1 /* 2 * linux/ipc/util.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * 5 * Sep 1997 - Call suser() last after "normal" permission checks so we 6 * get BSD style process accounting right. 7 * Occurs in several places in the IPC code. 8 * Chris Evans, <chris@ferret.lmh.ox.ac.uk> 9 * Nov 1999 - ipc helper functions, unified SMP locking 10 * Manfred Spraul <manfreds@colorfullife.com> 11 * Oct 2002 - One lock per IPC id. RCU ipc_free for lock-free grow_ary(). 12 * Mingming Cao <cmm@us.ibm.com> 13 */ 14 15 #include <linux/config.h> 16 #include <linux/mm.h> 17 #include <linux/shm.h> 18 #include <linux/init.h> 19 #include <linux/msg.h> 20 #include <linux/smp_lock.h> 21 #include <linux/vmalloc.h> 22 #include <linux/slab.h> 23 #include <linux/highuid.h> 24 #include <linux/security.h> 25 #include <linux/rcupdate.h> 26 #include <linux/workqueue.h> 27 28 #include <asm/unistd.h> 29 30 #include "util.h" 31 32 /** 33 * ipc_init - initialise IPC subsystem 34 * 35 * The various system5 IPC resources (semaphores, messages and shared 36 * memory are initialised 37 */ 38 39 static int __init ipc_init(void) 40 { 41 sem_init(); 42 msg_init(); 43 shm_init(); 44 return 0; 45 } 46 __initcall(ipc_init); 47 48 /** 49 * ipc_init_ids - initialise IPC identifiers 50 * @ids: Identifier set 51 * @size: Number of identifiers 52 * 53 * Given a size for the ipc identifier range (limited below IPCMNI) 54 * set up the sequence range to use then allocate and initialise the 55 * array itself. 56 */ 57 58 void __init ipc_init_ids(struct ipc_ids* ids, int size) 59 { 60 int i; 61 sema_init(&ids->sem,1); 62 63 if(size > IPCMNI) 64 size = IPCMNI; 65 ids->in_use = 0; 66 ids->max_id = -1; 67 ids->seq = 0; 68 { 69 int seq_limit = INT_MAX/SEQ_MULTIPLIER; 70 if(seq_limit > USHRT_MAX) 71 ids->seq_max = USHRT_MAX; 72 else 73 ids->seq_max = seq_limit; 74 } 75 76 ids->entries = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*size + 77 sizeof(struct ipc_id_ary)); 78 79 if(ids->entries == NULL) { 80 printk(KERN_ERR "ipc_init_ids() failed, ipc service disabled.\n"); 81 size = 0; 82 ids->entries = &ids->nullentry; 83 } 84 ids->entries->size = size; 85 for(i=0;i<size;i++) 86 ids->entries->p[i] = NULL; 87 } 88 89 /** 90 * ipc_findkey - find a key in an ipc identifier set 91 * @ids: Identifier set 92 * @key: The key to find 93 * 94 * Requires ipc_ids.sem locked. 95 * Returns the identifier if found or -1 if not. 96 */ 97 98 int ipc_findkey(struct ipc_ids* ids, key_t key) 99 { 100 int id; 101 struct kern_ipc_perm* p; 102 int max_id = ids->max_id; 103 104 /* 105 * rcu_dereference() is not needed here 106 * since ipc_ids.sem is held 107 */ 108 for (id = 0; id <= max_id; id++) { 109 p = ids->entries->p[id]; 110 if(p==NULL) 111 continue; 112 if (key == p->key) 113 return id; 114 } 115 return -1; 116 } 117 118 /* 119 * Requires ipc_ids.sem locked 120 */ 121 static int grow_ary(struct ipc_ids* ids, int newsize) 122 { 123 struct ipc_id_ary* new; 124 struct ipc_id_ary* old; 125 int i; 126 int size = ids->entries->size; 127 128 if(newsize > IPCMNI) 129 newsize = IPCMNI; 130 if(newsize <= size) 131 return newsize; 132 133 new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize + 134 sizeof(struct ipc_id_ary)); 135 if(new == NULL) 136 return size; 137 new->size = newsize; 138 memcpy(new->p, ids->entries->p, sizeof(struct kern_ipc_perm *)*size + 139 sizeof(struct ipc_id_ary)); 140 for(i=size;i<newsize;i++) { 141 new->p[i] = NULL; 142 } 143 old = ids->entries; 144 145 /* 146 * Use rcu_assign_pointer() to make sure the memcpyed contents 147 * of the new array are visible before the new array becomes visible. 148 */ 149 rcu_assign_pointer(ids->entries, new); 150 151 ipc_rcu_putref(old); 152 return newsize; 153 } 154 155 /** 156 * ipc_addid - add an IPC identifier 157 * @ids: IPC identifier set 158 * @new: new IPC permission set 159 * @size: new size limit for the id array 160 * 161 * Add an entry 'new' to the IPC arrays. The permissions object is 162 * initialised and the first free entry is set up and the id assigned 163 * is returned. The list is returned in a locked state on success. 164 * On failure the list is not locked and -1 is returned. 165 * 166 * Called with ipc_ids.sem held. 167 */ 168 169 int ipc_addid(struct ipc_ids* ids, struct kern_ipc_perm* new, int size) 170 { 171 int id; 172 173 size = grow_ary(ids,size); 174 175 /* 176 * rcu_dereference()() is not needed here since 177 * ipc_ids.sem is held 178 */ 179 for (id = 0; id < size; id++) { 180 if(ids->entries->p[id] == NULL) 181 goto found; 182 } 183 return -1; 184 found: 185 ids->in_use++; 186 if (id > ids->max_id) 187 ids->max_id = id; 188 189 new->cuid = new->uid = current->euid; 190 new->gid = new->cgid = current->egid; 191 192 new->seq = ids->seq++; 193 if(ids->seq > ids->seq_max) 194 ids->seq = 0; 195 196 spin_lock_init(&new->lock); 197 new->deleted = 0; 198 rcu_read_lock(); 199 spin_lock(&new->lock); 200 ids->entries->p[id] = new; 201 return id; 202 } 203 204 /** 205 * ipc_rmid - remove an IPC identifier 206 * @ids: identifier set 207 * @id: Identifier to remove 208 * 209 * The identifier must be valid, and in use. The kernel will panic if 210 * fed an invalid identifier. The entry is removed and internal 211 * variables recomputed. The object associated with the identifier 212 * is returned. 213 * ipc_ids.sem and the spinlock for this ID is hold before this function 214 * is called, and remain locked on the exit. 215 */ 216 217 struct kern_ipc_perm* ipc_rmid(struct ipc_ids* ids, int id) 218 { 219 struct kern_ipc_perm* p; 220 int lid = id % SEQ_MULTIPLIER; 221 if(lid >= ids->entries->size) 222 BUG(); 223 224 /* 225 * do not need a rcu_dereference()() here to force ordering 226 * on Alpha, since the ipc_ids.sem is held. 227 */ 228 p = ids->entries->p[lid]; 229 ids->entries->p[lid] = NULL; 230 if(p==NULL) 231 BUG(); 232 ids->in_use--; 233 234 if (lid == ids->max_id) { 235 do { 236 lid--; 237 if(lid == -1) 238 break; 239 } while (ids->entries->p[lid] == NULL); 240 ids->max_id = lid; 241 } 242 p->deleted = 1; 243 return p; 244 } 245 246 /** 247 * ipc_alloc - allocate ipc space 248 * @size: size desired 249 * 250 * Allocate memory from the appropriate pools and return a pointer to it. 251 * NULL is returned if the allocation fails 252 */ 253 254 void* ipc_alloc(int size) 255 { 256 void* out; 257 if(size > PAGE_SIZE) 258 out = vmalloc(size); 259 else 260 out = kmalloc(size, GFP_KERNEL); 261 return out; 262 } 263 264 /** 265 * ipc_free - free ipc space 266 * @ptr: pointer returned by ipc_alloc 267 * @size: size of block 268 * 269 * Free a block created with ipc_alloc. The caller must know the size 270 * used in the allocation call. 271 */ 272 273 void ipc_free(void* ptr, int size) 274 { 275 if(size > PAGE_SIZE) 276 vfree(ptr); 277 else 278 kfree(ptr); 279 } 280 281 /* 282 * rcu allocations: 283 * There are three headers that are prepended to the actual allocation: 284 * - during use: ipc_rcu_hdr. 285 * - during the rcu grace period: ipc_rcu_grace. 286 * - [only if vmalloc]: ipc_rcu_sched. 287 * Their lifetime doesn't overlap, thus the headers share the same memory. 288 * Unlike a normal union, they are right-aligned, thus some container_of 289 * forward/backward casting is necessary: 290 */ 291 struct ipc_rcu_hdr 292 { 293 int refcount; 294 int is_vmalloc; 295 void *data[0]; 296 }; 297 298 299 struct ipc_rcu_grace 300 { 301 struct rcu_head rcu; 302 /* "void *" makes sure alignment of following data is sane. */ 303 void *data[0]; 304 }; 305 306 struct ipc_rcu_sched 307 { 308 struct work_struct work; 309 /* "void *" makes sure alignment of following data is sane. */ 310 void *data[0]; 311 }; 312 313 #define HDRLEN_KMALLOC (sizeof(struct ipc_rcu_grace) > sizeof(struct ipc_rcu_hdr) ? \ 314 sizeof(struct ipc_rcu_grace) : sizeof(struct ipc_rcu_hdr)) 315 #define HDRLEN_VMALLOC (sizeof(struct ipc_rcu_sched) > HDRLEN_KMALLOC ? \ 316 sizeof(struct ipc_rcu_sched) : HDRLEN_KMALLOC) 317 318 static inline int rcu_use_vmalloc(int size) 319 { 320 /* Too big for a single page? */ 321 if (HDRLEN_KMALLOC + size > PAGE_SIZE) 322 return 1; 323 return 0; 324 } 325 326 /** 327 * ipc_rcu_alloc - allocate ipc and rcu space 328 * @size: size desired 329 * 330 * Allocate memory for the rcu header structure + the object. 331 * Returns the pointer to the object. 332 * NULL is returned if the allocation fails. 333 */ 334 335 void* ipc_rcu_alloc(int size) 336 { 337 void* out; 338 /* 339 * We prepend the allocation with the rcu struct, and 340 * workqueue if necessary (for vmalloc). 341 */ 342 if (rcu_use_vmalloc(size)) { 343 out = vmalloc(HDRLEN_VMALLOC + size); 344 if (out) { 345 out += HDRLEN_VMALLOC; 346 container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 1; 347 container_of(out, struct ipc_rcu_hdr, data)->refcount = 1; 348 } 349 } else { 350 out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL); 351 if (out) { 352 out += HDRLEN_KMALLOC; 353 container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 0; 354 container_of(out, struct ipc_rcu_hdr, data)->refcount = 1; 355 } 356 } 357 358 return out; 359 } 360 361 void ipc_rcu_getref(void *ptr) 362 { 363 container_of(ptr, struct ipc_rcu_hdr, data)->refcount++; 364 } 365 366 /** 367 * ipc_schedule_free - free ipc + rcu space 368 * 369 * Since RCU callback function is called in bh, 370 * we need to defer the vfree to schedule_work 371 */ 372 static void ipc_schedule_free(struct rcu_head *head) 373 { 374 struct ipc_rcu_grace *grace = 375 container_of(head, struct ipc_rcu_grace, rcu); 376 struct ipc_rcu_sched *sched = 377 container_of(&(grace->data[0]), struct ipc_rcu_sched, data[0]); 378 379 INIT_WORK(&sched->work, vfree, sched); 380 schedule_work(&sched->work); 381 } 382 383 /** 384 * ipc_immediate_free - free ipc + rcu space 385 * 386 * Free from the RCU callback context 387 * 388 */ 389 static void ipc_immediate_free(struct rcu_head *head) 390 { 391 struct ipc_rcu_grace *free = 392 container_of(head, struct ipc_rcu_grace, rcu); 393 kfree(free); 394 } 395 396 void ipc_rcu_putref(void *ptr) 397 { 398 if (--container_of(ptr, struct ipc_rcu_hdr, data)->refcount > 0) 399 return; 400 401 if (container_of(ptr, struct ipc_rcu_hdr, data)->is_vmalloc) { 402 call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu, 403 ipc_schedule_free); 404 } else { 405 call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu, 406 ipc_immediate_free); 407 } 408 } 409 410 /** 411 * ipcperms - check IPC permissions 412 * @ipcp: IPC permission set 413 * @flag: desired permission set. 414 * 415 * Check user, group, other permissions for access 416 * to ipc resources. return 0 if allowed 417 */ 418 419 int ipcperms (struct kern_ipc_perm *ipcp, short flag) 420 { /* flag will most probably be 0 or S_...UGO from <linux/stat.h> */ 421 int requested_mode, granted_mode; 422 423 requested_mode = (flag >> 6) | (flag >> 3) | flag; 424 granted_mode = ipcp->mode; 425 if (current->euid == ipcp->cuid || current->euid == ipcp->uid) 426 granted_mode >>= 6; 427 else if (in_group_p(ipcp->cgid) || in_group_p(ipcp->gid)) 428 granted_mode >>= 3; 429 /* is there some bit set in requested_mode but not in granted_mode? */ 430 if ((requested_mode & ~granted_mode & 0007) && 431 !capable(CAP_IPC_OWNER)) 432 return -1; 433 434 return security_ipc_permission(ipcp, flag); 435 } 436 437 /* 438 * Functions to convert between the kern_ipc_perm structure and the 439 * old/new ipc_perm structures 440 */ 441 442 /** 443 * kernel_to_ipc64_perm - convert kernel ipc permissions to user 444 * @in: kernel permissions 445 * @out: new style IPC permissions 446 * 447 * Turn the kernel object 'in' into a set of permissions descriptions 448 * for returning to userspace (out). 449 */ 450 451 452 void kernel_to_ipc64_perm (struct kern_ipc_perm *in, struct ipc64_perm *out) 453 { 454 out->key = in->key; 455 out->uid = in->uid; 456 out->gid = in->gid; 457 out->cuid = in->cuid; 458 out->cgid = in->cgid; 459 out->mode = in->mode; 460 out->seq = in->seq; 461 } 462 463 /** 464 * ipc64_perm_to_ipc_perm - convert old ipc permissions to new 465 * @in: new style IPC permissions 466 * @out: old style IPC permissions 467 * 468 * Turn the new style permissions object in into a compatibility 469 * object and store it into the 'out' pointer. 470 */ 471 472 void ipc64_perm_to_ipc_perm (struct ipc64_perm *in, struct ipc_perm *out) 473 { 474 out->key = in->key; 475 SET_UID(out->uid, in->uid); 476 SET_GID(out->gid, in->gid); 477 SET_UID(out->cuid, in->cuid); 478 SET_GID(out->cgid, in->cgid); 479 out->mode = in->mode; 480 out->seq = in->seq; 481 } 482 483 /* 484 * So far only shm_get_stat() calls ipc_get() via shm_get(), so ipc_get() 485 * is called with shm_ids.sem locked. Since grow_ary() is also called with 486 * shm_ids.sem down(for Shared Memory), there is no need to add read 487 * barriers here to gurantee the writes in grow_ary() are seen in order 488 * here (for Alpha). 489 * 490 * However ipc_get() itself does not necessary require ipc_ids.sem down. So 491 * if in the future ipc_get() is used by other places without ipc_ids.sem 492 * down, then ipc_get() needs read memery barriers as ipc_lock() does. 493 */ 494 struct kern_ipc_perm* ipc_get(struct ipc_ids* ids, int id) 495 { 496 struct kern_ipc_perm* out; 497 int lid = id % SEQ_MULTIPLIER; 498 if(lid >= ids->entries->size) 499 return NULL; 500 out = ids->entries->p[lid]; 501 return out; 502 } 503 504 struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id) 505 { 506 struct kern_ipc_perm* out; 507 int lid = id % SEQ_MULTIPLIER; 508 struct ipc_id_ary* entries; 509 510 rcu_read_lock(); 511 entries = rcu_dereference(ids->entries); 512 if(lid >= entries->size) { 513 rcu_read_unlock(); 514 return NULL; 515 } 516 out = entries->p[lid]; 517 if(out == NULL) { 518 rcu_read_unlock(); 519 return NULL; 520 } 521 spin_lock(&out->lock); 522 523 /* ipc_rmid() may have already freed the ID while ipc_lock 524 * was spinning: here verify that the structure is still valid 525 */ 526 if (out->deleted) { 527 spin_unlock(&out->lock); 528 rcu_read_unlock(); 529 return NULL; 530 } 531 return out; 532 } 533 534 void ipc_lock_by_ptr(struct kern_ipc_perm *perm) 535 { 536 rcu_read_lock(); 537 spin_lock(&perm->lock); 538 } 539 540 void ipc_unlock(struct kern_ipc_perm* perm) 541 { 542 spin_unlock(&perm->lock); 543 rcu_read_unlock(); 544 } 545 546 int ipc_buildid(struct ipc_ids* ids, int id, int seq) 547 { 548 return SEQ_MULTIPLIER*seq + id; 549 } 550 551 int ipc_checkid(struct ipc_ids* ids, struct kern_ipc_perm* ipcp, int uid) 552 { 553 if(uid/SEQ_MULTIPLIER != ipcp->seq) 554 return 1; 555 return 0; 556 } 557 558 #ifdef __ARCH_WANT_IPC_PARSE_VERSION 559 560 561 /** 562 * ipc_parse_version - IPC call version 563 * @cmd: pointer to command 564 * 565 * Return IPC_64 for new style IPC and IPC_OLD for old style IPC. 566 * The cmd value is turned from an encoding command and version into 567 * just the command code. 568 */ 569 570 int ipc_parse_version (int *cmd) 571 { 572 if (*cmd & IPC_64) { 573 *cmd ^= IPC_64; 574 return IPC_64; 575 } else { 576 return IPC_OLD; 577 } 578 } 579 580 #endif /* __ARCH_WANT_IPC_PARSE_VERSION */ 581