1 /* 2 * linux/kernel/acct.c 3 * 4 * BSD Process Accounting for Linux 5 * 6 * Author: Marco van Wieringen <mvw@planets.elm.net> 7 * 8 * Some code based on ideas and code from: 9 * Thomas K. Dyas <tdyas@eden.rutgers.edu> 10 * 11 * This file implements BSD-style process accounting. Whenever any 12 * process exits, an accounting record of type "struct acct" is 13 * written to the file specified with the acct() system call. It is 14 * up to user-level programs to do useful things with the accounting 15 * log. The kernel just provides the raw accounting information. 16 * 17 * (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V. 18 * 19 * Plugged two leaks. 1) It didn't return acct_file into the free_filps if 20 * the file happened to be read-only. 2) If the accounting was suspended 21 * due to the lack of space it happily allowed to reopen it and completely 22 * lost the old acct_file. 3/10/98, Al Viro. 23 * 24 * Now we silently close acct_file on attempt to reopen. Cleaned sys_acct(). 25 * XTerms and EMACS are manifestations of pure evil. 21/10/98, AV. 26 * 27 * Fixed a nasty interaction with with sys_umount(). If the accointing 28 * was suspeneded we failed to stop it on umount(). Messy. 29 * Another one: remount to readonly didn't stop accounting. 30 * Question: what should we do if we have CAP_SYS_ADMIN but not 31 * CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY 32 * unless we are messing with the root. In that case we are getting a 33 * real mess with do_remount_sb(). 9/11/98, AV. 34 * 35 * Fixed a bunch of races (and pair of leaks). Probably not the best way, 36 * but this one obviously doesn't introduce deadlocks. Later. BTW, found 37 * one race (and leak) in BSD implementation. 38 * OK, that's better. ANOTHER race and leak in BSD variant. There always 39 * is one more bug... 10/11/98, AV. 40 * 41 * Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold 42 * ->mmap_sem to walk the vma list of current->mm. Nasty, since it leaks 43 * a struct file opened for write. Fixed. 2/6/2000, AV. 44 */ 45 46 #include <linux/config.h> 47 #include <linux/mm.h> 48 #include <linux/slab.h> 49 #include <linux/acct.h> 50 #include <linux/file.h> 51 #include <linux/tty.h> 52 #include <linux/security.h> 53 #include <linux/vfs.h> 54 #include <linux/jiffies.h> 55 #include <linux/times.h> 56 #include <linux/syscalls.h> 57 #include <asm/uaccess.h> 58 #include <asm/div64.h> 59 #include <linux/blkdev.h> /* sector_div */ 60 61 /* 62 * These constants control the amount of freespace that suspend and 63 * resume the process accounting system, and the time delay between 64 * each check. 65 * Turned into sysctl-controllable parameters. AV, 12/11/98 66 */ 67 68 int acct_parm[3] = {4, 2, 30}; 69 #define RESUME (acct_parm[0]) /* >foo% free space - resume */ 70 #define SUSPEND (acct_parm[1]) /* <foo% free space - suspend */ 71 #define ACCT_TIMEOUT (acct_parm[2]) /* foo second timeout between checks */ 72 73 /* 74 * External references and all of the globals. 75 */ 76 static void do_acct_process(long, struct file *); 77 78 /* 79 * This structure is used so that all the data protected by lock 80 * can be placed in the same cache line as the lock. This primes 81 * the cache line to have the data after getting the lock. 82 */ 83 struct acct_glbs { 84 spinlock_t lock; 85 volatile int active; 86 volatile int needcheck; 87 struct file *file; 88 struct timer_list timer; 89 }; 90 91 static struct acct_glbs acct_globals __cacheline_aligned = {SPIN_LOCK_UNLOCKED}; 92 93 /* 94 * Called whenever the timer says to check the free space. 95 */ 96 static void acct_timeout(unsigned long unused) 97 { 98 acct_globals.needcheck = 1; 99 } 100 101 /* 102 * Check the amount of free space and suspend/resume accordingly. 103 */ 104 static int check_free_space(struct file *file) 105 { 106 struct kstatfs sbuf; 107 int res; 108 int act; 109 sector_t resume; 110 sector_t suspend; 111 112 spin_lock(&acct_globals.lock); 113 res = acct_globals.active; 114 if (!file || !acct_globals.needcheck) 115 goto out; 116 spin_unlock(&acct_globals.lock); 117 118 /* May block */ 119 if (vfs_statfs(file->f_dentry->d_inode->i_sb, &sbuf)) 120 return res; 121 suspend = sbuf.f_blocks * SUSPEND; 122 resume = sbuf.f_blocks * RESUME; 123 124 sector_div(suspend, 100); 125 sector_div(resume, 100); 126 127 if (sbuf.f_bavail <= suspend) 128 act = -1; 129 else if (sbuf.f_bavail >= resume) 130 act = 1; 131 else 132 act = 0; 133 134 /* 135 * If some joker switched acct_globals.file under us we'ld better be 136 * silent and _not_ touch anything. 137 */ 138 spin_lock(&acct_globals.lock); 139 if (file != acct_globals.file) { 140 if (act) 141 res = act>0; 142 goto out; 143 } 144 145 if (acct_globals.active) { 146 if (act < 0) { 147 acct_globals.active = 0; 148 printk(KERN_INFO "Process accounting paused\n"); 149 } 150 } else { 151 if (act > 0) { 152 acct_globals.active = 1; 153 printk(KERN_INFO "Process accounting resumed\n"); 154 } 155 } 156 157 del_timer(&acct_globals.timer); 158 acct_globals.needcheck = 0; 159 acct_globals.timer.expires = jiffies + ACCT_TIMEOUT*HZ; 160 add_timer(&acct_globals.timer); 161 res = acct_globals.active; 162 out: 163 spin_unlock(&acct_globals.lock); 164 return res; 165 } 166 167 /* 168 * Close the old accouting file (if currently open) and then replace 169 * it with file (if non-NULL). 170 * 171 * NOTE: acct_globals.lock MUST be held on entry and exit. 172 */ 173 static void acct_file_reopen(struct file *file) 174 { 175 struct file *old_acct = NULL; 176 177 if (acct_globals.file) { 178 old_acct = acct_globals.file; 179 del_timer(&acct_globals.timer); 180 acct_globals.active = 0; 181 acct_globals.needcheck = 0; 182 acct_globals.file = NULL; 183 } 184 if (file) { 185 acct_globals.file = file; 186 acct_globals.needcheck = 0; 187 acct_globals.active = 1; 188 /* It's been deleted if it was used before so this is safe */ 189 init_timer(&acct_globals.timer); 190 acct_globals.timer.function = acct_timeout; 191 acct_globals.timer.expires = jiffies + ACCT_TIMEOUT*HZ; 192 add_timer(&acct_globals.timer); 193 } 194 if (old_acct) { 195 spin_unlock(&acct_globals.lock); 196 do_acct_process(0, old_acct); 197 filp_close(old_acct, NULL); 198 spin_lock(&acct_globals.lock); 199 } 200 } 201 202 /* 203 * sys_acct() is the only system call needed to implement process 204 * accounting. It takes the name of the file where accounting records 205 * should be written. If the filename is NULL, accounting will be 206 * shutdown. 207 */ 208 asmlinkage long sys_acct(const char __user *name) 209 { 210 struct file *file = NULL; 211 char *tmp; 212 int error; 213 214 if (!capable(CAP_SYS_PACCT)) 215 return -EPERM; 216 217 if (name) { 218 tmp = getname(name); 219 if (IS_ERR(tmp)) { 220 return (PTR_ERR(tmp)); 221 } 222 /* Difference from BSD - they don't do O_APPEND */ 223 file = filp_open(tmp, O_WRONLY|O_APPEND, 0); 224 putname(tmp); 225 if (IS_ERR(file)) { 226 return (PTR_ERR(file)); 227 } 228 if (!S_ISREG(file->f_dentry->d_inode->i_mode)) { 229 filp_close(file, NULL); 230 return (-EACCES); 231 } 232 233 if (!file->f_op->write) { 234 filp_close(file, NULL); 235 return (-EIO); 236 } 237 } 238 239 error = security_acct(file); 240 if (error) { 241 if (file) 242 filp_close(file, NULL); 243 return error; 244 } 245 246 spin_lock(&acct_globals.lock); 247 acct_file_reopen(file); 248 spin_unlock(&acct_globals.lock); 249 250 return (0); 251 } 252 253 /* 254 * If the accouting is turned on for a file in the filesystem pointed 255 * to by sb, turn accouting off. 256 */ 257 void acct_auto_close(struct super_block *sb) 258 { 259 spin_lock(&acct_globals.lock); 260 if (acct_globals.file && 261 acct_globals.file->f_dentry->d_inode->i_sb == sb) { 262 acct_file_reopen((struct file *)NULL); 263 } 264 spin_unlock(&acct_globals.lock); 265 } 266 267 /* 268 * encode an unsigned long into a comp_t 269 * 270 * This routine has been adopted from the encode_comp_t() function in 271 * the kern_acct.c file of the FreeBSD operating system. The encoding 272 * is a 13-bit fraction with a 3-bit (base 8) exponent. 273 */ 274 275 #define MANTSIZE 13 /* 13 bit mantissa. */ 276 #define EXPSIZE 3 /* Base 8 (3 bit) exponent. */ 277 #define MAXFRACT ((1 << MANTSIZE) - 1) /* Maximum fractional value. */ 278 279 static comp_t encode_comp_t(unsigned long value) 280 { 281 int exp, rnd; 282 283 exp = rnd = 0; 284 while (value > MAXFRACT) { 285 rnd = value & (1 << (EXPSIZE - 1)); /* Round up? */ 286 value >>= EXPSIZE; /* Base 8 exponent == 3 bit shift. */ 287 exp++; 288 } 289 290 /* 291 * If we need to round up, do it (and handle overflow correctly). 292 */ 293 if (rnd && (++value > MAXFRACT)) { 294 value >>= EXPSIZE; 295 exp++; 296 } 297 298 /* 299 * Clean it up and polish it off. 300 */ 301 exp <<= MANTSIZE; /* Shift the exponent into place */ 302 exp += value; /* and add on the mantissa. */ 303 return exp; 304 } 305 306 #if ACCT_VERSION==1 || ACCT_VERSION==2 307 /* 308 * encode an u64 into a comp2_t (24 bits) 309 * 310 * Format: 5 bit base 2 exponent, 20 bits mantissa. 311 * The leading bit of the mantissa is not stored, but implied for 312 * non-zero exponents. 313 * Largest encodable value is 50 bits. 314 */ 315 316 #define MANTSIZE2 20 /* 20 bit mantissa. */ 317 #define EXPSIZE2 5 /* 5 bit base 2 exponent. */ 318 #define MAXFRACT2 ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */ 319 #define MAXEXP2 ((1 <<EXPSIZE2) - 1) /* Maximum exponent. */ 320 321 static comp2_t encode_comp2_t(u64 value) 322 { 323 int exp, rnd; 324 325 exp = (value > (MAXFRACT2>>1)); 326 rnd = 0; 327 while (value > MAXFRACT2) { 328 rnd = value & 1; 329 value >>= 1; 330 exp++; 331 } 332 333 /* 334 * If we need to round up, do it (and handle overflow correctly). 335 */ 336 if (rnd && (++value > MAXFRACT2)) { 337 value >>= 1; 338 exp++; 339 } 340 341 if (exp > MAXEXP2) { 342 /* Overflow. Return largest representable number instead. */ 343 return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1; 344 } else { 345 return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1)); 346 } 347 } 348 #endif 349 350 #if ACCT_VERSION==3 351 /* 352 * encode an u64 into a 32 bit IEEE float 353 */ 354 static u32 encode_float(u64 value) 355 { 356 unsigned exp = 190; 357 unsigned u; 358 359 if (value==0) return 0; 360 while ((s64)value > 0){ 361 value <<= 1; 362 exp--; 363 } 364 u = (u32)(value >> 40) & 0x7fffffu; 365 return u | (exp << 23); 366 } 367 #endif 368 369 /* 370 * Write an accounting entry for an exiting process 371 * 372 * The acct_process() call is the workhorse of the process 373 * accounting system. The struct acct is built here and then written 374 * into the accounting file. This function should only be called from 375 * do_exit(). 376 */ 377 378 /* 379 * do_acct_process does all actual work. Caller holds the reference to file. 380 */ 381 static void do_acct_process(long exitcode, struct file *file) 382 { 383 acct_t ac; 384 mm_segment_t fs; 385 unsigned long vsize; 386 unsigned long flim; 387 u64 elapsed; 388 u64 run_time; 389 struct timespec uptime; 390 391 /* 392 * First check to see if there is enough free_space to continue 393 * the process accounting system. 394 */ 395 if (!check_free_space(file)) 396 return; 397 398 /* 399 * Fill the accounting struct with the needed info as recorded 400 * by the different kernel functions. 401 */ 402 memset((caddr_t)&ac, 0, sizeof(acct_t)); 403 404 ac.ac_version = ACCT_VERSION | ACCT_BYTEORDER; 405 strlcpy(ac.ac_comm, current->comm, sizeof(ac.ac_comm)); 406 407 /* calculate run_time in nsec*/ 408 do_posix_clock_monotonic_gettime(&uptime); 409 run_time = (u64)uptime.tv_sec*NSEC_PER_SEC + uptime.tv_nsec; 410 run_time -= (u64)current->start_time.tv_sec*NSEC_PER_SEC 411 + current->start_time.tv_nsec; 412 /* convert nsec -> AHZ */ 413 elapsed = nsec_to_AHZ(run_time); 414 #if ACCT_VERSION==3 415 ac.ac_etime = encode_float(elapsed); 416 #else 417 ac.ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ? 418 (unsigned long) elapsed : (unsigned long) -1l); 419 #endif 420 #if ACCT_VERSION==1 || ACCT_VERSION==2 421 { 422 /* new enlarged etime field */ 423 comp2_t etime = encode_comp2_t(elapsed); 424 ac.ac_etime_hi = etime >> 16; 425 ac.ac_etime_lo = (u16) etime; 426 } 427 #endif 428 do_div(elapsed, AHZ); 429 ac.ac_btime = xtime.tv_sec - elapsed; 430 ac.ac_utime = encode_comp_t(jiffies_to_AHZ( 431 current->signal->utime + 432 current->group_leader->utime)); 433 ac.ac_stime = encode_comp_t(jiffies_to_AHZ( 434 current->signal->stime + 435 current->group_leader->stime)); 436 /* we really need to bite the bullet and change layout */ 437 ac.ac_uid = current->uid; 438 ac.ac_gid = current->gid; 439 #if ACCT_VERSION==2 440 ac.ac_ahz = AHZ; 441 #endif 442 #if ACCT_VERSION==1 || ACCT_VERSION==2 443 /* backward-compatible 16 bit fields */ 444 ac.ac_uid16 = current->uid; 445 ac.ac_gid16 = current->gid; 446 #endif 447 #if ACCT_VERSION==3 448 ac.ac_pid = current->tgid; 449 ac.ac_ppid = current->parent->tgid; 450 #endif 451 452 read_lock(&tasklist_lock); /* pin current->signal */ 453 ac.ac_tty = current->signal->tty ? 454 old_encode_dev(tty_devnum(current->signal->tty)) : 0; 455 read_unlock(&tasklist_lock); 456 457 ac.ac_flag = 0; 458 if (current->flags & PF_FORKNOEXEC) 459 ac.ac_flag |= AFORK; 460 if (current->flags & PF_SUPERPRIV) 461 ac.ac_flag |= ASU; 462 if (current->flags & PF_DUMPCORE) 463 ac.ac_flag |= ACORE; 464 if (current->flags & PF_SIGNALED) 465 ac.ac_flag |= AXSIG; 466 467 vsize = 0; 468 if (current->mm) { 469 struct vm_area_struct *vma; 470 down_read(¤t->mm->mmap_sem); 471 vma = current->mm->mmap; 472 while (vma) { 473 vsize += vma->vm_end - vma->vm_start; 474 vma = vma->vm_next; 475 } 476 up_read(¤t->mm->mmap_sem); 477 } 478 vsize = vsize / 1024; 479 ac.ac_mem = encode_comp_t(vsize); 480 ac.ac_io = encode_comp_t(0 /* current->io_usage */); /* %% */ 481 ac.ac_rw = encode_comp_t(ac.ac_io / 1024); 482 ac.ac_minflt = encode_comp_t(current->signal->min_flt + 483 current->group_leader->min_flt); 484 ac.ac_majflt = encode_comp_t(current->signal->maj_flt + 485 current->group_leader->maj_flt); 486 ac.ac_swaps = encode_comp_t(0); 487 ac.ac_exitcode = exitcode; 488 489 /* 490 * Kernel segment override to datasegment and write it 491 * to the accounting file. 492 */ 493 fs = get_fs(); 494 set_fs(KERNEL_DS); 495 /* 496 * Accounting records are not subject to resource limits. 497 */ 498 flim = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 499 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY; 500 file->f_op->write(file, (char *)&ac, 501 sizeof(acct_t), &file->f_pos); 502 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; 503 set_fs(fs); 504 } 505 506 /* 507 * acct_process - now just a wrapper around do_acct_process 508 */ 509 void acct_process(long exitcode) 510 { 511 struct file *file = NULL; 512 513 /* 514 * accelerate the common fastpath: 515 */ 516 if (!acct_globals.file) 517 return; 518 519 spin_lock(&acct_globals.lock); 520 file = acct_globals.file; 521 if (unlikely(!file)) { 522 spin_unlock(&acct_globals.lock); 523 return; 524 } 525 get_file(file); 526 spin_unlock(&acct_globals.lock); 527 528 do_acct_process(exitcode, file); 529 fput(file); 530 } 531 532 533 /* 534 * acct_update_integrals 535 * - update mm integral fields in task_struct 536 */ 537 void acct_update_integrals(struct task_struct *tsk) 538 { 539 if (likely(tsk->mm)) { 540 long delta = tsk->stime - tsk->acct_stimexpd; 541 542 if (delta == 0) 543 return; 544 tsk->acct_stimexpd = tsk->stime; 545 tsk->acct_rss_mem1 += delta * get_mm_counter(tsk->mm, rss); 546 tsk->acct_vm_mem1 += delta * tsk->mm->total_vm; 547 } 548 } 549 550 /* 551 * acct_clear_integrals 552 * - clear the mm integral fields in task_struct 553 */ 554 void acct_clear_integrals(struct task_struct *tsk) 555 { 556 if (tsk) { 557 tsk->acct_stimexpd = 0; 558 tsk->acct_rss_mem1 = 0; 559 tsk->acct_vm_mem1 = 0; 560 } 561 } 562