xref: /openbmc/linux/kernel/audit.c (revision ad89e2e3ec30f54cff34a6b9d61b18612610001c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 
63 #include "audit.h"
64 
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66  * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED		-1
68 #define AUDIT_UNINITIALIZED	0
69 #define AUDIT_INITIALIZED	1
70 static int	audit_initialized = AUDIT_UNINITIALIZED;
71 
72 u32		audit_enabled = AUDIT_OFF;
73 bool		audit_ever_enabled = !!AUDIT_OFF;
74 
75 EXPORT_SYMBOL_GPL(audit_enabled);
76 
77 /* Default state when kernel boots without any parameters. */
78 static u32	audit_default = AUDIT_OFF;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85 
86 /**
87  * struct audit_net - audit private network namespace data
88  * @sk: communication socket
89  */
90 struct audit_net {
91 	struct sock *sk;
92 };
93 
94 /**
95  * struct auditd_connection - kernel/auditd connection state
96  * @pid: auditd PID
97  * @portid: netlink portid
98  * @net: the associated network namespace
99  * @rcu: RCU head
100  *
101  * Description:
102  * This struct is RCU protected; you must either hold the RCU lock for reading
103  * or the associated spinlock for writing.
104  */
105 struct auditd_connection {
106 	struct pid *pid;
107 	u32 portid;
108 	struct net *net;
109 	struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113 
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115  * to that number per second.  This prevents DoS attacks, but results in
116  * audit records being dropped. */
117 static u32	audit_rate_limit;
118 
119 /* Number of outstanding audit_buffers allowed.
120  * When set to zero, this means unlimited. */
121 static u32	audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124 
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t		audit_sig_uid = INVALID_UID;
127 static pid_t		audit_sig_pid = -1;
128 static u32		audit_sig_sid;
129 
130 /* Records can be lost in several ways:
131    0) [suppressed in audit_alloc]
132    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133    2) out of memory in audit_log_move [alloc_skb]
134    3) suppressed due to audit_rate_limit
135    4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t	audit_lost = ATOMIC_INIT(0);
138 
139 /* Monotonically increasing sum of time the kernel has spent
140  * waiting while the backlog limit is exceeded.
141  */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143 
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146 
147 static struct kmem_cache *audit_buffer_cache;
148 
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155 
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159 
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162 
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 				   .mask = -1,
165 				   .features = 0,
166 				   .lock = 0,};
167 
168 static char *audit_feature_names[2] = {
169 	"only_unset_loginuid",
170 	"loginuid_immutable",
171 };
172 
173 /**
174  * struct audit_ctl_mutex - serialize requests from userspace
175  * @lock: the mutex used for locking
176  * @owner: the task which owns the lock
177  *
178  * Description:
179  * This is the lock struct used to ensure we only process userspace requests
180  * in an orderly fashion.  We can't simply use a mutex/lock here because we
181  * need to track lock ownership so we don't end up blocking the lock owner in
182  * audit_log_start() or similar.
183  */
184 static struct audit_ctl_mutex {
185 	struct mutex lock;
186 	void *owner;
187 } audit_cmd_mutex;
188 
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190  * audit records.  Since printk uses a 1024 byte buffer, this buffer
191  * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193 
194 /* The audit_buffer is used when formatting an audit record.  The caller
195  * locks briefly to get the record off the freelist or to allocate the
196  * buffer, and locks briefly to send the buffer to the netlink layer or
197  * to place it on a transmit queue.  Multiple audit_buffers can be in
198  * use simultaneously. */
199 struct audit_buffer {
200 	struct sk_buff       *skb;	/* formatted skb ready to send */
201 	struct audit_context *ctx;	/* NULL or associated context */
202 	gfp_t		     gfp_mask;
203 };
204 
205 struct audit_reply {
206 	__u32 portid;
207 	struct net *net;
208 	struct sk_buff *skb;
209 };
210 
211 /**
212  * auditd_test_task - Check to see if a given task is an audit daemon
213  * @task: the task to check
214  *
215  * Description:
216  * Return 1 if the task is a registered audit daemon, 0 otherwise.
217  */
218 int auditd_test_task(struct task_struct *task)
219 {
220 	int rc;
221 	struct auditd_connection *ac;
222 
223 	rcu_read_lock();
224 	ac = rcu_dereference(auditd_conn);
225 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 	rcu_read_unlock();
227 
228 	return rc;
229 }
230 
231 /**
232  * audit_ctl_lock - Take the audit control lock
233  */
234 void audit_ctl_lock(void)
235 {
236 	mutex_lock(&audit_cmd_mutex.lock);
237 	audit_cmd_mutex.owner = current;
238 }
239 
240 /**
241  * audit_ctl_unlock - Drop the audit control lock
242  */
243 void audit_ctl_unlock(void)
244 {
245 	audit_cmd_mutex.owner = NULL;
246 	mutex_unlock(&audit_cmd_mutex.lock);
247 }
248 
249 /**
250  * audit_ctl_owner_current - Test to see if the current task owns the lock
251  *
252  * Description:
253  * Return true if the current task owns the audit control lock, false if it
254  * doesn't own the lock.
255  */
256 static bool audit_ctl_owner_current(void)
257 {
258 	return (current == audit_cmd_mutex.owner);
259 }
260 
261 /**
262  * auditd_pid_vnr - Return the auditd PID relative to the namespace
263  *
264  * Description:
265  * Returns the PID in relation to the namespace, 0 on failure.
266  */
267 static pid_t auditd_pid_vnr(void)
268 {
269 	pid_t pid;
270 	const struct auditd_connection *ac;
271 
272 	rcu_read_lock();
273 	ac = rcu_dereference(auditd_conn);
274 	if (!ac || !ac->pid)
275 		pid = 0;
276 	else
277 		pid = pid_vnr(ac->pid);
278 	rcu_read_unlock();
279 
280 	return pid;
281 }
282 
283 /**
284  * audit_get_sk - Return the audit socket for the given network namespace
285  * @net: the destination network namespace
286  *
287  * Description:
288  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
289  * that a reference is held for the network namespace while the sock is in use.
290  */
291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 	struct audit_net *aunet;
294 
295 	if (!net)
296 		return NULL;
297 
298 	aunet = net_generic(net, audit_net_id);
299 	return aunet->sk;
300 }
301 
302 void audit_panic(const char *message)
303 {
304 	switch (audit_failure) {
305 	case AUDIT_FAIL_SILENT:
306 		break;
307 	case AUDIT_FAIL_PRINTK:
308 		if (printk_ratelimit())
309 			pr_err("%s\n", message);
310 		break;
311 	case AUDIT_FAIL_PANIC:
312 		panic("audit: %s\n", message);
313 		break;
314 	}
315 }
316 
317 static inline int audit_rate_check(void)
318 {
319 	static unsigned long	last_check = 0;
320 	static int		messages   = 0;
321 	static DEFINE_SPINLOCK(lock);
322 	unsigned long		flags;
323 	unsigned long		now;
324 	unsigned long		elapsed;
325 	int			retval	   = 0;
326 
327 	if (!audit_rate_limit) return 1;
328 
329 	spin_lock_irqsave(&lock, flags);
330 	if (++messages < audit_rate_limit) {
331 		retval = 1;
332 	} else {
333 		now     = jiffies;
334 		elapsed = now - last_check;
335 		if (elapsed > HZ) {
336 			last_check = now;
337 			messages   = 0;
338 			retval     = 1;
339 		}
340 	}
341 	spin_unlock_irqrestore(&lock, flags);
342 
343 	return retval;
344 }
345 
346 /**
347  * audit_log_lost - conditionally log lost audit message event
348  * @message: the message stating reason for lost audit message
349  *
350  * Emit at least 1 message per second, even if audit_rate_check is
351  * throttling.
352  * Always increment the lost messages counter.
353 */
354 void audit_log_lost(const char *message)
355 {
356 	static unsigned long	last_msg = 0;
357 	static DEFINE_SPINLOCK(lock);
358 	unsigned long		flags;
359 	unsigned long		now;
360 	int			print;
361 
362 	atomic_inc(&audit_lost);
363 
364 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365 
366 	if (!print) {
367 		spin_lock_irqsave(&lock, flags);
368 		now = jiffies;
369 		if (now - last_msg > HZ) {
370 			print = 1;
371 			last_msg = now;
372 		}
373 		spin_unlock_irqrestore(&lock, flags);
374 	}
375 
376 	if (print) {
377 		if (printk_ratelimit())
378 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 				atomic_read(&audit_lost),
380 				audit_rate_limit,
381 				audit_backlog_limit);
382 		audit_panic(message);
383 	}
384 }
385 
386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 				   int allow_changes)
388 {
389 	struct audit_buffer *ab;
390 	int rc = 0;
391 
392 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 	if (unlikely(!ab))
394 		return rc;
395 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 	audit_log_session_info(ab);
397 	rc = audit_log_task_context(ab);
398 	if (rc)
399 		allow_changes = 0; /* Something weird, deny request */
400 	audit_log_format(ab, " res=%d", allow_changes);
401 	audit_log_end(ab);
402 	return rc;
403 }
404 
405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
406 {
407 	int allow_changes, rc = 0;
408 	u32 old = *to_change;
409 
410 	/* check if we are locked */
411 	if (audit_enabled == AUDIT_LOCKED)
412 		allow_changes = 0;
413 	else
414 		allow_changes = 1;
415 
416 	if (audit_enabled != AUDIT_OFF) {
417 		rc = audit_log_config_change(function_name, new, old, allow_changes);
418 		if (rc)
419 			allow_changes = 0;
420 	}
421 
422 	/* If we are allowed, make the change */
423 	if (allow_changes == 1)
424 		*to_change = new;
425 	/* Not allowed, update reason */
426 	else if (rc == 0)
427 		rc = -EPERM;
428 	return rc;
429 }
430 
431 static int audit_set_rate_limit(u32 limit)
432 {
433 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
434 }
435 
436 static int audit_set_backlog_limit(u32 limit)
437 {
438 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
439 }
440 
441 static int audit_set_backlog_wait_time(u32 timeout)
442 {
443 	return audit_do_config_change("audit_backlog_wait_time",
444 				      &audit_backlog_wait_time, timeout);
445 }
446 
447 static int audit_set_enabled(u32 state)
448 {
449 	int rc;
450 	if (state > AUDIT_LOCKED)
451 		return -EINVAL;
452 
453 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
454 	if (!rc)
455 		audit_ever_enabled |= !!state;
456 
457 	return rc;
458 }
459 
460 static int audit_set_failure(u32 state)
461 {
462 	if (state != AUDIT_FAIL_SILENT
463 	    && state != AUDIT_FAIL_PRINTK
464 	    && state != AUDIT_FAIL_PANIC)
465 		return -EINVAL;
466 
467 	return audit_do_config_change("audit_failure", &audit_failure, state);
468 }
469 
470 /**
471  * auditd_conn_free - RCU helper to release an auditd connection struct
472  * @rcu: RCU head
473  *
474  * Description:
475  * Drop any references inside the auditd connection tracking struct and free
476  * the memory.
477  */
478 static void auditd_conn_free(struct rcu_head *rcu)
479 {
480 	struct auditd_connection *ac;
481 
482 	ac = container_of(rcu, struct auditd_connection, rcu);
483 	put_pid(ac->pid);
484 	put_net(ac->net);
485 	kfree(ac);
486 }
487 
488 /**
489  * auditd_set - Set/Reset the auditd connection state
490  * @pid: auditd PID
491  * @portid: auditd netlink portid
492  * @net: auditd network namespace pointer
493  *
494  * Description:
495  * This function will obtain and drop network namespace references as
496  * necessary.  Returns zero on success, negative values on failure.
497  */
498 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
499 {
500 	unsigned long flags;
501 	struct auditd_connection *ac_old, *ac_new;
502 
503 	if (!pid || !net)
504 		return -EINVAL;
505 
506 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
507 	if (!ac_new)
508 		return -ENOMEM;
509 	ac_new->pid = get_pid(pid);
510 	ac_new->portid = portid;
511 	ac_new->net = get_net(net);
512 
513 	spin_lock_irqsave(&auditd_conn_lock, flags);
514 	ac_old = rcu_dereference_protected(auditd_conn,
515 					   lockdep_is_held(&auditd_conn_lock));
516 	rcu_assign_pointer(auditd_conn, ac_new);
517 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
518 
519 	if (ac_old)
520 		call_rcu(&ac_old->rcu, auditd_conn_free);
521 
522 	return 0;
523 }
524 
525 /**
526  * kauditd_printk_skb - Print the audit record to the ring buffer
527  * @skb: audit record
528  *
529  * Whatever the reason, this packet may not make it to the auditd connection
530  * so write it via printk so the information isn't completely lost.
531  */
532 static void kauditd_printk_skb(struct sk_buff *skb)
533 {
534 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
535 	char *data = nlmsg_data(nlh);
536 
537 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
538 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
539 }
540 
541 /**
542  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
543  * @skb: audit record
544  *
545  * Description:
546  * This should only be used by the kauditd_thread when it fails to flush the
547  * hold queue.
548  */
549 static void kauditd_rehold_skb(struct sk_buff *skb)
550 {
551 	/* put the record back in the queue at the same place */
552 	skb_queue_head(&audit_hold_queue, skb);
553 }
554 
555 /**
556  * kauditd_hold_skb - Queue an audit record, waiting for auditd
557  * @skb: audit record
558  *
559  * Description:
560  * Queue the audit record, waiting for an instance of auditd.  When this
561  * function is called we haven't given up yet on sending the record, but things
562  * are not looking good.  The first thing we want to do is try to write the
563  * record via printk and then see if we want to try and hold on to the record
564  * and queue it, if we have room.  If we want to hold on to the record, but we
565  * don't have room, record a record lost message.
566  */
567 static void kauditd_hold_skb(struct sk_buff *skb)
568 {
569 	/* at this point it is uncertain if we will ever send this to auditd so
570 	 * try to send the message via printk before we go any further */
571 	kauditd_printk_skb(skb);
572 
573 	/* can we just silently drop the message? */
574 	if (!audit_default) {
575 		kfree_skb(skb);
576 		return;
577 	}
578 
579 	/* if we have room, queue the message */
580 	if (!audit_backlog_limit ||
581 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
582 		skb_queue_tail(&audit_hold_queue, skb);
583 		return;
584 	}
585 
586 	/* we have no other options - drop the message */
587 	audit_log_lost("kauditd hold queue overflow");
588 	kfree_skb(skb);
589 }
590 
591 /**
592  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
593  * @skb: audit record
594  *
595  * Description:
596  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
597  * but for some reason we are having problems sending it audit records so
598  * queue the given record and attempt to resend.
599  */
600 static void kauditd_retry_skb(struct sk_buff *skb)
601 {
602 	/* NOTE: because records should only live in the retry queue for a
603 	 * short period of time, before either being sent or moved to the hold
604 	 * queue, we don't currently enforce a limit on this queue */
605 	skb_queue_tail(&audit_retry_queue, skb);
606 }
607 
608 /**
609  * auditd_reset - Disconnect the auditd connection
610  * @ac: auditd connection state
611  *
612  * Description:
613  * Break the auditd/kauditd connection and move all the queued records into the
614  * hold queue in case auditd reconnects.  It is important to note that the @ac
615  * pointer should never be dereferenced inside this function as it may be NULL
616  * or invalid, you can only compare the memory address!  If @ac is NULL then
617  * the connection will always be reset.
618  */
619 static void auditd_reset(const struct auditd_connection *ac)
620 {
621 	unsigned long flags;
622 	struct sk_buff *skb;
623 	struct auditd_connection *ac_old;
624 
625 	/* if it isn't already broken, break the connection */
626 	spin_lock_irqsave(&auditd_conn_lock, flags);
627 	ac_old = rcu_dereference_protected(auditd_conn,
628 					   lockdep_is_held(&auditd_conn_lock));
629 	if (ac && ac != ac_old) {
630 		/* someone already registered a new auditd connection */
631 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
632 		return;
633 	}
634 	rcu_assign_pointer(auditd_conn, NULL);
635 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
636 
637 	if (ac_old)
638 		call_rcu(&ac_old->rcu, auditd_conn_free);
639 
640 	/* flush the retry queue to the hold queue, but don't touch the main
641 	 * queue since we need to process that normally for multicast */
642 	while ((skb = skb_dequeue(&audit_retry_queue)))
643 		kauditd_hold_skb(skb);
644 }
645 
646 /**
647  * auditd_send_unicast_skb - Send a record via unicast to auditd
648  * @skb: audit record
649  *
650  * Description:
651  * Send a skb to the audit daemon, returns positive/zero values on success and
652  * negative values on failure; in all cases the skb will be consumed by this
653  * function.  If the send results in -ECONNREFUSED the connection with auditd
654  * will be reset.  This function may sleep so callers should not hold any locks
655  * where this would cause a problem.
656  */
657 static int auditd_send_unicast_skb(struct sk_buff *skb)
658 {
659 	int rc;
660 	u32 portid;
661 	struct net *net;
662 	struct sock *sk;
663 	struct auditd_connection *ac;
664 
665 	/* NOTE: we can't call netlink_unicast while in the RCU section so
666 	 *       take a reference to the network namespace and grab local
667 	 *       copies of the namespace, the sock, and the portid; the
668 	 *       namespace and sock aren't going to go away while we hold a
669 	 *       reference and if the portid does become invalid after the RCU
670 	 *       section netlink_unicast() should safely return an error */
671 
672 	rcu_read_lock();
673 	ac = rcu_dereference(auditd_conn);
674 	if (!ac) {
675 		rcu_read_unlock();
676 		kfree_skb(skb);
677 		rc = -ECONNREFUSED;
678 		goto err;
679 	}
680 	net = get_net(ac->net);
681 	sk = audit_get_sk(net);
682 	portid = ac->portid;
683 	rcu_read_unlock();
684 
685 	rc = netlink_unicast(sk, skb, portid, 0);
686 	put_net(net);
687 	if (rc < 0)
688 		goto err;
689 
690 	return rc;
691 
692 err:
693 	if (ac && rc == -ECONNREFUSED)
694 		auditd_reset(ac);
695 	return rc;
696 }
697 
698 /**
699  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
700  * @sk: the sending sock
701  * @portid: the netlink destination
702  * @queue: the skb queue to process
703  * @retry_limit: limit on number of netlink unicast failures
704  * @skb_hook: per-skb hook for additional processing
705  * @err_hook: hook called if the skb fails the netlink unicast send
706  *
707  * Description:
708  * Run through the given queue and attempt to send the audit records to auditd,
709  * returns zero on success, negative values on failure.  It is up to the caller
710  * to ensure that the @sk is valid for the duration of this function.
711  *
712  */
713 static int kauditd_send_queue(struct sock *sk, u32 portid,
714 			      struct sk_buff_head *queue,
715 			      unsigned int retry_limit,
716 			      void (*skb_hook)(struct sk_buff *skb),
717 			      void (*err_hook)(struct sk_buff *skb))
718 {
719 	int rc = 0;
720 	struct sk_buff *skb;
721 	unsigned int failed = 0;
722 
723 	/* NOTE: kauditd_thread takes care of all our locking, we just use
724 	 *       the netlink info passed to us (e.g. sk and portid) */
725 
726 	while ((skb = skb_dequeue(queue))) {
727 		/* call the skb_hook for each skb we touch */
728 		if (skb_hook)
729 			(*skb_hook)(skb);
730 
731 		/* can we send to anyone via unicast? */
732 		if (!sk) {
733 			if (err_hook)
734 				(*err_hook)(skb);
735 			continue;
736 		}
737 
738 retry:
739 		/* grab an extra skb reference in case of error */
740 		skb_get(skb);
741 		rc = netlink_unicast(sk, skb, portid, 0);
742 		if (rc < 0) {
743 			/* send failed - try a few times unless fatal error */
744 			if (++failed >= retry_limit ||
745 			    rc == -ECONNREFUSED || rc == -EPERM) {
746 				sk = NULL;
747 				if (err_hook)
748 					(*err_hook)(skb);
749 				if (rc == -EAGAIN)
750 					rc = 0;
751 				/* continue to drain the queue */
752 				continue;
753 			} else
754 				goto retry;
755 		} else {
756 			/* skb sent - drop the extra reference and continue */
757 			consume_skb(skb);
758 			failed = 0;
759 		}
760 	}
761 
762 	return (rc >= 0 ? 0 : rc);
763 }
764 
765 /*
766  * kauditd_send_multicast_skb - Send a record to any multicast listeners
767  * @skb: audit record
768  *
769  * Description:
770  * Write a multicast message to anyone listening in the initial network
771  * namespace.  This function doesn't consume an skb as might be expected since
772  * it has to copy it anyways.
773  */
774 static void kauditd_send_multicast_skb(struct sk_buff *skb)
775 {
776 	struct sk_buff *copy;
777 	struct sock *sock = audit_get_sk(&init_net);
778 	struct nlmsghdr *nlh;
779 
780 	/* NOTE: we are not taking an additional reference for init_net since
781 	 *       we don't have to worry about it going away */
782 
783 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
784 		return;
785 
786 	/*
787 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
788 	 * using skb_get() is necessary because non-standard mods are made to
789 	 * the skb by the original kaudit unicast socket send routine.  The
790 	 * existing auditd daemon assumes this breakage.  Fixing this would
791 	 * require co-ordinating a change in the established protocol between
792 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
793 	 * no reason for new multicast clients to continue with this
794 	 * non-compliance.
795 	 */
796 	copy = skb_copy(skb, GFP_KERNEL);
797 	if (!copy)
798 		return;
799 	nlh = nlmsg_hdr(copy);
800 	nlh->nlmsg_len = skb->len;
801 
802 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
803 }
804 
805 /**
806  * kauditd_thread - Worker thread to send audit records to userspace
807  * @dummy: unused
808  */
809 static int kauditd_thread(void *dummy)
810 {
811 	int rc;
812 	u32 portid = 0;
813 	struct net *net = NULL;
814 	struct sock *sk = NULL;
815 	struct auditd_connection *ac;
816 
817 #define UNICAST_RETRIES 5
818 
819 	set_freezable();
820 	while (!kthread_should_stop()) {
821 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
822 		rcu_read_lock();
823 		ac = rcu_dereference(auditd_conn);
824 		if (!ac) {
825 			rcu_read_unlock();
826 			goto main_queue;
827 		}
828 		net = get_net(ac->net);
829 		sk = audit_get_sk(net);
830 		portid = ac->portid;
831 		rcu_read_unlock();
832 
833 		/* attempt to flush the hold queue */
834 		rc = kauditd_send_queue(sk, portid,
835 					&audit_hold_queue, UNICAST_RETRIES,
836 					NULL, kauditd_rehold_skb);
837 		if (rc < 0) {
838 			sk = NULL;
839 			auditd_reset(ac);
840 			goto main_queue;
841 		}
842 
843 		/* attempt to flush the retry queue */
844 		rc = kauditd_send_queue(sk, portid,
845 					&audit_retry_queue, UNICAST_RETRIES,
846 					NULL, kauditd_hold_skb);
847 		if (rc < 0) {
848 			sk = NULL;
849 			auditd_reset(ac);
850 			goto main_queue;
851 		}
852 
853 main_queue:
854 		/* process the main queue - do the multicast send and attempt
855 		 * unicast, dump failed record sends to the retry queue; if
856 		 * sk == NULL due to previous failures we will just do the
857 		 * multicast send and move the record to the hold queue */
858 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
859 					kauditd_send_multicast_skb,
860 					(sk ?
861 					 kauditd_retry_skb : kauditd_hold_skb));
862 		if (ac && rc < 0)
863 			auditd_reset(ac);
864 		sk = NULL;
865 
866 		/* drop our netns reference, no auditd sends past this line */
867 		if (net) {
868 			put_net(net);
869 			net = NULL;
870 		}
871 
872 		/* we have processed all the queues so wake everyone */
873 		wake_up(&audit_backlog_wait);
874 
875 		/* NOTE: we want to wake up if there is anything on the queue,
876 		 *       regardless of if an auditd is connected, as we need to
877 		 *       do the multicast send and rotate records from the
878 		 *       main queue to the retry/hold queues */
879 		wait_event_freezable(kauditd_wait,
880 				     (skb_queue_len(&audit_queue) ? 1 : 0));
881 	}
882 
883 	return 0;
884 }
885 
886 int audit_send_list_thread(void *_dest)
887 {
888 	struct audit_netlink_list *dest = _dest;
889 	struct sk_buff *skb;
890 	struct sock *sk = audit_get_sk(dest->net);
891 
892 	/* wait for parent to finish and send an ACK */
893 	audit_ctl_lock();
894 	audit_ctl_unlock();
895 
896 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
897 		netlink_unicast(sk, skb, dest->portid, 0);
898 
899 	put_net(dest->net);
900 	kfree(dest);
901 
902 	return 0;
903 }
904 
905 struct sk_buff *audit_make_reply(int seq, int type, int done,
906 				 int multi, const void *payload, int size)
907 {
908 	struct sk_buff	*skb;
909 	struct nlmsghdr	*nlh;
910 	void		*data;
911 	int		flags = multi ? NLM_F_MULTI : 0;
912 	int		t     = done  ? NLMSG_DONE  : type;
913 
914 	skb = nlmsg_new(size, GFP_KERNEL);
915 	if (!skb)
916 		return NULL;
917 
918 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
919 	if (!nlh)
920 		goto out_kfree_skb;
921 	data = nlmsg_data(nlh);
922 	memcpy(data, payload, size);
923 	return skb;
924 
925 out_kfree_skb:
926 	kfree_skb(skb);
927 	return NULL;
928 }
929 
930 static void audit_free_reply(struct audit_reply *reply)
931 {
932 	if (!reply)
933 		return;
934 
935 	kfree_skb(reply->skb);
936 	if (reply->net)
937 		put_net(reply->net);
938 	kfree(reply);
939 }
940 
941 static int audit_send_reply_thread(void *arg)
942 {
943 	struct audit_reply *reply = (struct audit_reply *)arg;
944 
945 	audit_ctl_lock();
946 	audit_ctl_unlock();
947 
948 	/* Ignore failure. It'll only happen if the sender goes away,
949 	   because our timeout is set to infinite. */
950 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
951 	reply->skb = NULL;
952 	audit_free_reply(reply);
953 	return 0;
954 }
955 
956 /**
957  * audit_send_reply - send an audit reply message via netlink
958  * @request_skb: skb of request we are replying to (used to target the reply)
959  * @seq: sequence number
960  * @type: audit message type
961  * @done: done (last) flag
962  * @multi: multi-part message flag
963  * @payload: payload data
964  * @size: payload size
965  *
966  * Allocates a skb, builds the netlink message, and sends it to the port id.
967  */
968 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
969 			     int multi, const void *payload, int size)
970 {
971 	struct task_struct *tsk;
972 	struct audit_reply *reply;
973 
974 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
975 	if (!reply)
976 		return;
977 
978 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
979 	if (!reply->skb)
980 		goto err;
981 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
982 	reply->portid = NETLINK_CB(request_skb).portid;
983 
984 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
985 	if (IS_ERR(tsk))
986 		goto err;
987 
988 	return;
989 
990 err:
991 	audit_free_reply(reply);
992 }
993 
994 /*
995  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
996  * control messages.
997  */
998 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
999 {
1000 	int err = 0;
1001 
1002 	/* Only support initial user namespace for now. */
1003 	/*
1004 	 * We return ECONNREFUSED because it tricks userspace into thinking
1005 	 * that audit was not configured into the kernel.  Lots of users
1006 	 * configure their PAM stack (because that's what the distro does)
1007 	 * to reject login if unable to send messages to audit.  If we return
1008 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1009 	 * configured in and will let login proceed.  If we return EPERM
1010 	 * userspace will reject all logins.  This should be removed when we
1011 	 * support non init namespaces!!
1012 	 */
1013 	if (current_user_ns() != &init_user_ns)
1014 		return -ECONNREFUSED;
1015 
1016 	switch (msg_type) {
1017 	case AUDIT_LIST:
1018 	case AUDIT_ADD:
1019 	case AUDIT_DEL:
1020 		return -EOPNOTSUPP;
1021 	case AUDIT_GET:
1022 	case AUDIT_SET:
1023 	case AUDIT_GET_FEATURE:
1024 	case AUDIT_SET_FEATURE:
1025 	case AUDIT_LIST_RULES:
1026 	case AUDIT_ADD_RULE:
1027 	case AUDIT_DEL_RULE:
1028 	case AUDIT_SIGNAL_INFO:
1029 	case AUDIT_TTY_GET:
1030 	case AUDIT_TTY_SET:
1031 	case AUDIT_TRIM:
1032 	case AUDIT_MAKE_EQUIV:
1033 		/* Only support auditd and auditctl in initial pid namespace
1034 		 * for now. */
1035 		if (task_active_pid_ns(current) != &init_pid_ns)
1036 			return -EPERM;
1037 
1038 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1039 			err = -EPERM;
1040 		break;
1041 	case AUDIT_USER:
1042 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1043 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1044 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1045 			err = -EPERM;
1046 		break;
1047 	default:  /* bad msg */
1048 		err = -EINVAL;
1049 	}
1050 
1051 	return err;
1052 }
1053 
1054 static void audit_log_common_recv_msg(struct audit_context *context,
1055 					struct audit_buffer **ab, u16 msg_type)
1056 {
1057 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1058 	pid_t pid = task_tgid_nr(current);
1059 
1060 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1061 		*ab = NULL;
1062 		return;
1063 	}
1064 
1065 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1066 	if (unlikely(!*ab))
1067 		return;
1068 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1069 	audit_log_session_info(*ab);
1070 	audit_log_task_context(*ab);
1071 }
1072 
1073 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1074 					   u16 msg_type)
1075 {
1076 	audit_log_common_recv_msg(NULL, ab, msg_type);
1077 }
1078 
1079 int is_audit_feature_set(int i)
1080 {
1081 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1082 }
1083 
1084 
1085 static int audit_get_feature(struct sk_buff *skb)
1086 {
1087 	u32 seq;
1088 
1089 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1090 
1091 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1092 
1093 	return 0;
1094 }
1095 
1096 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1097 				     u32 old_lock, u32 new_lock, int res)
1098 {
1099 	struct audit_buffer *ab;
1100 
1101 	if (audit_enabled == AUDIT_OFF)
1102 		return;
1103 
1104 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1105 	if (!ab)
1106 		return;
1107 	audit_log_task_info(ab);
1108 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1109 			 audit_feature_names[which], !!old_feature, !!new_feature,
1110 			 !!old_lock, !!new_lock, res);
1111 	audit_log_end(ab);
1112 }
1113 
1114 static int audit_set_feature(struct audit_features *uaf)
1115 {
1116 	int i;
1117 
1118 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1119 
1120 	/* if there is ever a version 2 we should handle that here */
1121 
1122 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1123 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1124 		u32 old_feature, new_feature, old_lock, new_lock;
1125 
1126 		/* if we are not changing this feature, move along */
1127 		if (!(feature & uaf->mask))
1128 			continue;
1129 
1130 		old_feature = af.features & feature;
1131 		new_feature = uaf->features & feature;
1132 		new_lock = (uaf->lock | af.lock) & feature;
1133 		old_lock = af.lock & feature;
1134 
1135 		/* are we changing a locked feature? */
1136 		if (old_lock && (new_feature != old_feature)) {
1137 			audit_log_feature_change(i, old_feature, new_feature,
1138 						 old_lock, new_lock, 0);
1139 			return -EPERM;
1140 		}
1141 	}
1142 	/* nothing invalid, do the changes */
1143 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1144 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1145 		u32 old_feature, new_feature, old_lock, new_lock;
1146 
1147 		/* if we are not changing this feature, move along */
1148 		if (!(feature & uaf->mask))
1149 			continue;
1150 
1151 		old_feature = af.features & feature;
1152 		new_feature = uaf->features & feature;
1153 		old_lock = af.lock & feature;
1154 		new_lock = (uaf->lock | af.lock) & feature;
1155 
1156 		if (new_feature != old_feature)
1157 			audit_log_feature_change(i, old_feature, new_feature,
1158 						 old_lock, new_lock, 1);
1159 
1160 		if (new_feature)
1161 			af.features |= feature;
1162 		else
1163 			af.features &= ~feature;
1164 		af.lock |= new_lock;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 static int audit_replace(struct pid *pid)
1171 {
1172 	pid_t pvnr;
1173 	struct sk_buff *skb;
1174 
1175 	pvnr = pid_vnr(pid);
1176 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1177 	if (!skb)
1178 		return -ENOMEM;
1179 	return auditd_send_unicast_skb(skb);
1180 }
1181 
1182 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1183 {
1184 	u32			seq;
1185 	void			*data;
1186 	int			data_len;
1187 	int			err;
1188 	struct audit_buffer	*ab;
1189 	u16			msg_type = nlh->nlmsg_type;
1190 	struct audit_sig_info   *sig_data;
1191 	char			*ctx = NULL;
1192 	u32			len;
1193 
1194 	err = audit_netlink_ok(skb, msg_type);
1195 	if (err)
1196 		return err;
1197 
1198 	seq  = nlh->nlmsg_seq;
1199 	data = nlmsg_data(nlh);
1200 	data_len = nlmsg_len(nlh);
1201 
1202 	switch (msg_type) {
1203 	case AUDIT_GET: {
1204 		struct audit_status	s;
1205 		memset(&s, 0, sizeof(s));
1206 		s.enabled		   = audit_enabled;
1207 		s.failure		   = audit_failure;
1208 		/* NOTE: use pid_vnr() so the PID is relative to the current
1209 		 *       namespace */
1210 		s.pid			   = auditd_pid_vnr();
1211 		s.rate_limit		   = audit_rate_limit;
1212 		s.backlog_limit		   = audit_backlog_limit;
1213 		s.lost			   = atomic_read(&audit_lost);
1214 		s.backlog		   = skb_queue_len(&audit_queue);
1215 		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1216 		s.backlog_wait_time	   = audit_backlog_wait_time;
1217 		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1218 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1219 		break;
1220 	}
1221 	case AUDIT_SET: {
1222 		struct audit_status	s;
1223 		memset(&s, 0, sizeof(s));
1224 		/* guard against past and future API changes */
1225 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1226 		if (s.mask & AUDIT_STATUS_ENABLED) {
1227 			err = audit_set_enabled(s.enabled);
1228 			if (err < 0)
1229 				return err;
1230 		}
1231 		if (s.mask & AUDIT_STATUS_FAILURE) {
1232 			err = audit_set_failure(s.failure);
1233 			if (err < 0)
1234 				return err;
1235 		}
1236 		if (s.mask & AUDIT_STATUS_PID) {
1237 			/* NOTE: we are using the vnr PID functions below
1238 			 *       because the s.pid value is relative to the
1239 			 *       namespace of the caller; at present this
1240 			 *       doesn't matter much since you can really only
1241 			 *       run auditd from the initial pid namespace, but
1242 			 *       something to keep in mind if this changes */
1243 			pid_t new_pid = s.pid;
1244 			pid_t auditd_pid;
1245 			struct pid *req_pid = task_tgid(current);
1246 
1247 			/* Sanity check - PID values must match. Setting
1248 			 * pid to 0 is how auditd ends auditing. */
1249 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1250 				return -EINVAL;
1251 
1252 			/* test the auditd connection */
1253 			audit_replace(req_pid);
1254 
1255 			auditd_pid = auditd_pid_vnr();
1256 			if (auditd_pid) {
1257 				/* replacing a healthy auditd is not allowed */
1258 				if (new_pid) {
1259 					audit_log_config_change("audit_pid",
1260 							new_pid, auditd_pid, 0);
1261 					return -EEXIST;
1262 				}
1263 				/* only current auditd can unregister itself */
1264 				if (pid_vnr(req_pid) != auditd_pid) {
1265 					audit_log_config_change("audit_pid",
1266 							new_pid, auditd_pid, 0);
1267 					return -EACCES;
1268 				}
1269 			}
1270 
1271 			if (new_pid) {
1272 				/* register a new auditd connection */
1273 				err = auditd_set(req_pid,
1274 						 NETLINK_CB(skb).portid,
1275 						 sock_net(NETLINK_CB(skb).sk));
1276 				if (audit_enabled != AUDIT_OFF)
1277 					audit_log_config_change("audit_pid",
1278 								new_pid,
1279 								auditd_pid,
1280 								err ? 0 : 1);
1281 				if (err)
1282 					return err;
1283 
1284 				/* try to process any backlog */
1285 				wake_up_interruptible(&kauditd_wait);
1286 			} else {
1287 				if (audit_enabled != AUDIT_OFF)
1288 					audit_log_config_change("audit_pid",
1289 								new_pid,
1290 								auditd_pid, 1);
1291 
1292 				/* unregister the auditd connection */
1293 				auditd_reset(NULL);
1294 			}
1295 		}
1296 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1297 			err = audit_set_rate_limit(s.rate_limit);
1298 			if (err < 0)
1299 				return err;
1300 		}
1301 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1302 			err = audit_set_backlog_limit(s.backlog_limit);
1303 			if (err < 0)
1304 				return err;
1305 		}
1306 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1307 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1308 				return -EINVAL;
1309 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1310 				return -EINVAL;
1311 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1312 			if (err < 0)
1313 				return err;
1314 		}
1315 		if (s.mask == AUDIT_STATUS_LOST) {
1316 			u32 lost = atomic_xchg(&audit_lost, 0);
1317 
1318 			audit_log_config_change("lost", 0, lost, 1);
1319 			return lost;
1320 		}
1321 		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1322 			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1323 
1324 			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1325 			return actual;
1326 		}
1327 		break;
1328 	}
1329 	case AUDIT_GET_FEATURE:
1330 		err = audit_get_feature(skb);
1331 		if (err)
1332 			return err;
1333 		break;
1334 	case AUDIT_SET_FEATURE:
1335 		if (data_len < sizeof(struct audit_features))
1336 			return -EINVAL;
1337 		err = audit_set_feature(data);
1338 		if (err)
1339 			return err;
1340 		break;
1341 	case AUDIT_USER:
1342 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1343 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1344 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1345 			return 0;
1346 		/* exit early if there isn't at least one character to print */
1347 		if (data_len < 2)
1348 			return -EINVAL;
1349 
1350 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1351 		if (err == 1) { /* match or error */
1352 			char *str = data;
1353 
1354 			err = 0;
1355 			if (msg_type == AUDIT_USER_TTY) {
1356 				err = tty_audit_push();
1357 				if (err)
1358 					break;
1359 			}
1360 			audit_log_user_recv_msg(&ab, msg_type);
1361 			if (msg_type != AUDIT_USER_TTY) {
1362 				/* ensure NULL termination */
1363 				str[data_len - 1] = '\0';
1364 				audit_log_format(ab, " msg='%.*s'",
1365 						 AUDIT_MESSAGE_TEXT_MAX,
1366 						 str);
1367 			} else {
1368 				audit_log_format(ab, " data=");
1369 				if (data_len > 0 && str[data_len - 1] == '\0')
1370 					data_len--;
1371 				audit_log_n_untrustedstring(ab, str, data_len);
1372 			}
1373 			audit_log_end(ab);
1374 		}
1375 		break;
1376 	case AUDIT_ADD_RULE:
1377 	case AUDIT_DEL_RULE:
1378 		if (data_len < sizeof(struct audit_rule_data))
1379 			return -EINVAL;
1380 		if (audit_enabled == AUDIT_LOCKED) {
1381 			audit_log_common_recv_msg(audit_context(), &ab,
1382 						  AUDIT_CONFIG_CHANGE);
1383 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1384 					 msg_type == AUDIT_ADD_RULE ?
1385 						"add_rule" : "remove_rule",
1386 					 audit_enabled);
1387 			audit_log_end(ab);
1388 			return -EPERM;
1389 		}
1390 		err = audit_rule_change(msg_type, seq, data, data_len);
1391 		break;
1392 	case AUDIT_LIST_RULES:
1393 		err = audit_list_rules_send(skb, seq);
1394 		break;
1395 	case AUDIT_TRIM:
1396 		audit_trim_trees();
1397 		audit_log_common_recv_msg(audit_context(), &ab,
1398 					  AUDIT_CONFIG_CHANGE);
1399 		audit_log_format(ab, " op=trim res=1");
1400 		audit_log_end(ab);
1401 		break;
1402 	case AUDIT_MAKE_EQUIV: {
1403 		void *bufp = data;
1404 		u32 sizes[2];
1405 		size_t msglen = data_len;
1406 		char *old, *new;
1407 
1408 		err = -EINVAL;
1409 		if (msglen < 2 * sizeof(u32))
1410 			break;
1411 		memcpy(sizes, bufp, 2 * sizeof(u32));
1412 		bufp += 2 * sizeof(u32);
1413 		msglen -= 2 * sizeof(u32);
1414 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1415 		if (IS_ERR(old)) {
1416 			err = PTR_ERR(old);
1417 			break;
1418 		}
1419 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1420 		if (IS_ERR(new)) {
1421 			err = PTR_ERR(new);
1422 			kfree(old);
1423 			break;
1424 		}
1425 		/* OK, here comes... */
1426 		err = audit_tag_tree(old, new);
1427 
1428 		audit_log_common_recv_msg(audit_context(), &ab,
1429 					  AUDIT_CONFIG_CHANGE);
1430 		audit_log_format(ab, " op=make_equiv old=");
1431 		audit_log_untrustedstring(ab, old);
1432 		audit_log_format(ab, " new=");
1433 		audit_log_untrustedstring(ab, new);
1434 		audit_log_format(ab, " res=%d", !err);
1435 		audit_log_end(ab);
1436 		kfree(old);
1437 		kfree(new);
1438 		break;
1439 	}
1440 	case AUDIT_SIGNAL_INFO:
1441 		len = 0;
1442 		if (audit_sig_sid) {
1443 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1444 			if (err)
1445 				return err;
1446 		}
1447 		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1448 		if (!sig_data) {
1449 			if (audit_sig_sid)
1450 				security_release_secctx(ctx, len);
1451 			return -ENOMEM;
1452 		}
1453 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1454 		sig_data->pid = audit_sig_pid;
1455 		if (audit_sig_sid) {
1456 			memcpy(sig_data->ctx, ctx, len);
1457 			security_release_secctx(ctx, len);
1458 		}
1459 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1460 				 sig_data, struct_size(sig_data, ctx, len));
1461 		kfree(sig_data);
1462 		break;
1463 	case AUDIT_TTY_GET: {
1464 		struct audit_tty_status s;
1465 		unsigned int t;
1466 
1467 		t = READ_ONCE(current->signal->audit_tty);
1468 		s.enabled = t & AUDIT_TTY_ENABLE;
1469 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1470 
1471 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1472 		break;
1473 	}
1474 	case AUDIT_TTY_SET: {
1475 		struct audit_tty_status s, old;
1476 		struct audit_buffer	*ab;
1477 		unsigned int t;
1478 
1479 		memset(&s, 0, sizeof(s));
1480 		/* guard against past and future API changes */
1481 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1482 		/* check if new data is valid */
1483 		if ((s.enabled != 0 && s.enabled != 1) ||
1484 		    (s.log_passwd != 0 && s.log_passwd != 1))
1485 			err = -EINVAL;
1486 
1487 		if (err)
1488 			t = READ_ONCE(current->signal->audit_tty);
1489 		else {
1490 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1491 			t = xchg(&current->signal->audit_tty, t);
1492 		}
1493 		old.enabled = t & AUDIT_TTY_ENABLE;
1494 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1495 
1496 		audit_log_common_recv_msg(audit_context(), &ab,
1497 					  AUDIT_CONFIG_CHANGE);
1498 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1499 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1500 				 old.enabled, s.enabled, old.log_passwd,
1501 				 s.log_passwd, !err);
1502 		audit_log_end(ab);
1503 		break;
1504 	}
1505 	default:
1506 		err = -EINVAL;
1507 		break;
1508 	}
1509 
1510 	return err < 0 ? err : 0;
1511 }
1512 
1513 /**
1514  * audit_receive - receive messages from a netlink control socket
1515  * @skb: the message buffer
1516  *
1517  * Parse the provided skb and deal with any messages that may be present,
1518  * malformed skbs are discarded.
1519  */
1520 static void audit_receive(struct sk_buff  *skb)
1521 {
1522 	struct nlmsghdr *nlh;
1523 	/*
1524 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1525 	 * if the nlmsg_len was not aligned
1526 	 */
1527 	int len;
1528 	int err;
1529 
1530 	nlh = nlmsg_hdr(skb);
1531 	len = skb->len;
1532 
1533 	audit_ctl_lock();
1534 	while (nlmsg_ok(nlh, len)) {
1535 		err = audit_receive_msg(skb, nlh);
1536 		/* if err or if this message says it wants a response */
1537 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1538 			netlink_ack(skb, nlh, err, NULL);
1539 
1540 		nlh = nlmsg_next(nlh, &len);
1541 	}
1542 	audit_ctl_unlock();
1543 
1544 	/* can't block with the ctrl lock, so penalize the sender now */
1545 	if (audit_backlog_limit &&
1546 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1547 		DECLARE_WAITQUEUE(wait, current);
1548 
1549 		/* wake kauditd to try and flush the queue */
1550 		wake_up_interruptible(&kauditd_wait);
1551 
1552 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1553 		set_current_state(TASK_UNINTERRUPTIBLE);
1554 		schedule_timeout(audit_backlog_wait_time);
1555 		remove_wait_queue(&audit_backlog_wait, &wait);
1556 	}
1557 }
1558 
1559 /* Log information about who is connecting to the audit multicast socket */
1560 static void audit_log_multicast(int group, const char *op, int err)
1561 {
1562 	const struct cred *cred;
1563 	struct tty_struct *tty;
1564 	char comm[sizeof(current->comm)];
1565 	struct audit_buffer *ab;
1566 
1567 	if (!audit_enabled)
1568 		return;
1569 
1570 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1571 	if (!ab)
1572 		return;
1573 
1574 	cred = current_cred();
1575 	tty = audit_get_tty();
1576 	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1577 			 task_pid_nr(current),
1578 			 from_kuid(&init_user_ns, cred->uid),
1579 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1580 			 tty ? tty_name(tty) : "(none)",
1581 			 audit_get_sessionid(current));
1582 	audit_put_tty(tty);
1583 	audit_log_task_context(ab); /* subj= */
1584 	audit_log_format(ab, " comm=");
1585 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1586 	audit_log_d_path_exe(ab, current->mm); /* exe= */
1587 	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1588 	audit_log_end(ab);
1589 }
1590 
1591 /* Run custom bind function on netlink socket group connect or bind requests. */
1592 static int audit_multicast_bind(struct net *net, int group)
1593 {
1594 	int err = 0;
1595 
1596 	if (!capable(CAP_AUDIT_READ))
1597 		err = -EPERM;
1598 	audit_log_multicast(group, "connect", err);
1599 	return err;
1600 }
1601 
1602 static void audit_multicast_unbind(struct net *net, int group)
1603 {
1604 	audit_log_multicast(group, "disconnect", 0);
1605 }
1606 
1607 static int __net_init audit_net_init(struct net *net)
1608 {
1609 	struct netlink_kernel_cfg cfg = {
1610 		.input	= audit_receive,
1611 		.bind	= audit_multicast_bind,
1612 		.unbind	= audit_multicast_unbind,
1613 		.flags	= NL_CFG_F_NONROOT_RECV,
1614 		.groups	= AUDIT_NLGRP_MAX,
1615 	};
1616 
1617 	struct audit_net *aunet = net_generic(net, audit_net_id);
1618 
1619 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1620 	if (aunet->sk == NULL) {
1621 		audit_panic("cannot initialize netlink socket in namespace");
1622 		return -ENOMEM;
1623 	}
1624 	/* limit the timeout in case auditd is blocked/stopped */
1625 	aunet->sk->sk_sndtimeo = HZ / 10;
1626 
1627 	return 0;
1628 }
1629 
1630 static void __net_exit audit_net_exit(struct net *net)
1631 {
1632 	struct audit_net *aunet = net_generic(net, audit_net_id);
1633 
1634 	/* NOTE: you would think that we would want to check the auditd
1635 	 * connection and potentially reset it here if it lives in this
1636 	 * namespace, but since the auditd connection tracking struct holds a
1637 	 * reference to this namespace (see auditd_set()) we are only ever
1638 	 * going to get here after that connection has been released */
1639 
1640 	netlink_kernel_release(aunet->sk);
1641 }
1642 
1643 static struct pernet_operations audit_net_ops __net_initdata = {
1644 	.init = audit_net_init,
1645 	.exit = audit_net_exit,
1646 	.id = &audit_net_id,
1647 	.size = sizeof(struct audit_net),
1648 };
1649 
1650 /* Initialize audit support at boot time. */
1651 static int __init audit_init(void)
1652 {
1653 	int i;
1654 
1655 	if (audit_initialized == AUDIT_DISABLED)
1656 		return 0;
1657 
1658 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1659 					       sizeof(struct audit_buffer),
1660 					       0, SLAB_PANIC, NULL);
1661 
1662 	skb_queue_head_init(&audit_queue);
1663 	skb_queue_head_init(&audit_retry_queue);
1664 	skb_queue_head_init(&audit_hold_queue);
1665 
1666 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1667 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1668 
1669 	mutex_init(&audit_cmd_mutex.lock);
1670 	audit_cmd_mutex.owner = NULL;
1671 
1672 	pr_info("initializing netlink subsys (%s)\n",
1673 		audit_default ? "enabled" : "disabled");
1674 	register_pernet_subsys(&audit_net_ops);
1675 
1676 	audit_initialized = AUDIT_INITIALIZED;
1677 
1678 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1679 	if (IS_ERR(kauditd_task)) {
1680 		int err = PTR_ERR(kauditd_task);
1681 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1682 	}
1683 
1684 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1685 		"state=initialized audit_enabled=%u res=1",
1686 		 audit_enabled);
1687 
1688 	return 0;
1689 }
1690 postcore_initcall(audit_init);
1691 
1692 /*
1693  * Process kernel command-line parameter at boot time.
1694  * audit={0|off} or audit={1|on}.
1695  */
1696 static int __init audit_enable(char *str)
1697 {
1698 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1699 		audit_default = AUDIT_OFF;
1700 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1701 		audit_default = AUDIT_ON;
1702 	else {
1703 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1704 		audit_default = AUDIT_ON;
1705 	}
1706 
1707 	if (audit_default == AUDIT_OFF)
1708 		audit_initialized = AUDIT_DISABLED;
1709 	if (audit_set_enabled(audit_default))
1710 		pr_err("audit: error setting audit state (%d)\n",
1711 		       audit_default);
1712 
1713 	pr_info("%s\n", audit_default ?
1714 		"enabled (after initialization)" : "disabled (until reboot)");
1715 
1716 	return 1;
1717 }
1718 __setup("audit=", audit_enable);
1719 
1720 /* Process kernel command-line parameter at boot time.
1721  * audit_backlog_limit=<n> */
1722 static int __init audit_backlog_limit_set(char *str)
1723 {
1724 	u32 audit_backlog_limit_arg;
1725 
1726 	pr_info("audit_backlog_limit: ");
1727 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1728 		pr_cont("using default of %u, unable to parse %s\n",
1729 			audit_backlog_limit, str);
1730 		return 1;
1731 	}
1732 
1733 	audit_backlog_limit = audit_backlog_limit_arg;
1734 	pr_cont("%d\n", audit_backlog_limit);
1735 
1736 	return 1;
1737 }
1738 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1739 
1740 static void audit_buffer_free(struct audit_buffer *ab)
1741 {
1742 	if (!ab)
1743 		return;
1744 
1745 	kfree_skb(ab->skb);
1746 	kmem_cache_free(audit_buffer_cache, ab);
1747 }
1748 
1749 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1750 					       gfp_t gfp_mask, int type)
1751 {
1752 	struct audit_buffer *ab;
1753 
1754 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1755 	if (!ab)
1756 		return NULL;
1757 
1758 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1759 	if (!ab->skb)
1760 		goto err;
1761 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1762 		goto err;
1763 
1764 	ab->ctx = ctx;
1765 	ab->gfp_mask = gfp_mask;
1766 
1767 	return ab;
1768 
1769 err:
1770 	audit_buffer_free(ab);
1771 	return NULL;
1772 }
1773 
1774 /**
1775  * audit_serial - compute a serial number for the audit record
1776  *
1777  * Compute a serial number for the audit record.  Audit records are
1778  * written to user-space as soon as they are generated, so a complete
1779  * audit record may be written in several pieces.  The timestamp of the
1780  * record and this serial number are used by the user-space tools to
1781  * determine which pieces belong to the same audit record.  The
1782  * (timestamp,serial) tuple is unique for each syscall and is live from
1783  * syscall entry to syscall exit.
1784  *
1785  * NOTE: Another possibility is to store the formatted records off the
1786  * audit context (for those records that have a context), and emit them
1787  * all at syscall exit.  However, this could delay the reporting of
1788  * significant errors until syscall exit (or never, if the system
1789  * halts).
1790  */
1791 unsigned int audit_serial(void)
1792 {
1793 	static atomic_t serial = ATOMIC_INIT(0);
1794 
1795 	return atomic_inc_return(&serial);
1796 }
1797 
1798 static inline void audit_get_stamp(struct audit_context *ctx,
1799 				   struct timespec64 *t, unsigned int *serial)
1800 {
1801 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1802 		ktime_get_coarse_real_ts64(t);
1803 		*serial = audit_serial();
1804 	}
1805 }
1806 
1807 /**
1808  * audit_log_start - obtain an audit buffer
1809  * @ctx: audit_context (may be NULL)
1810  * @gfp_mask: type of allocation
1811  * @type: audit message type
1812  *
1813  * Returns audit_buffer pointer on success or NULL on error.
1814  *
1815  * Obtain an audit buffer.  This routine does locking to obtain the
1816  * audit buffer, but then no locking is required for calls to
1817  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1818  * syscall, then the syscall is marked as auditable and an audit record
1819  * will be written at syscall exit.  If there is no associated task, then
1820  * task context (ctx) should be NULL.
1821  */
1822 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1823 				     int type)
1824 {
1825 	struct audit_buffer *ab;
1826 	struct timespec64 t;
1827 	unsigned int serial;
1828 
1829 	if (audit_initialized != AUDIT_INITIALIZED)
1830 		return NULL;
1831 
1832 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1833 		return NULL;
1834 
1835 	/* NOTE: don't ever fail/sleep on these two conditions:
1836 	 * 1. auditd generated record - since we need auditd to drain the
1837 	 *    queue; also, when we are checking for auditd, compare PIDs using
1838 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1839 	 *    using a PID anchored in the caller's namespace
1840 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1841 	 *    while holding the mutex, although we do penalize the sender
1842 	 *    later in audit_receive() when it is safe to block
1843 	 */
1844 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1845 		long stime = audit_backlog_wait_time;
1846 
1847 		while (audit_backlog_limit &&
1848 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1849 			/* wake kauditd to try and flush the queue */
1850 			wake_up_interruptible(&kauditd_wait);
1851 
1852 			/* sleep if we are allowed and we haven't exhausted our
1853 			 * backlog wait limit */
1854 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1855 				long rtime = stime;
1856 
1857 				DECLARE_WAITQUEUE(wait, current);
1858 
1859 				add_wait_queue_exclusive(&audit_backlog_wait,
1860 							 &wait);
1861 				set_current_state(TASK_UNINTERRUPTIBLE);
1862 				stime = schedule_timeout(rtime);
1863 				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1864 				remove_wait_queue(&audit_backlog_wait, &wait);
1865 			} else {
1866 				if (audit_rate_check() && printk_ratelimit())
1867 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1868 						skb_queue_len(&audit_queue),
1869 						audit_backlog_limit);
1870 				audit_log_lost("backlog limit exceeded");
1871 				return NULL;
1872 			}
1873 		}
1874 	}
1875 
1876 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1877 	if (!ab) {
1878 		audit_log_lost("out of memory in audit_log_start");
1879 		return NULL;
1880 	}
1881 
1882 	audit_get_stamp(ab->ctx, &t, &serial);
1883 	/* cancel dummy context to enable supporting records */
1884 	if (ctx)
1885 		ctx->dummy = 0;
1886 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1887 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1888 
1889 	return ab;
1890 }
1891 
1892 /**
1893  * audit_expand - expand skb in the audit buffer
1894  * @ab: audit_buffer
1895  * @extra: space to add at tail of the skb
1896  *
1897  * Returns 0 (no space) on failed expansion, or available space if
1898  * successful.
1899  */
1900 static inline int audit_expand(struct audit_buffer *ab, int extra)
1901 {
1902 	struct sk_buff *skb = ab->skb;
1903 	int oldtail = skb_tailroom(skb);
1904 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1905 	int newtail = skb_tailroom(skb);
1906 
1907 	if (ret < 0) {
1908 		audit_log_lost("out of memory in audit_expand");
1909 		return 0;
1910 	}
1911 
1912 	skb->truesize += newtail - oldtail;
1913 	return newtail;
1914 }
1915 
1916 /*
1917  * Format an audit message into the audit buffer.  If there isn't enough
1918  * room in the audit buffer, more room will be allocated and vsnprint
1919  * will be called a second time.  Currently, we assume that a printk
1920  * can't format message larger than 1024 bytes, so we don't either.
1921  */
1922 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1923 			      va_list args)
1924 {
1925 	int len, avail;
1926 	struct sk_buff *skb;
1927 	va_list args2;
1928 
1929 	if (!ab)
1930 		return;
1931 
1932 	BUG_ON(!ab->skb);
1933 	skb = ab->skb;
1934 	avail = skb_tailroom(skb);
1935 	if (avail == 0) {
1936 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1937 		if (!avail)
1938 			goto out;
1939 	}
1940 	va_copy(args2, args);
1941 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1942 	if (len >= avail) {
1943 		/* The printk buffer is 1024 bytes long, so if we get
1944 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1945 		 * log everything that printk could have logged. */
1946 		avail = audit_expand(ab,
1947 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1948 		if (!avail)
1949 			goto out_va_end;
1950 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1951 	}
1952 	if (len > 0)
1953 		skb_put(skb, len);
1954 out_va_end:
1955 	va_end(args2);
1956 out:
1957 	return;
1958 }
1959 
1960 /**
1961  * audit_log_format - format a message into the audit buffer.
1962  * @ab: audit_buffer
1963  * @fmt: format string
1964  * @...: optional parameters matching @fmt string
1965  *
1966  * All the work is done in audit_log_vformat.
1967  */
1968 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1969 {
1970 	va_list args;
1971 
1972 	if (!ab)
1973 		return;
1974 	va_start(args, fmt);
1975 	audit_log_vformat(ab, fmt, args);
1976 	va_end(args);
1977 }
1978 
1979 /**
1980  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1981  * @ab: the audit_buffer
1982  * @buf: buffer to convert to hex
1983  * @len: length of @buf to be converted
1984  *
1985  * No return value; failure to expand is silently ignored.
1986  *
1987  * This function will take the passed buf and convert it into a string of
1988  * ascii hex digits. The new string is placed onto the skb.
1989  */
1990 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1991 		size_t len)
1992 {
1993 	int i, avail, new_len;
1994 	unsigned char *ptr;
1995 	struct sk_buff *skb;
1996 
1997 	if (!ab)
1998 		return;
1999 
2000 	BUG_ON(!ab->skb);
2001 	skb = ab->skb;
2002 	avail = skb_tailroom(skb);
2003 	new_len = len<<1;
2004 	if (new_len >= avail) {
2005 		/* Round the buffer request up to the next multiple */
2006 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2007 		avail = audit_expand(ab, new_len);
2008 		if (!avail)
2009 			return;
2010 	}
2011 
2012 	ptr = skb_tail_pointer(skb);
2013 	for (i = 0; i < len; i++)
2014 		ptr = hex_byte_pack_upper(ptr, buf[i]);
2015 	*ptr = 0;
2016 	skb_put(skb, len << 1); /* new string is twice the old string */
2017 }
2018 
2019 /*
2020  * Format a string of no more than slen characters into the audit buffer,
2021  * enclosed in quote marks.
2022  */
2023 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2024 			size_t slen)
2025 {
2026 	int avail, new_len;
2027 	unsigned char *ptr;
2028 	struct sk_buff *skb;
2029 
2030 	if (!ab)
2031 		return;
2032 
2033 	BUG_ON(!ab->skb);
2034 	skb = ab->skb;
2035 	avail = skb_tailroom(skb);
2036 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2037 	if (new_len > avail) {
2038 		avail = audit_expand(ab, new_len);
2039 		if (!avail)
2040 			return;
2041 	}
2042 	ptr = skb_tail_pointer(skb);
2043 	*ptr++ = '"';
2044 	memcpy(ptr, string, slen);
2045 	ptr += slen;
2046 	*ptr++ = '"';
2047 	*ptr = 0;
2048 	skb_put(skb, slen + 2);	/* don't include null terminator */
2049 }
2050 
2051 /**
2052  * audit_string_contains_control - does a string need to be logged in hex
2053  * @string: string to be checked
2054  * @len: max length of the string to check
2055  */
2056 bool audit_string_contains_control(const char *string, size_t len)
2057 {
2058 	const unsigned char *p;
2059 	for (p = string; p < (const unsigned char *)string + len; p++) {
2060 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2061 			return true;
2062 	}
2063 	return false;
2064 }
2065 
2066 /**
2067  * audit_log_n_untrustedstring - log a string that may contain random characters
2068  * @ab: audit_buffer
2069  * @len: length of string (not including trailing null)
2070  * @string: string to be logged
2071  *
2072  * This code will escape a string that is passed to it if the string
2073  * contains a control character, unprintable character, double quote mark,
2074  * or a space. Unescaped strings will start and end with a double quote mark.
2075  * Strings that are escaped are printed in hex (2 digits per char).
2076  *
2077  * The caller specifies the number of characters in the string to log, which may
2078  * or may not be the entire string.
2079  */
2080 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2081 				 size_t len)
2082 {
2083 	if (audit_string_contains_control(string, len))
2084 		audit_log_n_hex(ab, string, len);
2085 	else
2086 		audit_log_n_string(ab, string, len);
2087 }
2088 
2089 /**
2090  * audit_log_untrustedstring - log a string that may contain random characters
2091  * @ab: audit_buffer
2092  * @string: string to be logged
2093  *
2094  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2095  * determine string length.
2096  */
2097 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2098 {
2099 	audit_log_n_untrustedstring(ab, string, strlen(string));
2100 }
2101 
2102 /* This is a helper-function to print the escaped d_path */
2103 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2104 		      const struct path *path)
2105 {
2106 	char *p, *pathname;
2107 
2108 	if (prefix)
2109 		audit_log_format(ab, "%s", prefix);
2110 
2111 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2112 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2113 	if (!pathname) {
2114 		audit_log_format(ab, "\"<no_memory>\"");
2115 		return;
2116 	}
2117 	p = d_path(path, pathname, PATH_MAX+11);
2118 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2119 		/* FIXME: can we save some information here? */
2120 		audit_log_format(ab, "\"<too_long>\"");
2121 	} else
2122 		audit_log_untrustedstring(ab, p);
2123 	kfree(pathname);
2124 }
2125 
2126 void audit_log_session_info(struct audit_buffer *ab)
2127 {
2128 	unsigned int sessionid = audit_get_sessionid(current);
2129 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2130 
2131 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2132 }
2133 
2134 void audit_log_key(struct audit_buffer *ab, char *key)
2135 {
2136 	audit_log_format(ab, " key=");
2137 	if (key)
2138 		audit_log_untrustedstring(ab, key);
2139 	else
2140 		audit_log_format(ab, "(null)");
2141 }
2142 
2143 int audit_log_task_context(struct audit_buffer *ab)
2144 {
2145 	char *ctx = NULL;
2146 	unsigned len;
2147 	int error;
2148 	u32 sid;
2149 
2150 	security_current_getsecid_subj(&sid);
2151 	if (!sid)
2152 		return 0;
2153 
2154 	error = security_secid_to_secctx(sid, &ctx, &len);
2155 	if (error) {
2156 		if (error != -EINVAL)
2157 			goto error_path;
2158 		return 0;
2159 	}
2160 
2161 	audit_log_format(ab, " subj=%s", ctx);
2162 	security_release_secctx(ctx, len);
2163 	return 0;
2164 
2165 error_path:
2166 	audit_panic("error in audit_log_task_context");
2167 	return error;
2168 }
2169 EXPORT_SYMBOL(audit_log_task_context);
2170 
2171 void audit_log_d_path_exe(struct audit_buffer *ab,
2172 			  struct mm_struct *mm)
2173 {
2174 	struct file *exe_file;
2175 
2176 	if (!mm)
2177 		goto out_null;
2178 
2179 	exe_file = get_mm_exe_file(mm);
2180 	if (!exe_file)
2181 		goto out_null;
2182 
2183 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2184 	fput(exe_file);
2185 	return;
2186 out_null:
2187 	audit_log_format(ab, " exe=(null)");
2188 }
2189 
2190 struct tty_struct *audit_get_tty(void)
2191 {
2192 	struct tty_struct *tty = NULL;
2193 	unsigned long flags;
2194 
2195 	spin_lock_irqsave(&current->sighand->siglock, flags);
2196 	if (current->signal)
2197 		tty = tty_kref_get(current->signal->tty);
2198 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2199 	return tty;
2200 }
2201 
2202 void audit_put_tty(struct tty_struct *tty)
2203 {
2204 	tty_kref_put(tty);
2205 }
2206 
2207 void audit_log_task_info(struct audit_buffer *ab)
2208 {
2209 	const struct cred *cred;
2210 	char comm[sizeof(current->comm)];
2211 	struct tty_struct *tty;
2212 
2213 	if (!ab)
2214 		return;
2215 
2216 	cred = current_cred();
2217 	tty = audit_get_tty();
2218 	audit_log_format(ab,
2219 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2220 			 " euid=%u suid=%u fsuid=%u"
2221 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2222 			 task_ppid_nr(current),
2223 			 task_tgid_nr(current),
2224 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2225 			 from_kuid(&init_user_ns, cred->uid),
2226 			 from_kgid(&init_user_ns, cred->gid),
2227 			 from_kuid(&init_user_ns, cred->euid),
2228 			 from_kuid(&init_user_ns, cred->suid),
2229 			 from_kuid(&init_user_ns, cred->fsuid),
2230 			 from_kgid(&init_user_ns, cred->egid),
2231 			 from_kgid(&init_user_ns, cred->sgid),
2232 			 from_kgid(&init_user_ns, cred->fsgid),
2233 			 tty ? tty_name(tty) : "(none)",
2234 			 audit_get_sessionid(current));
2235 	audit_put_tty(tty);
2236 	audit_log_format(ab, " comm=");
2237 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2238 	audit_log_d_path_exe(ab, current->mm);
2239 	audit_log_task_context(ab);
2240 }
2241 EXPORT_SYMBOL(audit_log_task_info);
2242 
2243 /**
2244  * audit_log_path_denied - report a path restriction denial
2245  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2246  * @operation: specific operation name
2247  */
2248 void audit_log_path_denied(int type, const char *operation)
2249 {
2250 	struct audit_buffer *ab;
2251 
2252 	if (!audit_enabled || audit_dummy_context())
2253 		return;
2254 
2255 	/* Generate log with subject, operation, outcome. */
2256 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2257 	if (!ab)
2258 		return;
2259 	audit_log_format(ab, "op=%s", operation);
2260 	audit_log_task_info(ab);
2261 	audit_log_format(ab, " res=0");
2262 	audit_log_end(ab);
2263 }
2264 
2265 /* global counter which is incremented every time something logs in */
2266 static atomic_t session_id = ATOMIC_INIT(0);
2267 
2268 static int audit_set_loginuid_perm(kuid_t loginuid)
2269 {
2270 	/* if we are unset, we don't need privs */
2271 	if (!audit_loginuid_set(current))
2272 		return 0;
2273 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2274 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2275 		return -EPERM;
2276 	/* it is set, you need permission */
2277 	if (!capable(CAP_AUDIT_CONTROL))
2278 		return -EPERM;
2279 	/* reject if this is not an unset and we don't allow that */
2280 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2281 				 && uid_valid(loginuid))
2282 		return -EPERM;
2283 	return 0;
2284 }
2285 
2286 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2287 				   unsigned int oldsessionid,
2288 				   unsigned int sessionid, int rc)
2289 {
2290 	struct audit_buffer *ab;
2291 	uid_t uid, oldloginuid, loginuid;
2292 	struct tty_struct *tty;
2293 
2294 	if (!audit_enabled)
2295 		return;
2296 
2297 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2298 	if (!ab)
2299 		return;
2300 
2301 	uid = from_kuid(&init_user_ns, task_uid(current));
2302 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2303 	loginuid = from_kuid(&init_user_ns, kloginuid);
2304 	tty = audit_get_tty();
2305 
2306 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2307 	audit_log_task_context(ab);
2308 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2309 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2310 			 oldsessionid, sessionid, !rc);
2311 	audit_put_tty(tty);
2312 	audit_log_end(ab);
2313 }
2314 
2315 /**
2316  * audit_set_loginuid - set current task's loginuid
2317  * @loginuid: loginuid value
2318  *
2319  * Returns 0.
2320  *
2321  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2322  */
2323 int audit_set_loginuid(kuid_t loginuid)
2324 {
2325 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2326 	kuid_t oldloginuid;
2327 	int rc;
2328 
2329 	oldloginuid = audit_get_loginuid(current);
2330 	oldsessionid = audit_get_sessionid(current);
2331 
2332 	rc = audit_set_loginuid_perm(loginuid);
2333 	if (rc)
2334 		goto out;
2335 
2336 	/* are we setting or clearing? */
2337 	if (uid_valid(loginuid)) {
2338 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2339 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2340 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2341 	}
2342 
2343 	current->sessionid = sessionid;
2344 	current->loginuid = loginuid;
2345 out:
2346 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2347 	return rc;
2348 }
2349 
2350 /**
2351  * audit_signal_info - record signal info for shutting down audit subsystem
2352  * @sig: signal value
2353  * @t: task being signaled
2354  *
2355  * If the audit subsystem is being terminated, record the task (pid)
2356  * and uid that is doing that.
2357  */
2358 int audit_signal_info(int sig, struct task_struct *t)
2359 {
2360 	kuid_t uid = current_uid(), auid;
2361 
2362 	if (auditd_test_task(t) &&
2363 	    (sig == SIGTERM || sig == SIGHUP ||
2364 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2365 		audit_sig_pid = task_tgid_nr(current);
2366 		auid = audit_get_loginuid(current);
2367 		if (uid_valid(auid))
2368 			audit_sig_uid = auid;
2369 		else
2370 			audit_sig_uid = uid;
2371 		security_current_getsecid_subj(&audit_sig_sid);
2372 	}
2373 
2374 	return audit_signal_info_syscall(t);
2375 }
2376 
2377 /**
2378  * audit_log_end - end one audit record
2379  * @ab: the audit_buffer
2380  *
2381  * We can not do a netlink send inside an irq context because it blocks (last
2382  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2383  * queue and a kthread is scheduled to remove them from the queue outside the
2384  * irq context.  May be called in any context.
2385  */
2386 void audit_log_end(struct audit_buffer *ab)
2387 {
2388 	struct sk_buff *skb;
2389 	struct nlmsghdr *nlh;
2390 
2391 	if (!ab)
2392 		return;
2393 
2394 	if (audit_rate_check()) {
2395 		skb = ab->skb;
2396 		ab->skb = NULL;
2397 
2398 		/* setup the netlink header, see the comments in
2399 		 * kauditd_send_multicast_skb() for length quirks */
2400 		nlh = nlmsg_hdr(skb);
2401 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2402 
2403 		/* queue the netlink packet and poke the kauditd thread */
2404 		skb_queue_tail(&audit_queue, skb);
2405 		wake_up_interruptible(&kauditd_wait);
2406 	} else
2407 		audit_log_lost("rate limit exceeded");
2408 
2409 	audit_buffer_free(ab);
2410 }
2411 
2412 /**
2413  * audit_log - Log an audit record
2414  * @ctx: audit context
2415  * @gfp_mask: type of allocation
2416  * @type: audit message type
2417  * @fmt: format string to use
2418  * @...: variable parameters matching the format string
2419  *
2420  * This is a convenience function that calls audit_log_start,
2421  * audit_log_vformat, and audit_log_end.  It may be called
2422  * in any context.
2423  */
2424 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2425 	       const char *fmt, ...)
2426 {
2427 	struct audit_buffer *ab;
2428 	va_list args;
2429 
2430 	ab = audit_log_start(ctx, gfp_mask, type);
2431 	if (ab) {
2432 		va_start(args, fmt);
2433 		audit_log_vformat(ab, fmt, args);
2434 		va_end(args);
2435 		audit_log_end(ab);
2436 	}
2437 }
2438 
2439 EXPORT_SYMBOL(audit_log_start);
2440 EXPORT_SYMBOL(audit_log_end);
2441 EXPORT_SYMBOL(audit_log_format);
2442 EXPORT_SYMBOL(audit_log);
2443