xref: /openbmc/linux/ipc/sem.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7  * This code underwent a massive rewrite in order to solve some problems
8  * with the original code. In particular the original code failed to
9  * wake up processes that were waiting for semval to go to 0 if the
10  * value went to 0 and was then incremented rapidly enough. In solving
11  * this problem I have also modified the implementation so that it
12  * processes pending operations in a FIFO manner, thus give a guarantee
13  * that processes waiting for a lock on the semaphore won't starve
14  * unless another locking process fails to unlock.
15  * In addition the following two changes in behavior have been introduced:
16  * - The original implementation of semop returned the value
17  *   last semaphore element examined on success. This does not
18  *   match the manual page specifications, and effectively
19  *   allows the user to read the semaphore even if they do not
20  *   have read permissions. The implementation now returns 0
21  *   on success as stated in the manual page.
22  * - There is some confusion over whether the set of undo adjustments
23  *   to be performed at exit should be done in an atomic manner.
24  *   That is, if we are attempting to decrement the semval should we queue
25  *   up and wait until we can do so legally?
26  *   The original implementation attempted to do this.
27  *   The current implementation does not do so. This is because I don't
28  *   think it is the right thing (TM) to do, and because I couldn't
29  *   see a clean way to get the old behavior with the new design.
30  *   The POSIX standard and SVID should be consulted to determine
31  *   what behavior is mandated.
32  *
33  * Further notes on refinement (Christoph Rohland, December 1998):
34  * - The POSIX standard says, that the undo adjustments simply should
35  *   redo. So the current implementation is o.K.
36  * - The previous code had two flaws:
37  *   1) It actively gave the semaphore to the next waiting process
38  *      sleeping on the semaphore. Since this process did not have the
39  *      cpu this led to many unnecessary context switches and bad
40  *      performance. Now we only check which process should be able to
41  *      get the semaphore and if this process wants to reduce some
42  *      semaphore value we simply wake it up without doing the
43  *      operation. So it has to try to get it later. Thus e.g. the
44  *      running process may reacquire the semaphore during the current
45  *      time slice. If it only waits for zero or increases the semaphore,
46  *      we do the operation in advance and wake it up.
47  *   2) It did not wake up all zero waiting processes. We try to do
48  *      better but only get the semops right which only wait for zero or
49  *      increase. If there are decrement operations in the operations
50  *      array we do the same as before.
51  *
52  * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53  * check/retry algorithm for waking up blocked processes as the new scheduler
54  * is better at handling thread switch than the old one.
55  *
56  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57  *
58  * SMP-threaded, sysctl's added
59  * (c) 1999 Manfred Spraul <manfreds@colorfullife.com>
60  * Enforced range limit on SEM_UNDO
61  * (c) 2001 Red Hat Inc <alan@redhat.com>
62  * Lockless wakeup
63  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64  */
65 
66 #include <linux/config.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/init.h>
70 #include <linux/proc_fs.h>
71 #include <linux/time.h>
72 #include <linux/smp_lock.h>
73 #include <linux/security.h>
74 #include <linux/syscalls.h>
75 #include <linux/audit.h>
76 #include <asm/uaccess.h>
77 #include "util.h"
78 
79 
80 #define sem_lock(id)	((struct sem_array*)ipc_lock(&sem_ids,id))
81 #define sem_unlock(sma)	ipc_unlock(&(sma)->sem_perm)
82 #define sem_rmid(id)	((struct sem_array*)ipc_rmid(&sem_ids,id))
83 #define sem_checkid(sma, semid)	\
84 	ipc_checkid(&sem_ids,&sma->sem_perm,semid)
85 #define sem_buildid(id, seq) \
86 	ipc_buildid(&sem_ids, id, seq)
87 static struct ipc_ids sem_ids;
88 
89 static int newary (key_t, int, int);
90 static void freeary (struct sem_array *sma, int id);
91 #ifdef CONFIG_PROC_FS
92 static int sysvipc_sem_read_proc(char *buffer, char **start, off_t offset, int length, int *eof, void *data);
93 #endif
94 
95 #define SEMMSL_FAST	256 /* 512 bytes on stack */
96 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
97 
98 /*
99  * linked list protection:
100  *	sem_undo.id_next,
101  *	sem_array.sem_pending{,last},
102  *	sem_array.sem_undo: sem_lock() for read/write
103  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
104  *
105  */
106 
107 int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI};
108 #define sc_semmsl	(sem_ctls[0])
109 #define sc_semmns	(sem_ctls[1])
110 #define sc_semopm	(sem_ctls[2])
111 #define sc_semmni	(sem_ctls[3])
112 
113 static int used_sems;
114 
115 void __init sem_init (void)
116 {
117 	used_sems = 0;
118 	ipc_init_ids(&sem_ids,sc_semmni);
119 
120 #ifdef CONFIG_PROC_FS
121 	create_proc_read_entry("sysvipc/sem", 0, NULL, sysvipc_sem_read_proc, NULL);
122 #endif
123 }
124 
125 /*
126  * Lockless wakeup algorithm:
127  * Without the check/retry algorithm a lockless wakeup is possible:
128  * - queue.status is initialized to -EINTR before blocking.
129  * - wakeup is performed by
130  *	* unlinking the queue entry from sma->sem_pending
131  *	* setting queue.status to IN_WAKEUP
132  *	  This is the notification for the blocked thread that a
133  *	  result value is imminent.
134  *	* call wake_up_process
135  *	* set queue.status to the final value.
136  * - the previously blocked thread checks queue.status:
137  *   	* if it's IN_WAKEUP, then it must wait until the value changes
138  *   	* if it's not -EINTR, then the operation was completed by
139  *   	  update_queue. semtimedop can return queue.status without
140  *   	  performing any operation on the semaphore array.
141  *   	* otherwise it must acquire the spinlock and check what's up.
142  *
143  * The two-stage algorithm is necessary to protect against the following
144  * races:
145  * - if queue.status is set after wake_up_process, then the woken up idle
146  *   thread could race forward and try (and fail) to acquire sma->lock
147  *   before update_queue had a chance to set queue.status
148  * - if queue.status is written before wake_up_process and if the
149  *   blocked process is woken up by a signal between writing
150  *   queue.status and the wake_up_process, then the woken up
151  *   process could return from semtimedop and die by calling
152  *   sys_exit before wake_up_process is called. Then wake_up_process
153  *   will oops, because the task structure is already invalid.
154  *   (yes, this happened on s390 with sysv msg).
155  *
156  */
157 #define IN_WAKEUP	1
158 
159 static int newary (key_t key, int nsems, int semflg)
160 {
161 	int id;
162 	int retval;
163 	struct sem_array *sma;
164 	int size;
165 
166 	if (!nsems)
167 		return -EINVAL;
168 	if (used_sems + nsems > sc_semmns)
169 		return -ENOSPC;
170 
171 	size = sizeof (*sma) + nsems * sizeof (struct sem);
172 	sma = ipc_rcu_alloc(size);
173 	if (!sma) {
174 		return -ENOMEM;
175 	}
176 	memset (sma, 0, size);
177 
178 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
179 	sma->sem_perm.key = key;
180 
181 	sma->sem_perm.security = NULL;
182 	retval = security_sem_alloc(sma);
183 	if (retval) {
184 		ipc_rcu_putref(sma);
185 		return retval;
186 	}
187 
188 	id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni);
189 	if(id == -1) {
190 		security_sem_free(sma);
191 		ipc_rcu_putref(sma);
192 		return -ENOSPC;
193 	}
194 	used_sems += nsems;
195 
196 	sma->sem_base = (struct sem *) &sma[1];
197 	/* sma->sem_pending = NULL; */
198 	sma->sem_pending_last = &sma->sem_pending;
199 	/* sma->undo = NULL; */
200 	sma->sem_nsems = nsems;
201 	sma->sem_ctime = get_seconds();
202 	sem_unlock(sma);
203 
204 	return sem_buildid(id, sma->sem_perm.seq);
205 }
206 
207 asmlinkage long sys_semget (key_t key, int nsems, int semflg)
208 {
209 	int id, err = -EINVAL;
210 	struct sem_array *sma;
211 
212 	if (nsems < 0 || nsems > sc_semmsl)
213 		return -EINVAL;
214 	down(&sem_ids.sem);
215 
216 	if (key == IPC_PRIVATE) {
217 		err = newary(key, nsems, semflg);
218 	} else if ((id = ipc_findkey(&sem_ids, key)) == -1) {  /* key not used */
219 		if (!(semflg & IPC_CREAT))
220 			err = -ENOENT;
221 		else
222 			err = newary(key, nsems, semflg);
223 	} else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
224 		err = -EEXIST;
225 	} else {
226 		sma = sem_lock(id);
227 		if(sma==NULL)
228 			BUG();
229 		if (nsems > sma->sem_nsems)
230 			err = -EINVAL;
231 		else if (ipcperms(&sma->sem_perm, semflg))
232 			err = -EACCES;
233 		else {
234 			int semid = sem_buildid(id, sma->sem_perm.seq);
235 			err = security_sem_associate(sma, semflg);
236 			if (!err)
237 				err = semid;
238 		}
239 		sem_unlock(sma);
240 	}
241 
242 	up(&sem_ids.sem);
243 	return err;
244 }
245 
246 /* Manage the doubly linked list sma->sem_pending as a FIFO:
247  * insert new queue elements at the tail sma->sem_pending_last.
248  */
249 static inline void append_to_queue (struct sem_array * sma,
250 				    struct sem_queue * q)
251 {
252 	*(q->prev = sma->sem_pending_last) = q;
253 	*(sma->sem_pending_last = &q->next) = NULL;
254 }
255 
256 static inline void prepend_to_queue (struct sem_array * sma,
257 				     struct sem_queue * q)
258 {
259 	q->next = sma->sem_pending;
260 	*(q->prev = &sma->sem_pending) = q;
261 	if (q->next)
262 		q->next->prev = &q->next;
263 	else /* sma->sem_pending_last == &sma->sem_pending */
264 		sma->sem_pending_last = &q->next;
265 }
266 
267 static inline void remove_from_queue (struct sem_array * sma,
268 				      struct sem_queue * q)
269 {
270 	*(q->prev) = q->next;
271 	if (q->next)
272 		q->next->prev = q->prev;
273 	else /* sma->sem_pending_last == &q->next */
274 		sma->sem_pending_last = q->prev;
275 	q->prev = NULL; /* mark as removed */
276 }
277 
278 /*
279  * Determine whether a sequence of semaphore operations would succeed
280  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
281  */
282 
283 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
284 			     int nsops, struct sem_undo *un, int pid)
285 {
286 	int result, sem_op;
287 	struct sembuf *sop;
288 	struct sem * curr;
289 
290 	for (sop = sops; sop < sops + nsops; sop++) {
291 		curr = sma->sem_base + sop->sem_num;
292 		sem_op = sop->sem_op;
293 		result = curr->semval;
294 
295 		if (!sem_op && result)
296 			goto would_block;
297 
298 		result += sem_op;
299 		if (result < 0)
300 			goto would_block;
301 		if (result > SEMVMX)
302 			goto out_of_range;
303 		if (sop->sem_flg & SEM_UNDO) {
304 			int undo = un->semadj[sop->sem_num] - sem_op;
305 			/*
306 	 		 *	Exceeding the undo range is an error.
307 			 */
308 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
309 				goto out_of_range;
310 		}
311 		curr->semval = result;
312 	}
313 
314 	sop--;
315 	while (sop >= sops) {
316 		sma->sem_base[sop->sem_num].sempid = pid;
317 		if (sop->sem_flg & SEM_UNDO)
318 			un->semadj[sop->sem_num] -= sop->sem_op;
319 		sop--;
320 	}
321 
322 	sma->sem_otime = get_seconds();
323 	return 0;
324 
325 out_of_range:
326 	result = -ERANGE;
327 	goto undo;
328 
329 would_block:
330 	if (sop->sem_flg & IPC_NOWAIT)
331 		result = -EAGAIN;
332 	else
333 		result = 1;
334 
335 undo:
336 	sop--;
337 	while (sop >= sops) {
338 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
339 		sop--;
340 	}
341 
342 	return result;
343 }
344 
345 /* Go through the pending queue for the indicated semaphore
346  * looking for tasks that can be completed.
347  */
348 static void update_queue (struct sem_array * sma)
349 {
350 	int error;
351 	struct sem_queue * q;
352 
353 	q = sma->sem_pending;
354 	while(q) {
355 		error = try_atomic_semop(sma, q->sops, q->nsops,
356 					 q->undo, q->pid);
357 
358 		/* Does q->sleeper still need to sleep? */
359 		if (error <= 0) {
360 			struct sem_queue *n;
361 			remove_from_queue(sma,q);
362 			q->status = IN_WAKEUP;
363 			/*
364 			 * Continue scanning. The next operation
365 			 * that must be checked depends on the type of the
366 			 * completed operation:
367 			 * - if the operation modified the array, then
368 			 *   restart from the head of the queue and
369 			 *   check for threads that might be waiting
370 			 *   for semaphore values to become 0.
371 			 * - if the operation didn't modify the array,
372 			 *   then just continue.
373 			 */
374 			if (q->alter)
375 				n = sma->sem_pending;
376 			else
377 				n = q->next;
378 			wake_up_process(q->sleeper);
379 			/* hands-off: q will disappear immediately after
380 			 * writing q->status.
381 			 */
382 			q->status = error;
383 			q = n;
384 		} else {
385 			q = q->next;
386 		}
387 	}
388 }
389 
390 /* The following counts are associated to each semaphore:
391  *   semncnt        number of tasks waiting on semval being nonzero
392  *   semzcnt        number of tasks waiting on semval being zero
393  * This model assumes that a task waits on exactly one semaphore.
394  * Since semaphore operations are to be performed atomically, tasks actually
395  * wait on a whole sequence of semaphores simultaneously.
396  * The counts we return here are a rough approximation, but still
397  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
398  */
399 static int count_semncnt (struct sem_array * sma, ushort semnum)
400 {
401 	int semncnt;
402 	struct sem_queue * q;
403 
404 	semncnt = 0;
405 	for (q = sma->sem_pending; q; q = q->next) {
406 		struct sembuf * sops = q->sops;
407 		int nsops = q->nsops;
408 		int i;
409 		for (i = 0; i < nsops; i++)
410 			if (sops[i].sem_num == semnum
411 			    && (sops[i].sem_op < 0)
412 			    && !(sops[i].sem_flg & IPC_NOWAIT))
413 				semncnt++;
414 	}
415 	return semncnt;
416 }
417 static int count_semzcnt (struct sem_array * sma, ushort semnum)
418 {
419 	int semzcnt;
420 	struct sem_queue * q;
421 
422 	semzcnt = 0;
423 	for (q = sma->sem_pending; q; q = q->next) {
424 		struct sembuf * sops = q->sops;
425 		int nsops = q->nsops;
426 		int i;
427 		for (i = 0; i < nsops; i++)
428 			if (sops[i].sem_num == semnum
429 			    && (sops[i].sem_op == 0)
430 			    && !(sops[i].sem_flg & IPC_NOWAIT))
431 				semzcnt++;
432 	}
433 	return semzcnt;
434 }
435 
436 /* Free a semaphore set. freeary() is called with sem_ids.sem down and
437  * the spinlock for this semaphore set hold. sem_ids.sem remains locked
438  * on exit.
439  */
440 static void freeary (struct sem_array *sma, int id)
441 {
442 	struct sem_undo *un;
443 	struct sem_queue *q;
444 	int size;
445 
446 	/* Invalidate the existing undo structures for this semaphore set.
447 	 * (They will be freed without any further action in exit_sem()
448 	 * or during the next semop.)
449 	 */
450 	for (un = sma->undo; un; un = un->id_next)
451 		un->semid = -1;
452 
453 	/* Wake up all pending processes and let them fail with EIDRM. */
454 	q = sma->sem_pending;
455 	while(q) {
456 		struct sem_queue *n;
457 		/* lazy remove_from_queue: we are killing the whole queue */
458 		q->prev = NULL;
459 		n = q->next;
460 		q->status = IN_WAKEUP;
461 		wake_up_process(q->sleeper); /* doesn't sleep */
462 		q->status = -EIDRM;	/* hands-off q */
463 		q = n;
464 	}
465 
466 	/* Remove the semaphore set from the ID array*/
467 	sma = sem_rmid(id);
468 	sem_unlock(sma);
469 
470 	used_sems -= sma->sem_nsems;
471 	size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
472 	security_sem_free(sma);
473 	ipc_rcu_putref(sma);
474 }
475 
476 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
477 {
478 	switch(version) {
479 	case IPC_64:
480 		return copy_to_user(buf, in, sizeof(*in));
481 	case IPC_OLD:
482 	    {
483 		struct semid_ds out;
484 
485 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
486 
487 		out.sem_otime	= in->sem_otime;
488 		out.sem_ctime	= in->sem_ctime;
489 		out.sem_nsems	= in->sem_nsems;
490 
491 		return copy_to_user(buf, &out, sizeof(out));
492 	    }
493 	default:
494 		return -EINVAL;
495 	}
496 }
497 
498 static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg)
499 {
500 	int err = -EINVAL;
501 	struct sem_array *sma;
502 
503 	switch(cmd) {
504 	case IPC_INFO:
505 	case SEM_INFO:
506 	{
507 		struct seminfo seminfo;
508 		int max_id;
509 
510 		err = security_sem_semctl(NULL, cmd);
511 		if (err)
512 			return err;
513 
514 		memset(&seminfo,0,sizeof(seminfo));
515 		seminfo.semmni = sc_semmni;
516 		seminfo.semmns = sc_semmns;
517 		seminfo.semmsl = sc_semmsl;
518 		seminfo.semopm = sc_semopm;
519 		seminfo.semvmx = SEMVMX;
520 		seminfo.semmnu = SEMMNU;
521 		seminfo.semmap = SEMMAP;
522 		seminfo.semume = SEMUME;
523 		down(&sem_ids.sem);
524 		if (cmd == SEM_INFO) {
525 			seminfo.semusz = sem_ids.in_use;
526 			seminfo.semaem = used_sems;
527 		} else {
528 			seminfo.semusz = SEMUSZ;
529 			seminfo.semaem = SEMAEM;
530 		}
531 		max_id = sem_ids.max_id;
532 		up(&sem_ids.sem);
533 		if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
534 			return -EFAULT;
535 		return (max_id < 0) ? 0: max_id;
536 	}
537 	case SEM_STAT:
538 	{
539 		struct semid64_ds tbuf;
540 		int id;
541 
542 		if(semid >= sem_ids.entries->size)
543 			return -EINVAL;
544 
545 		memset(&tbuf,0,sizeof(tbuf));
546 
547 		sma = sem_lock(semid);
548 		if(sma == NULL)
549 			return -EINVAL;
550 
551 		err = -EACCES;
552 		if (ipcperms (&sma->sem_perm, S_IRUGO))
553 			goto out_unlock;
554 
555 		err = security_sem_semctl(sma, cmd);
556 		if (err)
557 			goto out_unlock;
558 
559 		id = sem_buildid(semid, sma->sem_perm.seq);
560 
561 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
562 		tbuf.sem_otime  = sma->sem_otime;
563 		tbuf.sem_ctime  = sma->sem_ctime;
564 		tbuf.sem_nsems  = sma->sem_nsems;
565 		sem_unlock(sma);
566 		if (copy_semid_to_user (arg.buf, &tbuf, version))
567 			return -EFAULT;
568 		return id;
569 	}
570 	default:
571 		return -EINVAL;
572 	}
573 	return err;
574 out_unlock:
575 	sem_unlock(sma);
576 	return err;
577 }
578 
579 static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg)
580 {
581 	struct sem_array *sma;
582 	struct sem* curr;
583 	int err;
584 	ushort fast_sem_io[SEMMSL_FAST];
585 	ushort* sem_io = fast_sem_io;
586 	int nsems;
587 
588 	sma = sem_lock(semid);
589 	if(sma==NULL)
590 		return -EINVAL;
591 
592 	nsems = sma->sem_nsems;
593 
594 	err=-EIDRM;
595 	if (sem_checkid(sma,semid))
596 		goto out_unlock;
597 
598 	err = -EACCES;
599 	if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
600 		goto out_unlock;
601 
602 	err = security_sem_semctl(sma, cmd);
603 	if (err)
604 		goto out_unlock;
605 
606 	err = -EACCES;
607 	switch (cmd) {
608 	case GETALL:
609 	{
610 		ushort __user *array = arg.array;
611 		int i;
612 
613 		if(nsems > SEMMSL_FAST) {
614 			ipc_rcu_getref(sma);
615 			sem_unlock(sma);
616 
617 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
618 			if(sem_io == NULL) {
619 				ipc_lock_by_ptr(&sma->sem_perm);
620 				ipc_rcu_putref(sma);
621 				sem_unlock(sma);
622 				return -ENOMEM;
623 			}
624 
625 			ipc_lock_by_ptr(&sma->sem_perm);
626 			ipc_rcu_putref(sma);
627 			if (sma->sem_perm.deleted) {
628 				sem_unlock(sma);
629 				err = -EIDRM;
630 				goto out_free;
631 			}
632 		}
633 
634 		for (i = 0; i < sma->sem_nsems; i++)
635 			sem_io[i] = sma->sem_base[i].semval;
636 		sem_unlock(sma);
637 		err = 0;
638 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
639 			err = -EFAULT;
640 		goto out_free;
641 	}
642 	case SETALL:
643 	{
644 		int i;
645 		struct sem_undo *un;
646 
647 		ipc_rcu_getref(sma);
648 		sem_unlock(sma);
649 
650 		if(nsems > SEMMSL_FAST) {
651 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
652 			if(sem_io == NULL) {
653 				ipc_lock_by_ptr(&sma->sem_perm);
654 				ipc_rcu_putref(sma);
655 				sem_unlock(sma);
656 				return -ENOMEM;
657 			}
658 		}
659 
660 		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
661 			ipc_lock_by_ptr(&sma->sem_perm);
662 			ipc_rcu_putref(sma);
663 			sem_unlock(sma);
664 			err = -EFAULT;
665 			goto out_free;
666 		}
667 
668 		for (i = 0; i < nsems; i++) {
669 			if (sem_io[i] > SEMVMX) {
670 				ipc_lock_by_ptr(&sma->sem_perm);
671 				ipc_rcu_putref(sma);
672 				sem_unlock(sma);
673 				err = -ERANGE;
674 				goto out_free;
675 			}
676 		}
677 		ipc_lock_by_ptr(&sma->sem_perm);
678 		ipc_rcu_putref(sma);
679 		if (sma->sem_perm.deleted) {
680 			sem_unlock(sma);
681 			err = -EIDRM;
682 			goto out_free;
683 		}
684 
685 		for (i = 0; i < nsems; i++)
686 			sma->sem_base[i].semval = sem_io[i];
687 		for (un = sma->undo; un; un = un->id_next)
688 			for (i = 0; i < nsems; i++)
689 				un->semadj[i] = 0;
690 		sma->sem_ctime = get_seconds();
691 		/* maybe some queued-up processes were waiting for this */
692 		update_queue(sma);
693 		err = 0;
694 		goto out_unlock;
695 	}
696 	case IPC_STAT:
697 	{
698 		struct semid64_ds tbuf;
699 		memset(&tbuf,0,sizeof(tbuf));
700 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
701 		tbuf.sem_otime  = sma->sem_otime;
702 		tbuf.sem_ctime  = sma->sem_ctime;
703 		tbuf.sem_nsems  = sma->sem_nsems;
704 		sem_unlock(sma);
705 		if (copy_semid_to_user (arg.buf, &tbuf, version))
706 			return -EFAULT;
707 		return 0;
708 	}
709 	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
710 	}
711 	err = -EINVAL;
712 	if(semnum < 0 || semnum >= nsems)
713 		goto out_unlock;
714 
715 	curr = &sma->sem_base[semnum];
716 
717 	switch (cmd) {
718 	case GETVAL:
719 		err = curr->semval;
720 		goto out_unlock;
721 	case GETPID:
722 		err = curr->sempid;
723 		goto out_unlock;
724 	case GETNCNT:
725 		err = count_semncnt(sma,semnum);
726 		goto out_unlock;
727 	case GETZCNT:
728 		err = count_semzcnt(sma,semnum);
729 		goto out_unlock;
730 	case SETVAL:
731 	{
732 		int val = arg.val;
733 		struct sem_undo *un;
734 		err = -ERANGE;
735 		if (val > SEMVMX || val < 0)
736 			goto out_unlock;
737 
738 		for (un = sma->undo; un; un = un->id_next)
739 			un->semadj[semnum] = 0;
740 		curr->semval = val;
741 		curr->sempid = current->tgid;
742 		sma->sem_ctime = get_seconds();
743 		/* maybe some queued-up processes were waiting for this */
744 		update_queue(sma);
745 		err = 0;
746 		goto out_unlock;
747 	}
748 	}
749 out_unlock:
750 	sem_unlock(sma);
751 out_free:
752 	if(sem_io != fast_sem_io)
753 		ipc_free(sem_io, sizeof(ushort)*nsems);
754 	return err;
755 }
756 
757 struct sem_setbuf {
758 	uid_t	uid;
759 	gid_t	gid;
760 	mode_t	mode;
761 };
762 
763 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
764 {
765 	switch(version) {
766 	case IPC_64:
767 	    {
768 		struct semid64_ds tbuf;
769 
770 		if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
771 			return -EFAULT;
772 
773 		out->uid	= tbuf.sem_perm.uid;
774 		out->gid	= tbuf.sem_perm.gid;
775 		out->mode	= tbuf.sem_perm.mode;
776 
777 		return 0;
778 	    }
779 	case IPC_OLD:
780 	    {
781 		struct semid_ds tbuf_old;
782 
783 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
784 			return -EFAULT;
785 
786 		out->uid	= tbuf_old.sem_perm.uid;
787 		out->gid	= tbuf_old.sem_perm.gid;
788 		out->mode	= tbuf_old.sem_perm.mode;
789 
790 		return 0;
791 	    }
792 	default:
793 		return -EINVAL;
794 	}
795 }
796 
797 static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg)
798 {
799 	struct sem_array *sma;
800 	int err;
801 	struct sem_setbuf setbuf;
802 	struct kern_ipc_perm *ipcp;
803 
804 	if(cmd == IPC_SET) {
805 		if(copy_semid_from_user (&setbuf, arg.buf, version))
806 			return -EFAULT;
807 		if ((err = audit_ipc_perms(0, setbuf.uid, setbuf.gid, setbuf.mode)))
808 			return err;
809 	}
810 	sma = sem_lock(semid);
811 	if(sma==NULL)
812 		return -EINVAL;
813 
814 	if (sem_checkid(sma,semid)) {
815 		err=-EIDRM;
816 		goto out_unlock;
817 	}
818 	ipcp = &sma->sem_perm;
819 
820 	if (current->euid != ipcp->cuid &&
821 	    current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
822 	    	err=-EPERM;
823 		goto out_unlock;
824 	}
825 
826 	err = security_sem_semctl(sma, cmd);
827 	if (err)
828 		goto out_unlock;
829 
830 	switch(cmd){
831 	case IPC_RMID:
832 		freeary(sma, semid);
833 		err = 0;
834 		break;
835 	case IPC_SET:
836 		ipcp->uid = setbuf.uid;
837 		ipcp->gid = setbuf.gid;
838 		ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
839 				| (setbuf.mode & S_IRWXUGO);
840 		sma->sem_ctime = get_seconds();
841 		sem_unlock(sma);
842 		err = 0;
843 		break;
844 	default:
845 		sem_unlock(sma);
846 		err = -EINVAL;
847 		break;
848 	}
849 	return err;
850 
851 out_unlock:
852 	sem_unlock(sma);
853 	return err;
854 }
855 
856 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
857 {
858 	int err = -EINVAL;
859 	int version;
860 
861 	if (semid < 0)
862 		return -EINVAL;
863 
864 	version = ipc_parse_version(&cmd);
865 
866 	switch(cmd) {
867 	case IPC_INFO:
868 	case SEM_INFO:
869 	case SEM_STAT:
870 		err = semctl_nolock(semid,semnum,cmd,version,arg);
871 		return err;
872 	case GETALL:
873 	case GETVAL:
874 	case GETPID:
875 	case GETNCNT:
876 	case GETZCNT:
877 	case IPC_STAT:
878 	case SETVAL:
879 	case SETALL:
880 		err = semctl_main(semid,semnum,cmd,version,arg);
881 		return err;
882 	case IPC_RMID:
883 	case IPC_SET:
884 		down(&sem_ids.sem);
885 		err = semctl_down(semid,semnum,cmd,version,arg);
886 		up(&sem_ids.sem);
887 		return err;
888 	default:
889 		return -EINVAL;
890 	}
891 }
892 
893 static inline void lock_semundo(void)
894 {
895 	struct sem_undo_list *undo_list;
896 
897 	undo_list = current->sysvsem.undo_list;
898 	if ((undo_list != NULL) && (atomic_read(&undo_list->refcnt) != 1))
899 		spin_lock(&undo_list->lock);
900 }
901 
902 /* This code has an interaction with copy_semundo().
903  * Consider; two tasks are sharing the undo_list. task1
904  * acquires the undo_list lock in lock_semundo().  If task2 now
905  * exits before task1 releases the lock (by calling
906  * unlock_semundo()), then task1 will never call spin_unlock().
907  * This leave the sem_undo_list in a locked state.  If task1 now creats task3
908  * and once again shares the sem_undo_list, the sem_undo_list will still be
909  * locked, and future SEM_UNDO operations will deadlock.  This case is
910  * dealt with in copy_semundo() by having it reinitialize the spin lock when
911  * the refcnt goes from 1 to 2.
912  */
913 static inline void unlock_semundo(void)
914 {
915 	struct sem_undo_list *undo_list;
916 
917 	undo_list = current->sysvsem.undo_list;
918 	if ((undo_list != NULL) && (atomic_read(&undo_list->refcnt) != 1))
919 		spin_unlock(&undo_list->lock);
920 }
921 
922 
923 /* If the task doesn't already have a undo_list, then allocate one
924  * here.  We guarantee there is only one thread using this undo list,
925  * and current is THE ONE
926  *
927  * If this allocation and assignment succeeds, but later
928  * portions of this code fail, there is no need to free the sem_undo_list.
929  * Just let it stay associated with the task, and it'll be freed later
930  * at exit time.
931  *
932  * This can block, so callers must hold no locks.
933  */
934 static inline int get_undo_list(struct sem_undo_list **undo_listp)
935 {
936 	struct sem_undo_list *undo_list;
937 	int size;
938 
939 	undo_list = current->sysvsem.undo_list;
940 	if (!undo_list) {
941 		size = sizeof(struct sem_undo_list);
942 		undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL);
943 		if (undo_list == NULL)
944 			return -ENOMEM;
945 		memset(undo_list, 0, size);
946 		/* don't initialize unodhd->lock here.  It's done
947 		 * in copy_semundo() instead.
948 		 */
949 		atomic_set(&undo_list->refcnt, 1);
950 		current->sysvsem.undo_list = undo_list;
951 	}
952 	*undo_listp = undo_list;
953 	return 0;
954 }
955 
956 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
957 {
958 	struct sem_undo **last, *un;
959 
960 	last = &ulp->proc_list;
961 	un = *last;
962 	while(un != NULL) {
963 		if(un->semid==semid)
964 			break;
965 		if(un->semid==-1) {
966 			*last=un->proc_next;
967 			kfree(un);
968 		} else {
969 			last=&un->proc_next;
970 		}
971 		un=*last;
972 	}
973 	return un;
974 }
975 
976 static struct sem_undo *find_undo(int semid)
977 {
978 	struct sem_array *sma;
979 	struct sem_undo_list *ulp;
980 	struct sem_undo *un, *new;
981 	int nsems;
982 	int error;
983 
984 	error = get_undo_list(&ulp);
985 	if (error)
986 		return ERR_PTR(error);
987 
988 	lock_semundo();
989 	un = lookup_undo(ulp, semid);
990 	unlock_semundo();
991 	if (likely(un!=NULL))
992 		goto out;
993 
994 	/* no undo structure around - allocate one. */
995 	sma = sem_lock(semid);
996 	un = ERR_PTR(-EINVAL);
997 	if(sma==NULL)
998 		goto out;
999 	un = ERR_PTR(-EIDRM);
1000 	if (sem_checkid(sma,semid)) {
1001 		sem_unlock(sma);
1002 		goto out;
1003 	}
1004 	nsems = sma->sem_nsems;
1005 	ipc_rcu_getref(sma);
1006 	sem_unlock(sma);
1007 
1008 	new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1009 	if (!new) {
1010 		ipc_lock_by_ptr(&sma->sem_perm);
1011 		ipc_rcu_putref(sma);
1012 		sem_unlock(sma);
1013 		return ERR_PTR(-ENOMEM);
1014 	}
1015 	memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems);
1016 	new->semadj = (short *) &new[1];
1017 	new->semid = semid;
1018 
1019 	lock_semundo();
1020 	un = lookup_undo(ulp, semid);
1021 	if (un) {
1022 		unlock_semundo();
1023 		kfree(new);
1024 		ipc_lock_by_ptr(&sma->sem_perm);
1025 		ipc_rcu_putref(sma);
1026 		sem_unlock(sma);
1027 		goto out;
1028 	}
1029 	ipc_lock_by_ptr(&sma->sem_perm);
1030 	ipc_rcu_putref(sma);
1031 	if (sma->sem_perm.deleted) {
1032 		sem_unlock(sma);
1033 		unlock_semundo();
1034 		kfree(new);
1035 		un = ERR_PTR(-EIDRM);
1036 		goto out;
1037 	}
1038 	new->proc_next = ulp->proc_list;
1039 	ulp->proc_list = new;
1040 	new->id_next = sma->undo;
1041 	sma->undo = new;
1042 	sem_unlock(sma);
1043 	un = new;
1044 	unlock_semundo();
1045 out:
1046 	return un;
1047 }
1048 
1049 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1050 			unsigned nsops, const struct timespec __user *timeout)
1051 {
1052 	int error = -EINVAL;
1053 	struct sem_array *sma;
1054 	struct sembuf fast_sops[SEMOPM_FAST];
1055 	struct sembuf* sops = fast_sops, *sop;
1056 	struct sem_undo *un;
1057 	int undos = 0, decrease = 0, alter = 0, max;
1058 	struct sem_queue queue;
1059 	unsigned long jiffies_left = 0;
1060 
1061 	if (nsops < 1 || semid < 0)
1062 		return -EINVAL;
1063 	if (nsops > sc_semopm)
1064 		return -E2BIG;
1065 	if(nsops > SEMOPM_FAST) {
1066 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1067 		if(sops==NULL)
1068 			return -ENOMEM;
1069 	}
1070 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1071 		error=-EFAULT;
1072 		goto out_free;
1073 	}
1074 	if (timeout) {
1075 		struct timespec _timeout;
1076 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1077 			error = -EFAULT;
1078 			goto out_free;
1079 		}
1080 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1081 			_timeout.tv_nsec >= 1000000000L) {
1082 			error = -EINVAL;
1083 			goto out_free;
1084 		}
1085 		jiffies_left = timespec_to_jiffies(&_timeout);
1086 	}
1087 	max = 0;
1088 	for (sop = sops; sop < sops + nsops; sop++) {
1089 		if (sop->sem_num >= max)
1090 			max = sop->sem_num;
1091 		if (sop->sem_flg & SEM_UNDO)
1092 			undos++;
1093 		if (sop->sem_op < 0)
1094 			decrease = 1;
1095 		if (sop->sem_op > 0)
1096 			alter = 1;
1097 	}
1098 	alter |= decrease;
1099 
1100 retry_undos:
1101 	if (undos) {
1102 		un = find_undo(semid);
1103 		if (IS_ERR(un)) {
1104 			error = PTR_ERR(un);
1105 			goto out_free;
1106 		}
1107 	} else
1108 		un = NULL;
1109 
1110 	sma = sem_lock(semid);
1111 	error=-EINVAL;
1112 	if(sma==NULL)
1113 		goto out_free;
1114 	error = -EIDRM;
1115 	if (sem_checkid(sma,semid))
1116 		goto out_unlock_free;
1117 	/*
1118 	 * semid identifies are not unique - find_undo may have
1119 	 * allocated an undo structure, it was invalidated by an RMID
1120 	 * and now a new array with received the same id. Check and retry.
1121 	 */
1122 	if (un && un->semid == -1) {
1123 		sem_unlock(sma);
1124 		goto retry_undos;
1125 	}
1126 	error = -EFBIG;
1127 	if (max >= sma->sem_nsems)
1128 		goto out_unlock_free;
1129 
1130 	error = -EACCES;
1131 	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1132 		goto out_unlock_free;
1133 
1134 	error = security_sem_semop(sma, sops, nsops, alter);
1135 	if (error)
1136 		goto out_unlock_free;
1137 
1138 	error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1139 	if (error <= 0) {
1140 		if (alter && error == 0)
1141 			update_queue (sma);
1142 		goto out_unlock_free;
1143 	}
1144 
1145 	/* We need to sleep on this operation, so we put the current
1146 	 * task into the pending queue and go to sleep.
1147 	 */
1148 
1149 	queue.sma = sma;
1150 	queue.sops = sops;
1151 	queue.nsops = nsops;
1152 	queue.undo = un;
1153 	queue.pid = current->tgid;
1154 	queue.id = semid;
1155 	queue.alter = alter;
1156 	if (alter)
1157 		append_to_queue(sma ,&queue);
1158 	else
1159 		prepend_to_queue(sma ,&queue);
1160 
1161 	queue.status = -EINTR;
1162 	queue.sleeper = current;
1163 	current->state = TASK_INTERRUPTIBLE;
1164 	sem_unlock(sma);
1165 
1166 	if (timeout)
1167 		jiffies_left = schedule_timeout(jiffies_left);
1168 	else
1169 		schedule();
1170 
1171 	error = queue.status;
1172 	while(unlikely(error == IN_WAKEUP)) {
1173 		cpu_relax();
1174 		error = queue.status;
1175 	}
1176 
1177 	if (error != -EINTR) {
1178 		/* fast path: update_queue already obtained all requested
1179 		 * resources */
1180 		goto out_free;
1181 	}
1182 
1183 	sma = sem_lock(semid);
1184 	if(sma==NULL) {
1185 		if(queue.prev != NULL)
1186 			BUG();
1187 		error = -EIDRM;
1188 		goto out_free;
1189 	}
1190 
1191 	/*
1192 	 * If queue.status != -EINTR we are woken up by another process
1193 	 */
1194 	error = queue.status;
1195 	if (error != -EINTR) {
1196 		goto out_unlock_free;
1197 	}
1198 
1199 	/*
1200 	 * If an interrupt occurred we have to clean up the queue
1201 	 */
1202 	if (timeout && jiffies_left == 0)
1203 		error = -EAGAIN;
1204 	remove_from_queue(sma,&queue);
1205 	goto out_unlock_free;
1206 
1207 out_unlock_free:
1208 	sem_unlock(sma);
1209 out_free:
1210 	if(sops != fast_sops)
1211 		kfree(sops);
1212 	return error;
1213 }
1214 
1215 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1216 {
1217 	return sys_semtimedop(semid, tsops, nsops, NULL);
1218 }
1219 
1220 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1221  * parent and child tasks.
1222  *
1223  * See the notes above unlock_semundo() regarding the spin_lock_init()
1224  * in this code.  Initialize the undo_list->lock here instead of get_undo_list()
1225  * because of the reasoning in the comment above unlock_semundo.
1226  */
1227 
1228 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1229 {
1230 	struct sem_undo_list *undo_list;
1231 	int error;
1232 
1233 	if (clone_flags & CLONE_SYSVSEM) {
1234 		error = get_undo_list(&undo_list);
1235 		if (error)
1236 			return error;
1237 		if (atomic_read(&undo_list->refcnt) == 1)
1238 			spin_lock_init(&undo_list->lock);
1239 		atomic_inc(&undo_list->refcnt);
1240 		tsk->sysvsem.undo_list = undo_list;
1241 	} else
1242 		tsk->sysvsem.undo_list = NULL;
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * add semadj values to semaphores, free undo structures.
1249  * undo structures are not freed when semaphore arrays are destroyed
1250  * so some of them may be out of date.
1251  * IMPLEMENTATION NOTE: There is some confusion over whether the
1252  * set of adjustments that needs to be done should be done in an atomic
1253  * manner or not. That is, if we are attempting to decrement the semval
1254  * should we queue up and wait until we can do so legally?
1255  * The original implementation attempted to do this (queue and wait).
1256  * The current implementation does not do so. The POSIX standard
1257  * and SVID should be consulted to determine what behavior is mandated.
1258  */
1259 void exit_sem(struct task_struct *tsk)
1260 {
1261 	struct sem_undo_list *undo_list;
1262 	struct sem_undo *u, **up;
1263 
1264 	undo_list = tsk->sysvsem.undo_list;
1265 	if (!undo_list)
1266 		return;
1267 
1268 	if (!atomic_dec_and_test(&undo_list->refcnt))
1269 		return;
1270 
1271 	/* There's no need to hold the semundo list lock, as current
1272          * is the last task exiting for this undo list.
1273 	 */
1274 	for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1275 		struct sem_array *sma;
1276 		int nsems, i;
1277 		struct sem_undo *un, **unp;
1278 		int semid;
1279 
1280 		semid = u->semid;
1281 
1282 		if(semid == -1)
1283 			continue;
1284 		sma = sem_lock(semid);
1285 		if (sma == NULL)
1286 			continue;
1287 
1288 		if (u->semid == -1)
1289 			goto next_entry;
1290 
1291 		BUG_ON(sem_checkid(sma,u->semid));
1292 
1293 		/* remove u from the sma->undo list */
1294 		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1295 			if (u == un)
1296 				goto found;
1297 		}
1298 		printk ("exit_sem undo list error id=%d\n", u->semid);
1299 		goto next_entry;
1300 found:
1301 		*unp = un->id_next;
1302 		/* perform adjustments registered in u */
1303 		nsems = sma->sem_nsems;
1304 		for (i = 0; i < nsems; i++) {
1305 			struct sem * sem = &sma->sem_base[i];
1306 			if (u->semadj[i]) {
1307 				sem->semval += u->semadj[i];
1308 				/*
1309 				 * Range checks of the new semaphore value,
1310 				 * not defined by sus:
1311 				 * - Some unices ignore the undo entirely
1312 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1313 				 * - some cap the value (e.g. FreeBSD caps
1314 				 *   at 0, but doesn't enforce SEMVMX)
1315 				 *
1316 				 * Linux caps the semaphore value, both at 0
1317 				 * and at SEMVMX.
1318 				 *
1319 				 * 	Manfred <manfred@colorfullife.com>
1320 				 */
1321 				if (sem->semval < 0)
1322 					sem->semval = 0;
1323 				if (sem->semval > SEMVMX)
1324 					sem->semval = SEMVMX;
1325 				sem->sempid = current->tgid;
1326 			}
1327 		}
1328 		sma->sem_otime = get_seconds();
1329 		/* maybe some queued-up processes were waiting for this */
1330 		update_queue(sma);
1331 next_entry:
1332 		sem_unlock(sma);
1333 	}
1334 	kfree(undo_list);
1335 }
1336 
1337 #ifdef CONFIG_PROC_FS
1338 static int sysvipc_sem_read_proc(char *buffer, char **start, off_t offset, int length, int *eof, void *data)
1339 {
1340 	off_t pos = 0;
1341 	off_t begin = 0;
1342 	int i, len = 0;
1343 
1344 	len += sprintf(buffer, "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n");
1345 	down(&sem_ids.sem);
1346 
1347 	for(i = 0; i <= sem_ids.max_id; i++) {
1348 		struct sem_array *sma;
1349 		sma = sem_lock(i);
1350 		if(sma) {
1351 			len += sprintf(buffer + len, "%10d %10d  %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1352 				sma->sem_perm.key,
1353 				sem_buildid(i,sma->sem_perm.seq),
1354 				sma->sem_perm.mode,
1355 				sma->sem_nsems,
1356 				sma->sem_perm.uid,
1357 				sma->sem_perm.gid,
1358 				sma->sem_perm.cuid,
1359 				sma->sem_perm.cgid,
1360 				sma->sem_otime,
1361 				sma->sem_ctime);
1362 			sem_unlock(sma);
1363 
1364 			pos += len;
1365 			if(pos < offset) {
1366 				len = 0;
1367 	    			begin = pos;
1368 			}
1369 			if(pos > offset + length)
1370 				goto done;
1371 		}
1372 	}
1373 	*eof = 1;
1374 done:
1375 	up(&sem_ids.sem);
1376 	*start = buffer + (offset - begin);
1377 	len -= (offset - begin);
1378 	if(len > length)
1379 		len = length;
1380 	if(len < 0)
1381 		len = 0;
1382 	return len;
1383 }
1384 #endif
1385