zero_context(context, context->state); 852 tsk->audit_context = context; 853 } 854 put_task_struct(tsk); 855 } 856 857 /* Add a name to the list. Called from fs/namei.c:getname(). */ 858 void audit_getname(const char *name) 859 { 860 struct audit_context *context = current->audit_context; 861 862 if (!context || IS_ERR(name) || !name) 863 return; 864 865 if (!context->in_syscall) { 866 #if AUDIT_DEBUG == 2 867 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 868 __FILE__, __LINE__, context->serial, name); 869 dump_stack(); 870 #endif 871 return; 872 } 873 BUG_ON(context->name_count >= AUDIT_NAMES); 874 context->names[context->name_count].name = name; 875 context->names[context->name_count].ino = (unsigned long)-1; 876 ++context->name_count; 877 } 878 879 /* Intercept a putname request. Called from 880 * include/linux/fs.h:putname(). If we have stored the name from 881 * getname in the audit context, then we delay the putname until syscall 882 * exit. */ 883 void audit_putname(const char *name) 884 { 885 struct audit_context *context = current->audit_context; 886 887 BUG_ON(!context); 888 if (!context->in_syscall) { 889 #if AUDIT_DEBUG == 2 890 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 891 __FILE__, __LINE__, context->serial, name); 892 if (context->name_count) { 893 int i; 894 for (i = 0; i < context->name_count; i++) 895 printk(KERN_ERR "name[%d] = %p = %s\n", i, 896 context->names[i].name, 897 context->names[i].name); 898 } 899 #endif 900 __putname(name); 901 } 902 #if AUDIT_DEBUG 903 else { 904 ++context->put_count; 905 if (context->put_count > context->name_count) { 906 printk(KERN_ERR "%s:%d(:%d): major=%d" 907 " in_syscall=%d putname(%p) name_count=%d" 908 " put_count=%d\n", 909 __FILE__, __LINE__, 910 context->serial, context->major, 911 context->in_syscall, name, context->name_count, 912 context->put_count); 913 dump_stack(); 914 } 915 } 916 #endif 917 } 918 919 /* Store the inode and device from a lookup. Called from 920 * fs/namei.c:path_lookup(). */ 921 void audit_inode(const char *name, const struct inode *inode) 922 { 923 int idx; 924 struct audit_context *context = current->audit_context; 925 926 if (!context->in_syscall) 927 return; 928 if (context->name_count 929 && context->names[context->name_count-1].name 930 && context->names[context->name_count-1].name == name) 931 idx = context->name_count - 1; 932 else if (context->name_count > 1 933 && context->names[context->name_count-2].name 934 && context->names[context->name_count-2].name == name) 935 idx = context->name_count - 2; 936 else { 937 /* FIXME: how much do we care about inodes that have no 938 * associated name? */ 939 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED) 940 return; 941 idx = context->name_count++; 942 context->names[idx].name = NULL; 943 #if AUDIT_DEBUG 944 ++context->ino_count; 945 #endif 946 } 947 context->names[idx].ino = inode->i_ino; 948 context->names[idx].dev = inode->i_sb->s_dev; 949 context->names[idx].mode = inode->i_mode; 950 context->names[idx].uid = inode->i_uid; 951 context->names[idx].gid = inode->i_gid; 952 context->names[idx].rdev = inode->i_rdev; 953 } 954 955 void audit_get_stamp(struct audit_context *ctx, 956 struct timespec *t, int *serial) 957 { 958 if (ctx) { 959 t->tv_sec = ctx->ctime.tv_sec; 960 t->tv_nsec = ctx->ctime.tv_nsec; 961 *serial = ctx->serial; 962 ctx->auditable = 1; 963 } else { 964 *t = CURRENT_TIME; 965 *serial = 0; 966 } 967 } 968 969 extern int audit_set_type(struct audit_buffer *ab, int type); 970 971 int audit_set_loginuid(struct audit_context *ctx, uid_t loginuid) 972 { 973 if (ctx) { 974 struct audit_buffer *ab; 975 976 ab = audit_log_start(NULL); 977 if (ab) { 978 audit_log_format(ab, "login pid=%d uid=%u " 979 "old loginuid=%u new loginuid=%u", 980 ctx->pid, ctx->uid, ctx->loginuid, loginuid); 981 audit_set_type(ab, AUDIT_LOGIN); 982 audit_log_end(ab); 983 } 984 ctx->loginuid = loginuid; 985 } 986 return 0; 987 } 988 989 uid_t audit_get_loginuid(struct audit_context *ctx) 990 { 991 return ctx ? ctx->loginuid : -1; 992 } 993 994 int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 995 { 996 struct audit_aux_data_ipcctl *ax; 997 struct audit_context *context = current->audit_context; 998 999 if (likely(!context)) 1000 return 0; 1001 1002 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 1003 if (!ax) 1004 return -ENOMEM; 1005 1006 ax->qbytes = qbytes; 1007 ax->uid = uid; 1008 ax->gid = gid; 1009 ax->mode = mode; 1010 1011 ax->d.type = AUDIT_AUX_IPCPERM; 1012 ax->d.next = context->aux; 1013 context->aux = (void *)ax; 1014 return 0; 1015 } 1016