xref: /openbmc/linux/kernel/audit.c (revision 7dfb71030f7636a0d65200158113c37764552f93)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with SELinux.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51 
52 #include <linux/audit.h>
53 
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/selinux.h>
59 #include <linux/inotify.h>
60 #include <linux/freezer.h>
61 
62 #include "audit.h"
63 
64 /* No auditing will take place until audit_initialized != 0.
65  * (Initialization happens after skb_init is called.) */
66 static int	audit_initialized;
67 
68 /* No syscall auditing will take place unless audit_enabled != 0. */
69 int		audit_enabled;
70 
71 /* Default state when kernel boots without any parameters. */
72 static int	audit_default;
73 
74 /* If auditing cannot proceed, audit_failure selects what happens. */
75 static int	audit_failure = AUDIT_FAIL_PRINTK;
76 
77 /* If audit records are to be written to the netlink socket, audit_pid
78  * contains the (non-zero) pid. */
79 int		audit_pid;
80 
81 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
82  * to that number per second.  This prevents DoS attacks, but results in
83  * audit records being dropped. */
84 static int	audit_rate_limit;
85 
86 /* Number of outstanding audit_buffers allowed. */
87 static int	audit_backlog_limit = 64;
88 static int	audit_backlog_wait_time = 60 * HZ;
89 static int	audit_backlog_wait_overflow = 0;
90 
91 /* The identity of the user shutting down the audit system. */
92 uid_t		audit_sig_uid = -1;
93 pid_t		audit_sig_pid = -1;
94 u32		audit_sig_sid = 0;
95 
96 /* Records can be lost in several ways:
97    0) [suppressed in audit_alloc]
98    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
99    2) out of memory in audit_log_move [alloc_skb]
100    3) suppressed due to audit_rate_limit
101    4) suppressed due to audit_backlog_limit
102 */
103 static atomic_t    audit_lost = ATOMIC_INIT(0);
104 
105 /* The netlink socket. */
106 static struct sock *audit_sock;
107 
108 /* Inotify handle. */
109 struct inotify_handle *audit_ih;
110 
111 /* Hash for inode-based rules */
112 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
113 
114 /* The audit_freelist is a list of pre-allocated audit buffers (if more
115  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
116  * being placed on the freelist). */
117 static DEFINE_SPINLOCK(audit_freelist_lock);
118 static int	   audit_freelist_count;
119 static LIST_HEAD(audit_freelist);
120 
121 static struct sk_buff_head audit_skb_queue;
122 static struct task_struct *kauditd_task;
123 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
124 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
125 
126 /* Serialize requests from userspace. */
127 static DEFINE_MUTEX(audit_cmd_mutex);
128 
129 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
130  * audit records.  Since printk uses a 1024 byte buffer, this buffer
131  * should be at least that large. */
132 #define AUDIT_BUFSIZ 1024
133 
134 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
135  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
136 #define AUDIT_MAXFREE  (2*NR_CPUS)
137 
138 /* The audit_buffer is used when formatting an audit record.  The caller
139  * locks briefly to get the record off the freelist or to allocate the
140  * buffer, and locks briefly to send the buffer to the netlink layer or
141  * to place it on a transmit queue.  Multiple audit_buffers can be in
142  * use simultaneously. */
143 struct audit_buffer {
144 	struct list_head     list;
145 	struct sk_buff       *skb;	/* formatted skb ready to send */
146 	struct audit_context *ctx;	/* NULL or associated context */
147 	gfp_t		     gfp_mask;
148 };
149 
150 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
151 {
152 	struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
153 	nlh->nlmsg_pid = pid;
154 }
155 
156 void audit_panic(const char *message)
157 {
158 	switch (audit_failure)
159 	{
160 	case AUDIT_FAIL_SILENT:
161 		break;
162 	case AUDIT_FAIL_PRINTK:
163 		printk(KERN_ERR "audit: %s\n", message);
164 		break;
165 	case AUDIT_FAIL_PANIC:
166 		panic("audit: %s\n", message);
167 		break;
168 	}
169 }
170 
171 static inline int audit_rate_check(void)
172 {
173 	static unsigned long	last_check = 0;
174 	static int		messages   = 0;
175 	static DEFINE_SPINLOCK(lock);
176 	unsigned long		flags;
177 	unsigned long		now;
178 	unsigned long		elapsed;
179 	int			retval	   = 0;
180 
181 	if (!audit_rate_limit) return 1;
182 
183 	spin_lock_irqsave(&lock, flags);
184 	if (++messages < audit_rate_limit) {
185 		retval = 1;
186 	} else {
187 		now     = jiffies;
188 		elapsed = now - last_check;
189 		if (elapsed > HZ) {
190 			last_check = now;
191 			messages   = 0;
192 			retval     = 1;
193 		}
194 	}
195 	spin_unlock_irqrestore(&lock, flags);
196 
197 	return retval;
198 }
199 
200 /**
201  * audit_log_lost - conditionally log lost audit message event
202  * @message: the message stating reason for lost audit message
203  *
204  * Emit at least 1 message per second, even if audit_rate_check is
205  * throttling.
206  * Always increment the lost messages counter.
207 */
208 void audit_log_lost(const char *message)
209 {
210 	static unsigned long	last_msg = 0;
211 	static DEFINE_SPINLOCK(lock);
212 	unsigned long		flags;
213 	unsigned long		now;
214 	int			print;
215 
216 	atomic_inc(&audit_lost);
217 
218 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
219 
220 	if (!print) {
221 		spin_lock_irqsave(&lock, flags);
222 		now = jiffies;
223 		if (now - last_msg > HZ) {
224 			print = 1;
225 			last_msg = now;
226 		}
227 		spin_unlock_irqrestore(&lock, flags);
228 	}
229 
230 	if (print) {
231 		printk(KERN_WARNING
232 		       "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
233 		       atomic_read(&audit_lost),
234 		       audit_rate_limit,
235 		       audit_backlog_limit);
236 		audit_panic(message);
237 	}
238 }
239 
240 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid)
241 {
242 	int old	= audit_rate_limit;
243 
244 	if (sid) {
245 		char *ctx = NULL;
246 		u32 len;
247 		int rc;
248 		if ((rc = selinux_sid_to_string(sid, &ctx, &len)))
249 			return rc;
250 		else
251 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
252 				"audit_rate_limit=%d old=%d by auid=%u subj=%s",
253 				limit, old, loginuid, ctx);
254 		kfree(ctx);
255 	} else
256 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
257 			"audit_rate_limit=%d old=%d by auid=%u",
258 			limit, old, loginuid);
259 	audit_rate_limit = limit;
260 	return 0;
261 }
262 
263 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid)
264 {
265 	int old	= audit_backlog_limit;
266 
267 	if (sid) {
268 		char *ctx = NULL;
269 		u32 len;
270 		int rc;
271 		if ((rc = selinux_sid_to_string(sid, &ctx, &len)))
272 			return rc;
273 		else
274 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
275 			    "audit_backlog_limit=%d old=%d by auid=%u subj=%s",
276 				limit, old, loginuid, ctx);
277 		kfree(ctx);
278 	} else
279 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
280 			"audit_backlog_limit=%d old=%d by auid=%u",
281 			limit, old, loginuid);
282 	audit_backlog_limit = limit;
283 	return 0;
284 }
285 
286 static int audit_set_enabled(int state, uid_t loginuid, u32 sid)
287 {
288 	int old = audit_enabled;
289 
290 	if (state != 0 && state != 1)
291 		return -EINVAL;
292 
293 	if (sid) {
294 		char *ctx = NULL;
295 		u32 len;
296 		int rc;
297 		if ((rc = selinux_sid_to_string(sid, &ctx, &len)))
298 			return rc;
299 		else
300 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
301 				"audit_enabled=%d old=%d by auid=%u subj=%s",
302 				state, old, loginuid, ctx);
303 		kfree(ctx);
304 	} else
305 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
306 			"audit_enabled=%d old=%d by auid=%u",
307 			state, old, loginuid);
308 	audit_enabled = state;
309 	return 0;
310 }
311 
312 static int audit_set_failure(int state, uid_t loginuid, u32 sid)
313 {
314 	int old = audit_failure;
315 
316 	if (state != AUDIT_FAIL_SILENT
317 	    && state != AUDIT_FAIL_PRINTK
318 	    && state != AUDIT_FAIL_PANIC)
319 		return -EINVAL;
320 
321 	if (sid) {
322 		char *ctx = NULL;
323 		u32 len;
324 		int rc;
325 		if ((rc = selinux_sid_to_string(sid, &ctx, &len)))
326 			return rc;
327 		else
328 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
329 				"audit_failure=%d old=%d by auid=%u subj=%s",
330 				state, old, loginuid, ctx);
331 		kfree(ctx);
332 	} else
333 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
334 			"audit_failure=%d old=%d by auid=%u",
335 			state, old, loginuid);
336 	audit_failure = state;
337 	return 0;
338 }
339 
340 static int kauditd_thread(void *dummy)
341 {
342 	struct sk_buff *skb;
343 
344 	while (!kthread_should_stop()) {
345 		skb = skb_dequeue(&audit_skb_queue);
346 		wake_up(&audit_backlog_wait);
347 		if (skb) {
348 			if (audit_pid) {
349 				int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
350 				if (err < 0) {
351 					BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
352 					printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
353 					audit_pid = 0;
354 				}
355 			} else {
356 				printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
357 				kfree_skb(skb);
358 			}
359 		} else {
360 			DECLARE_WAITQUEUE(wait, current);
361 			set_current_state(TASK_INTERRUPTIBLE);
362 			add_wait_queue(&kauditd_wait, &wait);
363 
364 			if (!skb_queue_len(&audit_skb_queue)) {
365 				try_to_freeze();
366 				schedule();
367 			}
368 
369 			__set_current_state(TASK_RUNNING);
370 			remove_wait_queue(&kauditd_wait, &wait);
371 		}
372 	}
373 	return 0;
374 }
375 
376 int audit_send_list(void *_dest)
377 {
378 	struct audit_netlink_list *dest = _dest;
379 	int pid = dest->pid;
380 	struct sk_buff *skb;
381 
382 	/* wait for parent to finish and send an ACK */
383 	mutex_lock(&audit_cmd_mutex);
384 	mutex_unlock(&audit_cmd_mutex);
385 
386 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
387 		netlink_unicast(audit_sock, skb, pid, 0);
388 
389 	kfree(dest);
390 
391 	return 0;
392 }
393 
394 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
395 				 int multi, void *payload, int size)
396 {
397 	struct sk_buff	*skb;
398 	struct nlmsghdr	*nlh;
399 	int		len = NLMSG_SPACE(size);
400 	void		*data;
401 	int		flags = multi ? NLM_F_MULTI : 0;
402 	int		t     = done  ? NLMSG_DONE  : type;
403 
404 	skb = alloc_skb(len, GFP_KERNEL);
405 	if (!skb)
406 		return NULL;
407 
408 	nlh		 = NLMSG_PUT(skb, pid, seq, t, size);
409 	nlh->nlmsg_flags = flags;
410 	data		 = NLMSG_DATA(nlh);
411 	memcpy(data, payload, size);
412 	return skb;
413 
414 nlmsg_failure:			/* Used by NLMSG_PUT */
415 	if (skb)
416 		kfree_skb(skb);
417 	return NULL;
418 }
419 
420 /**
421  * audit_send_reply - send an audit reply message via netlink
422  * @pid: process id to send reply to
423  * @seq: sequence number
424  * @type: audit message type
425  * @done: done (last) flag
426  * @multi: multi-part message flag
427  * @payload: payload data
428  * @size: payload size
429  *
430  * Allocates an skb, builds the netlink message, and sends it to the pid.
431  * No failure notifications.
432  */
433 void audit_send_reply(int pid, int seq, int type, int done, int multi,
434 		      void *payload, int size)
435 {
436 	struct sk_buff	*skb;
437 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
438 	if (!skb)
439 		return;
440 	/* Ignore failure. It'll only happen if the sender goes away,
441 	   because our timeout is set to infinite. */
442 	netlink_unicast(audit_sock, skb, pid, 0);
443 	return;
444 }
445 
446 /*
447  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
448  * control messages.
449  */
450 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
451 {
452 	int err = 0;
453 
454 	switch (msg_type) {
455 	case AUDIT_GET:
456 	case AUDIT_LIST:
457 	case AUDIT_LIST_RULES:
458 	case AUDIT_SET:
459 	case AUDIT_ADD:
460 	case AUDIT_ADD_RULE:
461 	case AUDIT_DEL:
462 	case AUDIT_DEL_RULE:
463 	case AUDIT_SIGNAL_INFO:
464 		if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
465 			err = -EPERM;
466 		break;
467 	case AUDIT_USER:
468 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
469 	case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
470 		if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
471 			err = -EPERM;
472 		break;
473 	default:  /* bad msg */
474 		err = -EINVAL;
475 	}
476 
477 	return err;
478 }
479 
480 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
481 {
482 	u32			uid, pid, seq, sid;
483 	void			*data;
484 	struct audit_status	*status_get, status_set;
485 	int			err;
486 	struct audit_buffer	*ab;
487 	u16			msg_type = nlh->nlmsg_type;
488 	uid_t			loginuid; /* loginuid of sender */
489 	struct audit_sig_info   *sig_data;
490 	char			*ctx;
491 	u32			len;
492 
493 	err = audit_netlink_ok(skb, msg_type);
494 	if (err)
495 		return err;
496 
497 	/* As soon as there's any sign of userspace auditd,
498 	 * start kauditd to talk to it */
499 	if (!kauditd_task)
500 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
501 	if (IS_ERR(kauditd_task)) {
502 		err = PTR_ERR(kauditd_task);
503 		kauditd_task = NULL;
504 		return err;
505 	}
506 
507 	pid  = NETLINK_CREDS(skb)->pid;
508 	uid  = NETLINK_CREDS(skb)->uid;
509 	loginuid = NETLINK_CB(skb).loginuid;
510 	sid  = NETLINK_CB(skb).sid;
511 	seq  = nlh->nlmsg_seq;
512 	data = NLMSG_DATA(nlh);
513 
514 	switch (msg_type) {
515 	case AUDIT_GET:
516 		status_set.enabled	 = audit_enabled;
517 		status_set.failure	 = audit_failure;
518 		status_set.pid		 = audit_pid;
519 		status_set.rate_limit	 = audit_rate_limit;
520 		status_set.backlog_limit = audit_backlog_limit;
521 		status_set.lost		 = atomic_read(&audit_lost);
522 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
523 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
524 				 &status_set, sizeof(status_set));
525 		break;
526 	case AUDIT_SET:
527 		if (nlh->nlmsg_len < sizeof(struct audit_status))
528 			return -EINVAL;
529 		status_get   = (struct audit_status *)data;
530 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
531 			err = audit_set_enabled(status_get->enabled,
532 							loginuid, sid);
533 			if (err < 0) return err;
534 		}
535 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
536 			err = audit_set_failure(status_get->failure,
537 							 loginuid, sid);
538 			if (err < 0) return err;
539 		}
540 		if (status_get->mask & AUDIT_STATUS_PID) {
541 			int old   = audit_pid;
542 			if (sid) {
543 				if ((err = selinux_sid_to_string(
544 						sid, &ctx, &len)))
545 					return err;
546 				else
547 					audit_log(NULL, GFP_KERNEL,
548 						AUDIT_CONFIG_CHANGE,
549 						"audit_pid=%d old=%d by auid=%u subj=%s",
550 						status_get->pid, old,
551 						loginuid, ctx);
552 				kfree(ctx);
553 			} else
554 				audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
555 					"audit_pid=%d old=%d by auid=%u",
556 					  status_get->pid, old, loginuid);
557 			audit_pid = status_get->pid;
558 		}
559 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
560 			err = audit_set_rate_limit(status_get->rate_limit,
561 							 loginuid, sid);
562 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
563 			err = audit_set_backlog_limit(status_get->backlog_limit,
564 							loginuid, sid);
565 		break;
566 	case AUDIT_USER:
567 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
568 	case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
569 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
570 			return 0;
571 
572 		err = audit_filter_user(&NETLINK_CB(skb), msg_type);
573 		if (err == 1) {
574 			err = 0;
575 			ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
576 			if (ab) {
577 				audit_log_format(ab,
578 						 "user pid=%d uid=%u auid=%u",
579 						 pid, uid, loginuid);
580 				if (sid) {
581 					if (selinux_sid_to_string(
582 							sid, &ctx, &len)) {
583 						audit_log_format(ab,
584 							" ssid=%u", sid);
585 						/* Maybe call audit_panic? */
586 					} else
587 						audit_log_format(ab,
588 							" subj=%s", ctx);
589 					kfree(ctx);
590 				}
591 				audit_log_format(ab, " msg='%.1024s'",
592 					 (char *)data);
593 				audit_set_pid(ab, pid);
594 				audit_log_end(ab);
595 			}
596 		}
597 		break;
598 	case AUDIT_ADD:
599 	case AUDIT_DEL:
600 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
601 			return -EINVAL;
602 		/* fallthrough */
603 	case AUDIT_LIST:
604 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
605 					   uid, seq, data, nlmsg_len(nlh),
606 					   loginuid, sid);
607 		break;
608 	case AUDIT_ADD_RULE:
609 	case AUDIT_DEL_RULE:
610 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
611 			return -EINVAL;
612 		/* fallthrough */
613 	case AUDIT_LIST_RULES:
614 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
615 					   uid, seq, data, nlmsg_len(nlh),
616 					   loginuid, sid);
617 		break;
618 	case AUDIT_SIGNAL_INFO:
619 		err = selinux_sid_to_string(audit_sig_sid, &ctx, &len);
620 		if (err)
621 			return err;
622 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
623 		if (!sig_data) {
624 			kfree(ctx);
625 			return -ENOMEM;
626 		}
627 		sig_data->uid = audit_sig_uid;
628 		sig_data->pid = audit_sig_pid;
629 		memcpy(sig_data->ctx, ctx, len);
630 		kfree(ctx);
631 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
632 				0, 0, sig_data, sizeof(*sig_data) + len);
633 		kfree(sig_data);
634 		break;
635 	default:
636 		err = -EINVAL;
637 		break;
638 	}
639 
640 	return err < 0 ? err : 0;
641 }
642 
643 /*
644  * Get message from skb (based on rtnetlink_rcv_skb).  Each message is
645  * processed by audit_receive_msg.  Malformed skbs with wrong length are
646  * discarded silently.
647  */
648 static void audit_receive_skb(struct sk_buff *skb)
649 {
650 	int		err;
651 	struct nlmsghdr	*nlh;
652 	u32		rlen;
653 
654 	while (skb->len >= NLMSG_SPACE(0)) {
655 		nlh = (struct nlmsghdr *)skb->data;
656 		if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
657 			return;
658 		rlen = NLMSG_ALIGN(nlh->nlmsg_len);
659 		if (rlen > skb->len)
660 			rlen = skb->len;
661 		if ((err = audit_receive_msg(skb, nlh))) {
662 			netlink_ack(skb, nlh, err);
663 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
664 			netlink_ack(skb, nlh, 0);
665 		skb_pull(skb, rlen);
666 	}
667 }
668 
669 /* Receive messages from netlink socket. */
670 static void audit_receive(struct sock *sk, int length)
671 {
672 	struct sk_buff  *skb;
673 	unsigned int qlen;
674 
675 	mutex_lock(&audit_cmd_mutex);
676 
677 	for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
678 		skb = skb_dequeue(&sk->sk_receive_queue);
679 		audit_receive_skb(skb);
680 		kfree_skb(skb);
681 	}
682 	mutex_unlock(&audit_cmd_mutex);
683 }
684 
685 #ifdef CONFIG_AUDITSYSCALL
686 static const struct inotify_operations audit_inotify_ops = {
687 	.handle_event	= audit_handle_ievent,
688 	.destroy_watch	= audit_free_parent,
689 };
690 #endif
691 
692 /* Initialize audit support at boot time. */
693 static int __init audit_init(void)
694 {
695 	int i;
696 
697 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
698 	       audit_default ? "enabled" : "disabled");
699 	audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
700 					   THIS_MODULE);
701 	if (!audit_sock)
702 		audit_panic("cannot initialize netlink socket");
703 	else
704 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
705 
706 	skb_queue_head_init(&audit_skb_queue);
707 	audit_initialized = 1;
708 	audit_enabled = audit_default;
709 
710 	/* Register the callback with selinux.  This callback will be invoked
711 	 * when a new policy is loaded. */
712 	selinux_audit_set_callback(&selinux_audit_rule_update);
713 
714 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
715 
716 #ifdef CONFIG_AUDITSYSCALL
717 	audit_ih = inotify_init(&audit_inotify_ops);
718 	if (IS_ERR(audit_ih))
719 		audit_panic("cannot initialize inotify handle");
720 #endif
721 
722 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
723 		INIT_LIST_HEAD(&audit_inode_hash[i]);
724 
725 	return 0;
726 }
727 __initcall(audit_init);
728 
729 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
730 static int __init audit_enable(char *str)
731 {
732 	audit_default = !!simple_strtol(str, NULL, 0);
733 	printk(KERN_INFO "audit: %s%s\n",
734 	       audit_default ? "enabled" : "disabled",
735 	       audit_initialized ? "" : " (after initialization)");
736 	if (audit_initialized)
737 		audit_enabled = audit_default;
738 	return 1;
739 }
740 
741 __setup("audit=", audit_enable);
742 
743 static void audit_buffer_free(struct audit_buffer *ab)
744 {
745 	unsigned long flags;
746 
747 	if (!ab)
748 		return;
749 
750 	if (ab->skb)
751 		kfree_skb(ab->skb);
752 
753 	spin_lock_irqsave(&audit_freelist_lock, flags);
754 	if (audit_freelist_count > AUDIT_MAXFREE)
755 		kfree(ab);
756 	else {
757 		audit_freelist_count++;
758 		list_add(&ab->list, &audit_freelist);
759 	}
760 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
761 }
762 
763 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
764 						gfp_t gfp_mask, int type)
765 {
766 	unsigned long flags;
767 	struct audit_buffer *ab = NULL;
768 	struct nlmsghdr *nlh;
769 
770 	spin_lock_irqsave(&audit_freelist_lock, flags);
771 	if (!list_empty(&audit_freelist)) {
772 		ab = list_entry(audit_freelist.next,
773 				struct audit_buffer, list);
774 		list_del(&ab->list);
775 		--audit_freelist_count;
776 	}
777 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
778 
779 	if (!ab) {
780 		ab = kmalloc(sizeof(*ab), gfp_mask);
781 		if (!ab)
782 			goto err;
783 	}
784 
785 	ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
786 	if (!ab->skb)
787 		goto err;
788 
789 	ab->ctx = ctx;
790 	ab->gfp_mask = gfp_mask;
791 	nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
792 	nlh->nlmsg_type = type;
793 	nlh->nlmsg_flags = 0;
794 	nlh->nlmsg_pid = 0;
795 	nlh->nlmsg_seq = 0;
796 	return ab;
797 err:
798 	audit_buffer_free(ab);
799 	return NULL;
800 }
801 
802 /**
803  * audit_serial - compute a serial number for the audit record
804  *
805  * Compute a serial number for the audit record.  Audit records are
806  * written to user-space as soon as they are generated, so a complete
807  * audit record may be written in several pieces.  The timestamp of the
808  * record and this serial number are used by the user-space tools to
809  * determine which pieces belong to the same audit record.  The
810  * (timestamp,serial) tuple is unique for each syscall and is live from
811  * syscall entry to syscall exit.
812  *
813  * NOTE: Another possibility is to store the formatted records off the
814  * audit context (for those records that have a context), and emit them
815  * all at syscall exit.  However, this could delay the reporting of
816  * significant errors until syscall exit (or never, if the system
817  * halts).
818  */
819 unsigned int audit_serial(void)
820 {
821 	static DEFINE_SPINLOCK(serial_lock);
822 	static unsigned int serial = 0;
823 
824 	unsigned long flags;
825 	unsigned int ret;
826 
827 	spin_lock_irqsave(&serial_lock, flags);
828 	do {
829 		ret = ++serial;
830 	} while (unlikely(!ret));
831 	spin_unlock_irqrestore(&serial_lock, flags);
832 
833 	return ret;
834 }
835 
836 static inline void audit_get_stamp(struct audit_context *ctx,
837 				   struct timespec *t, unsigned int *serial)
838 {
839 	if (ctx)
840 		auditsc_get_stamp(ctx, t, serial);
841 	else {
842 		*t = CURRENT_TIME;
843 		*serial = audit_serial();
844 	}
845 }
846 
847 /* Obtain an audit buffer.  This routine does locking to obtain the
848  * audit buffer, but then no locking is required for calls to
849  * audit_log_*format.  If the tsk is a task that is currently in a
850  * syscall, then the syscall is marked as auditable and an audit record
851  * will be written at syscall exit.  If there is no associated task, tsk
852  * should be NULL. */
853 
854 /**
855  * audit_log_start - obtain an audit buffer
856  * @ctx: audit_context (may be NULL)
857  * @gfp_mask: type of allocation
858  * @type: audit message type
859  *
860  * Returns audit_buffer pointer on success or NULL on error.
861  *
862  * Obtain an audit buffer.  This routine does locking to obtain the
863  * audit buffer, but then no locking is required for calls to
864  * audit_log_*format.  If the task (ctx) is a task that is currently in a
865  * syscall, then the syscall is marked as auditable and an audit record
866  * will be written at syscall exit.  If there is no associated task, then
867  * task context (ctx) should be NULL.
868  */
869 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
870 				     int type)
871 {
872 	struct audit_buffer	*ab	= NULL;
873 	struct timespec		t;
874 	unsigned int		serial;
875 	int reserve;
876 	unsigned long timeout_start = jiffies;
877 
878 	if (!audit_initialized)
879 		return NULL;
880 
881 	if (unlikely(audit_filter_type(type)))
882 		return NULL;
883 
884 	if (gfp_mask & __GFP_WAIT)
885 		reserve = 0;
886 	else
887 		reserve = 5; /* Allow atomic callers to go up to five
888 				entries over the normal backlog limit */
889 
890 	while (audit_backlog_limit
891 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
892 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
893 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
894 
895 			/* Wait for auditd to drain the queue a little */
896 			DECLARE_WAITQUEUE(wait, current);
897 			set_current_state(TASK_INTERRUPTIBLE);
898 			add_wait_queue(&audit_backlog_wait, &wait);
899 
900 			if (audit_backlog_limit &&
901 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
902 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
903 
904 			__set_current_state(TASK_RUNNING);
905 			remove_wait_queue(&audit_backlog_wait, &wait);
906 			continue;
907 		}
908 		if (audit_rate_check())
909 			printk(KERN_WARNING
910 			       "audit: audit_backlog=%d > "
911 			       "audit_backlog_limit=%d\n",
912 			       skb_queue_len(&audit_skb_queue),
913 			       audit_backlog_limit);
914 		audit_log_lost("backlog limit exceeded");
915 		audit_backlog_wait_time = audit_backlog_wait_overflow;
916 		wake_up(&audit_backlog_wait);
917 		return NULL;
918 	}
919 
920 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
921 	if (!ab) {
922 		audit_log_lost("out of memory in audit_log_start");
923 		return NULL;
924 	}
925 
926 	audit_get_stamp(ab->ctx, &t, &serial);
927 
928 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
929 			 t.tv_sec, t.tv_nsec/1000000, serial);
930 	return ab;
931 }
932 
933 /**
934  * audit_expand - expand skb in the audit buffer
935  * @ab: audit_buffer
936  * @extra: space to add at tail of the skb
937  *
938  * Returns 0 (no space) on failed expansion, or available space if
939  * successful.
940  */
941 static inline int audit_expand(struct audit_buffer *ab, int extra)
942 {
943 	struct sk_buff *skb = ab->skb;
944 	int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
945 				   ab->gfp_mask);
946 	if (ret < 0) {
947 		audit_log_lost("out of memory in audit_expand");
948 		return 0;
949 	}
950 	return skb_tailroom(skb);
951 }
952 
953 /*
954  * Format an audit message into the audit buffer.  If there isn't enough
955  * room in the audit buffer, more room will be allocated and vsnprint
956  * will be called a second time.  Currently, we assume that a printk
957  * can't format message larger than 1024 bytes, so we don't either.
958  */
959 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
960 			      va_list args)
961 {
962 	int len, avail;
963 	struct sk_buff *skb;
964 	va_list args2;
965 
966 	if (!ab)
967 		return;
968 
969 	BUG_ON(!ab->skb);
970 	skb = ab->skb;
971 	avail = skb_tailroom(skb);
972 	if (avail == 0) {
973 		avail = audit_expand(ab, AUDIT_BUFSIZ);
974 		if (!avail)
975 			goto out;
976 	}
977 	va_copy(args2, args);
978 	len = vsnprintf(skb->tail, avail, fmt, args);
979 	if (len >= avail) {
980 		/* The printk buffer is 1024 bytes long, so if we get
981 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
982 		 * log everything that printk could have logged. */
983 		avail = audit_expand(ab,
984 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
985 		if (!avail)
986 			goto out;
987 		len = vsnprintf(skb->tail, avail, fmt, args2);
988 	}
989 	if (len > 0)
990 		skb_put(skb, len);
991 out:
992 	return;
993 }
994 
995 /**
996  * audit_log_format - format a message into the audit buffer.
997  * @ab: audit_buffer
998  * @fmt: format string
999  * @...: optional parameters matching @fmt string
1000  *
1001  * All the work is done in audit_log_vformat.
1002  */
1003 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1004 {
1005 	va_list args;
1006 
1007 	if (!ab)
1008 		return;
1009 	va_start(args, fmt);
1010 	audit_log_vformat(ab, fmt, args);
1011 	va_end(args);
1012 }
1013 
1014 /**
1015  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1016  * @ab: the audit_buffer
1017  * @buf: buffer to convert to hex
1018  * @len: length of @buf to be converted
1019  *
1020  * No return value; failure to expand is silently ignored.
1021  *
1022  * This function will take the passed buf and convert it into a string of
1023  * ascii hex digits. The new string is placed onto the skb.
1024  */
1025 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
1026 		size_t len)
1027 {
1028 	int i, avail, new_len;
1029 	unsigned char *ptr;
1030 	struct sk_buff *skb;
1031 	static const unsigned char *hex = "0123456789ABCDEF";
1032 
1033 	if (!ab)
1034 		return;
1035 
1036 	BUG_ON(!ab->skb);
1037 	skb = ab->skb;
1038 	avail = skb_tailroom(skb);
1039 	new_len = len<<1;
1040 	if (new_len >= avail) {
1041 		/* Round the buffer request up to the next multiple */
1042 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1043 		avail = audit_expand(ab, new_len);
1044 		if (!avail)
1045 			return;
1046 	}
1047 
1048 	ptr = skb->tail;
1049 	for (i=0; i<len; i++) {
1050 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1051 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1052 	}
1053 	*ptr = 0;
1054 	skb_put(skb, len << 1); /* new string is twice the old string */
1055 }
1056 
1057 /*
1058  * Format a string of no more than slen characters into the audit buffer,
1059  * enclosed in quote marks.
1060  */
1061 static void audit_log_n_string(struct audit_buffer *ab, size_t slen,
1062 			       const char *string)
1063 {
1064 	int avail, new_len;
1065 	unsigned char *ptr;
1066 	struct sk_buff *skb;
1067 
1068 	if (!ab)
1069 		return;
1070 
1071 	BUG_ON(!ab->skb);
1072 	skb = ab->skb;
1073 	avail = skb_tailroom(skb);
1074 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1075 	if (new_len > avail) {
1076 		avail = audit_expand(ab, new_len);
1077 		if (!avail)
1078 			return;
1079 	}
1080 	ptr = skb->tail;
1081 	*ptr++ = '"';
1082 	memcpy(ptr, string, slen);
1083 	ptr += slen;
1084 	*ptr++ = '"';
1085 	*ptr = 0;
1086 	skb_put(skb, slen + 2);	/* don't include null terminator */
1087 }
1088 
1089 /**
1090  * audit_log_n_unstrustedstring - log a string that may contain random characters
1091  * @ab: audit_buffer
1092  * @len: lenth of string (not including trailing null)
1093  * @string: string to be logged
1094  *
1095  * This code will escape a string that is passed to it if the string
1096  * contains a control character, unprintable character, double quote mark,
1097  * or a space. Unescaped strings will start and end with a double quote mark.
1098  * Strings that are escaped are printed in hex (2 digits per char).
1099  *
1100  * The caller specifies the number of characters in the string to log, which may
1101  * or may not be the entire string.
1102  */
1103 const char *audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len,
1104 					const char *string)
1105 {
1106 	const unsigned char *p = string;
1107 
1108 	while (*p) {
1109 		if (*p == '"' || *p < 0x21 || *p > 0x7f) {
1110 			audit_log_hex(ab, string, len);
1111 			return string + len + 1;
1112 		}
1113 		p++;
1114 	}
1115 	audit_log_n_string(ab, len, string);
1116 	return p + 1;
1117 }
1118 
1119 /**
1120  * audit_log_unstrustedstring - log a string that may contain random characters
1121  * @ab: audit_buffer
1122  * @string: string to be logged
1123  *
1124  * Same as audit_log_n_unstrustedstring(), except that strlen is used to
1125  * determine string length.
1126  */
1127 const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1128 {
1129 	return audit_log_n_untrustedstring(ab, strlen(string), string);
1130 }
1131 
1132 /* This is a helper-function to print the escaped d_path */
1133 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1134 		      struct dentry *dentry, struct vfsmount *vfsmnt)
1135 {
1136 	char *p, *path;
1137 
1138 	if (prefix)
1139 		audit_log_format(ab, " %s", prefix);
1140 
1141 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1142 	path = kmalloc(PATH_MAX+11, ab->gfp_mask);
1143 	if (!path) {
1144 		audit_log_format(ab, "<no memory>");
1145 		return;
1146 	}
1147 	p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
1148 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1149 		/* FIXME: can we save some information here? */
1150 		audit_log_format(ab, "<too long>");
1151 	} else
1152 		audit_log_untrustedstring(ab, p);
1153 	kfree(path);
1154 }
1155 
1156 /**
1157  * audit_log_end - end one audit record
1158  * @ab: the audit_buffer
1159  *
1160  * The netlink_* functions cannot be called inside an irq context, so
1161  * the audit buffer is placed on a queue and a tasklet is scheduled to
1162  * remove them from the queue outside the irq context.  May be called in
1163  * any context.
1164  */
1165 void audit_log_end(struct audit_buffer *ab)
1166 {
1167 	if (!ab)
1168 		return;
1169 	if (!audit_rate_check()) {
1170 		audit_log_lost("rate limit exceeded");
1171 	} else {
1172 		if (audit_pid) {
1173 			struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
1174 			nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1175 			skb_queue_tail(&audit_skb_queue, ab->skb);
1176 			ab->skb = NULL;
1177 			wake_up_interruptible(&kauditd_wait);
1178 		} else {
1179 			printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
1180 		}
1181 	}
1182 	audit_buffer_free(ab);
1183 }
1184 
1185 /**
1186  * audit_log - Log an audit record
1187  * @ctx: audit context
1188  * @gfp_mask: type of allocation
1189  * @type: audit message type
1190  * @fmt: format string to use
1191  * @...: variable parameters matching the format string
1192  *
1193  * This is a convenience function that calls audit_log_start,
1194  * audit_log_vformat, and audit_log_end.  It may be called
1195  * in any context.
1196  */
1197 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1198 	       const char *fmt, ...)
1199 {
1200 	struct audit_buffer *ab;
1201 	va_list args;
1202 
1203 	ab = audit_log_start(ctx, gfp_mask, type);
1204 	if (ab) {
1205 		va_start(args, fmt);
1206 		audit_log_vformat(ab, fmt, args);
1207 		va_end(args);
1208 		audit_log_end(ab);
1209 	}
1210 }
1211 
1212 EXPORT_SYMBOL(audit_log_start);
1213 EXPORT_SYMBOL(audit_log_end);
1214 EXPORT_SYMBOL(audit_log_format);
1215 EXPORT_SYMBOL(audit_log);
1216