1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): 7 * This code underwent a massive rewrite in order to solve some problems 8 * with the original code. In particular the original code failed to 9 * wake up processes that were waiting for semval to go to 0 if the 10 * value went to 0 and was then incremented rapidly enough. In solving 11 * this problem I have also modified the implementation so that it 12 * processes pending operations in a FIFO manner, thus give a guarantee 13 * that processes waiting for a lock on the semaphore won't starve 14 * unless another locking process fails to unlock. 15 * In addition the following two changes in behavior have been introduced: 16 * - The original implementation of semop returned the value 17 * last semaphore element examined on success. This does not 18 * match the manual page specifications, and effectively 19 * allows the user to read the semaphore even if they do not 20 * have read permissions. The implementation now returns 0 21 * on success as stated in the manual page. 22 * - There is some confusion over whether the set of undo adjustments 23 * to be performed at exit should be done in an atomic manner. 24 * That is, if we are attempting to decrement the semval should we queue 25 * up and wait until we can do so legally? 26 * The original implementation attempted to do this. 27 * The current implementation does not do so. This is because I don't 28 * think it is the right thing (TM) to do, and because I couldn't 29 * see a clean way to get the old behavior with the new design. 30 * The POSIX standard and SVID should be consulted to determine 31 * what behavior is mandated. 32 * 33 * Further notes on refinement (Christoph Rohland, December 1998): 34 * - The POSIX standard says, that the undo adjustments simply should 35 * redo. So the current implementation is o.K. 36 * - The previous code had two flaws: 37 * 1) It actively gave the semaphore to the next waiting process 38 * sleeping on the semaphore. Since this process did not have the 39 * cpu this led to many unnecessary context switches and bad 40 * performance. Now we only check which process should be able to 41 * get the semaphore and if this process wants to reduce some 42 * semaphore value we simply wake it up without doing the 43 * operation. So it has to try to get it later. Thus e.g. the 44 * running process may reacquire the semaphore during the current 45 * time slice. If it only waits for zero or increases the semaphore, 46 * we do the operation in advance and wake it up. 47 * 2) It did not wake up all zero waiting processes. We try to do 48 * better but only get the semops right which only wait for zero or 49 * increase. If there are decrement operations in the operations 50 * array we do the same as before. 51 * 52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform 53 * check/retry algorithm for waking up blocked processes as the new scheduler 54 * is better at handling thread switch than the old one. 55 * 56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 57 * 58 * SMP-threaded, sysctl's added 59 * (c) 1999 Manfred Spraul <manfreds@colorfullife.com> 60 * Enforced range limit on SEM_UNDO 61 * (c) 2001 Red Hat Inc <alan@redhat.com> 62 * Lockless wakeup 63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 64 */ 65 66 #include <linux/config.h> 67 #include <linux/slab.h> 68 #include <linux/spinlock.h> 69 #include <linux/init.h> 70 #include <linux/proc_fs.h> 71 #include <linux/time.h> 72 #include <linux/smp_lock.h> 73 #include <linux/security.h> 74 #include <linux/syscalls.h> 75 #include <linux/audit.h> 76 #include <asm/uaccess.h> 77 #include "util.h" 78 79 80 #define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id)) 81 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 82 #define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id)) 83 #define sem_checkid(sma, semid) \ 84 ipc_checkid(&sem_ids,&sma->sem_perm,semid) 85 #define sem_buildid(id, seq) \ 86 ipc_buildid(&sem_ids, id, seq) 87 static struct ipc_ids sem_ids; 88 89 static int newary (key_t, int, int); 90 static void freeary (struct sem_array *sma, int id); 91 #ifdef CONFIG_PROC_FS 92 static int sysvipc_sem_read_proc(char *buffer, char **start, off_t offset, int length, int *eof, void *data); 93 #endif 94 95 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 96 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 97 98 /* 99 * linked list protection: 100 * sem_undo.id_next, 101 * sem_array.sem_pending{,last}, 102 * sem_array.sem_undo: sem_lock() for read/write 103 * sem_undo.proc_next: only "current" is allowed to read/write that field. 104 * 105 */ 106 107 int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI}; 108 #define sc_semmsl (sem_ctls[0]) 109 #define sc_semmns (sem_ctls[1]) 110 #define sc_semopm (sem_ctls[2]) 111 #define sc_semmni (sem_ctls[3]) 112 113 static int used_sems; 114 115 void __init sem_init (void) 116 { 117 used_sems = 0; 118 ipc_init_ids(&sem_ids,sc_semmni); 119 120 #ifdef CONFIG_PROC_FS 121 create_proc_read_entry("sysvipc/sem", 0, NULL, sysvipc_sem_read_proc, NULL); 122 #endif 123 } 124 125 /* 126 * Lockless wakeup algorithm: 127 * Without the check/retry algorithm a lockless wakeup is possible: 128 * - queue.status is initialized to -EINTR before blocking. 129 * - wakeup is performed by 130 * * unlinking the queue entry from sma->sem_pending 131 * * setting queue.status to IN_WAKEUP 132 * This is the notification for the blocked thread that a 133 * result value is imminent. 134 * * call wake_up_process 135 * * set queue.status to the final value. 136 * - the previously blocked thread checks queue.status: 137 * * if it's IN_WAKEUP, then it must wait until the value changes 138 * * if it's not -EINTR, then the operation was completed by 139 * update_queue. semtimedop can return queue.status without 140 * performing any operation on the semaphore array. 141 * * otherwise it must acquire the spinlock and check what's up. 142 * 143 * The two-stage algorithm is necessary to protect against the following 144 * races: 145 * - if queue.status is set after wake_up_process, then the woken up idle 146 * thread could race forward and try (and fail) to acquire sma->lock 147 * before update_queue had a chance to set queue.status 148 * - if queue.status is written before wake_up_process and if the 149 * blocked process is woken up by a signal between writing 150 * queue.status and the wake_up_process, then the woken up 151 * process could return from semtimedop and die by calling 152 * sys_exit before wake_up_process is called. Then wake_up_process 153 * will oops, because the task structure is already invalid. 154 * (yes, this happened on s390 with sysv msg). 155 * 156 */ 157 #define IN_WAKEUP 1 158 159 static int newary (key_t key, int nsems, int semflg) 160 { 161 int id; 162 int retval; 163 struct sem_array *sma; 164 int size; 165 166 if (!nsems) 167 return -EINVAL; 168 if (used_sems + nsems > sc_semmns) 169 return -ENOSPC; 170 171 size = sizeof (*sma) + nsems * sizeof (struct sem); 172 sma = ipc_rcu_alloc(size); 173 if (!sma) { 174 return -ENOMEM; 175 } 176 memset (sma, 0, size); 177 178 sma->sem_perm.mode = (semflg & S_IRWXUGO); 179 sma->sem_perm.key = key; 180 181 sma->sem_perm.security = NULL; 182 retval = security_sem_alloc(sma); 183 if (retval) { 184 ipc_rcu_putref(sma); 185 return retval; 186 } 187 188 id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni); 189 if(id == -1) { 190 security_sem_free(sma); 191 ipc_rcu_putref(sma); 192 return -ENOSPC; 193 } 194 used_sems += nsems; 195 196 sma->sem_base = (struct sem *) &sma[1]; 197 /* sma->sem_pending = NULL; */ 198 sma->sem_pending_last = &sma->sem_pending; 199 /* sma->undo = NULL; */ 200 sma->sem_nsems = nsems; 201 sma->sem_ctime = get_seconds(); 202 sem_unlock(sma); 203 204 return sem_buildid(id, sma->sem_perm.seq); 205 } 206 207 asmlinkage long sys_semget (key_t key, int nsems, int semflg) 208 { 209 int id, err = -EINVAL; 210 struct sem_array *sma; 211 212 if (nsems < 0 || nsems > sc_semmsl) 213 return -EINVAL; 214 down(&sem_ids.sem); 215 216 if (key == IPC_PRIVATE) { 217 err = newary(key, nsems, semflg); 218 } else if ((id = ipc_findkey(&sem_ids, key)) == -1) { /* key not used */ 219 if (!(semflg & IPC_CREAT)) 220 err = -ENOENT; 221 else 222 err = newary(key, nsems, semflg); 223 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) { 224 err = -EEXIST; 225 } else { 226 sma = sem_lock(id); 227 if(sma==NULL) 228 BUG(); 229 if (nsems > sma->sem_nsems) 230 err = -EINVAL; 231 else if (ipcperms(&sma->sem_perm, semflg)) 232 err = -EACCES; 233 else { 234 int semid = sem_buildid(id, sma->sem_perm.seq); 235 err = security_sem_associate(sma, semflg); 236 if (!err) 237 err = semid; 238 } 239 sem_unlock(sma); 240 } 241 242 up(&sem_ids.sem); 243 return err; 244 } 245 246 /* Manage the doubly linked list sma->sem_pending as a FIFO: 247 * insert new queue elements at the tail sma->sem_pending_last. 248 */ 249 static inline void append_to_queue (struct sem_array * sma, 250 struct sem_queue * q) 251 { 252 *(q->prev = sma->sem_pending_last) = q; 253 *(sma->sem_pending_last = &q->next) = NULL; 254 } 255 256 static inline void prepend_to_queue (struct sem_array * sma, 257 struct sem_queue * q) 258 { 259 q->next = sma->sem_pending; 260 *(q->prev = &sma->sem_pending) = q; 261 if (q->next) 262 q->next->prev = &q->next; 263 else /* sma->sem_pending_last == &sma->sem_pending */ 264 sma->sem_pending_last = &q->next; 265 } 266 267 static inline void remove_from_queue (struct sem_array * sma, 268 struct sem_queue * q) 269 { 270 *(q->prev) = q->next; 271 if (q->next) 272 q->next->prev = q->prev; 273 else /* sma->sem_pending_last == &q->next */ 274 sma->sem_pending_last = q->prev; 275 q->prev = NULL; /* mark as removed */ 276 } 277 278 /* 279 * Determine whether a sequence of semaphore operations would succeed 280 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 281 */ 282 283 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 284 int nsops, struct sem_undo *un, int pid) 285 { 286 int result, sem_op; 287 struct sembuf *sop; 288 struct sem * curr; 289 290 for (sop = sops; sop < sops + nsops; sop++) { 291 curr = sma->sem_base + sop->sem_num; 292 sem_op = sop->sem_op; 293 result = curr->semval; 294 295 if (!sem_op && result) 296 goto would_block; 297 298 result += sem_op; 299 if (result < 0) 300 goto would_block; 301 if (result > SEMVMX) 302 goto out_of_range; 303 if (sop->sem_flg & SEM_UNDO) { 304 int undo = un->semadj[sop->sem_num] - sem_op; 305 /* 306 * Exceeding the undo range is an error. 307 */ 308 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 309 goto out_of_range; 310 } 311 curr->semval = result; 312 } 313 314 sop--; 315 while (sop >= sops) { 316 sma->sem_base[sop->sem_num].sempid = pid; 317 if (sop->sem_flg & SEM_UNDO) 318 un->semadj[sop->sem_num] -= sop->sem_op; 319 sop--; 320 } 321 322 sma->sem_otime = get_seconds(); 323 return 0; 324 325 out_of_range: 326 result = -ERANGE; 327 goto undo; 328 329 would_block: 330 if (sop->sem_flg & IPC_NOWAIT) 331 result = -EAGAIN; 332 else 333 result = 1; 334 335 undo: 336 sop--; 337 while (sop >= sops) { 338 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 339 sop--; 340 } 341 342 return result; 343 } 344 345 /* Go through the pending queue for the indicated semaphore 346 * looking for tasks that can be completed. 347 */ 348 static void update_queue (struct sem_array * sma) 349 { 350 int error; 351 struct sem_queue * q; 352 353 q = sma->sem_pending; 354 while(q) { 355 error = try_atomic_semop(sma, q->sops, q->nsops, 356 q->undo, q->pid); 357 358 /* Does q->sleeper still need to sleep? */ 359 if (error <= 0) { 360 struct sem_queue *n; 361 remove_from_queue(sma,q); 362 q->status = IN_WAKEUP; 363 /* 364 * Continue scanning. The next operation 365 * that must be checked depends on the type of the 366 * completed operation: 367 * - if the operation modified the array, then 368 * restart from the head of the queue and 369 * check for threads that might be waiting 370 * for semaphore values to become 0. 371 * - if the operation didn't modify the array, 372 * then just continue. 373 */ 374 if (q->alter) 375 n = sma->sem_pending; 376 else 377 n = q->next; 378 wake_up_process(q->sleeper); 379 /* hands-off: q will disappear immediately after 380 * writing q->status. 381 */ 382 q->status = error; 383 q = n; 384 } else { 385 q = q->next; 386 } 387 } 388 } 389 390 /* The following counts are associated to each semaphore: 391 * semncnt number of tasks waiting on semval being nonzero 392 * semzcnt number of tasks waiting on semval being zero 393 * This model assumes that a task waits on exactly one semaphore. 394 * Since semaphore operations are to be performed atomically, tasks actually 395 * wait on a whole sequence of semaphores simultaneously. 396 * The counts we return here are a rough approximation, but still 397 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 398 */ 399 static int count_semncnt (struct sem_array * sma, ushort semnum) 400 { 401 int semncnt; 402 struct sem_queue * q; 403 404 semncnt = 0; 405 for (q = sma->sem_pending; q; q = q->next) { 406 struct sembuf * sops = q->sops; 407 int nsops = q->nsops; 408 int i; 409 for (i = 0; i < nsops; i++) 410 if (sops[i].sem_num == semnum 411 && (sops[i].sem_op < 0) 412 && !(sops[i].sem_flg & IPC_NOWAIT)) 413 semncnt++; 414 } 415 return semncnt; 416 } 417 static int count_semzcnt (struct sem_array * sma, ushort semnum) 418 { 419 int semzcnt; 420 struct sem_queue * q; 421 422 semzcnt = 0; 423 for (q = sma->sem_pending; q; q = q->next) { 424 struct sembuf * sops = q->sops; 425 int nsops = q->nsops; 426 int i; 427 for (i = 0; i < nsops; i++) 428 if (sops[i].sem_num == semnum 429 && (sops[i].sem_op == 0) 430 && !(sops[i].sem_flg & IPC_NOWAIT)) 431 semzcnt++; 432 } 433 return semzcnt; 434 } 435 436 /* Free a semaphore set. freeary() is called with sem_ids.sem down and 437 * the spinlock for this semaphore set hold. sem_ids.sem remains locked 438 * on exit. 439 */ 440 static void freeary (struct sem_array *sma, int id) 441 { 442 struct sem_undo *un; 443 struct sem_queue *q; 444 int size; 445 446 /* Invalidate the existing undo structures for this semaphore set. 447 * (They will be freed without any further action in exit_sem() 448 * or during the next semop.) 449 */ 450 for (un = sma->undo; un; un = un->id_next) 451 un->semid = -1; 452 453 /* Wake up all pending processes and let them fail with EIDRM. */ 454 q = sma->sem_pending; 455 while(q) { 456 struct sem_queue *n; 457 /* lazy remove_from_queue: we are killing the whole queue */ 458 q->prev = NULL; 459 n = q->next; 460 q->status = IN_WAKEUP; 461 wake_up_process(q->sleeper); /* doesn't sleep */ 462 q->status = -EIDRM; /* hands-off q */ 463 q = n; 464 } 465 466 /* Remove the semaphore set from the ID array*/ 467 sma = sem_rmid(id); 468 sem_unlock(sma); 469 470 used_sems -= sma->sem_nsems; 471 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem); 472 security_sem_free(sma); 473 ipc_rcu_putref(sma); 474 } 475 476 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 477 { 478 switch(version) { 479 case IPC_64: 480 return copy_to_user(buf, in, sizeof(*in)); 481 case IPC_OLD: 482 { 483 struct semid_ds out; 484 485 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 486 487 out.sem_otime = in->sem_otime; 488 out.sem_ctime = in->sem_ctime; 489 out.sem_nsems = in->sem_nsems; 490 491 return copy_to_user(buf, &out, sizeof(out)); 492 } 493 default: 494 return -EINVAL; 495 } 496 } 497 498 static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg) 499 { 500 int err = -EINVAL; 501 struct sem_array *sma; 502 503 switch(cmd) { 504 case IPC_INFO: 505 case SEM_INFO: 506 { 507 struct seminfo seminfo; 508 int max_id; 509 510 err = security_sem_semctl(NULL, cmd); 511 if (err) 512 return err; 513 514 memset(&seminfo,0,sizeof(seminfo)); 515 seminfo.semmni = sc_semmni; 516 seminfo.semmns = sc_semmns; 517 seminfo.semmsl = sc_semmsl; 518 seminfo.semopm = sc_semopm; 519 seminfo.semvmx = SEMVMX; 520 seminfo.semmnu = SEMMNU; 521 seminfo.semmap = SEMMAP; 522 seminfo.semume = SEMUME; 523 down(&sem_ids.sem); 524 if (cmd == SEM_INFO) { 525 seminfo.semusz = sem_ids.in_use; 526 seminfo.semaem = used_sems; 527 } else { 528 seminfo.semusz = SEMUSZ; 529 seminfo.semaem = SEMAEM; 530 } 531 max_id = sem_ids.max_id; 532 up(&sem_ids.sem); 533 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 534 return -EFAULT; 535 return (max_id < 0) ? 0: max_id; 536 } 537 case SEM_STAT: 538 { 539 struct semid64_ds tbuf; 540 int id; 541 542 if(semid >= sem_ids.entries->size) 543 return -EINVAL; 544 545 memset(&tbuf,0,sizeof(tbuf)); 546 547 sma = sem_lock(semid); 548 if(sma == NULL) 549 return -EINVAL; 550 551 err = -EACCES; 552 if (ipcperms (&sma->sem_perm, S_IRUGO)) 553 goto out_unlock; 554 555 err = security_sem_semctl(sma, cmd); 556 if (err) 557 goto out_unlock; 558 559 id = sem_buildid(semid, sma->sem_perm.seq); 560 561 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 562 tbuf.sem_otime = sma->sem_otime; 563 tbuf.sem_ctime = sma->sem_ctime; 564 tbuf.sem_nsems = sma->sem_nsems; 565 sem_unlock(sma); 566 if (copy_semid_to_user (arg.buf, &tbuf, version)) 567 return -EFAULT; 568 return id; 569 } 570 default: 571 return -EINVAL; 572 } 573 return err; 574 out_unlock: 575 sem_unlock(sma); 576 return err; 577 } 578 579 static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg) 580 { 581 struct sem_array *sma; 582 struct sem* curr; 583 int err; 584 ushort fast_sem_io[SEMMSL_FAST]; 585 ushort* sem_io = fast_sem_io; 586 int nsems; 587 588 sma = sem_lock(semid); 589 if(sma==NULL) 590 return -EINVAL; 591 592 nsems = sma->sem_nsems; 593 594 err=-EIDRM; 595 if (sem_checkid(sma,semid)) 596 goto out_unlock; 597 598 err = -EACCES; 599 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 600 goto out_unlock; 601 602 err = security_sem_semctl(sma, cmd); 603 if (err) 604 goto out_unlock; 605 606 err = -EACCES; 607 switch (cmd) { 608 case GETALL: 609 { 610 ushort __user *array = arg.array; 611 int i; 612 613 if(nsems > SEMMSL_FAST) { 614 ipc_rcu_getref(sma); 615 sem_unlock(sma); 616 617 sem_io = ipc_alloc(sizeof(ushort)*nsems); 618 if(sem_io == NULL) { 619 ipc_lock_by_ptr(&sma->sem_perm); 620 ipc_rcu_putref(sma); 621 sem_unlock(sma); 622 return -ENOMEM; 623 } 624 625 ipc_lock_by_ptr(&sma->sem_perm); 626 ipc_rcu_putref(sma); 627 if (sma->sem_perm.deleted) { 628 sem_unlock(sma); 629 err = -EIDRM; 630 goto out_free; 631 } 632 } 633 634 for (i = 0; i < sma->sem_nsems; i++) 635 sem_io[i] = sma->sem_base[i].semval; 636 sem_unlock(sma); 637 err = 0; 638 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 639 err = -EFAULT; 640 goto out_free; 641 } 642 case SETALL: 643 { 644 int i; 645 struct sem_undo *un; 646 647 ipc_rcu_getref(sma); 648 sem_unlock(sma); 649 650 if(nsems > SEMMSL_FAST) { 651 sem_io = ipc_alloc(sizeof(ushort)*nsems); 652 if(sem_io == NULL) { 653 ipc_lock_by_ptr(&sma->sem_perm); 654 ipc_rcu_putref(sma); 655 sem_unlock(sma); 656 return -ENOMEM; 657 } 658 } 659 660 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 661 ipc_lock_by_ptr(&sma->sem_perm); 662 ipc_rcu_putref(sma); 663 sem_unlock(sma); 664 err = -EFAULT; 665 goto out_free; 666 } 667 668 for (i = 0; i < nsems; i++) { 669 if (sem_io[i] > SEMVMX) { 670 ipc_lock_by_ptr(&sma->sem_perm); 671 ipc_rcu_putref(sma); 672 sem_unlock(sma); 673 err = -ERANGE; 674 goto out_free; 675 } 676 } 677 ipc_lock_by_ptr(&sma->sem_perm); 678 ipc_rcu_putref(sma); 679 if (sma->sem_perm.deleted) { 680 sem_unlock(sma); 681 err = -EIDRM; 682 goto out_free; 683 } 684 685 for (i = 0; i < nsems; i++) 686 sma->sem_base[i].semval = sem_io[i]; 687 for (un = sma->undo; un; un = un->id_next) 688 for (i = 0; i < nsems; i++) 689 un->semadj[i] = 0; 690 sma->sem_ctime = get_seconds(); 691 /* maybe some queued-up processes were waiting for this */ 692 update_queue(sma); 693 err = 0; 694 goto out_unlock; 695 } 696 case IPC_STAT: 697 { 698 struct semid64_ds tbuf; 699 memset(&tbuf,0,sizeof(tbuf)); 700 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 701 tbuf.sem_otime = sma->sem_otime; 702 tbuf.sem_ctime = sma->sem_ctime; 703 tbuf.sem_nsems = sma->sem_nsems; 704 sem_unlock(sma); 705 if (copy_semid_to_user (arg.buf, &tbuf, version)) 706 return -EFAULT; 707 return 0; 708 } 709 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 710 } 711 err = -EINVAL; 712 if(semnum < 0 || semnum >= nsems) 713 goto out_unlock; 714 715 curr = &sma->sem_base[semnum]; 716 717 switch (cmd) { 718 case GETVAL: 719 err = curr->semval; 720 goto out_unlock; 721 case GETPID: 722 err = curr->sempid; 723 goto out_unlock; 724 case GETNCNT: 725 err = count_semncnt(sma,semnum); 726 goto out_unlock; 727 case GETZCNT: 728 err = count_semzcnt(sma,semnum); 729 goto out_unlock; 730 case SETVAL: 731 { 732 int val = arg.val; 733 struct sem_undo *un; 734 err = -ERANGE; 735 if (val > SEMVMX || val < 0) 736 goto out_unlock; 737 738 for (un = sma->undo; un; un = un->id_next) 739 un->semadj[semnum] = 0; 740 curr->semval = val; 741 curr->sempid = current->tgid; 742 sma->sem_ctime = get_seconds(); 743 /* maybe some queued-up processes were waiting for this */ 744 update_queue(sma); 745 err = 0; 746 goto out_unlock; 747 } 748 } 749 out_unlock: 750 sem_unlock(sma); 751 out_free: 752 if(sem_io != fast_sem_io) 753 ipc_free(sem_io, sizeof(ushort)*nsems); 754 return err; 755 } 756 757 struct sem_setbuf { 758 uid_t uid; 759 gid_t gid; 760 mode_t mode; 761 }; 762 763 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version) 764 { 765 switch(version) { 766 case IPC_64: 767 { 768 struct semid64_ds tbuf; 769 770 if(copy_from_user(&tbuf, buf, sizeof(tbuf))) 771 return -EFAULT; 772 773 out->uid = tbuf.sem_perm.uid; 774 out->gid = tbuf.sem_perm.gid; 775 out->mode = tbuf.sem_perm.mode; 776 777 return 0; 778 } 779 case IPC_OLD: 780 { 781 struct semid_ds tbuf_old; 782 783 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 784 return -EFAULT; 785 786 out->uid = tbuf_old.sem_perm.uid; 787 out->gid = tbuf_old.sem_perm.gid; 788 out->mode = tbuf_old.sem_perm.mode; 789 790 return 0; 791 } 792 default: 793 return -EINVAL; 794 } 795 } 796 797 static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg) 798 { 799 struct sem_array *sma; 800 int err; 801 struct sem_setbuf setbuf; 802 struct kern_ipc_perm *ipcp; 803 804 if(cmd == IPC_SET) { 805 if(copy_semid_from_user (&setbuf, arg.buf, version)) 806 return -EFAULT; 807 if ((err = audit_ipc_perms(0, setbuf.uid, setbuf.gid, setbuf.mode))) 808 return err; 809 } 810 sma = sem_lock(semid); 811 if(sma==NULL) 812 return -EINVAL; 813 814 if (sem_checkid(sma,semid)) { 815 err=-EIDRM; 816 goto out_unlock; 817 } 818 ipcp = &sma->sem_perm; 819 820 if (current->euid != ipcp->cuid && 821 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) { 822 err=-EPERM; 823 goto out_unlock; 824 } 825 826 err = security_sem_semctl(sma, cmd); 827 if (err) 828 goto out_unlock; 829 830 switch(cmd){ 831 case IPC_RMID: 832 freeary(sma, semid); 833 err = 0; 834 break; 835 case IPC_SET: 836 ipcp->uid = setbuf.uid; 837 ipcp->gid = setbuf.gid; 838 ipcp->mode = (ipcp->mode & ~S_IRWXUGO) 839 | (setbuf.mode & S_IRWXUGO); 840 sma->sem_ctime = get_seconds(); 841 sem_unlock(sma); 842 err = 0; 843 break; 844 default: 845 sem_unlock(sma); 846 err = -EINVAL; 847 break; 848 } 849 return err; 850 851 out_unlock: 852 sem_unlock(sma); 853 return err; 854 } 855 856 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) 857 { 858 int err = -EINVAL; 859 int version; 860 861 if (semid < 0) 862 return -EINVAL; 863 864 version = ipc_parse_version(&cmd); 865 866 switch(cmd) { 867 case IPC_INFO: 868 case SEM_INFO: 869 case SEM_STAT: 870 err = semctl_nolock(semid,semnum,cmd,version,arg); 871 return err; 872 case GETALL: 873 case GETVAL: 874 case GETPID: 875 case GETNCNT: 876 case GETZCNT: 877 case IPC_STAT: 878 case SETVAL: 879 case SETALL: 880 err = semctl_main(semid,semnum,cmd,version,arg); 881 return err; 882 case IPC_RMID: 883 case IPC_SET: 884 down(&sem_ids.sem); 885 err = semctl_down(semid,semnum,cmd,version,arg); 886 up(&sem_ids.sem); 887 return err; 888 default: 889 return -EINVAL; 890 } 891 } 892 893 static inline void lock_semundo(void) 894 { 895 struct sem_undo_list *undo_list; 896 897 undo_list = current->sysvsem.undo_list; 898 if ((undo_list != NULL) && (atomic_read(&undo_list->refcnt) != 1)) 899 spin_lock(&undo_list->lock); 900 } 901 902 /* This code has an interaction with copy_semundo(). 903 * Consider; two tasks are sharing the undo_list. task1 904 * acquires the undo_list lock in lock_semundo(). If task2 now 905 * exits before task1 releases the lock (by calling 906 * unlock_semundo()), then task1 will never call spin_unlock(). 907 * This leave the sem_undo_list in a locked state. If task1 now creats task3 908 * and once again shares the sem_undo_list, the sem_undo_list will still be 909 * locked, and future SEM_UNDO operations will deadlock. This case is 910 * dealt with in copy_semundo() by having it reinitialize the spin lock when 911 * the refcnt goes from 1 to 2. 912 */ 913 static inline void unlock_semundo(void) 914 { 915 struct sem_undo_list *undo_list; 916 917 undo_list = current->sysvsem.undo_list; 918 if ((undo_list != NULL) && (atomic_read(&undo_list->refcnt) != 1)) 919 spin_unlock(&undo_list->lock); 920 } 921 922 923 /* If the task doesn't already have a undo_list, then allocate one 924 * here. We guarantee there is only one thread using this undo list, 925 * and current is THE ONE 926 * 927 * If this allocation and assignment succeeds, but later 928 * portions of this code fail, there is no need to free the sem_undo_list. 929 * Just let it stay associated with the task, and it'll be freed later 930 * at exit time. 931 * 932 * This can block, so callers must hold no locks. 933 */ 934 static inline int get_undo_list(struct sem_undo_list **undo_listp) 935 { 936 struct sem_undo_list *undo_list; 937 int size; 938 939 undo_list = current->sysvsem.undo_list; 940 if (!undo_list) { 941 size = sizeof(struct sem_undo_list); 942 undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL); 943 if (undo_list == NULL) 944 return -ENOMEM; 945 memset(undo_list, 0, size); 946 /* don't initialize unodhd->lock here. It's done 947 * in copy_semundo() instead. 948 */ 949 atomic_set(&undo_list->refcnt, 1); 950 current->sysvsem.undo_list = undo_list; 951 } 952 *undo_listp = undo_list; 953 return 0; 954 } 955 956 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 957 { 958 struct sem_undo **last, *un; 959 960 last = &ulp->proc_list; 961 un = *last; 962 while(un != NULL) { 963 if(un->semid==semid) 964 break; 965 if(un->semid==-1) { 966 *last=un->proc_next; 967 kfree(un); 968 } else { 969 last=&un->proc_next; 970 } 971 un=*last; 972 } 973 return un; 974 } 975 976 static struct sem_undo *find_undo(int semid) 977 { 978 struct sem_array *sma; 979 struct sem_undo_list *ulp; 980 struct sem_undo *un, *new; 981 int nsems; 982 int error; 983 984 error = get_undo_list(&ulp); 985 if (error) 986 return ERR_PTR(error); 987 988 lock_semundo(); 989 un = lookup_undo(ulp, semid); 990 unlock_semundo(); 991 if (likely(un!=NULL)) 992 goto out; 993 994 /* no undo structure around - allocate one. */ 995 sma = sem_lock(semid); 996 un = ERR_PTR(-EINVAL); 997 if(sma==NULL) 998 goto out; 999 un = ERR_PTR(-EIDRM); 1000 if (sem_checkid(sma,semid)) { 1001 sem_unlock(sma); 1002 goto out; 1003 } 1004 nsems = sma->sem_nsems; 1005 ipc_rcu_getref(sma); 1006 sem_unlock(sma); 1007 1008 new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1009 if (!new) { 1010 ipc_lock_by_ptr(&sma->sem_perm); 1011 ipc_rcu_putref(sma); 1012 sem_unlock(sma); 1013 return ERR_PTR(-ENOMEM); 1014 } 1015 memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems); 1016 new->semadj = (short *) &new[1]; 1017 new->semid = semid; 1018 1019 lock_semundo(); 1020 un = lookup_undo(ulp, semid); 1021 if (un) { 1022 unlock_semundo(); 1023 kfree(new); 1024 ipc_lock_by_ptr(&sma->sem_perm); 1025 ipc_rcu_putref(sma); 1026 sem_unlock(sma); 1027 goto out; 1028 } 1029 ipc_lock_by_ptr(&sma->sem_perm); 1030 ipc_rcu_putref(sma); 1031 if (sma->sem_perm.deleted) { 1032 sem_unlock(sma); 1033 unlock_semundo(); 1034 kfree(new); 1035 un = ERR_PTR(-EIDRM); 1036 goto out; 1037 } 1038 new->proc_next = ulp->proc_list; 1039 ulp->proc_list = new; 1040 new->id_next = sma->undo; 1041 sma->undo = new; 1042 sem_unlock(sma); 1043 un = new; 1044 unlock_semundo(); 1045 out: 1046 return un; 1047 } 1048 1049 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, 1050 unsigned nsops, const struct timespec __user *timeout) 1051 { 1052 int error = -EINVAL; 1053 struct sem_array *sma; 1054 struct sembuf fast_sops[SEMOPM_FAST]; 1055 struct sembuf* sops = fast_sops, *sop; 1056 struct sem_undo *un; 1057 int undos = 0, decrease = 0, alter = 0, max; 1058 struct sem_queue queue; 1059 unsigned long jiffies_left = 0; 1060 1061 if (nsops < 1 || semid < 0) 1062 return -EINVAL; 1063 if (nsops > sc_semopm) 1064 return -E2BIG; 1065 if(nsops > SEMOPM_FAST) { 1066 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1067 if(sops==NULL) 1068 return -ENOMEM; 1069 } 1070 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1071 error=-EFAULT; 1072 goto out_free; 1073 } 1074 if (timeout) { 1075 struct timespec _timeout; 1076 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1077 error = -EFAULT; 1078 goto out_free; 1079 } 1080 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1081 _timeout.tv_nsec >= 1000000000L) { 1082 error = -EINVAL; 1083 goto out_free; 1084 } 1085 jiffies_left = timespec_to_jiffies(&_timeout); 1086 } 1087 max = 0; 1088 for (sop = sops; sop < sops + nsops; sop++) { 1089 if (sop->sem_num >= max) 1090 max = sop->sem_num; 1091 if (sop->sem_flg & SEM_UNDO) 1092 undos++; 1093 if (sop->sem_op < 0) 1094 decrease = 1; 1095 if (sop->sem_op > 0) 1096 alter = 1; 1097 } 1098 alter |= decrease; 1099 1100 retry_undos: 1101 if (undos) { 1102 un = find_undo(semid); 1103 if (IS_ERR(un)) { 1104 error = PTR_ERR(un); 1105 goto out_free; 1106 } 1107 } else 1108 un = NULL; 1109 1110 sma = sem_lock(semid); 1111 error=-EINVAL; 1112 if(sma==NULL) 1113 goto out_free; 1114 error = -EIDRM; 1115 if (sem_checkid(sma,semid)) 1116 goto out_unlock_free; 1117 /* 1118 * semid identifies are not unique - find_undo may have 1119 * allocated an undo structure, it was invalidated by an RMID 1120 * and now a new array with received the same id. Check and retry. 1121 */ 1122 if (un && un->semid == -1) { 1123 sem_unlock(sma); 1124 goto retry_undos; 1125 } 1126 error = -EFBIG; 1127 if (max >= sma->sem_nsems) 1128 goto out_unlock_free; 1129 1130 error = -EACCES; 1131 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1132 goto out_unlock_free; 1133 1134 error = security_sem_semop(sma, sops, nsops, alter); 1135 if (error) 1136 goto out_unlock_free; 1137 1138 error = try_atomic_semop (sma, sops, nsops, un, current->tgid); 1139 if (error <= 0) { 1140 if (alter && error == 0) 1141 update_queue (sma); 1142 goto out_unlock_free; 1143 } 1144 1145 /* We need to sleep on this operation, so we put the current 1146 * task into the pending queue and go to sleep. 1147 */ 1148 1149 queue.sma = sma; 1150 queue.sops = sops; 1151 queue.nsops = nsops; 1152 queue.undo = un; 1153 queue.pid = current->tgid; 1154 queue.id = semid; 1155 queue.alter = alter; 1156 if (alter) 1157 append_to_queue(sma ,&queue); 1158 else 1159 prepend_to_queue(sma ,&queue); 1160 1161 queue.status = -EINTR; 1162 queue.sleeper = current; 1163 current->state = TASK_INTERRUPTIBLE; 1164 sem_unlock(sma); 1165 1166 if (timeout) 1167 jiffies_left = schedule_timeout(jiffies_left); 1168 else 1169 schedule(); 1170 1171 error = queue.status; 1172 while(unlikely(error == IN_WAKEUP)) { 1173 cpu_relax(); 1174 error = queue.status; 1175 } 1176 1177 if (error != -EINTR) { 1178 /* fast path: update_queue already obtained all requested 1179 * resources */ 1180 goto out_free; 1181 } 1182 1183 sma = sem_lock(semid); 1184 if(sma==NULL) { 1185 if(queue.prev != NULL) 1186 BUG(); 1187 error = -EIDRM; 1188 goto out_free; 1189 } 1190 1191 /* 1192 * If queue.status != -EINTR we are woken up by another process 1193 */ 1194 error = queue.status; 1195 if (error != -EINTR) { 1196 goto out_unlock_free; 1197 } 1198 1199 /* 1200 * If an interrupt occurred we have to clean up the queue 1201 */ 1202 if (timeout && jiffies_left == 0) 1203 error = -EAGAIN; 1204 remove_from_queue(sma,&queue); 1205 goto out_unlock_free; 1206 1207 out_unlock_free: 1208 sem_unlock(sma); 1209 out_free: 1210 if(sops != fast_sops) 1211 kfree(sops); 1212 return error; 1213 } 1214 1215 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) 1216 { 1217 return sys_semtimedop(semid, tsops, nsops, NULL); 1218 } 1219 1220 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1221 * parent and child tasks. 1222 * 1223 * See the notes above unlock_semundo() regarding the spin_lock_init() 1224 * in this code. Initialize the undo_list->lock here instead of get_undo_list() 1225 * because of the reasoning in the comment above unlock_semundo. 1226 */ 1227 1228 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1229 { 1230 struct sem_undo_list *undo_list; 1231 int error; 1232 1233 if (clone_flags & CLONE_SYSVSEM) { 1234 error = get_undo_list(&undo_list); 1235 if (error) 1236 return error; 1237 if (atomic_read(&undo_list->refcnt) == 1) 1238 spin_lock_init(&undo_list->lock); 1239 atomic_inc(&undo_list->refcnt); 1240 tsk->sysvsem.undo_list = undo_list; 1241 } else 1242 tsk->sysvsem.undo_list = NULL; 1243 1244 return 0; 1245 } 1246 1247 /* 1248 * add semadj values to semaphores, free undo structures. 1249 * undo structures are not freed when semaphore arrays are destroyed 1250 * so some of them may be out of date. 1251 * IMPLEMENTATION NOTE: There is some confusion over whether the 1252 * set of adjustments that needs to be done should be done in an atomic 1253 * manner or not. That is, if we are attempting to decrement the semval 1254 * should we queue up and wait until we can do so legally? 1255 * The original implementation attempted to do this (queue and wait). 1256 * The current implementation does not do so. The POSIX standard 1257 * and SVID should be consulted to determine what behavior is mandated. 1258 */ 1259 void exit_sem(struct task_struct *tsk) 1260 { 1261 struct sem_undo_list *undo_list; 1262 struct sem_undo *u, **up; 1263 1264 undo_list = tsk->sysvsem.undo_list; 1265 if (!undo_list) 1266 return; 1267 1268 if (!atomic_dec_and_test(&undo_list->refcnt)) 1269 return; 1270 1271 /* There's no need to hold the semundo list lock, as current 1272 * is the last task exiting for this undo list. 1273 */ 1274 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) { 1275 struct sem_array *sma; 1276 int nsems, i; 1277 struct sem_undo *un, **unp; 1278 int semid; 1279 1280 semid = u->semid; 1281 1282 if(semid == -1) 1283 continue; 1284 sma = sem_lock(semid); 1285 if (sma == NULL) 1286 continue; 1287 1288 if (u->semid == -1) 1289 goto next_entry; 1290 1291 BUG_ON(sem_checkid(sma,u->semid)); 1292 1293 /* remove u from the sma->undo list */ 1294 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { 1295 if (u == un) 1296 goto found; 1297 } 1298 printk ("exit_sem undo list error id=%d\n", u->semid); 1299 goto next_entry; 1300 found: 1301 *unp = un->id_next; 1302 /* perform adjustments registered in u */ 1303 nsems = sma->sem_nsems; 1304 for (i = 0; i < nsems; i++) { 1305 struct sem * sem = &sma->sem_base[i]; 1306 if (u->semadj[i]) { 1307 sem->semval += u->semadj[i]; 1308 /* 1309 * Range checks of the new semaphore value, 1310 * not defined by sus: 1311 * - Some unices ignore the undo entirely 1312 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1313 * - some cap the value (e.g. FreeBSD caps 1314 * at 0, but doesn't enforce SEMVMX) 1315 * 1316 * Linux caps the semaphore value, both at 0 1317 * and at SEMVMX. 1318 * 1319 * Manfred <manfred@colorfullife.com> 1320 */ 1321 if (sem->semval < 0) 1322 sem->semval = 0; 1323 if (sem->semval > SEMVMX) 1324 sem->semval = SEMVMX; 1325 sem->sempid = current->tgid; 1326 } 1327 } 1328 sma->sem_otime = get_seconds(); 1329 /* maybe some queued-up processes were waiting for this */ 1330 update_queue(sma); 1331 next_entry: 1332 sem_unlock(sma); 1333 } 1334 kfree(undo_list); 1335 } 1336 1337 #ifdef CONFIG_PROC_FS 1338 static int sysvipc_sem_read_proc(char *buffer, char **start, off_t offset, int length, int *eof, void *data) 1339 { 1340 off_t pos = 0; 1341 off_t begin = 0; 1342 int i, len = 0; 1343 1344 len += sprintf(buffer, " key semid perms nsems uid gid cuid cgid otime ctime\n"); 1345 down(&sem_ids.sem); 1346 1347 for(i = 0; i <= sem_ids.max_id; i++) { 1348 struct sem_array *sma; 1349 sma = sem_lock(i); 1350 if(sma) { 1351 len += sprintf(buffer + len, "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", 1352 sma->sem_perm.key, 1353 sem_buildid(i,sma->sem_perm.seq), 1354 sma->sem_perm.mode, 1355 sma->sem_nsems, 1356 sma->sem_perm.uid, 1357 sma->sem_perm.gid, 1358 sma->sem_perm.cuid, 1359 sma->sem_perm.cgid, 1360 sma->sem_otime, 1361 sma->sem_ctime); 1362 sem_unlock(sma); 1363 1364 pos += len; 1365 if(pos < offset) { 1366 len = 0; 1367 begin = pos; 1368 } 1369 if(pos > offset + length) 1370 goto done; 1371 } 1372 } 1373 *eof = 1; 1374 done: 1375 up(&sem_ids.sem); 1376 *start = buffer + (offset - begin); 1377 len -= (offset - begin); 1378 if(len > length) 1379 len = length; 1380 if(len < 0) 1381 len = 0; 1382 return len; 1383 } 1384 #endif 1385