xref: /openbmc/linux/include/uapi/drm/habanalabs_accel.h (revision 2b91c4a870c9830eaf95e744454c9c218cccb736)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2  *
3  * Copyright 2016-2022 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABS_H_
9 #define HABANALABS_H_
10 
11 #include <linux/types.h>
12 #include <linux/ioctl.h>
13 
14 /*
15  * Defines that are asic-specific but constitutes as ABI between kernel driver
16  * and userspace
17  */
18 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
19 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
20 
21 /*
22  * 128 SOBs reserved for collective wait
23  * 16 SOBs reserved for sync stream
24  */
25 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		144
26 
27 /*
28  * 64 monitors reserved for collective wait
29  * 8 monitors reserved for sync stream
30  */
31 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		72
32 
33 /* Max number of elements in timestamps registration buffers */
34 #define	TS_MAX_ELEMENTS_NUM				(1 << 20) /* 1MB */
35 
36 /*
37  * Goya queue Numbering
38  *
39  * The external queues (PCI DMA channels) MUST be before the internal queues
40  * and each group (PCI DMA channels and internal) must be contiguous inside
41  * itself but there can be a gap between the two groups (although not
42  * recommended)
43  */
44 
45 enum goya_queue_id {
46 	GOYA_QUEUE_ID_DMA_0 = 0,
47 	GOYA_QUEUE_ID_DMA_1 = 1,
48 	GOYA_QUEUE_ID_DMA_2 = 2,
49 	GOYA_QUEUE_ID_DMA_3 = 3,
50 	GOYA_QUEUE_ID_DMA_4 = 4,
51 	GOYA_QUEUE_ID_CPU_PQ = 5,
52 	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
53 	GOYA_QUEUE_ID_TPC0 = 7,
54 	GOYA_QUEUE_ID_TPC1 = 8,
55 	GOYA_QUEUE_ID_TPC2 = 9,
56 	GOYA_QUEUE_ID_TPC3 = 10,
57 	GOYA_QUEUE_ID_TPC4 = 11,
58 	GOYA_QUEUE_ID_TPC5 = 12,
59 	GOYA_QUEUE_ID_TPC6 = 13,
60 	GOYA_QUEUE_ID_TPC7 = 14,
61 	GOYA_QUEUE_ID_SIZE
62 };
63 
64 /*
65  * Gaudi queue Numbering
66  * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
67  * Except one CPU queue, all the rest are internal queues.
68  */
69 
70 enum gaudi_queue_id {
71 	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
72 	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
73 	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
74 	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
75 	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
76 	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
77 	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
78 	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
79 	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
80 	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
81 	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
82 	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
83 	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
84 	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
85 	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
86 	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
87 	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
88 	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
89 	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
90 	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
91 	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
92 	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* internal */
93 	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* internal */
94 	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* internal */
95 	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* internal */
96 	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
97 	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
98 	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
99 	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
100 	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
101 	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
102 	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
103 	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
104 	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
105 	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
106 	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
107 	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
108 	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
109 	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
110 	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
111 	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
112 	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
113 	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
114 	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
115 	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
116 	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
117 	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
118 	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
119 	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
120 	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
121 	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
122 	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
123 	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
124 	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
125 	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
126 	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
127 	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
128 	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
129 	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
130 	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
131 	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
132 	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
133 	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
134 	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
135 	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
136 	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
137 	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
138 	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
139 	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
140 	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
141 	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
142 	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
143 	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
144 	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
145 	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
146 	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
147 	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
148 	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
149 	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
150 	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
151 	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
152 	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
153 	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
154 	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
155 	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
156 	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
157 	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
158 	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
159 	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
160 	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
161 	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
162 	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
163 	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
164 	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
165 	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
166 	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
167 	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
168 	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
169 	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
170 	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
171 	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
172 	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
173 	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
174 	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
175 	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
176 	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
177 	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
178 	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
179 	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
180 	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
181 	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
182 	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
183 	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
184 	GAUDI_QUEUE_ID_SIZE
185 };
186 
187 /*
188  * In GAUDI2 we have two modes of operation in regard to queues:
189  * 1. Legacy mode, where each QMAN exposes 4 streams to the user
190  * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
191  *
192  * When in legacy mode, the user sends the queue id per JOB according to
193  * enum gaudi2_queue_id below.
194  *
195  * When in F/W mode, the user sends a stream id per Command Submission. The
196  * stream id is a running number from 0 up to (N-1), where N is the number
197  * of streams the F/W exposes and is passed to the user in
198  * struct hl_info_hw_ip_info
199  */
200 
201 enum gaudi2_queue_id {
202 	GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
203 	GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
204 	GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
205 	GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
206 	GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
207 	GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
208 	GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
209 	GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
210 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
211 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
212 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
213 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
214 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
215 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
216 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
217 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
218 	GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
219 	GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
220 	GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
221 	GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
222 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
223 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
224 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
225 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
226 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
227 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
228 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
229 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
230 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
231 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
232 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
233 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
234 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
235 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
236 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
237 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
238 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
239 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
240 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
241 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
242 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
243 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
244 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
245 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
246 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
247 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
248 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
249 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
250 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
251 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
252 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
253 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
254 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
255 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
256 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
257 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
258 	GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
259 	GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
260 	GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
261 	GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
262 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
263 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
264 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
265 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
266 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
267 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
268 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
269 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
270 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
271 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
272 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
273 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
274 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
275 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
276 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
277 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
278 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
279 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
280 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
281 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
282 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
283 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
284 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
285 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
286 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
287 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
288 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
289 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
290 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
291 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
292 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
293 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
294 	GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
295 	GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
296 	GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
297 	GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
298 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
299 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
300 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
301 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
302 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
303 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
304 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
305 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
306 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
307 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
308 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
309 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
310 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
311 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
312 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
313 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
314 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
315 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
316 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
317 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
318 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
319 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
320 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
321 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
322 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
323 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
324 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
325 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
326 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
327 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
328 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
329 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
330 	GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
331 	GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
332 	GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
333 	GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
334 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
335 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
336 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
337 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
338 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
339 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
340 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
341 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
342 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
343 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
344 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
345 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
346 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
347 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
348 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
349 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
350 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
351 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
352 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
353 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
354 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
355 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
356 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
357 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
358 	GAUDI2_QUEUE_ID_NIC_0_0 = 156,
359 	GAUDI2_QUEUE_ID_NIC_0_1 = 157,
360 	GAUDI2_QUEUE_ID_NIC_0_2 = 158,
361 	GAUDI2_QUEUE_ID_NIC_0_3 = 159,
362 	GAUDI2_QUEUE_ID_NIC_1_0 = 160,
363 	GAUDI2_QUEUE_ID_NIC_1_1 = 161,
364 	GAUDI2_QUEUE_ID_NIC_1_2 = 162,
365 	GAUDI2_QUEUE_ID_NIC_1_3 = 163,
366 	GAUDI2_QUEUE_ID_NIC_2_0 = 164,
367 	GAUDI2_QUEUE_ID_NIC_2_1 = 165,
368 	GAUDI2_QUEUE_ID_NIC_2_2 = 166,
369 	GAUDI2_QUEUE_ID_NIC_2_3 = 167,
370 	GAUDI2_QUEUE_ID_NIC_3_0 = 168,
371 	GAUDI2_QUEUE_ID_NIC_3_1 = 169,
372 	GAUDI2_QUEUE_ID_NIC_3_2 = 170,
373 	GAUDI2_QUEUE_ID_NIC_3_3 = 171,
374 	GAUDI2_QUEUE_ID_NIC_4_0 = 172,
375 	GAUDI2_QUEUE_ID_NIC_4_1 = 173,
376 	GAUDI2_QUEUE_ID_NIC_4_2 = 174,
377 	GAUDI2_QUEUE_ID_NIC_4_3 = 175,
378 	GAUDI2_QUEUE_ID_NIC_5_0 = 176,
379 	GAUDI2_QUEUE_ID_NIC_5_1 = 177,
380 	GAUDI2_QUEUE_ID_NIC_5_2 = 178,
381 	GAUDI2_QUEUE_ID_NIC_5_3 = 179,
382 	GAUDI2_QUEUE_ID_NIC_6_0 = 180,
383 	GAUDI2_QUEUE_ID_NIC_6_1 = 181,
384 	GAUDI2_QUEUE_ID_NIC_6_2 = 182,
385 	GAUDI2_QUEUE_ID_NIC_6_3 = 183,
386 	GAUDI2_QUEUE_ID_NIC_7_0 = 184,
387 	GAUDI2_QUEUE_ID_NIC_7_1 = 185,
388 	GAUDI2_QUEUE_ID_NIC_7_2 = 186,
389 	GAUDI2_QUEUE_ID_NIC_7_3 = 187,
390 	GAUDI2_QUEUE_ID_NIC_8_0 = 188,
391 	GAUDI2_QUEUE_ID_NIC_8_1 = 189,
392 	GAUDI2_QUEUE_ID_NIC_8_2 = 190,
393 	GAUDI2_QUEUE_ID_NIC_8_3 = 191,
394 	GAUDI2_QUEUE_ID_NIC_9_0 = 192,
395 	GAUDI2_QUEUE_ID_NIC_9_1 = 193,
396 	GAUDI2_QUEUE_ID_NIC_9_2 = 194,
397 	GAUDI2_QUEUE_ID_NIC_9_3 = 195,
398 	GAUDI2_QUEUE_ID_NIC_10_0 = 196,
399 	GAUDI2_QUEUE_ID_NIC_10_1 = 197,
400 	GAUDI2_QUEUE_ID_NIC_10_2 = 198,
401 	GAUDI2_QUEUE_ID_NIC_10_3 = 199,
402 	GAUDI2_QUEUE_ID_NIC_11_0 = 200,
403 	GAUDI2_QUEUE_ID_NIC_11_1 = 201,
404 	GAUDI2_QUEUE_ID_NIC_11_2 = 202,
405 	GAUDI2_QUEUE_ID_NIC_11_3 = 203,
406 	GAUDI2_QUEUE_ID_NIC_12_0 = 204,
407 	GAUDI2_QUEUE_ID_NIC_12_1 = 205,
408 	GAUDI2_QUEUE_ID_NIC_12_2 = 206,
409 	GAUDI2_QUEUE_ID_NIC_12_3 = 207,
410 	GAUDI2_QUEUE_ID_NIC_13_0 = 208,
411 	GAUDI2_QUEUE_ID_NIC_13_1 = 209,
412 	GAUDI2_QUEUE_ID_NIC_13_2 = 210,
413 	GAUDI2_QUEUE_ID_NIC_13_3 = 211,
414 	GAUDI2_QUEUE_ID_NIC_14_0 = 212,
415 	GAUDI2_QUEUE_ID_NIC_14_1 = 213,
416 	GAUDI2_QUEUE_ID_NIC_14_2 = 214,
417 	GAUDI2_QUEUE_ID_NIC_14_3 = 215,
418 	GAUDI2_QUEUE_ID_NIC_15_0 = 216,
419 	GAUDI2_QUEUE_ID_NIC_15_1 = 217,
420 	GAUDI2_QUEUE_ID_NIC_15_2 = 218,
421 	GAUDI2_QUEUE_ID_NIC_15_3 = 219,
422 	GAUDI2_QUEUE_ID_NIC_16_0 = 220,
423 	GAUDI2_QUEUE_ID_NIC_16_1 = 221,
424 	GAUDI2_QUEUE_ID_NIC_16_2 = 222,
425 	GAUDI2_QUEUE_ID_NIC_16_3 = 223,
426 	GAUDI2_QUEUE_ID_NIC_17_0 = 224,
427 	GAUDI2_QUEUE_ID_NIC_17_1 = 225,
428 	GAUDI2_QUEUE_ID_NIC_17_2 = 226,
429 	GAUDI2_QUEUE_ID_NIC_17_3 = 227,
430 	GAUDI2_QUEUE_ID_NIC_18_0 = 228,
431 	GAUDI2_QUEUE_ID_NIC_18_1 = 229,
432 	GAUDI2_QUEUE_ID_NIC_18_2 = 230,
433 	GAUDI2_QUEUE_ID_NIC_18_3 = 231,
434 	GAUDI2_QUEUE_ID_NIC_19_0 = 232,
435 	GAUDI2_QUEUE_ID_NIC_19_1 = 233,
436 	GAUDI2_QUEUE_ID_NIC_19_2 = 234,
437 	GAUDI2_QUEUE_ID_NIC_19_3 = 235,
438 	GAUDI2_QUEUE_ID_NIC_20_0 = 236,
439 	GAUDI2_QUEUE_ID_NIC_20_1 = 237,
440 	GAUDI2_QUEUE_ID_NIC_20_2 = 238,
441 	GAUDI2_QUEUE_ID_NIC_20_3 = 239,
442 	GAUDI2_QUEUE_ID_NIC_21_0 = 240,
443 	GAUDI2_QUEUE_ID_NIC_21_1 = 241,
444 	GAUDI2_QUEUE_ID_NIC_21_2 = 242,
445 	GAUDI2_QUEUE_ID_NIC_21_3 = 243,
446 	GAUDI2_QUEUE_ID_NIC_22_0 = 244,
447 	GAUDI2_QUEUE_ID_NIC_22_1 = 245,
448 	GAUDI2_QUEUE_ID_NIC_22_2 = 246,
449 	GAUDI2_QUEUE_ID_NIC_22_3 = 247,
450 	GAUDI2_QUEUE_ID_NIC_23_0 = 248,
451 	GAUDI2_QUEUE_ID_NIC_23_1 = 249,
452 	GAUDI2_QUEUE_ID_NIC_23_2 = 250,
453 	GAUDI2_QUEUE_ID_NIC_23_3 = 251,
454 	GAUDI2_QUEUE_ID_ROT_0_0 = 252,
455 	GAUDI2_QUEUE_ID_ROT_0_1 = 253,
456 	GAUDI2_QUEUE_ID_ROT_0_2 = 254,
457 	GAUDI2_QUEUE_ID_ROT_0_3 = 255,
458 	GAUDI2_QUEUE_ID_ROT_1_0 = 256,
459 	GAUDI2_QUEUE_ID_ROT_1_1 = 257,
460 	GAUDI2_QUEUE_ID_ROT_1_2 = 258,
461 	GAUDI2_QUEUE_ID_ROT_1_3 = 259,
462 	GAUDI2_QUEUE_ID_CPU_PQ = 260,
463 	GAUDI2_QUEUE_ID_SIZE
464 };
465 
466 /*
467  * Engine Numbering
468  *
469  * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
470  */
471 
472 enum goya_engine_id {
473 	GOYA_ENGINE_ID_DMA_0 = 0,
474 	GOYA_ENGINE_ID_DMA_1,
475 	GOYA_ENGINE_ID_DMA_2,
476 	GOYA_ENGINE_ID_DMA_3,
477 	GOYA_ENGINE_ID_DMA_4,
478 	GOYA_ENGINE_ID_MME_0,
479 	GOYA_ENGINE_ID_TPC_0,
480 	GOYA_ENGINE_ID_TPC_1,
481 	GOYA_ENGINE_ID_TPC_2,
482 	GOYA_ENGINE_ID_TPC_3,
483 	GOYA_ENGINE_ID_TPC_4,
484 	GOYA_ENGINE_ID_TPC_5,
485 	GOYA_ENGINE_ID_TPC_6,
486 	GOYA_ENGINE_ID_TPC_7,
487 	GOYA_ENGINE_ID_SIZE
488 };
489 
490 enum gaudi_engine_id {
491 	GAUDI_ENGINE_ID_DMA_0 = 0,
492 	GAUDI_ENGINE_ID_DMA_1,
493 	GAUDI_ENGINE_ID_DMA_2,
494 	GAUDI_ENGINE_ID_DMA_3,
495 	GAUDI_ENGINE_ID_DMA_4,
496 	GAUDI_ENGINE_ID_DMA_5,
497 	GAUDI_ENGINE_ID_DMA_6,
498 	GAUDI_ENGINE_ID_DMA_7,
499 	GAUDI_ENGINE_ID_MME_0,
500 	GAUDI_ENGINE_ID_MME_1,
501 	GAUDI_ENGINE_ID_MME_2,
502 	GAUDI_ENGINE_ID_MME_3,
503 	GAUDI_ENGINE_ID_TPC_0,
504 	GAUDI_ENGINE_ID_TPC_1,
505 	GAUDI_ENGINE_ID_TPC_2,
506 	GAUDI_ENGINE_ID_TPC_3,
507 	GAUDI_ENGINE_ID_TPC_4,
508 	GAUDI_ENGINE_ID_TPC_5,
509 	GAUDI_ENGINE_ID_TPC_6,
510 	GAUDI_ENGINE_ID_TPC_7,
511 	GAUDI_ENGINE_ID_NIC_0,
512 	GAUDI_ENGINE_ID_NIC_1,
513 	GAUDI_ENGINE_ID_NIC_2,
514 	GAUDI_ENGINE_ID_NIC_3,
515 	GAUDI_ENGINE_ID_NIC_4,
516 	GAUDI_ENGINE_ID_NIC_5,
517 	GAUDI_ENGINE_ID_NIC_6,
518 	GAUDI_ENGINE_ID_NIC_7,
519 	GAUDI_ENGINE_ID_NIC_8,
520 	GAUDI_ENGINE_ID_NIC_9,
521 	GAUDI_ENGINE_ID_SIZE
522 };
523 
524 enum gaudi2_engine_id {
525 	GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
526 	GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
527 	GAUDI2_DCORE0_ENGINE_ID_MME,
528 	GAUDI2_DCORE0_ENGINE_ID_TPC_0,
529 	GAUDI2_DCORE0_ENGINE_ID_TPC_1,
530 	GAUDI2_DCORE0_ENGINE_ID_TPC_2,
531 	GAUDI2_DCORE0_ENGINE_ID_TPC_3,
532 	GAUDI2_DCORE0_ENGINE_ID_TPC_4,
533 	GAUDI2_DCORE0_ENGINE_ID_TPC_5,
534 	GAUDI2_DCORE0_ENGINE_ID_DEC_0,
535 	GAUDI2_DCORE0_ENGINE_ID_DEC_1,
536 	GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
537 	GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
538 	GAUDI2_DCORE1_ENGINE_ID_MME,
539 	GAUDI2_DCORE1_ENGINE_ID_TPC_0,
540 	GAUDI2_DCORE1_ENGINE_ID_TPC_1,
541 	GAUDI2_DCORE1_ENGINE_ID_TPC_2,
542 	GAUDI2_DCORE1_ENGINE_ID_TPC_3,
543 	GAUDI2_DCORE1_ENGINE_ID_TPC_4,
544 	GAUDI2_DCORE1_ENGINE_ID_TPC_5,
545 	GAUDI2_DCORE1_ENGINE_ID_DEC_0,
546 	GAUDI2_DCORE1_ENGINE_ID_DEC_1,
547 	GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
548 	GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
549 	GAUDI2_DCORE2_ENGINE_ID_MME,
550 	GAUDI2_DCORE2_ENGINE_ID_TPC_0,
551 	GAUDI2_DCORE2_ENGINE_ID_TPC_1,
552 	GAUDI2_DCORE2_ENGINE_ID_TPC_2,
553 	GAUDI2_DCORE2_ENGINE_ID_TPC_3,
554 	GAUDI2_DCORE2_ENGINE_ID_TPC_4,
555 	GAUDI2_DCORE2_ENGINE_ID_TPC_5,
556 	GAUDI2_DCORE2_ENGINE_ID_DEC_0,
557 	GAUDI2_DCORE2_ENGINE_ID_DEC_1,
558 	GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
559 	GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
560 	GAUDI2_DCORE3_ENGINE_ID_MME,
561 	GAUDI2_DCORE3_ENGINE_ID_TPC_0,
562 	GAUDI2_DCORE3_ENGINE_ID_TPC_1,
563 	GAUDI2_DCORE3_ENGINE_ID_TPC_2,
564 	GAUDI2_DCORE3_ENGINE_ID_TPC_3,
565 	GAUDI2_DCORE3_ENGINE_ID_TPC_4,
566 	GAUDI2_DCORE3_ENGINE_ID_TPC_5,
567 	GAUDI2_DCORE3_ENGINE_ID_DEC_0,
568 	GAUDI2_DCORE3_ENGINE_ID_DEC_1,
569 	GAUDI2_DCORE0_ENGINE_ID_TPC_6,
570 	GAUDI2_ENGINE_ID_PDMA_0,
571 	GAUDI2_ENGINE_ID_PDMA_1,
572 	GAUDI2_ENGINE_ID_ROT_0,
573 	GAUDI2_ENGINE_ID_ROT_1,
574 	GAUDI2_PCIE_ENGINE_ID_DEC_0,
575 	GAUDI2_PCIE_ENGINE_ID_DEC_1,
576 	GAUDI2_ENGINE_ID_NIC0_0,
577 	GAUDI2_ENGINE_ID_NIC0_1,
578 	GAUDI2_ENGINE_ID_NIC1_0,
579 	GAUDI2_ENGINE_ID_NIC1_1,
580 	GAUDI2_ENGINE_ID_NIC2_0,
581 	GAUDI2_ENGINE_ID_NIC2_1,
582 	GAUDI2_ENGINE_ID_NIC3_0,
583 	GAUDI2_ENGINE_ID_NIC3_1,
584 	GAUDI2_ENGINE_ID_NIC4_0,
585 	GAUDI2_ENGINE_ID_NIC4_1,
586 	GAUDI2_ENGINE_ID_NIC5_0,
587 	GAUDI2_ENGINE_ID_NIC5_1,
588 	GAUDI2_ENGINE_ID_NIC6_0,
589 	GAUDI2_ENGINE_ID_NIC6_1,
590 	GAUDI2_ENGINE_ID_NIC7_0,
591 	GAUDI2_ENGINE_ID_NIC7_1,
592 	GAUDI2_ENGINE_ID_NIC8_0,
593 	GAUDI2_ENGINE_ID_NIC8_1,
594 	GAUDI2_ENGINE_ID_NIC9_0,
595 	GAUDI2_ENGINE_ID_NIC9_1,
596 	GAUDI2_ENGINE_ID_NIC10_0,
597 	GAUDI2_ENGINE_ID_NIC10_1,
598 	GAUDI2_ENGINE_ID_NIC11_0,
599 	GAUDI2_ENGINE_ID_NIC11_1,
600 	GAUDI2_ENGINE_ID_PCIE,
601 	GAUDI2_ENGINE_ID_PSOC,
602 	GAUDI2_ENGINE_ID_ARC_FARM,
603 	GAUDI2_ENGINE_ID_KDMA,
604 	GAUDI2_ENGINE_ID_SIZE
605 };
606 
607 /*
608  * ASIC specific PLL index
609  *
610  * Used to retrieve in frequency info of different IPs via
611  * HL_INFO_PLL_FREQUENCY under HL_IOCTL_INFO IOCTL. The enums need to be
612  * used as an index in struct hl_pll_frequency_info
613  */
614 
615 enum hl_goya_pll_index {
616 	HL_GOYA_CPU_PLL = 0,
617 	HL_GOYA_IC_PLL,
618 	HL_GOYA_MC_PLL,
619 	HL_GOYA_MME_PLL,
620 	HL_GOYA_PCI_PLL,
621 	HL_GOYA_EMMC_PLL,
622 	HL_GOYA_TPC_PLL,
623 	HL_GOYA_PLL_MAX
624 };
625 
626 enum hl_gaudi_pll_index {
627 	HL_GAUDI_CPU_PLL = 0,
628 	HL_GAUDI_PCI_PLL,
629 	HL_GAUDI_SRAM_PLL,
630 	HL_GAUDI_HBM_PLL,
631 	HL_GAUDI_NIC_PLL,
632 	HL_GAUDI_DMA_PLL,
633 	HL_GAUDI_MESH_PLL,
634 	HL_GAUDI_MME_PLL,
635 	HL_GAUDI_TPC_PLL,
636 	HL_GAUDI_IF_PLL,
637 	HL_GAUDI_PLL_MAX
638 };
639 
640 enum hl_gaudi2_pll_index {
641 	HL_GAUDI2_CPU_PLL = 0,
642 	HL_GAUDI2_PCI_PLL,
643 	HL_GAUDI2_SRAM_PLL,
644 	HL_GAUDI2_HBM_PLL,
645 	HL_GAUDI2_NIC_PLL,
646 	HL_GAUDI2_DMA_PLL,
647 	HL_GAUDI2_MESH_PLL,
648 	HL_GAUDI2_MME_PLL,
649 	HL_GAUDI2_TPC_PLL,
650 	HL_GAUDI2_IF_PLL,
651 	HL_GAUDI2_VID_PLL,
652 	HL_GAUDI2_MSS_PLL,
653 	HL_GAUDI2_PLL_MAX
654 };
655 
656 /**
657  * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
658  *                              submitted to the GOYA's DMA QMAN. This attribute is not relevant
659  *                              to the H/W but the kernel driver use it to parse the packet's
660  *                              addresses and patch/validate them.
661  * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
662  * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
663  * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
664  * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
665  * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
666  * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
667  * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
668  * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
669  * @HL_DMA_ENUM_MAX: number of values in enum
670  */
671 enum hl_goya_dma_direction {
672 	HL_DMA_HOST_TO_DRAM,
673 	HL_DMA_HOST_TO_SRAM,
674 	HL_DMA_DRAM_TO_SRAM,
675 	HL_DMA_SRAM_TO_DRAM,
676 	HL_DMA_SRAM_TO_HOST,
677 	HL_DMA_DRAM_TO_HOST,
678 	HL_DMA_DRAM_TO_DRAM,
679 	HL_DMA_SRAM_TO_SRAM,
680 	HL_DMA_ENUM_MAX
681 };
682 
683 /**
684  * enum hl_device_status - Device status information.
685  * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
686  * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
687  * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
688  * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
689  * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
690  *                                       progress.
691  * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
692  *                                                  triggered because the user released the device
693  * @HL_DEVICE_STATUS_LAST: Last status.
694  */
695 enum hl_device_status {
696 	HL_DEVICE_STATUS_OPERATIONAL,
697 	HL_DEVICE_STATUS_IN_RESET,
698 	HL_DEVICE_STATUS_MALFUNCTION,
699 	HL_DEVICE_STATUS_NEEDS_RESET,
700 	HL_DEVICE_STATUS_IN_DEVICE_CREATION,
701 	HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
702 	HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
703 };
704 
705 enum hl_server_type {
706 	HL_SERVER_TYPE_UNKNOWN = 0,
707 	HL_SERVER_GAUDI_HLS1 = 1,
708 	HL_SERVER_GAUDI_HLS1H = 2,
709 	HL_SERVER_GAUDI_TYPE1 = 3,
710 	HL_SERVER_GAUDI_TYPE2 = 4,
711 	HL_SERVER_GAUDI2_HLS2 = 5
712 };
713 
714 /*
715  * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
716  *
717  * HL_NOTIFIER_EVENT_TPC_ASSERT		- Indicates TPC assert event
718  * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	- Indicates undefined operation code
719  * HL_NOTIFIER_EVENT_DEVICE_RESET	- Indicates device requires a reset
720  * HL_NOTIFIER_EVENT_CS_TIMEOUT		- Indicates CS timeout error
721  * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	- Indicates device is unavailable
722  * HL_NOTIFIER_EVENT_USER_ENGINE_ERR	- Indicates device engine in error state
723  * HL_NOTIFIER_EVENT_GENERAL_HW_ERR     - Indicates device HW error
724  * HL_NOTIFIER_EVENT_RAZWI              - Indicates razwi happened
725  * HL_NOTIFIER_EVENT_PAGE_FAULT         - Indicates page fault happened
726  */
727 #define HL_NOTIFIER_EVENT_TPC_ASSERT		(1ULL << 0)
728 #define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	(1ULL << 1)
729 #define HL_NOTIFIER_EVENT_DEVICE_RESET		(1ULL << 2)
730 #define HL_NOTIFIER_EVENT_CS_TIMEOUT		(1ULL << 3)
731 #define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	(1ULL << 4)
732 #define HL_NOTIFIER_EVENT_USER_ENGINE_ERR	(1ULL << 5)
733 #define HL_NOTIFIER_EVENT_GENERAL_HW_ERR	(1ULL << 6)
734 #define HL_NOTIFIER_EVENT_RAZWI			(1ULL << 7)
735 #define HL_NOTIFIER_EVENT_PAGE_FAULT		(1ULL << 8)
736 
737 /* Opcode for management ioctl
738  *
739  * HW_IP_INFO            - Receive information about different IP blocks in the
740  *                         device.
741  * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
742  *                         occurred since the last hard reset.
743  * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
744  *                         specific context. This is relevant only for devices
745  *                         where the dram is managed by the kernel driver
746  * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
747  *                         internal engine.
748  * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
749  *                         require an open context.
750  * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
751  *                               over the last period specified by the user.
752  *                               The period can be between 100ms to 1s, in
753  *                               resolution of 100ms. The return value is a
754  *                               percentage of the utilization rate.
755  * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
756  *                               event occurred since the driver was loaded.
757  * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
758  *                               of the device in MHz. The maximum clock rate is
759  *                               configurable via sysfs parameter
760  * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
761  *                         operations performed on the device since the last
762  *                         time the driver was loaded.
763  * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
764  *                         for synchronization.
765  * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
766  * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
767  * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
768  * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
769  * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
770  * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
771  * HL_INFO_POWER         - Retrieve power information
772  * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
773  * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
774  * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
775  * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
776  *                                  and CS timeout or razwi error occurred.
777  * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
778  * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
779  *                            Timestamp of razwi.
780  *                            The address which accessing it caused the razwi.
781  *                            Razwi initiator.
782  *                            Razwi cause, was it a page fault or MMU access error.
783  * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
784  * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
785  * HL_INFO_REGISTER_EVENTFD   - Register eventfd for event notifications.
786  * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
787  * HL_INFO_GET_EVENTS         - Retrieve the last occurred events
788  * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
789  * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
790  * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
791  * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
792  * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
793  */
794 #define HL_INFO_HW_IP_INFO			0
795 #define HL_INFO_HW_EVENTS			1
796 #define HL_INFO_DRAM_USAGE			2
797 #define HL_INFO_HW_IDLE				3
798 #define HL_INFO_DEVICE_STATUS			4
799 #define HL_INFO_DEVICE_UTILIZATION		6
800 #define HL_INFO_HW_EVENTS_AGGREGATE		7
801 #define HL_INFO_CLK_RATE			8
802 #define HL_INFO_RESET_COUNT			9
803 #define HL_INFO_TIME_SYNC			10
804 #define HL_INFO_CS_COUNTERS			11
805 #define HL_INFO_PCI_COUNTERS			12
806 #define HL_INFO_CLK_THROTTLE_REASON		13
807 #define HL_INFO_SYNC_MANAGER			14
808 #define HL_INFO_TOTAL_ENERGY			15
809 #define HL_INFO_PLL_FREQUENCY			16
810 #define HL_INFO_POWER				17
811 #define HL_INFO_OPEN_STATS			18
812 #define HL_INFO_DRAM_REPLACED_ROWS		21
813 #define HL_INFO_DRAM_PENDING_ROWS		22
814 #define HL_INFO_LAST_ERR_OPEN_DEV_TIME		23
815 #define HL_INFO_CS_TIMEOUT_EVENT		24
816 #define HL_INFO_RAZWI_EVENT			25
817 #define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES	26
818 #define HL_INFO_SECURED_ATTESTATION		27
819 #define HL_INFO_REGISTER_EVENTFD		28
820 #define HL_INFO_UNREGISTER_EVENTFD		29
821 #define HL_INFO_GET_EVENTS			30
822 #define HL_INFO_UNDEFINED_OPCODE_EVENT		31
823 #define HL_INFO_ENGINE_STATUS			32
824 #define HL_INFO_PAGE_FAULT_EVENT		33
825 #define HL_INFO_USER_MAPPINGS			34
826 #define HL_INFO_FW_GENERIC_REQ			35
827 
828 #define HL_INFO_VERSION_MAX_LEN			128
829 #define HL_INFO_CARD_NAME_MAX_LEN		16
830 
831 /* Maximum buffer size for retrieving engines status */
832 #define HL_ENGINES_DATA_MAX_SIZE	SZ_1M
833 
834 /**
835  * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
836  * @sram_base_address: The first SRAM physical base address that is free to be
837  *                     used by the user.
838  * @dram_base_address: The first DRAM virtual or physical base address that is
839  *                     free to be used by the user.
840  * @dram_size: The DRAM size that is available to the user.
841  * @sram_size: The SRAM size that is available to the user.
842  * @num_of_events: The number of events that can be received from the f/w. This
843  *                 is needed so the user can what is the size of the h/w events
844  *                 array he needs to pass to the kernel when he wants to fetch
845  *                 the event counters.
846  * @device_id: PCI device ID of the ASIC.
847  * @module_id: Module ID of the ASIC for mezzanine cards in servers
848  *             (From OCP spec).
849  * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
850  * @first_available_interrupt_id: The first available interrupt ID for the user
851  *                                to be used when it works with user interrupts.
852  *                                Relevant for Gaudi2 and later.
853  * @server_type: Server type that the Gaudi ASIC is currently installed in.
854  *               The value is according to enum hl_server_type
855  * @cpld_version: CPLD version on the board.
856  * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
857  * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
858  * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
859  * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
860  *                           in some ASICs.
861  * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
862  *                    for Goya/Gaudi only.
863  * @dram_enabled: Whether the DRAM is enabled.
864  * @security_enabled: Whether security is enabled on device.
865  * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
866  *                         configuration. Relevant for Greco and later.
867  * @cpucp_version: The CPUCP f/w version.
868  * @card_name: The card name as passed by the f/w.
869  * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
870  *                        Relevant for Greco and later.
871  * @dram_page_size: The DRAM physical page size.
872  * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
873  *                     Relevant for Gaudi2 and later.
874  * @number_of_user_interrupts: The number of interrupts that are available to the userspace
875  *                             application to use. Relevant for Gaudi2 and later.
876  * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
877  * @revision_id: PCI revision ID of the ASIC.
878  */
879 struct hl_info_hw_ip_info {
880 	__u64 sram_base_address;
881 	__u64 dram_base_address;
882 	__u64 dram_size;
883 	__u32 sram_size;
884 	__u32 num_of_events;
885 	__u32 device_id;
886 	__u32 module_id;
887 	__u32 decoder_enabled_mask;
888 	__u16 first_available_interrupt_id;
889 	__u16 server_type;
890 	__u32 cpld_version;
891 	__u32 psoc_pci_pll_nr;
892 	__u32 psoc_pci_pll_nf;
893 	__u32 psoc_pci_pll_od;
894 	__u32 psoc_pci_pll_div_factor;
895 	__u8 tpc_enabled_mask;
896 	__u8 dram_enabled;
897 	__u8 security_enabled;
898 	__u8 mme_master_slave_mode;
899 	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
900 	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
901 	__u64 tpc_enabled_mask_ext;
902 	__u64 dram_page_size;
903 	__u32 edma_enabled_mask;
904 	__u16 number_of_user_interrupts;
905 	__u16 pad2;
906 	__u64 reserved4;
907 	__u64 device_mem_alloc_default_page_size;
908 	__u64 reserved5;
909 	__u64 reserved6;
910 	__u32 reserved7;
911 	__u8 reserved8;
912 	__u8 revision_id;
913 	__u8 pad[2];
914 };
915 
916 struct hl_info_dram_usage {
917 	__u64 dram_free_mem;
918 	__u64 ctx_dram_mem;
919 };
920 
921 #define HL_BUSY_ENGINES_MASK_EXT_SIZE	4
922 
923 struct hl_info_hw_idle {
924 	__u32 is_idle;
925 	/*
926 	 * Bitmask of busy engines.
927 	 * Bits definition is according to `enum <chip>_engine_id'.
928 	 */
929 	__u32 busy_engines_mask;
930 
931 	/*
932 	 * Extended Bitmask of busy engines.
933 	 * Bits definition is according to `enum <chip>_engine_id'.
934 	 */
935 	__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
936 };
937 
938 struct hl_info_device_status {
939 	__u32 status;
940 	__u32 pad;
941 };
942 
943 struct hl_info_device_utilization {
944 	__u32 utilization;
945 	__u32 pad;
946 };
947 
948 struct hl_info_clk_rate {
949 	__u32 cur_clk_rate_mhz;
950 	__u32 max_clk_rate_mhz;
951 };
952 
953 struct hl_info_reset_count {
954 	__u32 hard_reset_cnt;
955 	__u32 soft_reset_cnt;
956 };
957 
958 struct hl_info_time_sync {
959 	__u64 device_time;
960 	__u64 host_time;
961 };
962 
963 /**
964  * struct hl_info_pci_counters - pci counters
965  * @rx_throughput: PCI rx throughput KBps
966  * @tx_throughput: PCI tx throughput KBps
967  * @replay_cnt: PCI replay counter
968  */
969 struct hl_info_pci_counters {
970 	__u64 rx_throughput;
971 	__u64 tx_throughput;
972 	__u64 replay_cnt;
973 };
974 
975 enum hl_clk_throttling_type {
976 	HL_CLK_THROTTLE_TYPE_POWER,
977 	HL_CLK_THROTTLE_TYPE_THERMAL,
978 	HL_CLK_THROTTLE_TYPE_MAX
979 };
980 
981 /* clk_throttling_reason masks */
982 #define HL_CLK_THROTTLE_POWER		(1 << HL_CLK_THROTTLE_TYPE_POWER)
983 #define HL_CLK_THROTTLE_THERMAL		(1 << HL_CLK_THROTTLE_TYPE_THERMAL)
984 
985 /**
986  * struct hl_info_clk_throttle - clock throttling reason
987  * @clk_throttling_reason: each bit represents a clk throttling reason
988  * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
989  * @clk_throttling_duration_ns: the clock throttle time in nanosec
990  */
991 struct hl_info_clk_throttle {
992 	__u32 clk_throttling_reason;
993 	__u32 pad;
994 	__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
995 	__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
996 };
997 
998 /**
999  * struct hl_info_energy - device energy information
1000  * @total_energy_consumption: total device energy consumption
1001  */
1002 struct hl_info_energy {
1003 	__u64 total_energy_consumption;
1004 };
1005 
1006 #define HL_PLL_NUM_OUTPUTS 4
1007 
1008 struct hl_pll_frequency_info {
1009 	__u16 output[HL_PLL_NUM_OUTPUTS];
1010 };
1011 
1012 /**
1013  * struct hl_open_stats_info - device open statistics information
1014  * @open_counter: ever growing counter, increased on each successful dev open
1015  * @last_open_period_ms: duration (ms) device was open last time
1016  * @is_compute_ctx_active: Whether there is an active compute context executing
1017  * @compute_ctx_in_release: true if the current compute context is being released
1018  */
1019 struct hl_open_stats_info {
1020 	__u64 open_counter;
1021 	__u64 last_open_period_ms;
1022 	__u8 is_compute_ctx_active;
1023 	__u8 compute_ctx_in_release;
1024 	__u8 pad[6];
1025 };
1026 
1027 /**
1028  * struct hl_power_info - power information
1029  * @power: power consumption
1030  */
1031 struct hl_power_info {
1032 	__u64 power;
1033 };
1034 
1035 /**
1036  * struct hl_info_sync_manager - sync manager information
1037  * @first_available_sync_object: first available sob
1038  * @first_available_monitor: first available monitor
1039  * @first_available_cq: first available cq
1040  */
1041 struct hl_info_sync_manager {
1042 	__u32 first_available_sync_object;
1043 	__u32 first_available_monitor;
1044 	__u32 first_available_cq;
1045 	__u32 reserved;
1046 };
1047 
1048 /**
1049  * struct hl_info_cs_counters - command submission counters
1050  * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1051  * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1052  * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1053  * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1054  * @total_queue_full_drop_cnt: total dropped due to queue full
1055  * @ctx_queue_full_drop_cnt: context dropped due to queue full
1056  * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1057  * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1058  * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1059  * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1060  * @total_validation_drop_cnt: total dropped due to validation error
1061  * @ctx_validation_drop_cnt: context dropped due to validation error
1062  */
1063 struct hl_info_cs_counters {
1064 	__u64 total_out_of_mem_drop_cnt;
1065 	__u64 ctx_out_of_mem_drop_cnt;
1066 	__u64 total_parsing_drop_cnt;
1067 	__u64 ctx_parsing_drop_cnt;
1068 	__u64 total_queue_full_drop_cnt;
1069 	__u64 ctx_queue_full_drop_cnt;
1070 	__u64 total_device_in_reset_drop_cnt;
1071 	__u64 ctx_device_in_reset_drop_cnt;
1072 	__u64 total_max_cs_in_flight_drop_cnt;
1073 	__u64 ctx_max_cs_in_flight_drop_cnt;
1074 	__u64 total_validation_drop_cnt;
1075 	__u64 ctx_validation_drop_cnt;
1076 };
1077 
1078 /**
1079  * struct hl_info_last_err_open_dev_time - last error boot information.
1080  * @timestamp: timestamp of last time the device was opened and error occurred.
1081  */
1082 struct hl_info_last_err_open_dev_time {
1083 	__s64 timestamp;
1084 };
1085 
1086 /**
1087  * struct hl_info_cs_timeout_event - last CS timeout information.
1088  * @timestamp: timestamp when last CS timeout event occurred.
1089  * @seq: sequence number of last CS timeout event.
1090  */
1091 struct hl_info_cs_timeout_event {
1092 	__s64 timestamp;
1093 	__u64 seq;
1094 };
1095 
1096 #define HL_RAZWI_NA_ENG_ID U16_MAX
1097 #define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1098 #define HL_RAZWI_READ		BIT(0)
1099 #define HL_RAZWI_WRITE		BIT(1)
1100 #define HL_RAZWI_LBW		BIT(2)
1101 #define HL_RAZWI_HBW		BIT(3)
1102 #define HL_RAZWI_RR		BIT(4)
1103 #define HL_RAZWI_ADDR_DEC	BIT(5)
1104 
1105 /**
1106  * struct hl_info_razwi_event - razwi information.
1107  * @timestamp: timestamp of razwi.
1108  * @addr: address which accessing it caused razwi.
1109  * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1110  *             have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1111  *             engines which caused the razwi, it will hold all of them.
1112  * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1113  *                           might be common for several engines and there is no way to get the
1114  *                           exact engine. In this way, engine_id array will be filled with all
1115  *                           possible engines caused this razwi. Also, there might be possibility
1116  *                           in gaudi, where we don't indication on specific engine, in that case
1117  *                           the value of this parameter will be zero.
1118  * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1119  *                                      HL_RAZWI_WRITE - razwi caused by write operation
1120  *                                      HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1121  *                                      HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1122  *                                      HL_RAZWI_RR - razwi caused by range register
1123  *                                      HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1124  *         Note: this data is not supported by all asics, in that case the relevant bits will not
1125  *               be set.
1126  */
1127 struct hl_info_razwi_event {
1128 	__s64 timestamp;
1129 	__u64 addr;
1130 	__u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1131 	__u16 num_of_possible_engines;
1132 	__u8 flags;
1133 	__u8 pad[5];
1134 };
1135 
1136 #define MAX_QMAN_STREAMS_INFO		4
1137 #define OPCODE_INFO_MAX_ADDR_SIZE	8
1138 /**
1139  * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1140  * @timestamp: timestamp of the undefined opcode error
1141  * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1142  *                   entries. In case all streams array entries are
1143  *                   filled with values, it means the execution was in Lower-CP.
1144  * @cq_addr: the address of the current handled command buffer
1145  * @cq_size: the size of the current handled command buffer
1146  * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1147  *                       should be equal to 1 in case of undefined opcode
1148  *                       in Upper-CP (specific stream) and equal to 4 incase
1149  *                       of undefined opcode in Lower-CP.
1150  * @engine_id: engine-id that the error occurred on
1151  * @stream_id: the stream id the error occurred on. In case the stream equals to
1152  *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1153  */
1154 struct hl_info_undefined_opcode_event {
1155 	__s64 timestamp;
1156 	__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1157 	__u64 cq_addr;
1158 	__u32 cq_size;
1159 	__u32 cb_addr_streams_len;
1160 	__u32 engine_id;
1161 	__u32 stream_id;
1162 };
1163 
1164 /**
1165  * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1166  * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1167  *                      (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1168  */
1169 struct hl_info_dev_memalloc_page_sizes {
1170 	__u64 page_order_bitmask;
1171 };
1172 
1173 #define SEC_PCR_DATA_BUF_SZ	256
1174 #define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1175 #define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1176 #define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1177 #define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1178 
1179 /*
1180  * struct hl_info_sec_attest - attestation report of the boot
1181  * @nonce: number only used once. random number provided by host. this also passed to the quote
1182  *         command as a qualifying data.
1183  * @pcr_quote_len: length of the attestation quote data (bytes)
1184  * @pub_data_len: length of the public data (bytes)
1185  * @certificate_len: length of the certificate (bytes)
1186  * @pcr_num_reg: number of PCR registers in the pcr_data array
1187  * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1188  * @quote_sig_len: length of the attestation report signature (bytes)
1189  * @pcr_data: raw values of the PCR registers
1190  * @pcr_quote: attestation report data structure
1191  * @quote_sig: signature structure of the attestation report
1192  * @public_data: public key for the signed attestation
1193  *		 (outPublic + name + qualifiedName)
1194  * @certificate: certificate for the attestation signing key
1195  */
1196 struct hl_info_sec_attest {
1197 	__u32 nonce;
1198 	__u16 pcr_quote_len;
1199 	__u16 pub_data_len;
1200 	__u16 certificate_len;
1201 	__u8 pcr_num_reg;
1202 	__u8 pcr_reg_len;
1203 	__u8 quote_sig_len;
1204 	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1205 	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1206 	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1207 	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1208 	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1209 	__u8 pad0[2];
1210 };
1211 
1212 /**
1213  * struct hl_page_fault_info - page fault information.
1214  * @timestamp: timestamp of page fault.
1215  * @addr: address which accessing it caused page fault.
1216  * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1217  */
1218 struct hl_page_fault_info {
1219 	__s64 timestamp;
1220 	__u64 addr;
1221 	__u16 engine_id;
1222 	__u8 pad[6];
1223 };
1224 
1225 /**
1226  * struct hl_user_mapping - user mapping information.
1227  * @dev_va: device virtual address.
1228  * @size: virtual address mapping size.
1229  */
1230 struct hl_user_mapping {
1231 	__u64 dev_va;
1232 	__u64 size;
1233 };
1234 
1235 enum gaudi_dcores {
1236 	HL_GAUDI_WS_DCORE,
1237 	HL_GAUDI_WN_DCORE,
1238 	HL_GAUDI_EN_DCORE,
1239 	HL_GAUDI_ES_DCORE
1240 };
1241 
1242 /**
1243  * struct hl_info_args - Main structure to retrieve device related information.
1244  * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1245  *                  mentioned in @op.
1246  * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1247  *               limits how many bytes the kernel can write. For hw_events array, the size should be
1248  *               hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1249  * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1250  * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1251  * @ctx_id: Context ID of the user. Currently not in use.
1252  * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1253  *             resolution. Currently not in use.
1254  * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1255  * @eventfd: event file descriptor for event notifications.
1256  * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1257  *                           driver. It is possible for the user to allocate buffer larger than
1258  *                           needed, hence updating this variable so user will know the exact amount
1259  *                           of bytes copied by the kernel to the buffer.
1260  * @sec_attest_nonce: Nonce number used for attestation report.
1261  * @array_size: Number of array members copied to user buffer.
1262  *              Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1263  * @fw_sub_opcode: generic requests sub opcodes.
1264  * @pad: Padding to 64 bit.
1265  */
1266 struct hl_info_args {
1267 	__u64 return_pointer;
1268 	__u32 return_size;
1269 	__u32 op;
1270 
1271 	union {
1272 		__u32 dcore_id;
1273 		__u32 ctx_id;
1274 		__u32 period_ms;
1275 		__u32 pll_index;
1276 		__u32 eventfd;
1277 		__u32 user_buffer_actual_size;
1278 		__u32 sec_attest_nonce;
1279 		__u32 array_size;
1280 		__u32 fw_sub_opcode;
1281 	};
1282 
1283 	__u32 pad;
1284 };
1285 
1286 /* Opcode to create a new command buffer */
1287 #define HL_CB_OP_CREATE		0
1288 /* Opcode to destroy previously created command buffer */
1289 #define HL_CB_OP_DESTROY	1
1290 /* Opcode to retrieve information about a command buffer */
1291 #define HL_CB_OP_INFO		2
1292 
1293 /* 2MB minus 32 bytes for 2xMSG_PROT */
1294 #define HL_MAX_CB_SIZE		(0x200000 - 32)
1295 
1296 /* Indicates whether the command buffer should be mapped to the device's MMU */
1297 #define HL_CB_FLAGS_MAP			0x1
1298 
1299 /* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1300 #define HL_CB_FLAGS_GET_DEVICE_VA	0x2
1301 
1302 struct hl_cb_in {
1303 	/* Handle of CB or 0 if we want to create one */
1304 	__u64 cb_handle;
1305 	/* HL_CB_OP_* */
1306 	__u32 op;
1307 
1308 	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1309 	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1310 	 */
1311 	__u32 cb_size;
1312 
1313 	/* Context ID - Currently not in use */
1314 	__u32 ctx_id;
1315 	/* HL_CB_FLAGS_* */
1316 	__u32 flags;
1317 };
1318 
1319 struct hl_cb_out {
1320 	union {
1321 		/* Handle of CB */
1322 		__u64 cb_handle;
1323 
1324 		union {
1325 			/* Information about CB */
1326 			struct {
1327 				/* Usage count of CB */
1328 				__u32 usage_cnt;
1329 				__u32 pad;
1330 			};
1331 
1332 			/* CB mapped address to device MMU */
1333 			__u64 device_va;
1334 		};
1335 	};
1336 };
1337 
1338 union hl_cb_args {
1339 	struct hl_cb_in in;
1340 	struct hl_cb_out out;
1341 };
1342 
1343 /* HL_CS_CHUNK_FLAGS_ values
1344  *
1345  * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1346  *      Indicates if the CB was allocated and mapped by userspace
1347  *      (relevant to greco and above). User allocated CB is a command buffer,
1348  *      allocated by the user, via malloc (or similar). After allocating the
1349  *      CB, the user invokes - “memory ioctl” to map the user memory into a
1350  *      device virtual address. The user provides this address via the
1351  *      cb_handle field. The interface provides the ability to create a
1352  *      large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1353  *      increases the PCI-DMA queues throughput. This CB allocation method
1354  *      also reduces the use of Linux DMA-able memory pool. Which are limited
1355  *      and used by other Linux sub-systems.
1356  */
1357 #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1358 
1359 /*
1360  * This structure size must always be fixed to 64-bytes for backward
1361  * compatibility
1362  */
1363 struct hl_cs_chunk {
1364 	union {
1365 		/* Goya/Gaudi:
1366 		 * For external queue, this represents a Handle of CB on the
1367 		 * Host.
1368 		 * For internal queue in Goya, this represents an SRAM or
1369 		 * a DRAM address of the internal CB. In Gaudi, this might also
1370 		 * represent a mapped host address of the CB.
1371 		 *
1372 		 * Greco onwards:
1373 		 * For H/W queue, this represents either a Handle of CB on the
1374 		 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1375 		 *
1376 		 * A mapped host address is in the device address space, after
1377 		 * a host address was mapped by the device MMU.
1378 		 */
1379 		__u64 cb_handle;
1380 
1381 		/* Relevant only when HL_CS_FLAGS_WAIT or
1382 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1383 		 * This holds address of array of u64 values that contain
1384 		 * signal CS sequence numbers. The wait described by
1385 		 * this job will listen on all those signals
1386 		 * (wait event per signal)
1387 		 */
1388 		__u64 signal_seq_arr;
1389 
1390 		/*
1391 		 * Relevant only when HL_CS_FLAGS_WAIT or
1392 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1393 		 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1394 		 * This is the CS sequence which has the encapsulated signals.
1395 		 */
1396 		__u64 encaps_signal_seq;
1397 	};
1398 
1399 	/* Index of queue to put the CB on */
1400 	__u32 queue_index;
1401 
1402 	union {
1403 		/*
1404 		 * Size of command buffer with valid packets
1405 		 * Can be smaller then actual CB size
1406 		 */
1407 		__u32 cb_size;
1408 
1409 		/* Relevant only when HL_CS_FLAGS_WAIT or
1410 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1411 		 * Number of entries in signal_seq_arr
1412 		 */
1413 		__u32 num_signal_seq_arr;
1414 
1415 		/* Relevant only when HL_CS_FLAGS_WAIT or
1416 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1417 		 * with HL_CS_FLAGS_ENCAP_SIGNALS
1418 		 * This set the signals range that the user want to wait for
1419 		 * out of the whole reserved signals range.
1420 		 * e.g if the signals range is 20, and user don't want
1421 		 * to wait for signal 8, so he set this offset to 7, then
1422 		 * he call the API again with 9 and so on till 20.
1423 		 */
1424 		__u32 encaps_signal_offset;
1425 	};
1426 
1427 	/* HL_CS_CHUNK_FLAGS_* */
1428 	__u32 cs_chunk_flags;
1429 
1430 	/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1431 	 * This holds the collective engine ID. The wait described by this job
1432 	 * will sync with this engine and with all NICs before completion.
1433 	 */
1434 	__u32 collective_engine_id;
1435 
1436 	/* Align structure to 64 bytes */
1437 	__u32 pad[10];
1438 };
1439 
1440 /* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1441 #define HL_CS_FLAGS_FORCE_RESTORE		0x1
1442 #define HL_CS_FLAGS_SIGNAL			0x2
1443 #define HL_CS_FLAGS_WAIT			0x4
1444 #define HL_CS_FLAGS_COLLECTIVE_WAIT		0x8
1445 
1446 #define HL_CS_FLAGS_TIMESTAMP			0x20
1447 #define HL_CS_FLAGS_STAGED_SUBMISSION		0x40
1448 #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST	0x80
1449 #define HL_CS_FLAGS_STAGED_SUBMISSION_LAST	0x100
1450 #define HL_CS_FLAGS_CUSTOM_TIMEOUT		0x200
1451 #define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT	0x400
1452 
1453 /*
1454  * The encapsulated signals CS is merged into the existing CS ioctls.
1455  * In order to use this feature need to follow the below procedure:
1456  * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1457  *    the output of this API will be the SOB offset from CFG_BASE.
1458  *    this address will be used to patch CB cmds to do the signaling for this
1459  *    SOB by incrementing it's value.
1460  *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1461  *    CS type, note that this might fail if out-of-sync happened to the SOB
1462  *    value, in case other signaling request to the same SOB occurred between
1463  *    reserve-unreserve calls.
1464  * 2. Use the staged CS to do the encapsulated signaling jobs.
1465  *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1466  *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1467  *    field. This offset allows app to wait on part of the reserved signals.
1468  * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1469  *    to wait for the encapsulated signals.
1470  */
1471 #define HL_CS_FLAGS_ENCAP_SIGNALS		0x800
1472 #define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY	0x1000
1473 #define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY	0x2000
1474 
1475 /*
1476  * The engine cores CS is merged into the existing CS ioctls.
1477  * Use it to control the engine cores mode.
1478  */
1479 #define HL_CS_FLAGS_ENGINE_CORE_COMMAND		0x4000
1480 
1481 /*
1482  * The flush HBW PCI writes is merged into the existing CS ioctls.
1483  * Used to flush all HBW PCI writes.
1484  * This is a blocking operation and for this reason the user shall not use
1485  * the return sequence number (which will be invalid anyway)
1486  */
1487 #define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES	0x8000
1488 
1489 #define HL_CS_STATUS_SUCCESS		0
1490 
1491 #define HL_MAX_JOBS_PER_CS		512
1492 
1493 /* HL_ENGINE_CORE_ values
1494  *
1495  * HL_ENGINE_CORE_HALT: engine core halt
1496  * HL_ENGINE_CORE_RUN:  engine core run
1497  */
1498 #define HL_ENGINE_CORE_HALT	(1 << 0)
1499 #define HL_ENGINE_CORE_RUN	(1 << 1)
1500 
1501 struct hl_cs_in {
1502 
1503 	union {
1504 		struct {
1505 			/* this holds address of array of hl_cs_chunk for restore phase */
1506 			__u64 chunks_restore;
1507 
1508 			/* holds address of array of hl_cs_chunk for execution phase */
1509 			__u64 chunks_execute;
1510 		};
1511 
1512 		/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1513 		struct {
1514 			/* this holds address of array of uint32 for engine_cores */
1515 			__u64 engine_cores;
1516 
1517 			/* number of engine cores in engine_cores array */
1518 			__u32 num_engine_cores;
1519 
1520 			/* the core command to be sent towards engine cores */
1521 			__u32 core_command;
1522 		};
1523 	};
1524 
1525 	union {
1526 		/*
1527 		 * Sequence number of a staged submission CS
1528 		 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1529 		 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1530 		 */
1531 		__u64 seq;
1532 
1533 		/*
1534 		 * Encapsulated signals handle id
1535 		 * Valid for two flows:
1536 		 * 1. CS with encapsulated signals:
1537 		 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
1538 		 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1539 		 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1540 		 * 2. unreserve signals:
1541 		 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1542 		 */
1543 		__u32 encaps_sig_handle_id;
1544 
1545 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1546 		struct {
1547 			/* Encapsulated signals number */
1548 			__u32 encaps_signals_count;
1549 
1550 			/* Encapsulated signals queue index (stream) */
1551 			__u32 encaps_signals_q_idx;
1552 		};
1553 	};
1554 
1555 	/* Number of chunks in restore phase array. Maximum number is
1556 	 * HL_MAX_JOBS_PER_CS
1557 	 */
1558 	__u32 num_chunks_restore;
1559 
1560 	/* Number of chunks in execution array. Maximum number is
1561 	 * HL_MAX_JOBS_PER_CS
1562 	 */
1563 	__u32 num_chunks_execute;
1564 
1565 	/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1566 	 * is set
1567 	 */
1568 	__u32 timeout;
1569 
1570 	/* HL_CS_FLAGS_* */
1571 	__u32 cs_flags;
1572 
1573 	/* Context ID - Currently not in use */
1574 	__u32 ctx_id;
1575 	__u8 pad[4];
1576 };
1577 
1578 struct hl_cs_out {
1579 	union {
1580 		/*
1581 		 * seq holds the sequence number of the CS to pass to wait
1582 		 * ioctl. All values are valid except for 0 and ULLONG_MAX
1583 		 */
1584 		__u64 seq;
1585 
1586 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1587 		struct {
1588 			/* This is the reserved signal handle id */
1589 			__u32 handle_id;
1590 
1591 			/* This is the signals count */
1592 			__u32 count;
1593 		};
1594 	};
1595 
1596 	/* HL_CS_STATUS */
1597 	__u32 status;
1598 
1599 	/*
1600 	 * SOB base address offset
1601 	 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1602 	 */
1603 	__u32 sob_base_addr_offset;
1604 
1605 	/*
1606 	 * Count of completed signals in SOB before current signal submission.
1607 	 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1608 	 * or HL_CS_FLAGS_SIGNAL is set
1609 	 */
1610 	__u16 sob_count_before_submission;
1611 	__u16 pad[3];
1612 };
1613 
1614 union hl_cs_args {
1615 	struct hl_cs_in in;
1616 	struct hl_cs_out out;
1617 };
1618 
1619 #define HL_WAIT_CS_FLAGS_INTERRUPT		0x2
1620 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK		0xFFF00000
1621 #define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT	0xFFF00000
1622 #define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT	0xFFE00000
1623 #define HL_WAIT_CS_FLAGS_MULTI_CS		0x4
1624 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ	0x10
1625 #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT	0x20
1626 
1627 #define HL_WAIT_MULTI_CS_LIST_MAX_LEN	32
1628 
1629 struct hl_wait_cs_in {
1630 	union {
1631 		struct {
1632 			/*
1633 			 * In case of wait_cs holds the CS sequence number.
1634 			 * In case of wait for multi CS hold a user pointer to
1635 			 * an array of CS sequence numbers
1636 			 */
1637 			__u64 seq;
1638 			/* Absolute timeout to wait for command submission
1639 			 * in microseconds
1640 			 */
1641 			__u64 timeout_us;
1642 		};
1643 
1644 		struct {
1645 			union {
1646 				/* User address for completion comparison.
1647 				 * upon interrupt, driver will compare the value pointed
1648 				 * by this address with the supplied target value.
1649 				 * in order not to perform any comparison, set address
1650 				 * to all 1s.
1651 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1652 				 */
1653 				__u64 addr;
1654 
1655 				/* cq_counters_handle to a kernel mapped cb which contains
1656 				 * cq counters.
1657 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1658 				 */
1659 				__u64 cq_counters_handle;
1660 			};
1661 
1662 			/* Target value for completion comparison */
1663 			__u64 target;
1664 		};
1665 	};
1666 
1667 	/* Context ID - Currently not in use */
1668 	__u32 ctx_id;
1669 
1670 	/* HL_WAIT_CS_FLAGS_*
1671 	 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1672 	 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1673 	 *
1674 	 * in order to wait for any CQ interrupt, set interrupt value to
1675 	 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1676 	 *
1677 	 * in order to wait for any decoder interrupt, set interrupt value to
1678 	 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1679 	 */
1680 	__u32 flags;
1681 
1682 	union {
1683 		struct {
1684 			/* Multi CS API info- valid entries in multi-CS array */
1685 			__u8 seq_arr_len;
1686 			__u8 pad[7];
1687 		};
1688 
1689 		/* Absolute timeout to wait for an interrupt in microseconds.
1690 		 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1691 		 */
1692 		__u64 interrupt_timeout_us;
1693 	};
1694 
1695 	/*
1696 	 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1697 	 * upon interrupt, driver will compare the value pointed
1698 	 * by this address (cq_counters_handle + cq_counters_offset)
1699 	 * with the supplied target value.
1700 	 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1701 	 */
1702 	__u64 cq_counters_offset;
1703 
1704 	/*
1705 	 * Timestamp_handle timestamps buffer handle.
1706 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1707 	 */
1708 	__u64 timestamp_handle;
1709 
1710 	/*
1711 	 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1712 	 * upon interrupt, if the cq reached the target value then driver will write
1713 	 * timestamp to this offset.
1714 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1715 	 */
1716 	__u64 timestamp_offset;
1717 };
1718 
1719 #define HL_WAIT_CS_STATUS_COMPLETED	0
1720 #define HL_WAIT_CS_STATUS_BUSY		1
1721 #define HL_WAIT_CS_STATUS_TIMEDOUT	2
1722 #define HL_WAIT_CS_STATUS_ABORTED	3
1723 
1724 #define HL_WAIT_CS_STATUS_FLAG_GONE		0x1
1725 #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD	0x2
1726 
1727 struct hl_wait_cs_out {
1728 	/* HL_WAIT_CS_STATUS_* */
1729 	__u32 status;
1730 	/* HL_WAIT_CS_STATUS_FLAG* */
1731 	__u32 flags;
1732 	/*
1733 	 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1734 	 * for wait_cs: timestamp of CS completion
1735 	 * for wait_multi_cs: timestamp of FIRST CS completion
1736 	 */
1737 	__s64 timestamp_nsec;
1738 	/* multi CS completion bitmap */
1739 	__u32 cs_completion_map;
1740 	__u32 pad;
1741 };
1742 
1743 union hl_wait_cs_args {
1744 	struct hl_wait_cs_in in;
1745 	struct hl_wait_cs_out out;
1746 };
1747 
1748 /* Opcode to allocate device memory */
1749 #define HL_MEM_OP_ALLOC			0
1750 
1751 /* Opcode to free previously allocated device memory */
1752 #define HL_MEM_OP_FREE			1
1753 
1754 /* Opcode to map host and device memory */
1755 #define HL_MEM_OP_MAP			2
1756 
1757 /* Opcode to unmap previously mapped host and device memory */
1758 #define HL_MEM_OP_UNMAP			3
1759 
1760 /* Opcode to map a hw block */
1761 #define HL_MEM_OP_MAP_BLOCK		4
1762 
1763 /* Opcode to create DMA-BUF object for an existing device memory allocation
1764  * and to export an FD of that DMA-BUF back to the caller
1765  */
1766 #define HL_MEM_OP_EXPORT_DMABUF_FD	5
1767 
1768 /* Opcode to create timestamps pool for user interrupts registration support
1769  * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1770  * will get handle to it for mmap, and another internal buffer used by the
1771  * driver for registration management
1772  * The memory will be freed when the user closes the file descriptor(ctx close)
1773  */
1774 #define HL_MEM_OP_TS_ALLOC		6
1775 
1776 /* Memory flags */
1777 #define HL_MEM_CONTIGUOUS	0x1
1778 #define HL_MEM_SHARED		0x2
1779 #define HL_MEM_USERPTR		0x4
1780 #define HL_MEM_FORCE_HINT	0x8
1781 #define HL_MEM_PREFETCH		0x40
1782 
1783 /**
1784  * structure hl_mem_in - structure that handle input args for memory IOCTL
1785  * @union arg: union of structures to be used based on the input operation
1786  * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1787  * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1788  *         For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1789  * @ctx_id: context ID - currently not in use.
1790  * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1791  */
1792 struct hl_mem_in {
1793 	union {
1794 		/**
1795 		 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1796 		 * @mem_size: memory size to allocate
1797 		 * @page_size: page size to use on allocation. when the value is 0 the default page
1798 		 *             size will be taken.
1799 		 */
1800 		struct {
1801 			__u64 mem_size;
1802 			__u64 page_size;
1803 		} alloc;
1804 
1805 		/**
1806 		 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1807 		 * @handle: handle returned from HL_MEM_OP_ALLOC
1808 		 */
1809 		struct {
1810 			__u64 handle;
1811 		} free;
1812 
1813 		/**
1814 		 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1815 		 * @hint_addr: requested virtual address of mapped memory.
1816 		 *             the driver will try to map the requested region to this hint
1817 		 *             address, as long as the address is valid and not already mapped.
1818 		 *             the user should check the returned address of the IOCTL to make
1819 		 *             sure he got the hint address.
1820 		 *             passing 0 here means that the driver will choose the address itself.
1821 		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1822 		 */
1823 		struct {
1824 			__u64 hint_addr;
1825 			__u64 handle;
1826 		} map_device;
1827 
1828 		/**
1829 		 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1830 		 * @host_virt_addr: address of allocated host memory.
1831 		 * @hint_addr: requested virtual address of mapped memory.
1832 		 *             the driver will try to map the requested region to this hint
1833 		 *             address, as long as the address is valid and not already mapped.
1834 		 *             the user should check the returned address of the IOCTL to make
1835 		 *             sure he got the hint address.
1836 		 *             passing 0 here means that the driver will choose the address itself.
1837 		 * @size: size of allocated host memory.
1838 		 */
1839 		struct {
1840 			__u64 host_virt_addr;
1841 			__u64 hint_addr;
1842 			__u64 mem_size;
1843 		} map_host;
1844 
1845 		/**
1846 		 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1847 		 * @block_addr:HW block address to map, a handle and size will be returned
1848 		 *             to the user and will be used to mmap the relevant block.
1849 		 *             only addresses from configuration space are allowed.
1850 		 */
1851 		struct {
1852 			__u64 block_addr;
1853 		} map_block;
1854 
1855 		/**
1856 		 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1857 		 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1858 		 */
1859 		struct {
1860 			__u64 device_virt_addr;
1861 		} unmap;
1862 
1863 		/**
1864 		 * structure for exporting DMABUF object (used with
1865 		 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
1866 		 * @addr: for Gaudi1, the driver expects a physical address
1867 		 *        inside the device's DRAM. this is because in Gaudi1
1868 		 *        we don't have MMU that covers the device's DRAM.
1869 		 *        for all other ASICs, the driver expects a device
1870 		 *        virtual address that represents the start address of
1871 		 *        a mapped DRAM memory area inside the device.
1872 		 *        the address must be the same as was received from the
1873 		 *        driver during a previous HL_MEM_OP_MAP operation.
1874 		 * @mem_size: size of memory to export.
1875 		 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
1876 		 *          the driver expects an offset inside of the memory area
1877 		 *          describe by addr. the offset represents the start
1878 		 *          address of that the exported dma-buf object describes.
1879 		 */
1880 		struct {
1881 			__u64 addr;
1882 			__u64 mem_size;
1883 			__u64 offset;
1884 		} export_dmabuf_fd;
1885 	};
1886 
1887 	__u32 op;
1888 	__u32 flags;
1889 	__u32 ctx_id;
1890 	__u32 num_of_elements;
1891 };
1892 
1893 struct hl_mem_out {
1894 	union {
1895 		/*
1896 		 * Used for HL_MEM_OP_MAP as the virtual address that was
1897 		 * assigned in the device VA space.
1898 		 * A value of 0 means the requested operation failed.
1899 		 */
1900 		__u64 device_virt_addr;
1901 
1902 		/*
1903 		 * Used in HL_MEM_OP_ALLOC
1904 		 * This is the assigned handle for the allocated memory
1905 		 */
1906 		__u64 handle;
1907 
1908 		struct {
1909 			/*
1910 			 * Used in HL_MEM_OP_MAP_BLOCK.
1911 			 * This is the assigned handle for the mapped block
1912 			 */
1913 			__u64 block_handle;
1914 
1915 			/*
1916 			 * Used in HL_MEM_OP_MAP_BLOCK
1917 			 * This is the size of the mapped block
1918 			 */
1919 			__u32 block_size;
1920 
1921 			__u32 pad;
1922 		};
1923 
1924 		/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
1925 		 * DMA-BUF object that was created to describe a memory
1926 		 * allocation on the device's memory space. The FD should be
1927 		 * passed to the importer driver
1928 		 */
1929 		__s32 fd;
1930 	};
1931 };
1932 
1933 union hl_mem_args {
1934 	struct hl_mem_in in;
1935 	struct hl_mem_out out;
1936 };
1937 
1938 #define HL_DEBUG_MAX_AUX_VALUES		10
1939 
1940 struct hl_debug_params_etr {
1941 	/* Address in memory to allocate buffer */
1942 	__u64 buffer_address;
1943 
1944 	/* Size of buffer to allocate */
1945 	__u64 buffer_size;
1946 
1947 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
1948 	__u32 sink_mode;
1949 	__u32 pad;
1950 };
1951 
1952 struct hl_debug_params_etf {
1953 	/* Address in memory to allocate buffer */
1954 	__u64 buffer_address;
1955 
1956 	/* Size of buffer to allocate */
1957 	__u64 buffer_size;
1958 
1959 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
1960 	__u32 sink_mode;
1961 	__u32 pad;
1962 };
1963 
1964 struct hl_debug_params_stm {
1965 	/* Two bit masks for HW event and Stimulus Port */
1966 	__u64 he_mask;
1967 	__u64 sp_mask;
1968 
1969 	/* Trace source ID */
1970 	__u32 id;
1971 
1972 	/* Frequency for the timestamp register */
1973 	__u32 frequency;
1974 };
1975 
1976 struct hl_debug_params_bmon {
1977 	/* Two address ranges that the user can request to filter */
1978 	__u64 start_addr0;
1979 	__u64 addr_mask0;
1980 
1981 	__u64 start_addr1;
1982 	__u64 addr_mask1;
1983 
1984 	/* Capture window configuration */
1985 	__u32 bw_win;
1986 	__u32 win_capture;
1987 
1988 	/* Trace source ID */
1989 	__u32 id;
1990 
1991 	/* Control register */
1992 	__u32 control;
1993 
1994 	/* Two more address ranges that the user can request to filter */
1995 	__u64 start_addr2;
1996 	__u64 end_addr2;
1997 
1998 	__u64 start_addr3;
1999 	__u64 end_addr3;
2000 };
2001 
2002 struct hl_debug_params_spmu {
2003 	/* Event types selection */
2004 	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2005 
2006 	/* Number of event types selection */
2007 	__u32 event_types_num;
2008 
2009 	/* TRC configuration register values */
2010 	__u32 pmtrc_val;
2011 	__u32 trc_ctrl_host_val;
2012 	__u32 trc_en_host_val;
2013 };
2014 
2015 /* Opcode for ETR component */
2016 #define HL_DEBUG_OP_ETR		0
2017 /* Opcode for ETF component */
2018 #define HL_DEBUG_OP_ETF		1
2019 /* Opcode for STM component */
2020 #define HL_DEBUG_OP_STM		2
2021 /* Opcode for FUNNEL component */
2022 #define HL_DEBUG_OP_FUNNEL	3
2023 /* Opcode for BMON component */
2024 #define HL_DEBUG_OP_BMON	4
2025 /* Opcode for SPMU component */
2026 #define HL_DEBUG_OP_SPMU	5
2027 /* Opcode for timestamp (deprecated) */
2028 #define HL_DEBUG_OP_TIMESTAMP	6
2029 /* Opcode for setting the device into or out of debug mode. The enable
2030  * variable should be 1 for enabling debug mode and 0 for disabling it
2031  */
2032 #define HL_DEBUG_OP_SET_MODE	7
2033 
2034 struct hl_debug_args {
2035 	/*
2036 	 * Pointer to user input structure.
2037 	 * This field is relevant to specific opcodes.
2038 	 */
2039 	__u64 input_ptr;
2040 	/* Pointer to user output structure */
2041 	__u64 output_ptr;
2042 	/* Size of user input structure */
2043 	__u32 input_size;
2044 	/* Size of user output structure */
2045 	__u32 output_size;
2046 	/* HL_DEBUG_OP_* */
2047 	__u32 op;
2048 	/*
2049 	 * Register index in the component, taken from the debug_regs_index enum
2050 	 * in the various ASIC header files
2051 	 */
2052 	__u32 reg_idx;
2053 	/* Enable/disable */
2054 	__u32 enable;
2055 	/* Context ID - Currently not in use */
2056 	__u32 ctx_id;
2057 };
2058 
2059 /*
2060  * Various information operations such as:
2061  * - H/W IP information
2062  * - Current dram usage
2063  *
2064  * The user calls this IOCTL with an opcode that describes the required
2065  * information. The user should supply a pointer to a user-allocated memory
2066  * chunk, which will be filled by the driver with the requested information.
2067  *
2068  * The user supplies the maximum amount of size to copy into the user's memory,
2069  * in order to prevent data corruption in case of differences between the
2070  * definitions of structures in kernel and userspace, e.g. in case of old
2071  * userspace and new kernel driver
2072  */
2073 #define HL_IOCTL_INFO	\
2074 		_IOWR('H', 0x01, struct hl_info_args)
2075 
2076 /*
2077  * Command Buffer
2078  * - Request a Command Buffer
2079  * - Destroy a Command Buffer
2080  *
2081  * The command buffers are memory blocks that reside in DMA-able address
2082  * space and are physically contiguous so they can be accessed by the device
2083  * directly. They are allocated using the coherent DMA API.
2084  *
2085  * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2086  * process needs to use that handle to mmap the buffer so it can access them.
2087  *
2088  * In some instances, the device must access the command buffer through the
2089  * device's MMU, and thus its memory should be mapped. In these cases, user can
2090  * indicate the driver that such a mapping is required.
2091  * The resulting device virtual address will be used internally by the driver,
2092  * and won't be returned to user.
2093  *
2094  */
2095 #define HL_IOCTL_CB		\
2096 		_IOWR('H', 0x02, union hl_cb_args)
2097 
2098 /*
2099  * Command Submission
2100  *
2101  * To submit work to the device, the user need to call this IOCTL with a set
2102  * of JOBS. That set of JOBS constitutes a CS object.
2103  * Each JOB will be enqueued on a specific queue, according to the user's input.
2104  * There can be more then one JOB per queue.
2105  *
2106  * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2107  * and a second set is for "execution" phase.
2108  * The JOBS on the "restore" phase are enqueued only after context-switch
2109  * (or if its the first CS for this context). The user can also order the
2110  * driver to run the "restore" phase explicitly
2111  *
2112  * Goya/Gaudi:
2113  * There are two types of queues - external and internal. External queues
2114  * are DMA queues which transfer data from/to the Host. All other queues are
2115  * internal. The driver will get completion notifications from the device only
2116  * on JOBS which are enqueued in the external queues.
2117  *
2118  * Greco onwards:
2119  * There is a single type of queue for all types of engines, either DMA engines
2120  * for transfers from/to the host or inside the device, or compute engines.
2121  * The driver will get completion notifications from the device for all queues.
2122  *
2123  * For jobs on external queues, the user needs to create command buffers
2124  * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2125  * internal queues, the user needs to prepare a "command buffer" with packets
2126  * on either the device SRAM/DRAM or the host, and give the device address of
2127  * that buffer to the CS ioctl.
2128  * For jobs on H/W queues both options of command buffers are valid.
2129  *
2130  * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2131  * means it returns immediately after ALL the JOBS were enqueued on their
2132  * relevant queues. Therefore, the user mustn't assume the CS has been completed
2133  * or has even started to execute.
2134  *
2135  * Upon successful enqueue, the IOCTL returns a sequence number which the user
2136  * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2137  * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2138  * which can execute AFTER the external JOBS have finished, the driver might
2139  * report that the CS has finished executing BEFORE the internal JOBS have
2140  * actually finished executing.
2141  *
2142  * Even though the sequence number increments per CS, the user can NOT
2143  * automatically assume that if CS with sequence number N finished, then CS
2144  * with sequence number N-1 also finished. The user can make this assumption if
2145  * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2146  * queues).
2147  */
2148 #define HL_IOCTL_CS			\
2149 		_IOWR('H', 0x03, union hl_cs_args)
2150 
2151 /*
2152  * Wait for Command Submission
2153  *
2154  * The user can call this IOCTL with a handle it received from the CS IOCTL
2155  * to wait until the handle's CS has finished executing. The user will wait
2156  * inside the kernel until the CS has finished or until the user-requested
2157  * timeout has expired.
2158  *
2159  * If the timeout value is 0, the driver won't sleep at all. It will check
2160  * the status of the CS and return immediately
2161  *
2162  * The return value of the IOCTL is a standard Linux error code. The possible
2163  * values are:
2164  *
2165  * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
2166  *             that the user process received
2167  * ETIMEDOUT - The CS has caused a timeout on the device
2168  * EIO       - The CS was aborted (usually because the device was reset)
2169  * ENODEV    - The device wants to do hard-reset (so user need to close FD)
2170  *
2171  * The driver also returns a custom define in case the IOCTL call returned 0.
2172  * The define can be one of the following:
2173  *
2174  * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
2175  * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
2176  * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
2177  *                                 (ETIMEDOUT)
2178  * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
2179  *                                 device was reset (EIO)
2180  */
2181 
2182 #define HL_IOCTL_WAIT_CS			\
2183 		_IOWR('H', 0x04, union hl_wait_cs_args)
2184 
2185 /*
2186  * Memory
2187  * - Map host memory to device MMU
2188  * - Unmap host memory from device MMU
2189  *
2190  * This IOCTL allows the user to map host memory to the device MMU
2191  *
2192  * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2193  * to allocate the memory in user-space (malloc/new). The driver pins the
2194  * physical pages (up to the allowed limit by the OS), assigns a virtual
2195  * address in the device VA space and initializes the device MMU.
2196  *
2197  * There is an option for the user to specify the requested virtual address.
2198  *
2199  */
2200 #define HL_IOCTL_MEMORY		\
2201 		_IOWR('H', 0x05, union hl_mem_args)
2202 
2203 /*
2204  * Debug
2205  * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2206  *
2207  * This IOCTL allows the user to get debug traces from the chip.
2208  *
2209  * Before the user can send configuration requests of the various
2210  * debug/profile engines, it needs to set the device into debug mode.
2211  * This is because the debug/profile infrastructure is shared component in the
2212  * device and we can't allow multiple users to access it at the same time.
2213  *
2214  * Once a user set the device into debug mode, the driver won't allow other
2215  * users to "work" with the device, i.e. open a FD. If there are multiple users
2216  * opened on the device, the driver won't allow any user to debug the device.
2217  *
2218  * For each configuration request, the user needs to provide the register index
2219  * and essential data such as buffer address and size.
2220  *
2221  * Once the user has finished using the debug/profile engines, he should
2222  * set the device into non-debug mode, i.e. disable debug mode.
2223  *
2224  * The driver can decide to "kick out" the user if he abuses this interface.
2225  *
2226  */
2227 #define HL_IOCTL_DEBUG		\
2228 		_IOWR('H', 0x06, struct hl_debug_args)
2229 
2230 #define HL_COMMAND_START	0x01
2231 #define HL_COMMAND_END		0x07
2232 
2233 #endif /* HABANALABS_H_ */
2234