xref: /openbmc/linux/init/calibrate.c (revision 8181d3ef26ed1d9eb21e2cdcac374e1f457fdc06)
1 /* calibrate.c: default delay calibration
2  *
3  * Excised from init/main.c
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/jiffies.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/timex.h>
11 #include <linux/smp.h>
12 
13 unsigned long lpj_fine;
14 unsigned long preset_lpj;
15 static int __init lpj_setup(char *str)
16 {
17 	preset_lpj = simple_strtoul(str,NULL,0);
18 	return 1;
19 }
20 
21 __setup("lpj=", lpj_setup);
22 
23 #ifdef ARCH_HAS_READ_CURRENT_TIMER
24 
25 /* This routine uses the read_current_timer() routine and gets the
26  * loops per jiffy directly, instead of guessing it using delay().
27  * Also, this code tries to handle non-maskable asynchronous events
28  * (like SMIs)
29  */
30 #define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
31 #define MAX_DIRECT_CALIBRATION_RETRIES		5
32 
33 static unsigned long __cpuinit calibrate_delay_direct(void)
34 {
35 	unsigned long pre_start, start, post_start;
36 	unsigned long pre_end, end, post_end;
37 	unsigned long start_jiffies;
38 	unsigned long timer_rate_min, timer_rate_max;
39 	unsigned long good_timer_sum = 0;
40 	unsigned long good_timer_count = 0;
41 	unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
42 	int max = -1; /* index of measured_times with max/min values or not set */
43 	int min = -1;
44 	int i;
45 
46 	if (read_current_timer(&pre_start) < 0 )
47 		return 0;
48 
49 	/*
50 	 * A simple loop like
51 	 *	while ( jiffies < start_jiffies+1)
52 	 *		start = read_current_timer();
53 	 * will not do. As we don't really know whether jiffy switch
54 	 * happened first or timer_value was read first. And some asynchronous
55 	 * event can happen between these two events introducing errors in lpj.
56 	 *
57 	 * So, we do
58 	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
59 	 * 2. check jiffy switch
60 	 * 3. start <- timer value before or after jiffy switch
61 	 * 4. post_start <- When we are sure that jiffy switch has happened
62 	 *
63 	 * Note, we don't know anything about order of 2 and 3.
64 	 * Now, by looking at post_start and pre_start difference, we can
65 	 * check whether any asynchronous event happened or not
66 	 */
67 
68 	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
69 		pre_start = 0;
70 		read_current_timer(&start);
71 		start_jiffies = jiffies;
72 		while (time_before_eq(jiffies, start_jiffies + 1)) {
73 			pre_start = start;
74 			read_current_timer(&start);
75 		}
76 		read_current_timer(&post_start);
77 
78 		pre_end = 0;
79 		end = post_start;
80 		while (time_before_eq(jiffies, start_jiffies + 1 +
81 					       DELAY_CALIBRATION_TICKS)) {
82 			pre_end = end;
83 			read_current_timer(&end);
84 		}
85 		read_current_timer(&post_end);
86 
87 		timer_rate_max = (post_end - pre_start) /
88 					DELAY_CALIBRATION_TICKS;
89 		timer_rate_min = (pre_end - post_start) /
90 					DELAY_CALIBRATION_TICKS;
91 
92 		/*
93 		 * If the upper limit and lower limit of the timer_rate is
94 		 * >= 12.5% apart, redo calibration.
95 		 */
96 		printk(KERN_DEBUG "calibrate_delay_direct() timer_rate_max=%lu "
97 			    "timer_rate_min=%lu pre_start=%lu pre_end=%lu\n",
98 			  timer_rate_max, timer_rate_min, pre_start, pre_end);
99 		if (start >= post_end)
100 			printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
101 					"timer_rate as we had a TSC wrap around"
102 					" start=%lu >=post_end=%lu\n",
103 				start, post_end);
104 		if (start < post_end && pre_start != 0 && pre_end != 0 &&
105 		    (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
106 			good_timer_count++;
107 			good_timer_sum += timer_rate_max;
108 			measured_times[i] = timer_rate_max;
109 			if (max < 0 || timer_rate_max > measured_times[max])
110 				max = i;
111 			if (min < 0 || timer_rate_max < measured_times[min])
112 				min = i;
113 		} else
114 			measured_times[i] = 0;
115 
116 	}
117 
118 	/*
119 	 * Find the maximum & minimum - if they differ too much throw out the
120 	 * one with the largest difference from the mean and try again...
121 	 */
122 	while (good_timer_count > 1) {
123 		unsigned long estimate;
124 		unsigned long maxdiff;
125 
126 		/* compute the estimate */
127 		estimate = (good_timer_sum/good_timer_count);
128 		maxdiff = estimate >> 3;
129 
130 		/* if range is within 12% let's take it */
131 		if ((measured_times[max] - measured_times[min]) < maxdiff)
132 			return estimate;
133 
134 		/* ok - drop the worse value and try again... */
135 		good_timer_sum = 0;
136 		good_timer_count = 0;
137 		if ((measured_times[max] - estimate) <
138 				(estimate - measured_times[min])) {
139 			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
140 					"min bogoMips estimate %d = %lu\n",
141 				min, measured_times[min]);
142 			measured_times[min] = 0;
143 			min = max;
144 		} else {
145 			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
146 					"max bogoMips estimate %d = %lu\n",
147 				max, measured_times[max]);
148 			measured_times[max] = 0;
149 			max = min;
150 		}
151 
152 		for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
153 			if (measured_times[i] == 0)
154 				continue;
155 			good_timer_count++;
156 			good_timer_sum += measured_times[i];
157 			if (measured_times[i] < measured_times[min])
158 				min = i;
159 			if (measured_times[i] > measured_times[max])
160 				max = i;
161 		}
162 
163 	}
164 
165 	printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
166 	       "estimate for loops_per_jiffy.\nProbably due to long platform "
167 		"interrupts. Consider using \"lpj=\" boot option.\n");
168 	return 0;
169 }
170 #else
171 static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
172 #endif
173 
174 /*
175  * This is the number of bits of precision for the loops_per_jiffy.  Each
176  * time we refine our estimate after the first takes 1.5/HZ seconds, so try
177  * to start with a good estimate.
178  * For the boot cpu we can skip the delay calibration and assign it a value
179  * calculated based on the timer frequency.
180  * For the rest of the CPUs we cannot assume that the timer frequency is same as
181  * the cpu frequency, hence do the calibration for those.
182  */
183 #define LPS_PREC 8
184 
185 static unsigned long __cpuinit calibrate_delay_converge(void)
186 {
187 	/* First stage - slowly accelerate to find initial bounds */
188 	unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
189 	int trials = 0, band = 0, trial_in_band = 0;
190 
191 	lpj = (1<<12);
192 
193 	/* wait for "start of" clock tick */
194 	ticks = jiffies;
195 	while (ticks == jiffies)
196 		; /* nothing */
197 	/* Go .. */
198 	ticks = jiffies;
199 	do {
200 		if (++trial_in_band == (1<<band)) {
201 			++band;
202 			trial_in_band = 0;
203 		}
204 		__delay(lpj * band);
205 		trials += band;
206 	} while (ticks == jiffies);
207 	/*
208 	 * We overshot, so retreat to a clear underestimate. Then estimate
209 	 * the largest likely undershoot. This defines our chop bounds.
210 	 */
211 	trials -= band;
212 	loopadd_base = lpj * band;
213 	lpj_base = lpj * trials;
214 
215 recalibrate:
216 	lpj = lpj_base;
217 	loopadd = loopadd_base;
218 
219 	/*
220 	 * Do a binary approximation to get lpj set to
221 	 * equal one clock (up to LPS_PREC bits)
222 	 */
223 	chop_limit = lpj >> LPS_PREC;
224 	while (loopadd > chop_limit) {
225 		lpj += loopadd;
226 		ticks = jiffies;
227 		while (ticks == jiffies)
228 			; /* nothing */
229 		ticks = jiffies;
230 		__delay(lpj);
231 		if (jiffies != ticks)	/* longer than 1 tick */
232 			lpj -= loopadd;
233 		loopadd >>= 1;
234 	}
235 	/*
236 	 * If we incremented every single time possible, presume we've
237 	 * massively underestimated initially, and retry with a higher
238 	 * start, and larger range. (Only seen on x86_64, due to SMIs)
239 	 */
240 	if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
241 		lpj_base = lpj;
242 		loopadd_base <<= 2;
243 		goto recalibrate;
244 	}
245 
246 	return lpj;
247 }
248 
249 void __cpuinit calibrate_delay(void)
250 {
251 	static bool printed;
252 
253 	if (preset_lpj) {
254 		loops_per_jiffy = preset_lpj;
255 		if (!printed)
256 			pr_info("Calibrating delay loop (skipped) "
257 				"preset value.. ");
258 	} else if ((!printed) && lpj_fine) {
259 		loops_per_jiffy = lpj_fine;
260 		pr_info("Calibrating delay loop (skipped), "
261 			"value calculated using timer frequency.. ");
262 	} else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
263 		if (!printed)
264 			pr_info("Calibrating delay using timer "
265 				"specific routine.. ");
266 	} else {
267 		if (!printed)
268 			pr_info("Calibrating delay loop... ");
269 		loops_per_jiffy = calibrate_delay_converge();
270 	}
271 	if (!printed)
272 		pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
273 			loops_per_jiffy/(500000/HZ),
274 			(loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
275 
276 	printed = true;
277 }
278