xref: /openbmc/linux/ipc/sem.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90 
91 #include <linux/uaccess.h>
92 #include "util.h"
93 
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 	int	semval;		/* current value */
97 	/*
98 	 * PID of the process that last modified the semaphore. For
99 	 * Linux, specifically these are:
100 	 *  - semop
101 	 *  - semctl, via SETVAL and SETALL.
102 	 *  - at task exit when performing undo adjustments (see exit_sem).
103 	 */
104 	struct pid *sempid;
105 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
106 	struct list_head pending_alter; /* pending single-sop operations */
107 					/* that alter the semaphore */
108 	struct list_head pending_const; /* pending single-sop operations */
109 					/* that do not alter the semaphore*/
110 	time64_t	 sem_otime;	/* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112 
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
116 	time64_t		sem_ctime;	/* create/last semctl() time */
117 	struct list_head	pending_alter;	/* pending operations */
118 						/* that alter the array */
119 	struct list_head	pending_const;	/* pending complex operations */
120 						/* that do not alter semvals */
121 	struct list_head	list_id;	/* undo requests on this array */
122 	int			sem_nsems;	/* no. of semaphores in array */
123 	int			complex_count;	/* pending complex operations */
124 	unsigned int		use_global_lock;/* >0: global lock required */
125 
126 	struct sem		sems[];
127 } __randomize_layout;
128 
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 	struct list_head	list;	 /* queue of pending operations */
132 	struct task_struct	*sleeper; /* this process */
133 	struct sem_undo		*undo;	 /* undo structure */
134 	struct pid		*pid;	 /* process id of requesting process */
135 	int			status;	 /* completion status of operation */
136 	struct sembuf		*sops;	 /* array of pending operations */
137 	struct sembuf		*blocking; /* the operation that blocked */
138 	int			nsops;	 /* number of operations */
139 	bool			alter;	 /* does *sops alter the array? */
140 	bool                    dupsop;	 /* sops on more than one sem_num */
141 };
142 
143 /* Each task has a list of undo requests. They are executed automatically
144  * when the process exits.
145  */
146 struct sem_undo {
147 	struct list_head	list_proc;	/* per-process list: *
148 						 * all undos from one process
149 						 * rcu protected */
150 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
151 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
152 	struct list_head	list_id;	/* per semaphore array list:
153 						 * all undos for one array */
154 	int			semid;		/* semaphore set identifier */
155 	short			*semadj;	/* array of adjustments */
156 						/* one per semaphore */
157 };
158 
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160  * that may be shared among all a CLONE_SYSVSEM task group.
161  */
162 struct sem_undo_list {
163 	refcount_t		refcnt;
164 	spinlock_t		lock;
165 	struct list_head	list_proc;
166 };
167 
168 
169 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
170 
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176 
177 #define SEMMSL_FAST	256 /* 512 bytes on stack */
178 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
179 
180 /*
181  * Switching from the mode suitable for simple ops
182  * to the mode for complex ops is costly. Therefore:
183  * use some hysteresis
184  */
185 #define USE_GLOBAL_LOCK_HYSTERESIS	10
186 
187 /*
188  * Locking:
189  * a) global sem_lock() for read/write
190  *	sem_undo.id_next,
191  *	sem_array.complex_count,
192  *	sem_array.pending{_alter,_const},
193  *	sem_array.sem_undo
194  *
195  * b) global or semaphore sem_lock() for read/write:
196  *	sem_array.sems[i].pending_{const,alter}:
197  *
198  * c) special:
199  *	sem_undo_list.list_proc:
200  *	* undo_list->lock for write
201  *	* rcu for read
202  *	use_global_lock:
203  *	* global sem_lock() for write
204  *	* either local or global sem_lock() for read.
205  *
206  * Memory ordering:
207  * Most ordering is enforced by using spin_lock() and spin_unlock().
208  *
209  * Exceptions:
210  * 1) use_global_lock: (SEM_BARRIER_1)
211  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212  * using smp_store_release(): Immediately after setting it to 0,
213  * a simple op can start.
214  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215  * smp_load_acquire().
216  * Setting it from 0 to non-zero must be ordered with regards to
217  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218  * is inside a spin_lock() and after a write from 0 to non-zero a
219  * spin_lock()+spin_unlock() is done.
220  *
221  * 2) queue.status: (SEM_BARRIER_2)
222  * Initialization is done while holding sem_lock(), so no further barrier is
223  * required.
224  * Setting it to a result code is a RELEASE, this is ensured by both a
225  * smp_store_release() (for case a) and while holding sem_lock()
226  * (for case b).
227  * The ACQUIRE when reading the result code without holding sem_lock() is
228  * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
229  * (case a above).
230  * Reading the result code while holding sem_lock() needs no further barriers,
231  * the locks inside sem_lock() enforce ordering (case b above)
232  *
233  * 3) current->state:
234  * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
235  * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
236  * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
237  * when holding sem_lock(), no further barriers are required.
238  *
239  * See also ipc/mqueue.c for more details on the covered races.
240  */
241 
242 #define sc_semmsl	sem_ctls[0]
243 #define sc_semmns	sem_ctls[1]
244 #define sc_semopm	sem_ctls[2]
245 #define sc_semmni	sem_ctls[3]
246 
247 void sem_init_ns(struct ipc_namespace *ns)
248 {
249 	ns->sc_semmsl = SEMMSL;
250 	ns->sc_semmns = SEMMNS;
251 	ns->sc_semopm = SEMOPM;
252 	ns->sc_semmni = SEMMNI;
253 	ns->used_sems = 0;
254 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
255 }
256 
257 #ifdef CONFIG_IPC_NS
258 void sem_exit_ns(struct ipc_namespace *ns)
259 {
260 	free_ipcs(ns, &sem_ids(ns), freeary);
261 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
262 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
263 }
264 #endif
265 
266 void __init sem_init(void)
267 {
268 	sem_init_ns(&init_ipc_ns);
269 	ipc_init_proc_interface("sysvipc/sem",
270 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
271 				IPC_SEM_IDS, sysvipc_sem_proc_show);
272 }
273 
274 /**
275  * unmerge_queues - unmerge queues, if possible.
276  * @sma: semaphore array
277  *
278  * The function unmerges the wait queues if complex_count is 0.
279  * It must be called prior to dropping the global semaphore array lock.
280  */
281 static void unmerge_queues(struct sem_array *sma)
282 {
283 	struct sem_queue *q, *tq;
284 
285 	/* complex operations still around? */
286 	if (sma->complex_count)
287 		return;
288 	/*
289 	 * We will switch back to simple mode.
290 	 * Move all pending operation back into the per-semaphore
291 	 * queues.
292 	 */
293 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
294 		struct sem *curr;
295 		curr = &sma->sems[q->sops[0].sem_num];
296 
297 		list_add_tail(&q->list, &curr->pending_alter);
298 	}
299 	INIT_LIST_HEAD(&sma->pending_alter);
300 }
301 
302 /**
303  * merge_queues - merge single semop queues into global queue
304  * @sma: semaphore array
305  *
306  * This function merges all per-semaphore queues into the global queue.
307  * It is necessary to achieve FIFO ordering for the pending single-sop
308  * operations when a multi-semop operation must sleep.
309  * Only the alter operations must be moved, the const operations can stay.
310  */
311 static void merge_queues(struct sem_array *sma)
312 {
313 	int i;
314 	for (i = 0; i < sma->sem_nsems; i++) {
315 		struct sem *sem = &sma->sems[i];
316 
317 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
318 	}
319 }
320 
321 static void sem_rcu_free(struct rcu_head *head)
322 {
323 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
324 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
325 
326 	security_sem_free(&sma->sem_perm);
327 	kvfree(sma);
328 }
329 
330 /*
331  * Enter the mode suitable for non-simple operations:
332  * Caller must own sem_perm.lock.
333  */
334 static void complexmode_enter(struct sem_array *sma)
335 {
336 	int i;
337 	struct sem *sem;
338 
339 	if (sma->use_global_lock > 0)  {
340 		/*
341 		 * We are already in global lock mode.
342 		 * Nothing to do, just reset the
343 		 * counter until we return to simple mode.
344 		 */
345 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
346 		return;
347 	}
348 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
349 
350 	for (i = 0; i < sma->sem_nsems; i++) {
351 		sem = &sma->sems[i];
352 		spin_lock(&sem->lock);
353 		spin_unlock(&sem->lock);
354 	}
355 }
356 
357 /*
358  * Try to leave the mode that disallows simple operations:
359  * Caller must own sem_perm.lock.
360  */
361 static void complexmode_tryleave(struct sem_array *sma)
362 {
363 	if (sma->complex_count)  {
364 		/* Complex ops are sleeping.
365 		 * We must stay in complex mode
366 		 */
367 		return;
368 	}
369 	if (sma->use_global_lock == 1) {
370 
371 		/* See SEM_BARRIER_1 for purpose/pairing */
372 		smp_store_release(&sma->use_global_lock, 0);
373 	} else {
374 		sma->use_global_lock--;
375 	}
376 }
377 
378 #define SEM_GLOBAL_LOCK	(-1)
379 /*
380  * If the request contains only one semaphore operation, and there are
381  * no complex transactions pending, lock only the semaphore involved.
382  * Otherwise, lock the entire semaphore array, since we either have
383  * multiple semaphores in our own semops, or we need to look at
384  * semaphores from other pending complex operations.
385  */
386 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
387 			      int nsops)
388 {
389 	struct sem *sem;
390 	int idx;
391 
392 	if (nsops != 1) {
393 		/* Complex operation - acquire a full lock */
394 		ipc_lock_object(&sma->sem_perm);
395 
396 		/* Prevent parallel simple ops */
397 		complexmode_enter(sma);
398 		return SEM_GLOBAL_LOCK;
399 	}
400 
401 	/*
402 	 * Only one semaphore affected - try to optimize locking.
403 	 * Optimized locking is possible if no complex operation
404 	 * is either enqueued or processed right now.
405 	 *
406 	 * Both facts are tracked by use_global_mode.
407 	 */
408 	idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
409 	sem = &sma->sems[idx];
410 
411 	/*
412 	 * Initial check for use_global_lock. Just an optimization,
413 	 * no locking, no memory barrier.
414 	 */
415 	if (!sma->use_global_lock) {
416 		/*
417 		 * It appears that no complex operation is around.
418 		 * Acquire the per-semaphore lock.
419 		 */
420 		spin_lock(&sem->lock);
421 
422 		/* see SEM_BARRIER_1 for purpose/pairing */
423 		if (!smp_load_acquire(&sma->use_global_lock)) {
424 			/* fast path successful! */
425 			return sops->sem_num;
426 		}
427 		spin_unlock(&sem->lock);
428 	}
429 
430 	/* slow path: acquire the full lock */
431 	ipc_lock_object(&sma->sem_perm);
432 
433 	if (sma->use_global_lock == 0) {
434 		/*
435 		 * The use_global_lock mode ended while we waited for
436 		 * sma->sem_perm.lock. Thus we must switch to locking
437 		 * with sem->lock.
438 		 * Unlike in the fast path, there is no need to recheck
439 		 * sma->use_global_lock after we have acquired sem->lock:
440 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
441 		 * change.
442 		 */
443 		spin_lock(&sem->lock);
444 
445 		ipc_unlock_object(&sma->sem_perm);
446 		return sops->sem_num;
447 	} else {
448 		/*
449 		 * Not a false alarm, thus continue to use the global lock
450 		 * mode. No need for complexmode_enter(), this was done by
451 		 * the caller that has set use_global_mode to non-zero.
452 		 */
453 		return SEM_GLOBAL_LOCK;
454 	}
455 }
456 
457 static inline void sem_unlock(struct sem_array *sma, int locknum)
458 {
459 	if (locknum == SEM_GLOBAL_LOCK) {
460 		unmerge_queues(sma);
461 		complexmode_tryleave(sma);
462 		ipc_unlock_object(&sma->sem_perm);
463 	} else {
464 		struct sem *sem = &sma->sems[locknum];
465 		spin_unlock(&sem->lock);
466 	}
467 }
468 
469 /*
470  * sem_lock_(check_) routines are called in the paths where the rwsem
471  * is not held.
472  *
473  * The caller holds the RCU read lock.
474  */
475 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
476 {
477 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
478 
479 	if (IS_ERR(ipcp))
480 		return ERR_CAST(ipcp);
481 
482 	return container_of(ipcp, struct sem_array, sem_perm);
483 }
484 
485 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
486 							int id)
487 {
488 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
489 
490 	if (IS_ERR(ipcp))
491 		return ERR_CAST(ipcp);
492 
493 	return container_of(ipcp, struct sem_array, sem_perm);
494 }
495 
496 static inline void sem_lock_and_putref(struct sem_array *sma)
497 {
498 	sem_lock(sma, NULL, -1);
499 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
500 }
501 
502 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
503 {
504 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
505 }
506 
507 static struct sem_array *sem_alloc(size_t nsems)
508 {
509 	struct sem_array *sma;
510 
511 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
512 		return NULL;
513 
514 	sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
515 	if (unlikely(!sma))
516 		return NULL;
517 
518 	return sma;
519 }
520 
521 /**
522  * newary - Create a new semaphore set
523  * @ns: namespace
524  * @params: ptr to the structure that contains key, semflg and nsems
525  *
526  * Called with sem_ids.rwsem held (as a writer)
527  */
528 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
529 {
530 	int retval;
531 	struct sem_array *sma;
532 	key_t key = params->key;
533 	int nsems = params->u.nsems;
534 	int semflg = params->flg;
535 	int i;
536 
537 	if (!nsems)
538 		return -EINVAL;
539 	if (ns->used_sems + nsems > ns->sc_semmns)
540 		return -ENOSPC;
541 
542 	sma = sem_alloc(nsems);
543 	if (!sma)
544 		return -ENOMEM;
545 
546 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
547 	sma->sem_perm.key = key;
548 
549 	sma->sem_perm.security = NULL;
550 	retval = security_sem_alloc(&sma->sem_perm);
551 	if (retval) {
552 		kvfree(sma);
553 		return retval;
554 	}
555 
556 	for (i = 0; i < nsems; i++) {
557 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
558 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
559 		spin_lock_init(&sma->sems[i].lock);
560 	}
561 
562 	sma->complex_count = 0;
563 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
564 	INIT_LIST_HEAD(&sma->pending_alter);
565 	INIT_LIST_HEAD(&sma->pending_const);
566 	INIT_LIST_HEAD(&sma->list_id);
567 	sma->sem_nsems = nsems;
568 	sma->sem_ctime = ktime_get_real_seconds();
569 
570 	/* ipc_addid() locks sma upon success. */
571 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
572 	if (retval < 0) {
573 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
574 		return retval;
575 	}
576 	ns->used_sems += nsems;
577 
578 	sem_unlock(sma, -1);
579 	rcu_read_unlock();
580 
581 	return sma->sem_perm.id;
582 }
583 
584 
585 /*
586  * Called with sem_ids.rwsem and ipcp locked.
587  */
588 static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
589 {
590 	struct sem_array *sma;
591 
592 	sma = container_of(ipcp, struct sem_array, sem_perm);
593 	if (params->u.nsems > sma->sem_nsems)
594 		return -EINVAL;
595 
596 	return 0;
597 }
598 
599 long ksys_semget(key_t key, int nsems, int semflg)
600 {
601 	struct ipc_namespace *ns;
602 	static const struct ipc_ops sem_ops = {
603 		.getnew = newary,
604 		.associate = security_sem_associate,
605 		.more_checks = sem_more_checks,
606 	};
607 	struct ipc_params sem_params;
608 
609 	ns = current->nsproxy->ipc_ns;
610 
611 	if (nsems < 0 || nsems > ns->sc_semmsl)
612 		return -EINVAL;
613 
614 	sem_params.key = key;
615 	sem_params.flg = semflg;
616 	sem_params.u.nsems = nsems;
617 
618 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
619 }
620 
621 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
622 {
623 	return ksys_semget(key, nsems, semflg);
624 }
625 
626 /**
627  * perform_atomic_semop[_slow] - Attempt to perform semaphore
628  *                               operations on a given array.
629  * @sma: semaphore array
630  * @q: struct sem_queue that describes the operation
631  *
632  * Caller blocking are as follows, based the value
633  * indicated by the semaphore operation (sem_op):
634  *
635  *  (1) >0 never blocks.
636  *  (2)  0 (wait-for-zero operation): semval is non-zero.
637  *  (3) <0 attempting to decrement semval to a value smaller than zero.
638  *
639  * Returns 0 if the operation was possible.
640  * Returns 1 if the operation is impossible, the caller must sleep.
641  * Returns <0 for error codes.
642  */
643 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
644 {
645 	int result, sem_op, nsops;
646 	struct pid *pid;
647 	struct sembuf *sop;
648 	struct sem *curr;
649 	struct sembuf *sops;
650 	struct sem_undo *un;
651 
652 	sops = q->sops;
653 	nsops = q->nsops;
654 	un = q->undo;
655 
656 	for (sop = sops; sop < sops + nsops; sop++) {
657 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
658 		curr = &sma->sems[idx];
659 		sem_op = sop->sem_op;
660 		result = curr->semval;
661 
662 		if (!sem_op && result)
663 			goto would_block;
664 
665 		result += sem_op;
666 		if (result < 0)
667 			goto would_block;
668 		if (result > SEMVMX)
669 			goto out_of_range;
670 
671 		if (sop->sem_flg & SEM_UNDO) {
672 			int undo = un->semadj[sop->sem_num] - sem_op;
673 			/* Exceeding the undo range is an error. */
674 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
675 				goto out_of_range;
676 			un->semadj[sop->sem_num] = undo;
677 		}
678 
679 		curr->semval = result;
680 	}
681 
682 	sop--;
683 	pid = q->pid;
684 	while (sop >= sops) {
685 		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
686 		sop--;
687 	}
688 
689 	return 0;
690 
691 out_of_range:
692 	result = -ERANGE;
693 	goto undo;
694 
695 would_block:
696 	q->blocking = sop;
697 
698 	if (sop->sem_flg & IPC_NOWAIT)
699 		result = -EAGAIN;
700 	else
701 		result = 1;
702 
703 undo:
704 	sop--;
705 	while (sop >= sops) {
706 		sem_op = sop->sem_op;
707 		sma->sems[sop->sem_num].semval -= sem_op;
708 		if (sop->sem_flg & SEM_UNDO)
709 			un->semadj[sop->sem_num] += sem_op;
710 		sop--;
711 	}
712 
713 	return result;
714 }
715 
716 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
717 {
718 	int result, sem_op, nsops;
719 	struct sembuf *sop;
720 	struct sem *curr;
721 	struct sembuf *sops;
722 	struct sem_undo *un;
723 
724 	sops = q->sops;
725 	nsops = q->nsops;
726 	un = q->undo;
727 
728 	if (unlikely(q->dupsop))
729 		return perform_atomic_semop_slow(sma, q);
730 
731 	/*
732 	 * We scan the semaphore set twice, first to ensure that the entire
733 	 * operation can succeed, therefore avoiding any pointless writes
734 	 * to shared memory and having to undo such changes in order to block
735 	 * until the operations can go through.
736 	 */
737 	for (sop = sops; sop < sops + nsops; sop++) {
738 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
739 
740 		curr = &sma->sems[idx];
741 		sem_op = sop->sem_op;
742 		result = curr->semval;
743 
744 		if (!sem_op && result)
745 			goto would_block; /* wait-for-zero */
746 
747 		result += sem_op;
748 		if (result < 0)
749 			goto would_block;
750 
751 		if (result > SEMVMX)
752 			return -ERANGE;
753 
754 		if (sop->sem_flg & SEM_UNDO) {
755 			int undo = un->semadj[sop->sem_num] - sem_op;
756 
757 			/* Exceeding the undo range is an error. */
758 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
759 				return -ERANGE;
760 		}
761 	}
762 
763 	for (sop = sops; sop < sops + nsops; sop++) {
764 		curr = &sma->sems[sop->sem_num];
765 		sem_op = sop->sem_op;
766 		result = curr->semval;
767 
768 		if (sop->sem_flg & SEM_UNDO) {
769 			int undo = un->semadj[sop->sem_num] - sem_op;
770 
771 			un->semadj[sop->sem_num] = undo;
772 		}
773 		curr->semval += sem_op;
774 		ipc_update_pid(&curr->sempid, q->pid);
775 	}
776 
777 	return 0;
778 
779 would_block:
780 	q->blocking = sop;
781 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
782 }
783 
784 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
785 					     struct wake_q_head *wake_q)
786 {
787 	struct task_struct *sleeper;
788 
789 	sleeper = get_task_struct(q->sleeper);
790 
791 	/* see SEM_BARRIER_2 for purpose/pairing */
792 	smp_store_release(&q->status, error);
793 
794 	wake_q_add_safe(wake_q, sleeper);
795 }
796 
797 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
798 {
799 	list_del(&q->list);
800 	if (q->nsops > 1)
801 		sma->complex_count--;
802 }
803 
804 /** check_restart(sma, q)
805  * @sma: semaphore array
806  * @q: the operation that just completed
807  *
808  * update_queue is O(N^2) when it restarts scanning the whole queue of
809  * waiting operations. Therefore this function checks if the restart is
810  * really necessary. It is called after a previously waiting operation
811  * modified the array.
812  * Note that wait-for-zero operations are handled without restart.
813  */
814 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
815 {
816 	/* pending complex alter operations are too difficult to analyse */
817 	if (!list_empty(&sma->pending_alter))
818 		return 1;
819 
820 	/* we were a sleeping complex operation. Too difficult */
821 	if (q->nsops > 1)
822 		return 1;
823 
824 	/* It is impossible that someone waits for the new value:
825 	 * - complex operations always restart.
826 	 * - wait-for-zero are handled separately.
827 	 * - q is a previously sleeping simple operation that
828 	 *   altered the array. It must be a decrement, because
829 	 *   simple increments never sleep.
830 	 * - If there are older (higher priority) decrements
831 	 *   in the queue, then they have observed the original
832 	 *   semval value and couldn't proceed. The operation
833 	 *   decremented to value - thus they won't proceed either.
834 	 */
835 	return 0;
836 }
837 
838 /**
839  * wake_const_ops - wake up non-alter tasks
840  * @sma: semaphore array.
841  * @semnum: semaphore that was modified.
842  * @wake_q: lockless wake-queue head.
843  *
844  * wake_const_ops must be called after a semaphore in a semaphore array
845  * was set to 0. If complex const operations are pending, wake_const_ops must
846  * be called with semnum = -1, as well as with the number of each modified
847  * semaphore.
848  * The tasks that must be woken up are added to @wake_q. The return code
849  * is stored in q->pid.
850  * The function returns 1 if at least one operation was completed successfully.
851  */
852 static int wake_const_ops(struct sem_array *sma, int semnum,
853 			  struct wake_q_head *wake_q)
854 {
855 	struct sem_queue *q, *tmp;
856 	struct list_head *pending_list;
857 	int semop_completed = 0;
858 
859 	if (semnum == -1)
860 		pending_list = &sma->pending_const;
861 	else
862 		pending_list = &sma->sems[semnum].pending_const;
863 
864 	list_for_each_entry_safe(q, tmp, pending_list, list) {
865 		int error = perform_atomic_semop(sma, q);
866 
867 		if (error > 0)
868 			continue;
869 		/* operation completed, remove from queue & wakeup */
870 		unlink_queue(sma, q);
871 
872 		wake_up_sem_queue_prepare(q, error, wake_q);
873 		if (error == 0)
874 			semop_completed = 1;
875 	}
876 
877 	return semop_completed;
878 }
879 
880 /**
881  * do_smart_wakeup_zero - wakeup all wait for zero tasks
882  * @sma: semaphore array
883  * @sops: operations that were performed
884  * @nsops: number of operations
885  * @wake_q: lockless wake-queue head
886  *
887  * Checks all required queue for wait-for-zero operations, based
888  * on the actual changes that were performed on the semaphore array.
889  * The function returns 1 if at least one operation was completed successfully.
890  */
891 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
892 				int nsops, struct wake_q_head *wake_q)
893 {
894 	int i;
895 	int semop_completed = 0;
896 	int got_zero = 0;
897 
898 	/* first: the per-semaphore queues, if known */
899 	if (sops) {
900 		for (i = 0; i < nsops; i++) {
901 			int num = sops[i].sem_num;
902 
903 			if (sma->sems[num].semval == 0) {
904 				got_zero = 1;
905 				semop_completed |= wake_const_ops(sma, num, wake_q);
906 			}
907 		}
908 	} else {
909 		/*
910 		 * No sops means modified semaphores not known.
911 		 * Assume all were changed.
912 		 */
913 		for (i = 0; i < sma->sem_nsems; i++) {
914 			if (sma->sems[i].semval == 0) {
915 				got_zero = 1;
916 				semop_completed |= wake_const_ops(sma, i, wake_q);
917 			}
918 		}
919 	}
920 	/*
921 	 * If one of the modified semaphores got 0,
922 	 * then check the global queue, too.
923 	 */
924 	if (got_zero)
925 		semop_completed |= wake_const_ops(sma, -1, wake_q);
926 
927 	return semop_completed;
928 }
929 
930 
931 /**
932  * update_queue - look for tasks that can be completed.
933  * @sma: semaphore array.
934  * @semnum: semaphore that was modified.
935  * @wake_q: lockless wake-queue head.
936  *
937  * update_queue must be called after a semaphore in a semaphore array
938  * was modified. If multiple semaphores were modified, update_queue must
939  * be called with semnum = -1, as well as with the number of each modified
940  * semaphore.
941  * The tasks that must be woken up are added to @wake_q. The return code
942  * is stored in q->pid.
943  * The function internally checks if const operations can now succeed.
944  *
945  * The function return 1 if at least one semop was completed successfully.
946  */
947 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
948 {
949 	struct sem_queue *q, *tmp;
950 	struct list_head *pending_list;
951 	int semop_completed = 0;
952 
953 	if (semnum == -1)
954 		pending_list = &sma->pending_alter;
955 	else
956 		pending_list = &sma->sems[semnum].pending_alter;
957 
958 again:
959 	list_for_each_entry_safe(q, tmp, pending_list, list) {
960 		int error, restart;
961 
962 		/* If we are scanning the single sop, per-semaphore list of
963 		 * one semaphore and that semaphore is 0, then it is not
964 		 * necessary to scan further: simple increments
965 		 * that affect only one entry succeed immediately and cannot
966 		 * be in the  per semaphore pending queue, and decrements
967 		 * cannot be successful if the value is already 0.
968 		 */
969 		if (semnum != -1 && sma->sems[semnum].semval == 0)
970 			break;
971 
972 		error = perform_atomic_semop(sma, q);
973 
974 		/* Does q->sleeper still need to sleep? */
975 		if (error > 0)
976 			continue;
977 
978 		unlink_queue(sma, q);
979 
980 		if (error) {
981 			restart = 0;
982 		} else {
983 			semop_completed = 1;
984 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
985 			restart = check_restart(sma, q);
986 		}
987 
988 		wake_up_sem_queue_prepare(q, error, wake_q);
989 		if (restart)
990 			goto again;
991 	}
992 	return semop_completed;
993 }
994 
995 /**
996  * set_semotime - set sem_otime
997  * @sma: semaphore array
998  * @sops: operations that modified the array, may be NULL
999  *
1000  * sem_otime is replicated to avoid cache line trashing.
1001  * This function sets one instance to the current time.
1002  */
1003 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1004 {
1005 	if (sops == NULL) {
1006 		sma->sems[0].sem_otime = ktime_get_real_seconds();
1007 	} else {
1008 		sma->sems[sops[0].sem_num].sem_otime =
1009 						ktime_get_real_seconds();
1010 	}
1011 }
1012 
1013 /**
1014  * do_smart_update - optimized update_queue
1015  * @sma: semaphore array
1016  * @sops: operations that were performed
1017  * @nsops: number of operations
1018  * @otime: force setting otime
1019  * @wake_q: lockless wake-queue head
1020  *
1021  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1022  * based on the actual changes that were performed on the semaphore array.
1023  * Note that the function does not do the actual wake-up: the caller is
1024  * responsible for calling wake_up_q().
1025  * It is safe to perform this call after dropping all locks.
1026  */
1027 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1028 			    int otime, struct wake_q_head *wake_q)
1029 {
1030 	int i;
1031 
1032 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1033 
1034 	if (!list_empty(&sma->pending_alter)) {
1035 		/* semaphore array uses the global queue - just process it. */
1036 		otime |= update_queue(sma, -1, wake_q);
1037 	} else {
1038 		if (!sops) {
1039 			/*
1040 			 * No sops, thus the modified semaphores are not
1041 			 * known. Check all.
1042 			 */
1043 			for (i = 0; i < sma->sem_nsems; i++)
1044 				otime |= update_queue(sma, i, wake_q);
1045 		} else {
1046 			/*
1047 			 * Check the semaphores that were increased:
1048 			 * - No complex ops, thus all sleeping ops are
1049 			 *   decrease.
1050 			 * - if we decreased the value, then any sleeping
1051 			 *   semaphore ops won't be able to run: If the
1052 			 *   previous value was too small, then the new
1053 			 *   value will be too small, too.
1054 			 */
1055 			for (i = 0; i < nsops; i++) {
1056 				if (sops[i].sem_op > 0) {
1057 					otime |= update_queue(sma,
1058 							      sops[i].sem_num, wake_q);
1059 				}
1060 			}
1061 		}
1062 	}
1063 	if (otime)
1064 		set_semotime(sma, sops);
1065 }
1066 
1067 /*
1068  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1069  */
1070 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1071 			bool count_zero)
1072 {
1073 	struct sembuf *sop = q->blocking;
1074 
1075 	/*
1076 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1077 	 * semaphores. This violates SUS, therefore it was changed to the
1078 	 * standard compliant behavior.
1079 	 * Give the administrators a chance to notice that an application
1080 	 * might misbehave because it relies on the Linux behavior.
1081 	 */
1082 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1083 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1084 			current->comm, task_pid_nr(current));
1085 
1086 	if (sop->sem_num != semnum)
1087 		return 0;
1088 
1089 	if (count_zero && sop->sem_op == 0)
1090 		return 1;
1091 	if (!count_zero && sop->sem_op < 0)
1092 		return 1;
1093 
1094 	return 0;
1095 }
1096 
1097 /* The following counts are associated to each semaphore:
1098  *   semncnt        number of tasks waiting on semval being nonzero
1099  *   semzcnt        number of tasks waiting on semval being zero
1100  *
1101  * Per definition, a task waits only on the semaphore of the first semop
1102  * that cannot proceed, even if additional operation would block, too.
1103  */
1104 static int count_semcnt(struct sem_array *sma, ushort semnum,
1105 			bool count_zero)
1106 {
1107 	struct list_head *l;
1108 	struct sem_queue *q;
1109 	int semcnt;
1110 
1111 	semcnt = 0;
1112 	/* First: check the simple operations. They are easy to evaluate */
1113 	if (count_zero)
1114 		l = &sma->sems[semnum].pending_const;
1115 	else
1116 		l = &sma->sems[semnum].pending_alter;
1117 
1118 	list_for_each_entry(q, l, list) {
1119 		/* all task on a per-semaphore list sleep on exactly
1120 		 * that semaphore
1121 		 */
1122 		semcnt++;
1123 	}
1124 
1125 	/* Then: check the complex operations. */
1126 	list_for_each_entry(q, &sma->pending_alter, list) {
1127 		semcnt += check_qop(sma, semnum, q, count_zero);
1128 	}
1129 	if (count_zero) {
1130 		list_for_each_entry(q, &sma->pending_const, list) {
1131 			semcnt += check_qop(sma, semnum, q, count_zero);
1132 		}
1133 	}
1134 	return semcnt;
1135 }
1136 
1137 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1138  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1139  * remains locked on exit.
1140  */
1141 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1142 {
1143 	struct sem_undo *un, *tu;
1144 	struct sem_queue *q, *tq;
1145 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1146 	int i;
1147 	DEFINE_WAKE_Q(wake_q);
1148 
1149 	/* Free the existing undo structures for this semaphore set.  */
1150 	ipc_assert_locked_object(&sma->sem_perm);
1151 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1152 		list_del(&un->list_id);
1153 		spin_lock(&un->ulp->lock);
1154 		un->semid = -1;
1155 		list_del_rcu(&un->list_proc);
1156 		spin_unlock(&un->ulp->lock);
1157 		kfree_rcu(un, rcu);
1158 	}
1159 
1160 	/* Wake up all pending processes and let them fail with EIDRM. */
1161 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1162 		unlink_queue(sma, q);
1163 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1164 	}
1165 
1166 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1167 		unlink_queue(sma, q);
1168 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1169 	}
1170 	for (i = 0; i < sma->sem_nsems; i++) {
1171 		struct sem *sem = &sma->sems[i];
1172 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1173 			unlink_queue(sma, q);
1174 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1175 		}
1176 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1177 			unlink_queue(sma, q);
1178 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1179 		}
1180 		ipc_update_pid(&sem->sempid, NULL);
1181 	}
1182 
1183 	/* Remove the semaphore set from the IDR */
1184 	sem_rmid(ns, sma);
1185 	sem_unlock(sma, -1);
1186 	rcu_read_unlock();
1187 
1188 	wake_up_q(&wake_q);
1189 	ns->used_sems -= sma->sem_nsems;
1190 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1191 }
1192 
1193 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1194 {
1195 	switch (version) {
1196 	case IPC_64:
1197 		return copy_to_user(buf, in, sizeof(*in));
1198 	case IPC_OLD:
1199 	    {
1200 		struct semid_ds out;
1201 
1202 		memset(&out, 0, sizeof(out));
1203 
1204 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1205 
1206 		out.sem_otime	= in->sem_otime;
1207 		out.sem_ctime	= in->sem_ctime;
1208 		out.sem_nsems	= in->sem_nsems;
1209 
1210 		return copy_to_user(buf, &out, sizeof(out));
1211 	    }
1212 	default:
1213 		return -EINVAL;
1214 	}
1215 }
1216 
1217 static time64_t get_semotime(struct sem_array *sma)
1218 {
1219 	int i;
1220 	time64_t res;
1221 
1222 	res = sma->sems[0].sem_otime;
1223 	for (i = 1; i < sma->sem_nsems; i++) {
1224 		time64_t to = sma->sems[i].sem_otime;
1225 
1226 		if (to > res)
1227 			res = to;
1228 	}
1229 	return res;
1230 }
1231 
1232 static int semctl_stat(struct ipc_namespace *ns, int semid,
1233 			 int cmd, struct semid64_ds *semid64)
1234 {
1235 	struct sem_array *sma;
1236 	time64_t semotime;
1237 	int err;
1238 
1239 	memset(semid64, 0, sizeof(*semid64));
1240 
1241 	rcu_read_lock();
1242 	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1243 		sma = sem_obtain_object(ns, semid);
1244 		if (IS_ERR(sma)) {
1245 			err = PTR_ERR(sma);
1246 			goto out_unlock;
1247 		}
1248 	} else { /* IPC_STAT */
1249 		sma = sem_obtain_object_check(ns, semid);
1250 		if (IS_ERR(sma)) {
1251 			err = PTR_ERR(sma);
1252 			goto out_unlock;
1253 		}
1254 	}
1255 
1256 	/* see comment for SHM_STAT_ANY */
1257 	if (cmd == SEM_STAT_ANY)
1258 		audit_ipc_obj(&sma->sem_perm);
1259 	else {
1260 		err = -EACCES;
1261 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1262 			goto out_unlock;
1263 	}
1264 
1265 	err = security_sem_semctl(&sma->sem_perm, cmd);
1266 	if (err)
1267 		goto out_unlock;
1268 
1269 	ipc_lock_object(&sma->sem_perm);
1270 
1271 	if (!ipc_valid_object(&sma->sem_perm)) {
1272 		ipc_unlock_object(&sma->sem_perm);
1273 		err = -EIDRM;
1274 		goto out_unlock;
1275 	}
1276 
1277 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1278 	semotime = get_semotime(sma);
1279 	semid64->sem_otime = semotime;
1280 	semid64->sem_ctime = sma->sem_ctime;
1281 #ifndef CONFIG_64BIT
1282 	semid64->sem_otime_high = semotime >> 32;
1283 	semid64->sem_ctime_high = sma->sem_ctime >> 32;
1284 #endif
1285 	semid64->sem_nsems = sma->sem_nsems;
1286 
1287 	if (cmd == IPC_STAT) {
1288 		/*
1289 		 * As defined in SUS:
1290 		 * Return 0 on success
1291 		 */
1292 		err = 0;
1293 	} else {
1294 		/*
1295 		 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1296 		 * Return the full id, including the sequence number
1297 		 */
1298 		err = sma->sem_perm.id;
1299 	}
1300 	ipc_unlock_object(&sma->sem_perm);
1301 out_unlock:
1302 	rcu_read_unlock();
1303 	return err;
1304 }
1305 
1306 static int semctl_info(struct ipc_namespace *ns, int semid,
1307 			 int cmd, void __user *p)
1308 {
1309 	struct seminfo seminfo;
1310 	int max_idx;
1311 	int err;
1312 
1313 	err = security_sem_semctl(NULL, cmd);
1314 	if (err)
1315 		return err;
1316 
1317 	memset(&seminfo, 0, sizeof(seminfo));
1318 	seminfo.semmni = ns->sc_semmni;
1319 	seminfo.semmns = ns->sc_semmns;
1320 	seminfo.semmsl = ns->sc_semmsl;
1321 	seminfo.semopm = ns->sc_semopm;
1322 	seminfo.semvmx = SEMVMX;
1323 	seminfo.semmnu = SEMMNU;
1324 	seminfo.semmap = SEMMAP;
1325 	seminfo.semume = SEMUME;
1326 	down_read(&sem_ids(ns).rwsem);
1327 	if (cmd == SEM_INFO) {
1328 		seminfo.semusz = sem_ids(ns).in_use;
1329 		seminfo.semaem = ns->used_sems;
1330 	} else {
1331 		seminfo.semusz = SEMUSZ;
1332 		seminfo.semaem = SEMAEM;
1333 	}
1334 	max_idx = ipc_get_maxidx(&sem_ids(ns));
1335 	up_read(&sem_ids(ns).rwsem);
1336 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1337 		return -EFAULT;
1338 	return (max_idx < 0) ? 0 : max_idx;
1339 }
1340 
1341 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1342 		int val)
1343 {
1344 	struct sem_undo *un;
1345 	struct sem_array *sma;
1346 	struct sem *curr;
1347 	int err;
1348 	DEFINE_WAKE_Q(wake_q);
1349 
1350 	if (val > SEMVMX || val < 0)
1351 		return -ERANGE;
1352 
1353 	rcu_read_lock();
1354 	sma = sem_obtain_object_check(ns, semid);
1355 	if (IS_ERR(sma)) {
1356 		rcu_read_unlock();
1357 		return PTR_ERR(sma);
1358 	}
1359 
1360 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1361 		rcu_read_unlock();
1362 		return -EINVAL;
1363 	}
1364 
1365 
1366 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1367 		rcu_read_unlock();
1368 		return -EACCES;
1369 	}
1370 
1371 	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1372 	if (err) {
1373 		rcu_read_unlock();
1374 		return -EACCES;
1375 	}
1376 
1377 	sem_lock(sma, NULL, -1);
1378 
1379 	if (!ipc_valid_object(&sma->sem_perm)) {
1380 		sem_unlock(sma, -1);
1381 		rcu_read_unlock();
1382 		return -EIDRM;
1383 	}
1384 
1385 	semnum = array_index_nospec(semnum, sma->sem_nsems);
1386 	curr = &sma->sems[semnum];
1387 
1388 	ipc_assert_locked_object(&sma->sem_perm);
1389 	list_for_each_entry(un, &sma->list_id, list_id)
1390 		un->semadj[semnum] = 0;
1391 
1392 	curr->semval = val;
1393 	ipc_update_pid(&curr->sempid, task_tgid(current));
1394 	sma->sem_ctime = ktime_get_real_seconds();
1395 	/* maybe some queued-up processes were waiting for this */
1396 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1397 	sem_unlock(sma, -1);
1398 	rcu_read_unlock();
1399 	wake_up_q(&wake_q);
1400 	return 0;
1401 }
1402 
1403 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1404 		int cmd, void __user *p)
1405 {
1406 	struct sem_array *sma;
1407 	struct sem *curr;
1408 	int err, nsems;
1409 	ushort fast_sem_io[SEMMSL_FAST];
1410 	ushort *sem_io = fast_sem_io;
1411 	DEFINE_WAKE_Q(wake_q);
1412 
1413 	rcu_read_lock();
1414 	sma = sem_obtain_object_check(ns, semid);
1415 	if (IS_ERR(sma)) {
1416 		rcu_read_unlock();
1417 		return PTR_ERR(sma);
1418 	}
1419 
1420 	nsems = sma->sem_nsems;
1421 
1422 	err = -EACCES;
1423 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1424 		goto out_rcu_wakeup;
1425 
1426 	err = security_sem_semctl(&sma->sem_perm, cmd);
1427 	if (err)
1428 		goto out_rcu_wakeup;
1429 
1430 	err = -EACCES;
1431 	switch (cmd) {
1432 	case GETALL:
1433 	{
1434 		ushort __user *array = p;
1435 		int i;
1436 
1437 		sem_lock(sma, NULL, -1);
1438 		if (!ipc_valid_object(&sma->sem_perm)) {
1439 			err = -EIDRM;
1440 			goto out_unlock;
1441 		}
1442 		if (nsems > SEMMSL_FAST) {
1443 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1444 				err = -EIDRM;
1445 				goto out_unlock;
1446 			}
1447 			sem_unlock(sma, -1);
1448 			rcu_read_unlock();
1449 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1450 						GFP_KERNEL);
1451 			if (sem_io == NULL) {
1452 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1453 				return -ENOMEM;
1454 			}
1455 
1456 			rcu_read_lock();
1457 			sem_lock_and_putref(sma);
1458 			if (!ipc_valid_object(&sma->sem_perm)) {
1459 				err = -EIDRM;
1460 				goto out_unlock;
1461 			}
1462 		}
1463 		for (i = 0; i < sma->sem_nsems; i++)
1464 			sem_io[i] = sma->sems[i].semval;
1465 		sem_unlock(sma, -1);
1466 		rcu_read_unlock();
1467 		err = 0;
1468 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1469 			err = -EFAULT;
1470 		goto out_free;
1471 	}
1472 	case SETALL:
1473 	{
1474 		int i;
1475 		struct sem_undo *un;
1476 
1477 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1478 			err = -EIDRM;
1479 			goto out_rcu_wakeup;
1480 		}
1481 		rcu_read_unlock();
1482 
1483 		if (nsems > SEMMSL_FAST) {
1484 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1485 						GFP_KERNEL);
1486 			if (sem_io == NULL) {
1487 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1488 				return -ENOMEM;
1489 			}
1490 		}
1491 
1492 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1493 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1494 			err = -EFAULT;
1495 			goto out_free;
1496 		}
1497 
1498 		for (i = 0; i < nsems; i++) {
1499 			if (sem_io[i] > SEMVMX) {
1500 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1501 				err = -ERANGE;
1502 				goto out_free;
1503 			}
1504 		}
1505 		rcu_read_lock();
1506 		sem_lock_and_putref(sma);
1507 		if (!ipc_valid_object(&sma->sem_perm)) {
1508 			err = -EIDRM;
1509 			goto out_unlock;
1510 		}
1511 
1512 		for (i = 0; i < nsems; i++) {
1513 			sma->sems[i].semval = sem_io[i];
1514 			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1515 		}
1516 
1517 		ipc_assert_locked_object(&sma->sem_perm);
1518 		list_for_each_entry(un, &sma->list_id, list_id) {
1519 			for (i = 0; i < nsems; i++)
1520 				un->semadj[i] = 0;
1521 		}
1522 		sma->sem_ctime = ktime_get_real_seconds();
1523 		/* maybe some queued-up processes were waiting for this */
1524 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1525 		err = 0;
1526 		goto out_unlock;
1527 	}
1528 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1529 	}
1530 	err = -EINVAL;
1531 	if (semnum < 0 || semnum >= nsems)
1532 		goto out_rcu_wakeup;
1533 
1534 	sem_lock(sma, NULL, -1);
1535 	if (!ipc_valid_object(&sma->sem_perm)) {
1536 		err = -EIDRM;
1537 		goto out_unlock;
1538 	}
1539 
1540 	semnum = array_index_nospec(semnum, nsems);
1541 	curr = &sma->sems[semnum];
1542 
1543 	switch (cmd) {
1544 	case GETVAL:
1545 		err = curr->semval;
1546 		goto out_unlock;
1547 	case GETPID:
1548 		err = pid_vnr(curr->sempid);
1549 		goto out_unlock;
1550 	case GETNCNT:
1551 		err = count_semcnt(sma, semnum, 0);
1552 		goto out_unlock;
1553 	case GETZCNT:
1554 		err = count_semcnt(sma, semnum, 1);
1555 		goto out_unlock;
1556 	}
1557 
1558 out_unlock:
1559 	sem_unlock(sma, -1);
1560 out_rcu_wakeup:
1561 	rcu_read_unlock();
1562 	wake_up_q(&wake_q);
1563 out_free:
1564 	if (sem_io != fast_sem_io)
1565 		kvfree(sem_io);
1566 	return err;
1567 }
1568 
1569 static inline unsigned long
1570 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1571 {
1572 	switch (version) {
1573 	case IPC_64:
1574 		if (copy_from_user(out, buf, sizeof(*out)))
1575 			return -EFAULT;
1576 		return 0;
1577 	case IPC_OLD:
1578 	    {
1579 		struct semid_ds tbuf_old;
1580 
1581 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1582 			return -EFAULT;
1583 
1584 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1585 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1586 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1587 
1588 		return 0;
1589 	    }
1590 	default:
1591 		return -EINVAL;
1592 	}
1593 }
1594 
1595 /*
1596  * This function handles some semctl commands which require the rwsem
1597  * to be held in write mode.
1598  * NOTE: no locks must be held, the rwsem is taken inside this function.
1599  */
1600 static int semctl_down(struct ipc_namespace *ns, int semid,
1601 		       int cmd, struct semid64_ds *semid64)
1602 {
1603 	struct sem_array *sma;
1604 	int err;
1605 	struct kern_ipc_perm *ipcp;
1606 
1607 	down_write(&sem_ids(ns).rwsem);
1608 	rcu_read_lock();
1609 
1610 	ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1611 				      &semid64->sem_perm, 0);
1612 	if (IS_ERR(ipcp)) {
1613 		err = PTR_ERR(ipcp);
1614 		goto out_unlock1;
1615 	}
1616 
1617 	sma = container_of(ipcp, struct sem_array, sem_perm);
1618 
1619 	err = security_sem_semctl(&sma->sem_perm, cmd);
1620 	if (err)
1621 		goto out_unlock1;
1622 
1623 	switch (cmd) {
1624 	case IPC_RMID:
1625 		sem_lock(sma, NULL, -1);
1626 		/* freeary unlocks the ipc object and rcu */
1627 		freeary(ns, ipcp);
1628 		goto out_up;
1629 	case IPC_SET:
1630 		sem_lock(sma, NULL, -1);
1631 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1632 		if (err)
1633 			goto out_unlock0;
1634 		sma->sem_ctime = ktime_get_real_seconds();
1635 		break;
1636 	default:
1637 		err = -EINVAL;
1638 		goto out_unlock1;
1639 	}
1640 
1641 out_unlock0:
1642 	sem_unlock(sma, -1);
1643 out_unlock1:
1644 	rcu_read_unlock();
1645 out_up:
1646 	up_write(&sem_ids(ns).rwsem);
1647 	return err;
1648 }
1649 
1650 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1651 {
1652 	struct ipc_namespace *ns;
1653 	void __user *p = (void __user *)arg;
1654 	struct semid64_ds semid64;
1655 	int err;
1656 
1657 	if (semid < 0)
1658 		return -EINVAL;
1659 
1660 	ns = current->nsproxy->ipc_ns;
1661 
1662 	switch (cmd) {
1663 	case IPC_INFO:
1664 	case SEM_INFO:
1665 		return semctl_info(ns, semid, cmd, p);
1666 	case IPC_STAT:
1667 	case SEM_STAT:
1668 	case SEM_STAT_ANY:
1669 		err = semctl_stat(ns, semid, cmd, &semid64);
1670 		if (err < 0)
1671 			return err;
1672 		if (copy_semid_to_user(p, &semid64, version))
1673 			err = -EFAULT;
1674 		return err;
1675 	case GETALL:
1676 	case GETVAL:
1677 	case GETPID:
1678 	case GETNCNT:
1679 	case GETZCNT:
1680 	case SETALL:
1681 		return semctl_main(ns, semid, semnum, cmd, p);
1682 	case SETVAL: {
1683 		int val;
1684 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1685 		/* big-endian 64bit */
1686 		val = arg >> 32;
1687 #else
1688 		/* 32bit or little-endian 64bit */
1689 		val = arg;
1690 #endif
1691 		return semctl_setval(ns, semid, semnum, val);
1692 	}
1693 	case IPC_SET:
1694 		if (copy_semid_from_user(&semid64, p, version))
1695 			return -EFAULT;
1696 		fallthrough;
1697 	case IPC_RMID:
1698 		return semctl_down(ns, semid, cmd, &semid64);
1699 	default:
1700 		return -EINVAL;
1701 	}
1702 }
1703 
1704 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1705 {
1706 	return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1707 }
1708 
1709 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1710 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1711 {
1712 	int version = ipc_parse_version(&cmd);
1713 
1714 	return ksys_semctl(semid, semnum, cmd, arg, version);
1715 }
1716 
1717 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1718 {
1719 	return ksys_old_semctl(semid, semnum, cmd, arg);
1720 }
1721 #endif
1722 
1723 #ifdef CONFIG_COMPAT
1724 
1725 struct compat_semid_ds {
1726 	struct compat_ipc_perm sem_perm;
1727 	old_time32_t sem_otime;
1728 	old_time32_t sem_ctime;
1729 	compat_uptr_t sem_base;
1730 	compat_uptr_t sem_pending;
1731 	compat_uptr_t sem_pending_last;
1732 	compat_uptr_t undo;
1733 	unsigned short sem_nsems;
1734 };
1735 
1736 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1737 					int version)
1738 {
1739 	memset(out, 0, sizeof(*out));
1740 	if (version == IPC_64) {
1741 		struct compat_semid64_ds __user *p = buf;
1742 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1743 	} else {
1744 		struct compat_semid_ds __user *p = buf;
1745 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1746 	}
1747 }
1748 
1749 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1750 					int version)
1751 {
1752 	if (version == IPC_64) {
1753 		struct compat_semid64_ds v;
1754 		memset(&v, 0, sizeof(v));
1755 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1756 		v.sem_otime	 = lower_32_bits(in->sem_otime);
1757 		v.sem_otime_high = upper_32_bits(in->sem_otime);
1758 		v.sem_ctime	 = lower_32_bits(in->sem_ctime);
1759 		v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1760 		v.sem_nsems = in->sem_nsems;
1761 		return copy_to_user(buf, &v, sizeof(v));
1762 	} else {
1763 		struct compat_semid_ds v;
1764 		memset(&v, 0, sizeof(v));
1765 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1766 		v.sem_otime = in->sem_otime;
1767 		v.sem_ctime = in->sem_ctime;
1768 		v.sem_nsems = in->sem_nsems;
1769 		return copy_to_user(buf, &v, sizeof(v));
1770 	}
1771 }
1772 
1773 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1774 {
1775 	void __user *p = compat_ptr(arg);
1776 	struct ipc_namespace *ns;
1777 	struct semid64_ds semid64;
1778 	int err;
1779 
1780 	ns = current->nsproxy->ipc_ns;
1781 
1782 	if (semid < 0)
1783 		return -EINVAL;
1784 
1785 	switch (cmd & (~IPC_64)) {
1786 	case IPC_INFO:
1787 	case SEM_INFO:
1788 		return semctl_info(ns, semid, cmd, p);
1789 	case IPC_STAT:
1790 	case SEM_STAT:
1791 	case SEM_STAT_ANY:
1792 		err = semctl_stat(ns, semid, cmd, &semid64);
1793 		if (err < 0)
1794 			return err;
1795 		if (copy_compat_semid_to_user(p, &semid64, version))
1796 			err = -EFAULT;
1797 		return err;
1798 	case GETVAL:
1799 	case GETPID:
1800 	case GETNCNT:
1801 	case GETZCNT:
1802 	case GETALL:
1803 	case SETALL:
1804 		return semctl_main(ns, semid, semnum, cmd, p);
1805 	case SETVAL:
1806 		return semctl_setval(ns, semid, semnum, arg);
1807 	case IPC_SET:
1808 		if (copy_compat_semid_from_user(&semid64, p, version))
1809 			return -EFAULT;
1810 		fallthrough;
1811 	case IPC_RMID:
1812 		return semctl_down(ns, semid, cmd, &semid64);
1813 	default:
1814 		return -EINVAL;
1815 	}
1816 }
1817 
1818 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1819 {
1820 	return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1821 }
1822 
1823 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1824 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1825 {
1826 	int version = compat_ipc_parse_version(&cmd);
1827 
1828 	return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1829 }
1830 
1831 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1832 {
1833 	return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1834 }
1835 #endif
1836 #endif
1837 
1838 /* If the task doesn't already have a undo_list, then allocate one
1839  * here.  We guarantee there is only one thread using this undo list,
1840  * and current is THE ONE
1841  *
1842  * If this allocation and assignment succeeds, but later
1843  * portions of this code fail, there is no need to free the sem_undo_list.
1844  * Just let it stay associated with the task, and it'll be freed later
1845  * at exit time.
1846  *
1847  * This can block, so callers must hold no locks.
1848  */
1849 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1850 {
1851 	struct sem_undo_list *undo_list;
1852 
1853 	undo_list = current->sysvsem.undo_list;
1854 	if (!undo_list) {
1855 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1856 		if (undo_list == NULL)
1857 			return -ENOMEM;
1858 		spin_lock_init(&undo_list->lock);
1859 		refcount_set(&undo_list->refcnt, 1);
1860 		INIT_LIST_HEAD(&undo_list->list_proc);
1861 
1862 		current->sysvsem.undo_list = undo_list;
1863 	}
1864 	*undo_listp = undo_list;
1865 	return 0;
1866 }
1867 
1868 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1869 {
1870 	struct sem_undo *un;
1871 
1872 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1873 				spin_is_locked(&ulp->lock)) {
1874 		if (un->semid == semid)
1875 			return un;
1876 	}
1877 	return NULL;
1878 }
1879 
1880 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1881 {
1882 	struct sem_undo *un;
1883 
1884 	assert_spin_locked(&ulp->lock);
1885 
1886 	un = __lookup_undo(ulp, semid);
1887 	if (un) {
1888 		list_del_rcu(&un->list_proc);
1889 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1890 	}
1891 	return un;
1892 }
1893 
1894 /**
1895  * find_alloc_undo - lookup (and if not present create) undo array
1896  * @ns: namespace
1897  * @semid: semaphore array id
1898  *
1899  * The function looks up (and if not present creates) the undo structure.
1900  * The size of the undo structure depends on the size of the semaphore
1901  * array, thus the alloc path is not that straightforward.
1902  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1903  * performs a rcu_read_lock().
1904  */
1905 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1906 {
1907 	struct sem_array *sma;
1908 	struct sem_undo_list *ulp;
1909 	struct sem_undo *un, *new;
1910 	int nsems, error;
1911 
1912 	error = get_undo_list(&ulp);
1913 	if (error)
1914 		return ERR_PTR(error);
1915 
1916 	rcu_read_lock();
1917 	spin_lock(&ulp->lock);
1918 	un = lookup_undo(ulp, semid);
1919 	spin_unlock(&ulp->lock);
1920 	if (likely(un != NULL))
1921 		goto out;
1922 
1923 	/* no undo structure around - allocate one. */
1924 	/* step 1: figure out the size of the semaphore array */
1925 	sma = sem_obtain_object_check(ns, semid);
1926 	if (IS_ERR(sma)) {
1927 		rcu_read_unlock();
1928 		return ERR_CAST(sma);
1929 	}
1930 
1931 	nsems = sma->sem_nsems;
1932 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1933 		rcu_read_unlock();
1934 		un = ERR_PTR(-EIDRM);
1935 		goto out;
1936 	}
1937 	rcu_read_unlock();
1938 
1939 	/* step 2: allocate new undo structure */
1940 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1941 	if (!new) {
1942 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1943 		return ERR_PTR(-ENOMEM);
1944 	}
1945 
1946 	/* step 3: Acquire the lock on semaphore array */
1947 	rcu_read_lock();
1948 	sem_lock_and_putref(sma);
1949 	if (!ipc_valid_object(&sma->sem_perm)) {
1950 		sem_unlock(sma, -1);
1951 		rcu_read_unlock();
1952 		kfree(new);
1953 		un = ERR_PTR(-EIDRM);
1954 		goto out;
1955 	}
1956 	spin_lock(&ulp->lock);
1957 
1958 	/*
1959 	 * step 4: check for races: did someone else allocate the undo struct?
1960 	 */
1961 	un = lookup_undo(ulp, semid);
1962 	if (un) {
1963 		kfree(new);
1964 		goto success;
1965 	}
1966 	/* step 5: initialize & link new undo structure */
1967 	new->semadj = (short *) &new[1];
1968 	new->ulp = ulp;
1969 	new->semid = semid;
1970 	assert_spin_locked(&ulp->lock);
1971 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1972 	ipc_assert_locked_object(&sma->sem_perm);
1973 	list_add(&new->list_id, &sma->list_id);
1974 	un = new;
1975 
1976 success:
1977 	spin_unlock(&ulp->lock);
1978 	sem_unlock(sma, -1);
1979 out:
1980 	return un;
1981 }
1982 
1983 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1984 		unsigned nsops, const struct timespec64 *timeout)
1985 {
1986 	int error = -EINVAL;
1987 	struct sem_array *sma;
1988 	struct sembuf fast_sops[SEMOPM_FAST];
1989 	struct sembuf *sops = fast_sops, *sop;
1990 	struct sem_undo *un;
1991 	int max, locknum;
1992 	bool undos = false, alter = false, dupsop = false;
1993 	struct sem_queue queue;
1994 	unsigned long dup = 0, jiffies_left = 0;
1995 	struct ipc_namespace *ns;
1996 
1997 	ns = current->nsproxy->ipc_ns;
1998 
1999 	if (nsops < 1 || semid < 0)
2000 		return -EINVAL;
2001 	if (nsops > ns->sc_semopm)
2002 		return -E2BIG;
2003 	if (nsops > SEMOPM_FAST) {
2004 		sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2005 		if (sops == NULL)
2006 			return -ENOMEM;
2007 	}
2008 
2009 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2010 		error =  -EFAULT;
2011 		goto out_free;
2012 	}
2013 
2014 	if (timeout) {
2015 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2016 			timeout->tv_nsec >= 1000000000L) {
2017 			error = -EINVAL;
2018 			goto out_free;
2019 		}
2020 		jiffies_left = timespec64_to_jiffies(timeout);
2021 	}
2022 
2023 	max = 0;
2024 	for (sop = sops; sop < sops + nsops; sop++) {
2025 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2026 
2027 		if (sop->sem_num >= max)
2028 			max = sop->sem_num;
2029 		if (sop->sem_flg & SEM_UNDO)
2030 			undos = true;
2031 		if (dup & mask) {
2032 			/*
2033 			 * There was a previous alter access that appears
2034 			 * to have accessed the same semaphore, thus use
2035 			 * the dupsop logic. "appears", because the detection
2036 			 * can only check % BITS_PER_LONG.
2037 			 */
2038 			dupsop = true;
2039 		}
2040 		if (sop->sem_op != 0) {
2041 			alter = true;
2042 			dup |= mask;
2043 		}
2044 	}
2045 
2046 	if (undos) {
2047 		/* On success, find_alloc_undo takes the rcu_read_lock */
2048 		un = find_alloc_undo(ns, semid);
2049 		if (IS_ERR(un)) {
2050 			error = PTR_ERR(un);
2051 			goto out_free;
2052 		}
2053 	} else {
2054 		un = NULL;
2055 		rcu_read_lock();
2056 	}
2057 
2058 	sma = sem_obtain_object_check(ns, semid);
2059 	if (IS_ERR(sma)) {
2060 		rcu_read_unlock();
2061 		error = PTR_ERR(sma);
2062 		goto out_free;
2063 	}
2064 
2065 	error = -EFBIG;
2066 	if (max >= sma->sem_nsems) {
2067 		rcu_read_unlock();
2068 		goto out_free;
2069 	}
2070 
2071 	error = -EACCES;
2072 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2073 		rcu_read_unlock();
2074 		goto out_free;
2075 	}
2076 
2077 	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2078 	if (error) {
2079 		rcu_read_unlock();
2080 		goto out_free;
2081 	}
2082 
2083 	error = -EIDRM;
2084 	locknum = sem_lock(sma, sops, nsops);
2085 	/*
2086 	 * We eventually might perform the following check in a lockless
2087 	 * fashion, considering ipc_valid_object() locking constraints.
2088 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2089 	 * only a per-semaphore lock is held and it's OK to proceed with the
2090 	 * check below. More details on the fine grained locking scheme
2091 	 * entangled here and why it's RMID race safe on comments at sem_lock()
2092 	 */
2093 	if (!ipc_valid_object(&sma->sem_perm))
2094 		goto out_unlock_free;
2095 	/*
2096 	 * semid identifiers are not unique - find_alloc_undo may have
2097 	 * allocated an undo structure, it was invalidated by an RMID
2098 	 * and now a new array with received the same id. Check and fail.
2099 	 * This case can be detected checking un->semid. The existence of
2100 	 * "un" itself is guaranteed by rcu.
2101 	 */
2102 	if (un && un->semid == -1)
2103 		goto out_unlock_free;
2104 
2105 	queue.sops = sops;
2106 	queue.nsops = nsops;
2107 	queue.undo = un;
2108 	queue.pid = task_tgid(current);
2109 	queue.alter = alter;
2110 	queue.dupsop = dupsop;
2111 
2112 	error = perform_atomic_semop(sma, &queue);
2113 	if (error == 0) { /* non-blocking successful path */
2114 		DEFINE_WAKE_Q(wake_q);
2115 
2116 		/*
2117 		 * If the operation was successful, then do
2118 		 * the required updates.
2119 		 */
2120 		if (alter)
2121 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2122 		else
2123 			set_semotime(sma, sops);
2124 
2125 		sem_unlock(sma, locknum);
2126 		rcu_read_unlock();
2127 		wake_up_q(&wake_q);
2128 
2129 		goto out_free;
2130 	}
2131 	if (error < 0) /* non-blocking error path */
2132 		goto out_unlock_free;
2133 
2134 	/*
2135 	 * We need to sleep on this operation, so we put the current
2136 	 * task into the pending queue and go to sleep.
2137 	 */
2138 	if (nsops == 1) {
2139 		struct sem *curr;
2140 		int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2141 		curr = &sma->sems[idx];
2142 
2143 		if (alter) {
2144 			if (sma->complex_count) {
2145 				list_add_tail(&queue.list,
2146 						&sma->pending_alter);
2147 			} else {
2148 
2149 				list_add_tail(&queue.list,
2150 						&curr->pending_alter);
2151 			}
2152 		} else {
2153 			list_add_tail(&queue.list, &curr->pending_const);
2154 		}
2155 	} else {
2156 		if (!sma->complex_count)
2157 			merge_queues(sma);
2158 
2159 		if (alter)
2160 			list_add_tail(&queue.list, &sma->pending_alter);
2161 		else
2162 			list_add_tail(&queue.list, &sma->pending_const);
2163 
2164 		sma->complex_count++;
2165 	}
2166 
2167 	do {
2168 		/* memory ordering ensured by the lock in sem_lock() */
2169 		WRITE_ONCE(queue.status, -EINTR);
2170 		queue.sleeper = current;
2171 
2172 		/* memory ordering is ensured by the lock in sem_lock() */
2173 		__set_current_state(TASK_INTERRUPTIBLE);
2174 		sem_unlock(sma, locknum);
2175 		rcu_read_unlock();
2176 
2177 		if (timeout)
2178 			jiffies_left = schedule_timeout(jiffies_left);
2179 		else
2180 			schedule();
2181 
2182 		/*
2183 		 * fastpath: the semop has completed, either successfully or
2184 		 * not, from the syscall pov, is quite irrelevant to us at this
2185 		 * point; we're done.
2186 		 *
2187 		 * We _do_ care, nonetheless, about being awoken by a signal or
2188 		 * spuriously.  The queue.status is checked again in the
2189 		 * slowpath (aka after taking sem_lock), such that we can detect
2190 		 * scenarios where we were awakened externally, during the
2191 		 * window between wake_q_add() and wake_up_q().
2192 		 */
2193 		error = READ_ONCE(queue.status);
2194 		if (error != -EINTR) {
2195 			/* see SEM_BARRIER_2 for purpose/pairing */
2196 			smp_acquire__after_ctrl_dep();
2197 			goto out_free;
2198 		}
2199 
2200 		rcu_read_lock();
2201 		locknum = sem_lock(sma, sops, nsops);
2202 
2203 		if (!ipc_valid_object(&sma->sem_perm))
2204 			goto out_unlock_free;
2205 
2206 		/*
2207 		 * No necessity for any barrier: We are protect by sem_lock()
2208 		 */
2209 		error = READ_ONCE(queue.status);
2210 
2211 		/*
2212 		 * If queue.status != -EINTR we are woken up by another process.
2213 		 * Leave without unlink_queue(), but with sem_unlock().
2214 		 */
2215 		if (error != -EINTR)
2216 			goto out_unlock_free;
2217 
2218 		/*
2219 		 * If an interrupt occurred we have to clean up the queue.
2220 		 */
2221 		if (timeout && jiffies_left == 0)
2222 			error = -EAGAIN;
2223 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2224 
2225 	unlink_queue(sma, &queue);
2226 
2227 out_unlock_free:
2228 	sem_unlock(sma, locknum);
2229 	rcu_read_unlock();
2230 out_free:
2231 	if (sops != fast_sops)
2232 		kvfree(sops);
2233 	return error;
2234 }
2235 
2236 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2237 		     unsigned int nsops, const struct __kernel_timespec __user *timeout)
2238 {
2239 	if (timeout) {
2240 		struct timespec64 ts;
2241 		if (get_timespec64(&ts, timeout))
2242 			return -EFAULT;
2243 		return do_semtimedop(semid, tsops, nsops, &ts);
2244 	}
2245 	return do_semtimedop(semid, tsops, nsops, NULL);
2246 }
2247 
2248 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2249 		unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2250 {
2251 	return ksys_semtimedop(semid, tsops, nsops, timeout);
2252 }
2253 
2254 #ifdef CONFIG_COMPAT_32BIT_TIME
2255 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2256 			    unsigned int nsops,
2257 			    const struct old_timespec32 __user *timeout)
2258 {
2259 	if (timeout) {
2260 		struct timespec64 ts;
2261 		if (get_old_timespec32(&ts, timeout))
2262 			return -EFAULT;
2263 		return do_semtimedop(semid, tsems, nsops, &ts);
2264 	}
2265 	return do_semtimedop(semid, tsems, nsops, NULL);
2266 }
2267 
2268 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2269 		       unsigned int, nsops,
2270 		       const struct old_timespec32 __user *, timeout)
2271 {
2272 	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2273 }
2274 #endif
2275 
2276 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2277 		unsigned, nsops)
2278 {
2279 	return do_semtimedop(semid, tsops, nsops, NULL);
2280 }
2281 
2282 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2283  * parent and child tasks.
2284  */
2285 
2286 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2287 {
2288 	struct sem_undo_list *undo_list;
2289 	int error;
2290 
2291 	if (clone_flags & CLONE_SYSVSEM) {
2292 		error = get_undo_list(&undo_list);
2293 		if (error)
2294 			return error;
2295 		refcount_inc(&undo_list->refcnt);
2296 		tsk->sysvsem.undo_list = undo_list;
2297 	} else
2298 		tsk->sysvsem.undo_list = NULL;
2299 
2300 	return 0;
2301 }
2302 
2303 /*
2304  * add semadj values to semaphores, free undo structures.
2305  * undo structures are not freed when semaphore arrays are destroyed
2306  * so some of them may be out of date.
2307  * IMPLEMENTATION NOTE: There is some confusion over whether the
2308  * set of adjustments that needs to be done should be done in an atomic
2309  * manner or not. That is, if we are attempting to decrement the semval
2310  * should we queue up and wait until we can do so legally?
2311  * The original implementation attempted to do this (queue and wait).
2312  * The current implementation does not do so. The POSIX standard
2313  * and SVID should be consulted to determine what behavior is mandated.
2314  */
2315 void exit_sem(struct task_struct *tsk)
2316 {
2317 	struct sem_undo_list *ulp;
2318 
2319 	ulp = tsk->sysvsem.undo_list;
2320 	if (!ulp)
2321 		return;
2322 	tsk->sysvsem.undo_list = NULL;
2323 
2324 	if (!refcount_dec_and_test(&ulp->refcnt))
2325 		return;
2326 
2327 	for (;;) {
2328 		struct sem_array *sma;
2329 		struct sem_undo *un;
2330 		int semid, i;
2331 		DEFINE_WAKE_Q(wake_q);
2332 
2333 		cond_resched();
2334 
2335 		rcu_read_lock();
2336 		un = list_entry_rcu(ulp->list_proc.next,
2337 				    struct sem_undo, list_proc);
2338 		if (&un->list_proc == &ulp->list_proc) {
2339 			/*
2340 			 * We must wait for freeary() before freeing this ulp,
2341 			 * in case we raced with last sem_undo. There is a small
2342 			 * possibility where we exit while freeary() didn't
2343 			 * finish unlocking sem_undo_list.
2344 			 */
2345 			spin_lock(&ulp->lock);
2346 			spin_unlock(&ulp->lock);
2347 			rcu_read_unlock();
2348 			break;
2349 		}
2350 		spin_lock(&ulp->lock);
2351 		semid = un->semid;
2352 		spin_unlock(&ulp->lock);
2353 
2354 		/* exit_sem raced with IPC_RMID, nothing to do */
2355 		if (semid == -1) {
2356 			rcu_read_unlock();
2357 			continue;
2358 		}
2359 
2360 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2361 		/* exit_sem raced with IPC_RMID, nothing to do */
2362 		if (IS_ERR(sma)) {
2363 			rcu_read_unlock();
2364 			continue;
2365 		}
2366 
2367 		sem_lock(sma, NULL, -1);
2368 		/* exit_sem raced with IPC_RMID, nothing to do */
2369 		if (!ipc_valid_object(&sma->sem_perm)) {
2370 			sem_unlock(sma, -1);
2371 			rcu_read_unlock();
2372 			continue;
2373 		}
2374 		un = __lookup_undo(ulp, semid);
2375 		if (un == NULL) {
2376 			/* exit_sem raced with IPC_RMID+semget() that created
2377 			 * exactly the same semid. Nothing to do.
2378 			 */
2379 			sem_unlock(sma, -1);
2380 			rcu_read_unlock();
2381 			continue;
2382 		}
2383 
2384 		/* remove un from the linked lists */
2385 		ipc_assert_locked_object(&sma->sem_perm);
2386 		list_del(&un->list_id);
2387 
2388 		spin_lock(&ulp->lock);
2389 		list_del_rcu(&un->list_proc);
2390 		spin_unlock(&ulp->lock);
2391 
2392 		/* perform adjustments registered in un */
2393 		for (i = 0; i < sma->sem_nsems; i++) {
2394 			struct sem *semaphore = &sma->sems[i];
2395 			if (un->semadj[i]) {
2396 				semaphore->semval += un->semadj[i];
2397 				/*
2398 				 * Range checks of the new semaphore value,
2399 				 * not defined by sus:
2400 				 * - Some unices ignore the undo entirely
2401 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2402 				 * - some cap the value (e.g. FreeBSD caps
2403 				 *   at 0, but doesn't enforce SEMVMX)
2404 				 *
2405 				 * Linux caps the semaphore value, both at 0
2406 				 * and at SEMVMX.
2407 				 *
2408 				 *	Manfred <manfred@colorfullife.com>
2409 				 */
2410 				if (semaphore->semval < 0)
2411 					semaphore->semval = 0;
2412 				if (semaphore->semval > SEMVMX)
2413 					semaphore->semval = SEMVMX;
2414 				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2415 			}
2416 		}
2417 		/* maybe some queued-up processes were waiting for this */
2418 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2419 		sem_unlock(sma, -1);
2420 		rcu_read_unlock();
2421 		wake_up_q(&wake_q);
2422 
2423 		kfree_rcu(un, rcu);
2424 	}
2425 	kfree(ulp);
2426 }
2427 
2428 #ifdef CONFIG_PROC_FS
2429 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2430 {
2431 	struct user_namespace *user_ns = seq_user_ns(s);
2432 	struct kern_ipc_perm *ipcp = it;
2433 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2434 	time64_t sem_otime;
2435 
2436 	/*
2437 	 * The proc interface isn't aware of sem_lock(), it calls
2438 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2439 	 * In order to stay compatible with sem_lock(), we must
2440 	 * enter / leave complex_mode.
2441 	 */
2442 	complexmode_enter(sma);
2443 
2444 	sem_otime = get_semotime(sma);
2445 
2446 	seq_printf(s,
2447 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2448 		   sma->sem_perm.key,
2449 		   sma->sem_perm.id,
2450 		   sma->sem_perm.mode,
2451 		   sma->sem_nsems,
2452 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2453 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2454 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2455 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2456 		   sem_otime,
2457 		   sma->sem_ctime);
2458 
2459 	complexmode_tryleave(sma);
2460 
2461 	return 0;
2462 }
2463 #endif
2464