1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/netdevice.h> 59 60 #include <linux/if_link.h> 61 #include <linux/atomic.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/uaccess.h> 64 #include <linux/cgroup_rdma.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 68 69 extern struct workqueue_struct *ib_wq; 70 extern struct workqueue_struct *ib_comp_wq; 71 72 union ib_gid { 73 u8 raw[16]; 74 struct { 75 __be64 subnet_prefix; 76 __be64 interface_id; 77 } global; 78 }; 79 80 extern union ib_gid zgid; 81 82 enum ib_gid_type { 83 /* If link layer is Ethernet, this is RoCE V1 */ 84 IB_GID_TYPE_IB = 0, 85 IB_GID_TYPE_ROCE = 0, 86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 87 IB_GID_TYPE_SIZE 88 }; 89 90 #define ROCE_V2_UDP_DPORT 4791 91 struct ib_gid_attr { 92 enum ib_gid_type gid_type; 93 struct net_device *ndev; 94 }; 95 96 enum rdma_node_type { 97 /* IB values map to NodeInfo:NodeType. */ 98 RDMA_NODE_IB_CA = 1, 99 RDMA_NODE_IB_SWITCH, 100 RDMA_NODE_IB_ROUTER, 101 RDMA_NODE_RNIC, 102 RDMA_NODE_USNIC, 103 RDMA_NODE_USNIC_UDP, 104 }; 105 106 enum { 107 /* set the local administered indication */ 108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 109 }; 110 111 enum rdma_transport_type { 112 RDMA_TRANSPORT_IB, 113 RDMA_TRANSPORT_IWARP, 114 RDMA_TRANSPORT_USNIC, 115 RDMA_TRANSPORT_USNIC_UDP 116 }; 117 118 enum rdma_protocol_type { 119 RDMA_PROTOCOL_IB, 120 RDMA_PROTOCOL_IBOE, 121 RDMA_PROTOCOL_IWARP, 122 RDMA_PROTOCOL_USNIC_UDP 123 }; 124 125 __attribute_const__ enum rdma_transport_type 126 rdma_node_get_transport(enum rdma_node_type node_type); 127 128 enum rdma_network_type { 129 RDMA_NETWORK_IB, 130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 131 RDMA_NETWORK_IPV4, 132 RDMA_NETWORK_IPV6 133 }; 134 135 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 136 { 137 if (network_type == RDMA_NETWORK_IPV4 || 138 network_type == RDMA_NETWORK_IPV6) 139 return IB_GID_TYPE_ROCE_UDP_ENCAP; 140 141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 142 return IB_GID_TYPE_IB; 143 } 144 145 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 146 union ib_gid *gid) 147 { 148 if (gid_type == IB_GID_TYPE_IB) 149 return RDMA_NETWORK_IB; 150 151 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 152 return RDMA_NETWORK_IPV4; 153 else 154 return RDMA_NETWORK_IPV6; 155 } 156 157 enum rdma_link_layer { 158 IB_LINK_LAYER_UNSPECIFIED, 159 IB_LINK_LAYER_INFINIBAND, 160 IB_LINK_LAYER_ETHERNET, 161 }; 162 163 enum ib_device_cap_flags { 164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 167 IB_DEVICE_RAW_MULTI = (1 << 3), 168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 173 IB_DEVICE_INIT_TYPE = (1 << 9), 174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 177 IB_DEVICE_SRQ_RESIZE = (1 << 13), 178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 179 180 /* 181 * This device supports a per-device lkey or stag that can be 182 * used without performing a memory registration for the local 183 * memory. Note that ULPs should never check this flag, but 184 * instead of use the local_dma_lkey flag in the ib_pd structure, 185 * which will always contain a usable lkey. 186 */ 187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 188 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 189 IB_DEVICE_MEM_WINDOW = (1 << 17), 190 /* 191 * Devices should set IB_DEVICE_UD_IP_SUM if they support 192 * insertion of UDP and TCP checksum on outgoing UD IPoIB 193 * messages and can verify the validity of checksum for 194 * incoming messages. Setting this flag implies that the 195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 196 */ 197 IB_DEVICE_UD_IP_CSUM = (1 << 18), 198 IB_DEVICE_UD_TSO = (1 << 19), 199 IB_DEVICE_XRC = (1 << 20), 200 201 /* 202 * This device supports the IB "base memory management extension", 203 * which includes support for fast registrations (IB_WR_REG_MR, 204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 205 * also be set by any iWarp device which must support FRs to comply 206 * to the iWarp verbs spec. iWarp devices also support the 207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 208 * stag. 209 */ 210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 214 IB_DEVICE_RC_IP_CSUM = (1 << 25), 215 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 216 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 217 /* 218 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 219 * support execution of WQEs that involve synchronization 220 * of I/O operations with single completion queue managed 221 * by hardware. 222 */ 223 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 224 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 225 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 226 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 227 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 228 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 229 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 231 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 232 }; 233 234 enum ib_signature_prot_cap { 235 IB_PROT_T10DIF_TYPE_1 = 1, 236 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 237 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 238 }; 239 240 enum ib_signature_guard_cap { 241 IB_GUARD_T10DIF_CRC = 1, 242 IB_GUARD_T10DIF_CSUM = 1 << 1, 243 }; 244 245 enum ib_atomic_cap { 246 IB_ATOMIC_NONE, 247 IB_ATOMIC_HCA, 248 IB_ATOMIC_GLOB 249 }; 250 251 enum ib_odp_general_cap_bits { 252 IB_ODP_SUPPORT = 1 << 0, 253 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 254 }; 255 256 enum ib_odp_transport_cap_bits { 257 IB_ODP_SUPPORT_SEND = 1 << 0, 258 IB_ODP_SUPPORT_RECV = 1 << 1, 259 IB_ODP_SUPPORT_WRITE = 1 << 2, 260 IB_ODP_SUPPORT_READ = 1 << 3, 261 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 262 }; 263 264 struct ib_odp_caps { 265 uint64_t general_caps; 266 struct { 267 uint32_t rc_odp_caps; 268 uint32_t uc_odp_caps; 269 uint32_t ud_odp_caps; 270 } per_transport_caps; 271 }; 272 273 struct ib_rss_caps { 274 /* Corresponding bit will be set if qp type from 275 * 'enum ib_qp_type' is supported, e.g. 276 * supported_qpts |= 1 << IB_QPT_UD 277 */ 278 u32 supported_qpts; 279 u32 max_rwq_indirection_tables; 280 u32 max_rwq_indirection_table_size; 281 }; 282 283 enum ib_cq_creation_flags { 284 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 285 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 286 }; 287 288 struct ib_cq_init_attr { 289 unsigned int cqe; 290 int comp_vector; 291 u32 flags; 292 }; 293 294 struct ib_device_attr { 295 u64 fw_ver; 296 __be64 sys_image_guid; 297 u64 max_mr_size; 298 u64 page_size_cap; 299 u32 vendor_id; 300 u32 vendor_part_id; 301 u32 hw_ver; 302 int max_qp; 303 int max_qp_wr; 304 u64 device_cap_flags; 305 int max_sge; 306 int max_sge_rd; 307 int max_cq; 308 int max_cqe; 309 int max_mr; 310 int max_pd; 311 int max_qp_rd_atom; 312 int max_ee_rd_atom; 313 int max_res_rd_atom; 314 int max_qp_init_rd_atom; 315 int max_ee_init_rd_atom; 316 enum ib_atomic_cap atomic_cap; 317 enum ib_atomic_cap masked_atomic_cap; 318 int max_ee; 319 int max_rdd; 320 int max_mw; 321 int max_raw_ipv6_qp; 322 int max_raw_ethy_qp; 323 int max_mcast_grp; 324 int max_mcast_qp_attach; 325 int max_total_mcast_qp_attach; 326 int max_ah; 327 int max_fmr; 328 int max_map_per_fmr; 329 int max_srq; 330 int max_srq_wr; 331 int max_srq_sge; 332 unsigned int max_fast_reg_page_list_len; 333 u16 max_pkeys; 334 u8 local_ca_ack_delay; 335 int sig_prot_cap; 336 int sig_guard_cap; 337 struct ib_odp_caps odp_caps; 338 uint64_t timestamp_mask; 339 uint64_t hca_core_clock; /* in KHZ */ 340 struct ib_rss_caps rss_caps; 341 u32 max_wq_type_rq; 342 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 343 }; 344 345 enum ib_mtu { 346 IB_MTU_256 = 1, 347 IB_MTU_512 = 2, 348 IB_MTU_1024 = 3, 349 IB_MTU_2048 = 4, 350 IB_MTU_4096 = 5 351 }; 352 353 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 354 { 355 switch (mtu) { 356 case IB_MTU_256: return 256; 357 case IB_MTU_512: return 512; 358 case IB_MTU_1024: return 1024; 359 case IB_MTU_2048: return 2048; 360 case IB_MTU_4096: return 4096; 361 default: return -1; 362 } 363 } 364 365 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 366 { 367 if (mtu >= 4096) 368 return IB_MTU_4096; 369 else if (mtu >= 2048) 370 return IB_MTU_2048; 371 else if (mtu >= 1024) 372 return IB_MTU_1024; 373 else if (mtu >= 512) 374 return IB_MTU_512; 375 else 376 return IB_MTU_256; 377 } 378 379 enum ib_port_state { 380 IB_PORT_NOP = 0, 381 IB_PORT_DOWN = 1, 382 IB_PORT_INIT = 2, 383 IB_PORT_ARMED = 3, 384 IB_PORT_ACTIVE = 4, 385 IB_PORT_ACTIVE_DEFER = 5 386 }; 387 388 enum ib_port_cap_flags { 389 IB_PORT_SM = 1 << 1, 390 IB_PORT_NOTICE_SUP = 1 << 2, 391 IB_PORT_TRAP_SUP = 1 << 3, 392 IB_PORT_OPT_IPD_SUP = 1 << 4, 393 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 394 IB_PORT_SL_MAP_SUP = 1 << 6, 395 IB_PORT_MKEY_NVRAM = 1 << 7, 396 IB_PORT_PKEY_NVRAM = 1 << 8, 397 IB_PORT_LED_INFO_SUP = 1 << 9, 398 IB_PORT_SM_DISABLED = 1 << 10, 399 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 400 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 401 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 402 IB_PORT_CM_SUP = 1 << 16, 403 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 404 IB_PORT_REINIT_SUP = 1 << 18, 405 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 406 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 407 IB_PORT_DR_NOTICE_SUP = 1 << 21, 408 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 409 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 410 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 411 IB_PORT_CLIENT_REG_SUP = 1 << 25, 412 IB_PORT_IP_BASED_GIDS = 1 << 26, 413 }; 414 415 enum ib_port_width { 416 IB_WIDTH_1X = 1, 417 IB_WIDTH_4X = 2, 418 IB_WIDTH_8X = 4, 419 IB_WIDTH_12X = 8 420 }; 421 422 static inline int ib_width_enum_to_int(enum ib_port_width width) 423 { 424 switch (width) { 425 case IB_WIDTH_1X: return 1; 426 case IB_WIDTH_4X: return 4; 427 case IB_WIDTH_8X: return 8; 428 case IB_WIDTH_12X: return 12; 429 default: return -1; 430 } 431 } 432 433 enum ib_port_speed { 434 IB_SPEED_SDR = 1, 435 IB_SPEED_DDR = 2, 436 IB_SPEED_QDR = 4, 437 IB_SPEED_FDR10 = 8, 438 IB_SPEED_FDR = 16, 439 IB_SPEED_EDR = 32, 440 IB_SPEED_HDR = 64 441 }; 442 443 /** 444 * struct rdma_hw_stats 445 * @timestamp - Used by the core code to track when the last update was 446 * @lifespan - Used by the core code to determine how old the counters 447 * should be before being updated again. Stored in jiffies, defaults 448 * to 10 milliseconds, drivers can override the default be specifying 449 * their own value during their allocation routine. 450 * @name - Array of pointers to static names used for the counters in 451 * directory. 452 * @num_counters - How many hardware counters there are. If name is 453 * shorter than this number, a kernel oops will result. Driver authors 454 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 455 * in their code to prevent this. 456 * @value - Array of u64 counters that are accessed by the sysfs code and 457 * filled in by the drivers get_stats routine 458 */ 459 struct rdma_hw_stats { 460 unsigned long timestamp; 461 unsigned long lifespan; 462 const char * const *names; 463 int num_counters; 464 u64 value[]; 465 }; 466 467 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 468 /** 469 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 470 * for drivers. 471 * @names - Array of static const char * 472 * @num_counters - How many elements in array 473 * @lifespan - How many milliseconds between updates 474 */ 475 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 476 const char * const *names, int num_counters, 477 unsigned long lifespan) 478 { 479 struct rdma_hw_stats *stats; 480 481 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 482 GFP_KERNEL); 483 if (!stats) 484 return NULL; 485 stats->names = names; 486 stats->num_counters = num_counters; 487 stats->lifespan = msecs_to_jiffies(lifespan); 488 489 return stats; 490 } 491 492 493 /* Define bits for the various functionality this port needs to be supported by 494 * the core. 495 */ 496 /* Management 0x00000FFF */ 497 #define RDMA_CORE_CAP_IB_MAD 0x00000001 498 #define RDMA_CORE_CAP_IB_SMI 0x00000002 499 #define RDMA_CORE_CAP_IB_CM 0x00000004 500 #define RDMA_CORE_CAP_IW_CM 0x00000008 501 #define RDMA_CORE_CAP_IB_SA 0x00000010 502 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 503 504 /* Address format 0x000FF000 */ 505 #define RDMA_CORE_CAP_AF_IB 0x00001000 506 #define RDMA_CORE_CAP_ETH_AH 0x00002000 507 #define RDMA_CORE_CAP_OPA_AH 0x00004000 508 509 /* Protocol 0xFFF00000 */ 510 #define RDMA_CORE_CAP_PROT_IB 0x00100000 511 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 512 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 513 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 514 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 515 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 516 517 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 518 | RDMA_CORE_CAP_IB_MAD \ 519 | RDMA_CORE_CAP_IB_SMI \ 520 | RDMA_CORE_CAP_IB_CM \ 521 | RDMA_CORE_CAP_IB_SA \ 522 | RDMA_CORE_CAP_AF_IB) 523 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 524 | RDMA_CORE_CAP_IB_MAD \ 525 | RDMA_CORE_CAP_IB_CM \ 526 | RDMA_CORE_CAP_AF_IB \ 527 | RDMA_CORE_CAP_ETH_AH) 528 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 529 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 530 | RDMA_CORE_CAP_IB_MAD \ 531 | RDMA_CORE_CAP_IB_CM \ 532 | RDMA_CORE_CAP_AF_IB \ 533 | RDMA_CORE_CAP_ETH_AH) 534 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 535 | RDMA_CORE_CAP_IW_CM) 536 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 537 | RDMA_CORE_CAP_OPA_MAD) 538 539 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 540 541 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 542 543 struct ib_port_attr { 544 u64 subnet_prefix; 545 enum ib_port_state state; 546 enum ib_mtu max_mtu; 547 enum ib_mtu active_mtu; 548 int gid_tbl_len; 549 u32 port_cap_flags; 550 u32 max_msg_sz; 551 u32 bad_pkey_cntr; 552 u32 qkey_viol_cntr; 553 u16 pkey_tbl_len; 554 u32 sm_lid; 555 u32 lid; 556 u8 lmc; 557 u8 max_vl_num; 558 u8 sm_sl; 559 u8 subnet_timeout; 560 u8 init_type_reply; 561 u8 active_width; 562 u8 active_speed; 563 u8 phys_state; 564 bool grh_required; 565 }; 566 567 enum ib_device_modify_flags { 568 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 569 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 570 }; 571 572 #define IB_DEVICE_NODE_DESC_MAX 64 573 574 struct ib_device_modify { 575 u64 sys_image_guid; 576 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 577 }; 578 579 enum ib_port_modify_flags { 580 IB_PORT_SHUTDOWN = 1, 581 IB_PORT_INIT_TYPE = (1<<2), 582 IB_PORT_RESET_QKEY_CNTR = (1<<3), 583 IB_PORT_OPA_MASK_CHG = (1<<4) 584 }; 585 586 struct ib_port_modify { 587 u32 set_port_cap_mask; 588 u32 clr_port_cap_mask; 589 u8 init_type; 590 }; 591 592 enum ib_event_type { 593 IB_EVENT_CQ_ERR, 594 IB_EVENT_QP_FATAL, 595 IB_EVENT_QP_REQ_ERR, 596 IB_EVENT_QP_ACCESS_ERR, 597 IB_EVENT_COMM_EST, 598 IB_EVENT_SQ_DRAINED, 599 IB_EVENT_PATH_MIG, 600 IB_EVENT_PATH_MIG_ERR, 601 IB_EVENT_DEVICE_FATAL, 602 IB_EVENT_PORT_ACTIVE, 603 IB_EVENT_PORT_ERR, 604 IB_EVENT_LID_CHANGE, 605 IB_EVENT_PKEY_CHANGE, 606 IB_EVENT_SM_CHANGE, 607 IB_EVENT_SRQ_ERR, 608 IB_EVENT_SRQ_LIMIT_REACHED, 609 IB_EVENT_QP_LAST_WQE_REACHED, 610 IB_EVENT_CLIENT_REREGISTER, 611 IB_EVENT_GID_CHANGE, 612 IB_EVENT_WQ_FATAL, 613 }; 614 615 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 616 617 struct ib_event { 618 struct ib_device *device; 619 union { 620 struct ib_cq *cq; 621 struct ib_qp *qp; 622 struct ib_srq *srq; 623 struct ib_wq *wq; 624 u8 port_num; 625 } element; 626 enum ib_event_type event; 627 }; 628 629 struct ib_event_handler { 630 struct ib_device *device; 631 void (*handler)(struct ib_event_handler *, struct ib_event *); 632 struct list_head list; 633 }; 634 635 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 636 do { \ 637 (_ptr)->device = _device; \ 638 (_ptr)->handler = _handler; \ 639 INIT_LIST_HEAD(&(_ptr)->list); \ 640 } while (0) 641 642 struct ib_global_route { 643 union ib_gid dgid; 644 u32 flow_label; 645 u8 sgid_index; 646 u8 hop_limit; 647 u8 traffic_class; 648 }; 649 650 struct ib_grh { 651 __be32 version_tclass_flow; 652 __be16 paylen; 653 u8 next_hdr; 654 u8 hop_limit; 655 union ib_gid sgid; 656 union ib_gid dgid; 657 }; 658 659 union rdma_network_hdr { 660 struct ib_grh ibgrh; 661 struct { 662 /* The IB spec states that if it's IPv4, the header 663 * is located in the last 20 bytes of the header. 664 */ 665 u8 reserved[20]; 666 struct iphdr roce4grh; 667 }; 668 }; 669 670 #define IB_QPN_MASK 0xFFFFFF 671 672 enum { 673 IB_MULTICAST_QPN = 0xffffff 674 }; 675 676 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 677 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 678 679 enum ib_ah_flags { 680 IB_AH_GRH = 1 681 }; 682 683 enum ib_rate { 684 IB_RATE_PORT_CURRENT = 0, 685 IB_RATE_2_5_GBPS = 2, 686 IB_RATE_5_GBPS = 5, 687 IB_RATE_10_GBPS = 3, 688 IB_RATE_20_GBPS = 6, 689 IB_RATE_30_GBPS = 4, 690 IB_RATE_40_GBPS = 7, 691 IB_RATE_60_GBPS = 8, 692 IB_RATE_80_GBPS = 9, 693 IB_RATE_120_GBPS = 10, 694 IB_RATE_14_GBPS = 11, 695 IB_RATE_56_GBPS = 12, 696 IB_RATE_112_GBPS = 13, 697 IB_RATE_168_GBPS = 14, 698 IB_RATE_25_GBPS = 15, 699 IB_RATE_100_GBPS = 16, 700 IB_RATE_200_GBPS = 17, 701 IB_RATE_300_GBPS = 18 702 }; 703 704 /** 705 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 706 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 707 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 708 * @rate: rate to convert. 709 */ 710 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 711 712 /** 713 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 714 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 715 * @rate: rate to convert. 716 */ 717 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 718 719 720 /** 721 * enum ib_mr_type - memory region type 722 * @IB_MR_TYPE_MEM_REG: memory region that is used for 723 * normal registration 724 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 725 * signature operations (data-integrity 726 * capable regions) 727 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 728 * register any arbitrary sg lists (without 729 * the normal mr constraints - see 730 * ib_map_mr_sg) 731 */ 732 enum ib_mr_type { 733 IB_MR_TYPE_MEM_REG, 734 IB_MR_TYPE_SIGNATURE, 735 IB_MR_TYPE_SG_GAPS, 736 }; 737 738 /** 739 * Signature types 740 * IB_SIG_TYPE_NONE: Unprotected. 741 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 742 */ 743 enum ib_signature_type { 744 IB_SIG_TYPE_NONE, 745 IB_SIG_TYPE_T10_DIF, 746 }; 747 748 /** 749 * Signature T10-DIF block-guard types 750 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 751 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 752 */ 753 enum ib_t10_dif_bg_type { 754 IB_T10DIF_CRC, 755 IB_T10DIF_CSUM 756 }; 757 758 /** 759 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 760 * domain. 761 * @bg_type: T10-DIF block guard type (CRC|CSUM) 762 * @pi_interval: protection information interval. 763 * @bg: seed of guard computation. 764 * @app_tag: application tag of guard block 765 * @ref_tag: initial guard block reference tag. 766 * @ref_remap: Indicate wethear the reftag increments each block 767 * @app_escape: Indicate to skip block check if apptag=0xffff 768 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 769 * @apptag_check_mask: check bitmask of application tag. 770 */ 771 struct ib_t10_dif_domain { 772 enum ib_t10_dif_bg_type bg_type; 773 u16 pi_interval; 774 u16 bg; 775 u16 app_tag; 776 u32 ref_tag; 777 bool ref_remap; 778 bool app_escape; 779 bool ref_escape; 780 u16 apptag_check_mask; 781 }; 782 783 /** 784 * struct ib_sig_domain - Parameters for signature domain 785 * @sig_type: specific signauture type 786 * @sig: union of all signature domain attributes that may 787 * be used to set domain layout. 788 */ 789 struct ib_sig_domain { 790 enum ib_signature_type sig_type; 791 union { 792 struct ib_t10_dif_domain dif; 793 } sig; 794 }; 795 796 /** 797 * struct ib_sig_attrs - Parameters for signature handover operation 798 * @check_mask: bitmask for signature byte check (8 bytes) 799 * @mem: memory domain layout desciptor. 800 * @wire: wire domain layout desciptor. 801 */ 802 struct ib_sig_attrs { 803 u8 check_mask; 804 struct ib_sig_domain mem; 805 struct ib_sig_domain wire; 806 }; 807 808 enum ib_sig_err_type { 809 IB_SIG_BAD_GUARD, 810 IB_SIG_BAD_REFTAG, 811 IB_SIG_BAD_APPTAG, 812 }; 813 814 /** 815 * struct ib_sig_err - signature error descriptor 816 */ 817 struct ib_sig_err { 818 enum ib_sig_err_type err_type; 819 u32 expected; 820 u32 actual; 821 u64 sig_err_offset; 822 u32 key; 823 }; 824 825 enum ib_mr_status_check { 826 IB_MR_CHECK_SIG_STATUS = 1, 827 }; 828 829 /** 830 * struct ib_mr_status - Memory region status container 831 * 832 * @fail_status: Bitmask of MR checks status. For each 833 * failed check a corresponding status bit is set. 834 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 835 * failure. 836 */ 837 struct ib_mr_status { 838 u32 fail_status; 839 struct ib_sig_err sig_err; 840 }; 841 842 /** 843 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 844 * enum. 845 * @mult: multiple to convert. 846 */ 847 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 848 849 enum rdma_ah_attr_type { 850 RDMA_AH_ATTR_TYPE_IB, 851 RDMA_AH_ATTR_TYPE_ROCE, 852 RDMA_AH_ATTR_TYPE_OPA, 853 }; 854 855 struct ib_ah_attr { 856 u16 dlid; 857 u8 src_path_bits; 858 }; 859 860 struct roce_ah_attr { 861 u8 dmac[ETH_ALEN]; 862 }; 863 864 struct opa_ah_attr { 865 u32 dlid; 866 u8 src_path_bits; 867 }; 868 869 struct rdma_ah_attr { 870 struct ib_global_route grh; 871 u8 sl; 872 u8 static_rate; 873 u8 port_num; 874 u8 ah_flags; 875 enum rdma_ah_attr_type type; 876 union { 877 struct ib_ah_attr ib; 878 struct roce_ah_attr roce; 879 struct opa_ah_attr opa; 880 }; 881 }; 882 883 enum ib_wc_status { 884 IB_WC_SUCCESS, 885 IB_WC_LOC_LEN_ERR, 886 IB_WC_LOC_QP_OP_ERR, 887 IB_WC_LOC_EEC_OP_ERR, 888 IB_WC_LOC_PROT_ERR, 889 IB_WC_WR_FLUSH_ERR, 890 IB_WC_MW_BIND_ERR, 891 IB_WC_BAD_RESP_ERR, 892 IB_WC_LOC_ACCESS_ERR, 893 IB_WC_REM_INV_REQ_ERR, 894 IB_WC_REM_ACCESS_ERR, 895 IB_WC_REM_OP_ERR, 896 IB_WC_RETRY_EXC_ERR, 897 IB_WC_RNR_RETRY_EXC_ERR, 898 IB_WC_LOC_RDD_VIOL_ERR, 899 IB_WC_REM_INV_RD_REQ_ERR, 900 IB_WC_REM_ABORT_ERR, 901 IB_WC_INV_EECN_ERR, 902 IB_WC_INV_EEC_STATE_ERR, 903 IB_WC_FATAL_ERR, 904 IB_WC_RESP_TIMEOUT_ERR, 905 IB_WC_GENERAL_ERR 906 }; 907 908 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 909 910 enum ib_wc_opcode { 911 IB_WC_SEND, 912 IB_WC_RDMA_WRITE, 913 IB_WC_RDMA_READ, 914 IB_WC_COMP_SWAP, 915 IB_WC_FETCH_ADD, 916 IB_WC_LSO, 917 IB_WC_LOCAL_INV, 918 IB_WC_REG_MR, 919 IB_WC_MASKED_COMP_SWAP, 920 IB_WC_MASKED_FETCH_ADD, 921 /* 922 * Set value of IB_WC_RECV so consumers can test if a completion is a 923 * receive by testing (opcode & IB_WC_RECV). 924 */ 925 IB_WC_RECV = 1 << 7, 926 IB_WC_RECV_RDMA_WITH_IMM 927 }; 928 929 enum ib_wc_flags { 930 IB_WC_GRH = 1, 931 IB_WC_WITH_IMM = (1<<1), 932 IB_WC_WITH_INVALIDATE = (1<<2), 933 IB_WC_IP_CSUM_OK = (1<<3), 934 IB_WC_WITH_SMAC = (1<<4), 935 IB_WC_WITH_VLAN = (1<<5), 936 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 937 }; 938 939 struct ib_wc { 940 union { 941 u64 wr_id; 942 struct ib_cqe *wr_cqe; 943 }; 944 enum ib_wc_status status; 945 enum ib_wc_opcode opcode; 946 u32 vendor_err; 947 u32 byte_len; 948 struct ib_qp *qp; 949 union { 950 __be32 imm_data; 951 u32 invalidate_rkey; 952 } ex; 953 u32 src_qp; 954 int wc_flags; 955 u16 pkey_index; 956 u32 slid; 957 u8 sl; 958 u8 dlid_path_bits; 959 u8 port_num; /* valid only for DR SMPs on switches */ 960 u8 smac[ETH_ALEN]; 961 u16 vlan_id; 962 u8 network_hdr_type; 963 }; 964 965 enum ib_cq_notify_flags { 966 IB_CQ_SOLICITED = 1 << 0, 967 IB_CQ_NEXT_COMP = 1 << 1, 968 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 969 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 970 }; 971 972 enum ib_srq_type { 973 IB_SRQT_BASIC, 974 IB_SRQT_XRC 975 }; 976 977 enum ib_srq_attr_mask { 978 IB_SRQ_MAX_WR = 1 << 0, 979 IB_SRQ_LIMIT = 1 << 1, 980 }; 981 982 struct ib_srq_attr { 983 u32 max_wr; 984 u32 max_sge; 985 u32 srq_limit; 986 }; 987 988 struct ib_srq_init_attr { 989 void (*event_handler)(struct ib_event *, void *); 990 void *srq_context; 991 struct ib_srq_attr attr; 992 enum ib_srq_type srq_type; 993 994 union { 995 struct { 996 struct ib_xrcd *xrcd; 997 struct ib_cq *cq; 998 } xrc; 999 } ext; 1000 }; 1001 1002 struct ib_qp_cap { 1003 u32 max_send_wr; 1004 u32 max_recv_wr; 1005 u32 max_send_sge; 1006 u32 max_recv_sge; 1007 u32 max_inline_data; 1008 1009 /* 1010 * Maximum number of rdma_rw_ctx structures in flight at a time. 1011 * ib_create_qp() will calculate the right amount of neededed WRs 1012 * and MRs based on this. 1013 */ 1014 u32 max_rdma_ctxs; 1015 }; 1016 1017 enum ib_sig_type { 1018 IB_SIGNAL_ALL_WR, 1019 IB_SIGNAL_REQ_WR 1020 }; 1021 1022 enum ib_qp_type { 1023 /* 1024 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1025 * here (and in that order) since the MAD layer uses them as 1026 * indices into a 2-entry table. 1027 */ 1028 IB_QPT_SMI, 1029 IB_QPT_GSI, 1030 1031 IB_QPT_RC, 1032 IB_QPT_UC, 1033 IB_QPT_UD, 1034 IB_QPT_RAW_IPV6, 1035 IB_QPT_RAW_ETHERTYPE, 1036 IB_QPT_RAW_PACKET = 8, 1037 IB_QPT_XRC_INI = 9, 1038 IB_QPT_XRC_TGT, 1039 IB_QPT_MAX, 1040 /* Reserve a range for qp types internal to the low level driver. 1041 * These qp types will not be visible at the IB core layer, so the 1042 * IB_QPT_MAX usages should not be affected in the core layer 1043 */ 1044 IB_QPT_RESERVED1 = 0x1000, 1045 IB_QPT_RESERVED2, 1046 IB_QPT_RESERVED3, 1047 IB_QPT_RESERVED4, 1048 IB_QPT_RESERVED5, 1049 IB_QPT_RESERVED6, 1050 IB_QPT_RESERVED7, 1051 IB_QPT_RESERVED8, 1052 IB_QPT_RESERVED9, 1053 IB_QPT_RESERVED10, 1054 }; 1055 1056 enum ib_qp_create_flags { 1057 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1058 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1059 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1060 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1061 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1062 IB_QP_CREATE_NETIF_QP = 1 << 5, 1063 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1064 /* FREE = 1 << 7, */ 1065 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1066 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1067 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1068 /* reserve bits 26-31 for low level drivers' internal use */ 1069 IB_QP_CREATE_RESERVED_START = 1 << 26, 1070 IB_QP_CREATE_RESERVED_END = 1 << 31, 1071 }; 1072 1073 /* 1074 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1075 * callback to destroy the passed in QP. 1076 */ 1077 1078 struct ib_qp_init_attr { 1079 void (*event_handler)(struct ib_event *, void *); 1080 void *qp_context; 1081 struct ib_cq *send_cq; 1082 struct ib_cq *recv_cq; 1083 struct ib_srq *srq; 1084 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1085 struct ib_qp_cap cap; 1086 enum ib_sig_type sq_sig_type; 1087 enum ib_qp_type qp_type; 1088 enum ib_qp_create_flags create_flags; 1089 1090 /* 1091 * Only needed for special QP types, or when using the RW API. 1092 */ 1093 u8 port_num; 1094 struct ib_rwq_ind_table *rwq_ind_tbl; 1095 u32 source_qpn; 1096 }; 1097 1098 struct ib_qp_open_attr { 1099 void (*event_handler)(struct ib_event *, void *); 1100 void *qp_context; 1101 u32 qp_num; 1102 enum ib_qp_type qp_type; 1103 }; 1104 1105 enum ib_rnr_timeout { 1106 IB_RNR_TIMER_655_36 = 0, 1107 IB_RNR_TIMER_000_01 = 1, 1108 IB_RNR_TIMER_000_02 = 2, 1109 IB_RNR_TIMER_000_03 = 3, 1110 IB_RNR_TIMER_000_04 = 4, 1111 IB_RNR_TIMER_000_06 = 5, 1112 IB_RNR_TIMER_000_08 = 6, 1113 IB_RNR_TIMER_000_12 = 7, 1114 IB_RNR_TIMER_000_16 = 8, 1115 IB_RNR_TIMER_000_24 = 9, 1116 IB_RNR_TIMER_000_32 = 10, 1117 IB_RNR_TIMER_000_48 = 11, 1118 IB_RNR_TIMER_000_64 = 12, 1119 IB_RNR_TIMER_000_96 = 13, 1120 IB_RNR_TIMER_001_28 = 14, 1121 IB_RNR_TIMER_001_92 = 15, 1122 IB_RNR_TIMER_002_56 = 16, 1123 IB_RNR_TIMER_003_84 = 17, 1124 IB_RNR_TIMER_005_12 = 18, 1125 IB_RNR_TIMER_007_68 = 19, 1126 IB_RNR_TIMER_010_24 = 20, 1127 IB_RNR_TIMER_015_36 = 21, 1128 IB_RNR_TIMER_020_48 = 22, 1129 IB_RNR_TIMER_030_72 = 23, 1130 IB_RNR_TIMER_040_96 = 24, 1131 IB_RNR_TIMER_061_44 = 25, 1132 IB_RNR_TIMER_081_92 = 26, 1133 IB_RNR_TIMER_122_88 = 27, 1134 IB_RNR_TIMER_163_84 = 28, 1135 IB_RNR_TIMER_245_76 = 29, 1136 IB_RNR_TIMER_327_68 = 30, 1137 IB_RNR_TIMER_491_52 = 31 1138 }; 1139 1140 enum ib_qp_attr_mask { 1141 IB_QP_STATE = 1, 1142 IB_QP_CUR_STATE = (1<<1), 1143 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1144 IB_QP_ACCESS_FLAGS = (1<<3), 1145 IB_QP_PKEY_INDEX = (1<<4), 1146 IB_QP_PORT = (1<<5), 1147 IB_QP_QKEY = (1<<6), 1148 IB_QP_AV = (1<<7), 1149 IB_QP_PATH_MTU = (1<<8), 1150 IB_QP_TIMEOUT = (1<<9), 1151 IB_QP_RETRY_CNT = (1<<10), 1152 IB_QP_RNR_RETRY = (1<<11), 1153 IB_QP_RQ_PSN = (1<<12), 1154 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1155 IB_QP_ALT_PATH = (1<<14), 1156 IB_QP_MIN_RNR_TIMER = (1<<15), 1157 IB_QP_SQ_PSN = (1<<16), 1158 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1159 IB_QP_PATH_MIG_STATE = (1<<18), 1160 IB_QP_CAP = (1<<19), 1161 IB_QP_DEST_QPN = (1<<20), 1162 IB_QP_RESERVED1 = (1<<21), 1163 IB_QP_RESERVED2 = (1<<22), 1164 IB_QP_RESERVED3 = (1<<23), 1165 IB_QP_RESERVED4 = (1<<24), 1166 IB_QP_RATE_LIMIT = (1<<25), 1167 }; 1168 1169 enum ib_qp_state { 1170 IB_QPS_RESET, 1171 IB_QPS_INIT, 1172 IB_QPS_RTR, 1173 IB_QPS_RTS, 1174 IB_QPS_SQD, 1175 IB_QPS_SQE, 1176 IB_QPS_ERR 1177 }; 1178 1179 enum ib_mig_state { 1180 IB_MIG_MIGRATED, 1181 IB_MIG_REARM, 1182 IB_MIG_ARMED 1183 }; 1184 1185 enum ib_mw_type { 1186 IB_MW_TYPE_1 = 1, 1187 IB_MW_TYPE_2 = 2 1188 }; 1189 1190 struct ib_qp_attr { 1191 enum ib_qp_state qp_state; 1192 enum ib_qp_state cur_qp_state; 1193 enum ib_mtu path_mtu; 1194 enum ib_mig_state path_mig_state; 1195 u32 qkey; 1196 u32 rq_psn; 1197 u32 sq_psn; 1198 u32 dest_qp_num; 1199 int qp_access_flags; 1200 struct ib_qp_cap cap; 1201 struct rdma_ah_attr ah_attr; 1202 struct rdma_ah_attr alt_ah_attr; 1203 u16 pkey_index; 1204 u16 alt_pkey_index; 1205 u8 en_sqd_async_notify; 1206 u8 sq_draining; 1207 u8 max_rd_atomic; 1208 u8 max_dest_rd_atomic; 1209 u8 min_rnr_timer; 1210 u8 port_num; 1211 u8 timeout; 1212 u8 retry_cnt; 1213 u8 rnr_retry; 1214 u8 alt_port_num; 1215 u8 alt_timeout; 1216 u32 rate_limit; 1217 }; 1218 1219 enum ib_wr_opcode { 1220 IB_WR_RDMA_WRITE, 1221 IB_WR_RDMA_WRITE_WITH_IMM, 1222 IB_WR_SEND, 1223 IB_WR_SEND_WITH_IMM, 1224 IB_WR_RDMA_READ, 1225 IB_WR_ATOMIC_CMP_AND_SWP, 1226 IB_WR_ATOMIC_FETCH_AND_ADD, 1227 IB_WR_LSO, 1228 IB_WR_SEND_WITH_INV, 1229 IB_WR_RDMA_READ_WITH_INV, 1230 IB_WR_LOCAL_INV, 1231 IB_WR_REG_MR, 1232 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1233 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1234 IB_WR_REG_SIG_MR, 1235 /* reserve values for low level drivers' internal use. 1236 * These values will not be used at all in the ib core layer. 1237 */ 1238 IB_WR_RESERVED1 = 0xf0, 1239 IB_WR_RESERVED2, 1240 IB_WR_RESERVED3, 1241 IB_WR_RESERVED4, 1242 IB_WR_RESERVED5, 1243 IB_WR_RESERVED6, 1244 IB_WR_RESERVED7, 1245 IB_WR_RESERVED8, 1246 IB_WR_RESERVED9, 1247 IB_WR_RESERVED10, 1248 }; 1249 1250 enum ib_send_flags { 1251 IB_SEND_FENCE = 1, 1252 IB_SEND_SIGNALED = (1<<1), 1253 IB_SEND_SOLICITED = (1<<2), 1254 IB_SEND_INLINE = (1<<3), 1255 IB_SEND_IP_CSUM = (1<<4), 1256 1257 /* reserve bits 26-31 for low level drivers' internal use */ 1258 IB_SEND_RESERVED_START = (1 << 26), 1259 IB_SEND_RESERVED_END = (1 << 31), 1260 }; 1261 1262 struct ib_sge { 1263 u64 addr; 1264 u32 length; 1265 u32 lkey; 1266 }; 1267 1268 struct ib_cqe { 1269 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1270 }; 1271 1272 struct ib_send_wr { 1273 struct ib_send_wr *next; 1274 union { 1275 u64 wr_id; 1276 struct ib_cqe *wr_cqe; 1277 }; 1278 struct ib_sge *sg_list; 1279 int num_sge; 1280 enum ib_wr_opcode opcode; 1281 int send_flags; 1282 union { 1283 __be32 imm_data; 1284 u32 invalidate_rkey; 1285 } ex; 1286 }; 1287 1288 struct ib_rdma_wr { 1289 struct ib_send_wr wr; 1290 u64 remote_addr; 1291 u32 rkey; 1292 }; 1293 1294 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1295 { 1296 return container_of(wr, struct ib_rdma_wr, wr); 1297 } 1298 1299 struct ib_atomic_wr { 1300 struct ib_send_wr wr; 1301 u64 remote_addr; 1302 u64 compare_add; 1303 u64 swap; 1304 u64 compare_add_mask; 1305 u64 swap_mask; 1306 u32 rkey; 1307 }; 1308 1309 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1310 { 1311 return container_of(wr, struct ib_atomic_wr, wr); 1312 } 1313 1314 struct ib_ud_wr { 1315 struct ib_send_wr wr; 1316 struct ib_ah *ah; 1317 void *header; 1318 int hlen; 1319 int mss; 1320 u32 remote_qpn; 1321 u32 remote_qkey; 1322 u16 pkey_index; /* valid for GSI only */ 1323 u8 port_num; /* valid for DR SMPs on switch only */ 1324 }; 1325 1326 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1327 { 1328 return container_of(wr, struct ib_ud_wr, wr); 1329 } 1330 1331 struct ib_reg_wr { 1332 struct ib_send_wr wr; 1333 struct ib_mr *mr; 1334 u32 key; 1335 int access; 1336 }; 1337 1338 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1339 { 1340 return container_of(wr, struct ib_reg_wr, wr); 1341 } 1342 1343 struct ib_sig_handover_wr { 1344 struct ib_send_wr wr; 1345 struct ib_sig_attrs *sig_attrs; 1346 struct ib_mr *sig_mr; 1347 int access_flags; 1348 struct ib_sge *prot; 1349 }; 1350 1351 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1352 { 1353 return container_of(wr, struct ib_sig_handover_wr, wr); 1354 } 1355 1356 struct ib_recv_wr { 1357 struct ib_recv_wr *next; 1358 union { 1359 u64 wr_id; 1360 struct ib_cqe *wr_cqe; 1361 }; 1362 struct ib_sge *sg_list; 1363 int num_sge; 1364 }; 1365 1366 enum ib_access_flags { 1367 IB_ACCESS_LOCAL_WRITE = 1, 1368 IB_ACCESS_REMOTE_WRITE = (1<<1), 1369 IB_ACCESS_REMOTE_READ = (1<<2), 1370 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1371 IB_ACCESS_MW_BIND = (1<<4), 1372 IB_ZERO_BASED = (1<<5), 1373 IB_ACCESS_ON_DEMAND = (1<<6), 1374 IB_ACCESS_HUGETLB = (1<<7), 1375 }; 1376 1377 /* 1378 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1379 * are hidden here instead of a uapi header! 1380 */ 1381 enum ib_mr_rereg_flags { 1382 IB_MR_REREG_TRANS = 1, 1383 IB_MR_REREG_PD = (1<<1), 1384 IB_MR_REREG_ACCESS = (1<<2), 1385 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1386 }; 1387 1388 struct ib_fmr_attr { 1389 int max_pages; 1390 int max_maps; 1391 u8 page_shift; 1392 }; 1393 1394 struct ib_umem; 1395 1396 enum rdma_remove_reason { 1397 /* Userspace requested uobject deletion. Call could fail */ 1398 RDMA_REMOVE_DESTROY, 1399 /* Context deletion. This call should delete the actual object itself */ 1400 RDMA_REMOVE_CLOSE, 1401 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1402 RDMA_REMOVE_DRIVER_REMOVE, 1403 /* Context is being cleaned-up, but commit was just completed */ 1404 RDMA_REMOVE_DURING_CLEANUP, 1405 }; 1406 1407 struct ib_rdmacg_object { 1408 #ifdef CONFIG_CGROUP_RDMA 1409 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1410 #endif 1411 }; 1412 1413 struct ib_ucontext { 1414 struct ib_device *device; 1415 struct ib_uverbs_file *ufile; 1416 int closing; 1417 1418 /* locking the uobjects_list */ 1419 struct mutex uobjects_lock; 1420 struct list_head uobjects; 1421 /* protects cleanup process from other actions */ 1422 struct rw_semaphore cleanup_rwsem; 1423 enum rdma_remove_reason cleanup_reason; 1424 1425 struct pid *tgid; 1426 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1427 struct rb_root umem_tree; 1428 /* 1429 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1430 * mmu notifiers registration. 1431 */ 1432 struct rw_semaphore umem_rwsem; 1433 void (*invalidate_range)(struct ib_umem *umem, 1434 unsigned long start, unsigned long end); 1435 1436 struct mmu_notifier mn; 1437 atomic_t notifier_count; 1438 /* A list of umems that don't have private mmu notifier counters yet. */ 1439 struct list_head no_private_counters; 1440 int odp_mrs_count; 1441 #endif 1442 1443 struct ib_rdmacg_object cg_obj; 1444 }; 1445 1446 struct ib_uobject { 1447 u64 user_handle; /* handle given to us by userspace */ 1448 struct ib_ucontext *context; /* associated user context */ 1449 void *object; /* containing object */ 1450 struct list_head list; /* link to context's list */ 1451 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1452 int id; /* index into kernel idr */ 1453 struct kref ref; 1454 atomic_t usecnt; /* protects exclusive access */ 1455 struct rcu_head rcu; /* kfree_rcu() overhead */ 1456 1457 const struct uverbs_obj_type *type; 1458 }; 1459 1460 struct ib_uobject_file { 1461 struct ib_uobject uobj; 1462 /* ufile contains the lock between context release and file close */ 1463 struct ib_uverbs_file *ufile; 1464 }; 1465 1466 struct ib_udata { 1467 const void __user *inbuf; 1468 void __user *outbuf; 1469 size_t inlen; 1470 size_t outlen; 1471 }; 1472 1473 struct ib_pd { 1474 u32 local_dma_lkey; 1475 u32 flags; 1476 struct ib_device *device; 1477 struct ib_uobject *uobject; 1478 atomic_t usecnt; /* count all resources */ 1479 1480 u32 unsafe_global_rkey; 1481 1482 /* 1483 * Implementation details of the RDMA core, don't use in drivers: 1484 */ 1485 struct ib_mr *__internal_mr; 1486 }; 1487 1488 struct ib_xrcd { 1489 struct ib_device *device; 1490 atomic_t usecnt; /* count all exposed resources */ 1491 struct inode *inode; 1492 1493 struct mutex tgt_qp_mutex; 1494 struct list_head tgt_qp_list; 1495 }; 1496 1497 struct ib_ah { 1498 struct ib_device *device; 1499 struct ib_pd *pd; 1500 struct ib_uobject *uobject; 1501 enum rdma_ah_attr_type type; 1502 }; 1503 1504 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1505 1506 enum ib_poll_context { 1507 IB_POLL_DIRECT, /* caller context, no hw completions */ 1508 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1509 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1510 }; 1511 1512 struct ib_cq { 1513 struct ib_device *device; 1514 struct ib_uobject *uobject; 1515 ib_comp_handler comp_handler; 1516 void (*event_handler)(struct ib_event *, void *); 1517 void *cq_context; 1518 int cqe; 1519 atomic_t usecnt; /* count number of work queues */ 1520 enum ib_poll_context poll_ctx; 1521 struct ib_wc *wc; 1522 union { 1523 struct irq_poll iop; 1524 struct work_struct work; 1525 }; 1526 }; 1527 1528 struct ib_srq { 1529 struct ib_device *device; 1530 struct ib_pd *pd; 1531 struct ib_uobject *uobject; 1532 void (*event_handler)(struct ib_event *, void *); 1533 void *srq_context; 1534 enum ib_srq_type srq_type; 1535 atomic_t usecnt; 1536 1537 union { 1538 struct { 1539 struct ib_xrcd *xrcd; 1540 struct ib_cq *cq; 1541 u32 srq_num; 1542 } xrc; 1543 } ext; 1544 }; 1545 1546 enum ib_raw_packet_caps { 1547 /* Strip cvlan from incoming packet and report it in the matching work 1548 * completion is supported. 1549 */ 1550 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1551 /* Scatter FCS field of an incoming packet to host memory is supported. 1552 */ 1553 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1554 /* Checksum offloads are supported (for both send and receive). */ 1555 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1556 /* When a packet is received for an RQ with no receive WQEs, the 1557 * packet processing is delayed. 1558 */ 1559 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1560 }; 1561 1562 enum ib_wq_type { 1563 IB_WQT_RQ 1564 }; 1565 1566 enum ib_wq_state { 1567 IB_WQS_RESET, 1568 IB_WQS_RDY, 1569 IB_WQS_ERR 1570 }; 1571 1572 struct ib_wq { 1573 struct ib_device *device; 1574 struct ib_uobject *uobject; 1575 void *wq_context; 1576 void (*event_handler)(struct ib_event *, void *); 1577 struct ib_pd *pd; 1578 struct ib_cq *cq; 1579 u32 wq_num; 1580 enum ib_wq_state state; 1581 enum ib_wq_type wq_type; 1582 atomic_t usecnt; 1583 }; 1584 1585 enum ib_wq_flags { 1586 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1587 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1588 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1589 }; 1590 1591 struct ib_wq_init_attr { 1592 void *wq_context; 1593 enum ib_wq_type wq_type; 1594 u32 max_wr; 1595 u32 max_sge; 1596 struct ib_cq *cq; 1597 void (*event_handler)(struct ib_event *, void *); 1598 u32 create_flags; /* Use enum ib_wq_flags */ 1599 }; 1600 1601 enum ib_wq_attr_mask { 1602 IB_WQ_STATE = 1 << 0, 1603 IB_WQ_CUR_STATE = 1 << 1, 1604 IB_WQ_FLAGS = 1 << 2, 1605 }; 1606 1607 struct ib_wq_attr { 1608 enum ib_wq_state wq_state; 1609 enum ib_wq_state curr_wq_state; 1610 u32 flags; /* Use enum ib_wq_flags */ 1611 u32 flags_mask; /* Use enum ib_wq_flags */ 1612 }; 1613 1614 struct ib_rwq_ind_table { 1615 struct ib_device *device; 1616 struct ib_uobject *uobject; 1617 atomic_t usecnt; 1618 u32 ind_tbl_num; 1619 u32 log_ind_tbl_size; 1620 struct ib_wq **ind_tbl; 1621 }; 1622 1623 struct ib_rwq_ind_table_init_attr { 1624 u32 log_ind_tbl_size; 1625 /* Each entry is a pointer to Receive Work Queue */ 1626 struct ib_wq **ind_tbl; 1627 }; 1628 1629 enum port_pkey_state { 1630 IB_PORT_PKEY_NOT_VALID = 0, 1631 IB_PORT_PKEY_VALID = 1, 1632 IB_PORT_PKEY_LISTED = 2, 1633 }; 1634 1635 struct ib_qp_security; 1636 1637 struct ib_port_pkey { 1638 enum port_pkey_state state; 1639 u16 pkey_index; 1640 u8 port_num; 1641 struct list_head qp_list; 1642 struct list_head to_error_list; 1643 struct ib_qp_security *sec; 1644 }; 1645 1646 struct ib_ports_pkeys { 1647 struct ib_port_pkey main; 1648 struct ib_port_pkey alt; 1649 }; 1650 1651 struct ib_qp_security { 1652 struct ib_qp *qp; 1653 struct ib_device *dev; 1654 /* Hold this mutex when changing port and pkey settings. */ 1655 struct mutex mutex; 1656 struct ib_ports_pkeys *ports_pkeys; 1657 /* A list of all open shared QP handles. Required to enforce security 1658 * properly for all users of a shared QP. 1659 */ 1660 struct list_head shared_qp_list; 1661 void *security; 1662 bool destroying; 1663 atomic_t error_list_count; 1664 struct completion error_complete; 1665 int error_comps_pending; 1666 }; 1667 1668 /* 1669 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1670 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1671 */ 1672 struct ib_qp { 1673 struct ib_device *device; 1674 struct ib_pd *pd; 1675 struct ib_cq *send_cq; 1676 struct ib_cq *recv_cq; 1677 spinlock_t mr_lock; 1678 int mrs_used; 1679 struct list_head rdma_mrs; 1680 struct list_head sig_mrs; 1681 struct ib_srq *srq; 1682 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1683 struct list_head xrcd_list; 1684 1685 /* count times opened, mcast attaches, flow attaches */ 1686 atomic_t usecnt; 1687 struct list_head open_list; 1688 struct ib_qp *real_qp; 1689 struct ib_uobject *uobject; 1690 void (*event_handler)(struct ib_event *, void *); 1691 void *qp_context; 1692 u32 qp_num; 1693 u32 max_write_sge; 1694 u32 max_read_sge; 1695 enum ib_qp_type qp_type; 1696 struct ib_rwq_ind_table *rwq_ind_tbl; 1697 struct ib_qp_security *qp_sec; 1698 }; 1699 1700 struct ib_mr { 1701 struct ib_device *device; 1702 struct ib_pd *pd; 1703 u32 lkey; 1704 u32 rkey; 1705 u64 iova; 1706 u32 length; 1707 unsigned int page_size; 1708 bool need_inval; 1709 union { 1710 struct ib_uobject *uobject; /* user */ 1711 struct list_head qp_entry; /* FR */ 1712 }; 1713 }; 1714 1715 struct ib_mw { 1716 struct ib_device *device; 1717 struct ib_pd *pd; 1718 struct ib_uobject *uobject; 1719 u32 rkey; 1720 enum ib_mw_type type; 1721 }; 1722 1723 struct ib_fmr { 1724 struct ib_device *device; 1725 struct ib_pd *pd; 1726 struct list_head list; 1727 u32 lkey; 1728 u32 rkey; 1729 }; 1730 1731 /* Supported steering options */ 1732 enum ib_flow_attr_type { 1733 /* steering according to rule specifications */ 1734 IB_FLOW_ATTR_NORMAL = 0x0, 1735 /* default unicast and multicast rule - 1736 * receive all Eth traffic which isn't steered to any QP 1737 */ 1738 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1739 /* default multicast rule - 1740 * receive all Eth multicast traffic which isn't steered to any QP 1741 */ 1742 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1743 /* sniffer rule - receive all port traffic */ 1744 IB_FLOW_ATTR_SNIFFER = 0x3 1745 }; 1746 1747 /* Supported steering header types */ 1748 enum ib_flow_spec_type { 1749 /* L2 headers*/ 1750 IB_FLOW_SPEC_ETH = 0x20, 1751 IB_FLOW_SPEC_IB = 0x22, 1752 /* L3 header*/ 1753 IB_FLOW_SPEC_IPV4 = 0x30, 1754 IB_FLOW_SPEC_IPV6 = 0x31, 1755 /* L4 headers*/ 1756 IB_FLOW_SPEC_TCP = 0x40, 1757 IB_FLOW_SPEC_UDP = 0x41, 1758 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1759 IB_FLOW_SPEC_INNER = 0x100, 1760 /* Actions */ 1761 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1762 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1763 }; 1764 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1765 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1766 1767 /* Flow steering rule priority is set according to it's domain. 1768 * Lower domain value means higher priority. 1769 */ 1770 enum ib_flow_domain { 1771 IB_FLOW_DOMAIN_USER, 1772 IB_FLOW_DOMAIN_ETHTOOL, 1773 IB_FLOW_DOMAIN_RFS, 1774 IB_FLOW_DOMAIN_NIC, 1775 IB_FLOW_DOMAIN_NUM /* Must be last */ 1776 }; 1777 1778 enum ib_flow_flags { 1779 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1780 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1781 }; 1782 1783 struct ib_flow_eth_filter { 1784 u8 dst_mac[6]; 1785 u8 src_mac[6]; 1786 __be16 ether_type; 1787 __be16 vlan_tag; 1788 /* Must be last */ 1789 u8 real_sz[0]; 1790 }; 1791 1792 struct ib_flow_spec_eth { 1793 u32 type; 1794 u16 size; 1795 struct ib_flow_eth_filter val; 1796 struct ib_flow_eth_filter mask; 1797 }; 1798 1799 struct ib_flow_ib_filter { 1800 __be16 dlid; 1801 __u8 sl; 1802 /* Must be last */ 1803 u8 real_sz[0]; 1804 }; 1805 1806 struct ib_flow_spec_ib { 1807 u32 type; 1808 u16 size; 1809 struct ib_flow_ib_filter val; 1810 struct ib_flow_ib_filter mask; 1811 }; 1812 1813 /* IPv4 header flags */ 1814 enum ib_ipv4_flags { 1815 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1816 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1817 last have this flag set */ 1818 }; 1819 1820 struct ib_flow_ipv4_filter { 1821 __be32 src_ip; 1822 __be32 dst_ip; 1823 u8 proto; 1824 u8 tos; 1825 u8 ttl; 1826 u8 flags; 1827 /* Must be last */ 1828 u8 real_sz[0]; 1829 }; 1830 1831 struct ib_flow_spec_ipv4 { 1832 u32 type; 1833 u16 size; 1834 struct ib_flow_ipv4_filter val; 1835 struct ib_flow_ipv4_filter mask; 1836 }; 1837 1838 struct ib_flow_ipv6_filter { 1839 u8 src_ip[16]; 1840 u8 dst_ip[16]; 1841 __be32 flow_label; 1842 u8 next_hdr; 1843 u8 traffic_class; 1844 u8 hop_limit; 1845 /* Must be last */ 1846 u8 real_sz[0]; 1847 }; 1848 1849 struct ib_flow_spec_ipv6 { 1850 u32 type; 1851 u16 size; 1852 struct ib_flow_ipv6_filter val; 1853 struct ib_flow_ipv6_filter mask; 1854 }; 1855 1856 struct ib_flow_tcp_udp_filter { 1857 __be16 dst_port; 1858 __be16 src_port; 1859 /* Must be last */ 1860 u8 real_sz[0]; 1861 }; 1862 1863 struct ib_flow_spec_tcp_udp { 1864 u32 type; 1865 u16 size; 1866 struct ib_flow_tcp_udp_filter val; 1867 struct ib_flow_tcp_udp_filter mask; 1868 }; 1869 1870 struct ib_flow_tunnel_filter { 1871 __be32 tunnel_id; 1872 u8 real_sz[0]; 1873 }; 1874 1875 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1876 * the tunnel_id from val has the vni value 1877 */ 1878 struct ib_flow_spec_tunnel { 1879 u32 type; 1880 u16 size; 1881 struct ib_flow_tunnel_filter val; 1882 struct ib_flow_tunnel_filter mask; 1883 }; 1884 1885 struct ib_flow_spec_action_tag { 1886 enum ib_flow_spec_type type; 1887 u16 size; 1888 u32 tag_id; 1889 }; 1890 1891 struct ib_flow_spec_action_drop { 1892 enum ib_flow_spec_type type; 1893 u16 size; 1894 }; 1895 1896 union ib_flow_spec { 1897 struct { 1898 u32 type; 1899 u16 size; 1900 }; 1901 struct ib_flow_spec_eth eth; 1902 struct ib_flow_spec_ib ib; 1903 struct ib_flow_spec_ipv4 ipv4; 1904 struct ib_flow_spec_tcp_udp tcp_udp; 1905 struct ib_flow_spec_ipv6 ipv6; 1906 struct ib_flow_spec_tunnel tunnel; 1907 struct ib_flow_spec_action_tag flow_tag; 1908 struct ib_flow_spec_action_drop drop; 1909 }; 1910 1911 struct ib_flow_attr { 1912 enum ib_flow_attr_type type; 1913 u16 size; 1914 u16 priority; 1915 u32 flags; 1916 u8 num_of_specs; 1917 u8 port; 1918 /* Following are the optional layers according to user request 1919 * struct ib_flow_spec_xxx 1920 * struct ib_flow_spec_yyy 1921 */ 1922 }; 1923 1924 struct ib_flow { 1925 struct ib_qp *qp; 1926 struct ib_uobject *uobject; 1927 }; 1928 1929 struct ib_mad_hdr; 1930 struct ib_grh; 1931 1932 enum ib_process_mad_flags { 1933 IB_MAD_IGNORE_MKEY = 1, 1934 IB_MAD_IGNORE_BKEY = 2, 1935 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1936 }; 1937 1938 enum ib_mad_result { 1939 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1940 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1941 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1942 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1943 }; 1944 1945 struct ib_port_cache { 1946 u64 subnet_prefix; 1947 struct ib_pkey_cache *pkey; 1948 struct ib_gid_table *gid; 1949 u8 lmc; 1950 enum ib_port_state port_state; 1951 }; 1952 1953 struct ib_cache { 1954 rwlock_t lock; 1955 struct ib_event_handler event_handler; 1956 struct ib_port_cache *ports; 1957 }; 1958 1959 struct iw_cm_verbs; 1960 1961 struct ib_port_immutable { 1962 int pkey_tbl_len; 1963 int gid_tbl_len; 1964 u32 core_cap_flags; 1965 u32 max_mad_size; 1966 }; 1967 1968 /* rdma netdev type - specifies protocol type */ 1969 enum rdma_netdev_t { 1970 RDMA_NETDEV_OPA_VNIC, 1971 RDMA_NETDEV_IPOIB, 1972 }; 1973 1974 /** 1975 * struct rdma_netdev - rdma netdev 1976 * For cases where netstack interfacing is required. 1977 */ 1978 struct rdma_netdev { 1979 void *clnt_priv; 1980 struct ib_device *hca; 1981 u8 port_num; 1982 1983 /* cleanup function must be specified */ 1984 void (*free_rdma_netdev)(struct net_device *netdev); 1985 1986 /* control functions */ 1987 void (*set_id)(struct net_device *netdev, int id); 1988 /* send packet */ 1989 int (*send)(struct net_device *dev, struct sk_buff *skb, 1990 struct ib_ah *address, u32 dqpn); 1991 /* multicast */ 1992 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 1993 union ib_gid *gid, u16 mlid, 1994 int set_qkey, u32 qkey); 1995 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 1996 union ib_gid *gid, u16 mlid); 1997 }; 1998 1999 struct ib_port_pkey_list { 2000 /* Lock to hold while modifying the list. */ 2001 spinlock_t list_lock; 2002 struct list_head pkey_list; 2003 }; 2004 2005 struct ib_device { 2006 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2007 struct device *dma_device; 2008 2009 char name[IB_DEVICE_NAME_MAX]; 2010 2011 struct list_head event_handler_list; 2012 spinlock_t event_handler_lock; 2013 2014 spinlock_t client_data_lock; 2015 struct list_head core_list; 2016 /* Access to the client_data_list is protected by the client_data_lock 2017 * spinlock and the lists_rwsem read-write semaphore */ 2018 struct list_head client_data_list; 2019 2020 struct ib_cache cache; 2021 /** 2022 * port_immutable is indexed by port number 2023 */ 2024 struct ib_port_immutable *port_immutable; 2025 2026 int num_comp_vectors; 2027 2028 struct ib_port_pkey_list *port_pkey_list; 2029 2030 struct iw_cm_verbs *iwcm; 2031 2032 /** 2033 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2034 * driver initialized data. The struct is kfree()'ed by the sysfs 2035 * core when the device is removed. A lifespan of -1 in the return 2036 * struct tells the core to set a default lifespan. 2037 */ 2038 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2039 u8 port_num); 2040 /** 2041 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2042 * @index - The index in the value array we wish to have updated, or 2043 * num_counters if we want all stats updated 2044 * Return codes - 2045 * < 0 - Error, no counters updated 2046 * index - Updated the single counter pointed to by index 2047 * num_counters - Updated all counters (will reset the timestamp 2048 * and prevent further calls for lifespan milliseconds) 2049 * Drivers are allowed to update all counters in leiu of just the 2050 * one given in index at their option 2051 */ 2052 int (*get_hw_stats)(struct ib_device *device, 2053 struct rdma_hw_stats *stats, 2054 u8 port, int index); 2055 int (*query_device)(struct ib_device *device, 2056 struct ib_device_attr *device_attr, 2057 struct ib_udata *udata); 2058 int (*query_port)(struct ib_device *device, 2059 u8 port_num, 2060 struct ib_port_attr *port_attr); 2061 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2062 u8 port_num); 2063 /* When calling get_netdev, the HW vendor's driver should return the 2064 * net device of device @device at port @port_num or NULL if such 2065 * a net device doesn't exist. The vendor driver should call dev_hold 2066 * on this net device. The HW vendor's device driver must guarantee 2067 * that this function returns NULL before the net device reaches 2068 * NETDEV_UNREGISTER_FINAL state. 2069 */ 2070 struct net_device *(*get_netdev)(struct ib_device *device, 2071 u8 port_num); 2072 int (*query_gid)(struct ib_device *device, 2073 u8 port_num, int index, 2074 union ib_gid *gid); 2075 /* When calling add_gid, the HW vendor's driver should 2076 * add the gid of device @device at gid index @index of 2077 * port @port_num to be @gid. Meta-info of that gid (for example, 2078 * the network device related to this gid is available 2079 * at @attr. @context allows the HW vendor driver to store extra 2080 * information together with a GID entry. The HW vendor may allocate 2081 * memory to contain this information and store it in @context when a 2082 * new GID entry is written to. Params are consistent until the next 2083 * call of add_gid or delete_gid. The function should return 0 on 2084 * success or error otherwise. The function could be called 2085 * concurrently for different ports. This function is only called 2086 * when roce_gid_table is used. 2087 */ 2088 int (*add_gid)(struct ib_device *device, 2089 u8 port_num, 2090 unsigned int index, 2091 const union ib_gid *gid, 2092 const struct ib_gid_attr *attr, 2093 void **context); 2094 /* When calling del_gid, the HW vendor's driver should delete the 2095 * gid of device @device at gid index @index of port @port_num. 2096 * Upon the deletion of a GID entry, the HW vendor must free any 2097 * allocated memory. The caller will clear @context afterwards. 2098 * This function is only called when roce_gid_table is used. 2099 */ 2100 int (*del_gid)(struct ib_device *device, 2101 u8 port_num, 2102 unsigned int index, 2103 void **context); 2104 int (*query_pkey)(struct ib_device *device, 2105 u8 port_num, u16 index, u16 *pkey); 2106 int (*modify_device)(struct ib_device *device, 2107 int device_modify_mask, 2108 struct ib_device_modify *device_modify); 2109 int (*modify_port)(struct ib_device *device, 2110 u8 port_num, int port_modify_mask, 2111 struct ib_port_modify *port_modify); 2112 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2113 struct ib_udata *udata); 2114 int (*dealloc_ucontext)(struct ib_ucontext *context); 2115 int (*mmap)(struct ib_ucontext *context, 2116 struct vm_area_struct *vma); 2117 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2118 struct ib_ucontext *context, 2119 struct ib_udata *udata); 2120 int (*dealloc_pd)(struct ib_pd *pd); 2121 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2122 struct rdma_ah_attr *ah_attr, 2123 struct ib_udata *udata); 2124 int (*modify_ah)(struct ib_ah *ah, 2125 struct rdma_ah_attr *ah_attr); 2126 int (*query_ah)(struct ib_ah *ah, 2127 struct rdma_ah_attr *ah_attr); 2128 int (*destroy_ah)(struct ib_ah *ah); 2129 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2130 struct ib_srq_init_attr *srq_init_attr, 2131 struct ib_udata *udata); 2132 int (*modify_srq)(struct ib_srq *srq, 2133 struct ib_srq_attr *srq_attr, 2134 enum ib_srq_attr_mask srq_attr_mask, 2135 struct ib_udata *udata); 2136 int (*query_srq)(struct ib_srq *srq, 2137 struct ib_srq_attr *srq_attr); 2138 int (*destroy_srq)(struct ib_srq *srq); 2139 int (*post_srq_recv)(struct ib_srq *srq, 2140 struct ib_recv_wr *recv_wr, 2141 struct ib_recv_wr **bad_recv_wr); 2142 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2143 struct ib_qp_init_attr *qp_init_attr, 2144 struct ib_udata *udata); 2145 int (*modify_qp)(struct ib_qp *qp, 2146 struct ib_qp_attr *qp_attr, 2147 int qp_attr_mask, 2148 struct ib_udata *udata); 2149 int (*query_qp)(struct ib_qp *qp, 2150 struct ib_qp_attr *qp_attr, 2151 int qp_attr_mask, 2152 struct ib_qp_init_attr *qp_init_attr); 2153 int (*destroy_qp)(struct ib_qp *qp); 2154 int (*post_send)(struct ib_qp *qp, 2155 struct ib_send_wr *send_wr, 2156 struct ib_send_wr **bad_send_wr); 2157 int (*post_recv)(struct ib_qp *qp, 2158 struct ib_recv_wr *recv_wr, 2159 struct ib_recv_wr **bad_recv_wr); 2160 struct ib_cq * (*create_cq)(struct ib_device *device, 2161 const struct ib_cq_init_attr *attr, 2162 struct ib_ucontext *context, 2163 struct ib_udata *udata); 2164 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2165 u16 cq_period); 2166 int (*destroy_cq)(struct ib_cq *cq); 2167 int (*resize_cq)(struct ib_cq *cq, int cqe, 2168 struct ib_udata *udata); 2169 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2170 struct ib_wc *wc); 2171 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2172 int (*req_notify_cq)(struct ib_cq *cq, 2173 enum ib_cq_notify_flags flags); 2174 int (*req_ncomp_notif)(struct ib_cq *cq, 2175 int wc_cnt); 2176 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2177 int mr_access_flags); 2178 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2179 u64 start, u64 length, 2180 u64 virt_addr, 2181 int mr_access_flags, 2182 struct ib_udata *udata); 2183 int (*rereg_user_mr)(struct ib_mr *mr, 2184 int flags, 2185 u64 start, u64 length, 2186 u64 virt_addr, 2187 int mr_access_flags, 2188 struct ib_pd *pd, 2189 struct ib_udata *udata); 2190 int (*dereg_mr)(struct ib_mr *mr); 2191 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2192 enum ib_mr_type mr_type, 2193 u32 max_num_sg); 2194 int (*map_mr_sg)(struct ib_mr *mr, 2195 struct scatterlist *sg, 2196 int sg_nents, 2197 unsigned int *sg_offset); 2198 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2199 enum ib_mw_type type, 2200 struct ib_udata *udata); 2201 int (*dealloc_mw)(struct ib_mw *mw); 2202 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2203 int mr_access_flags, 2204 struct ib_fmr_attr *fmr_attr); 2205 int (*map_phys_fmr)(struct ib_fmr *fmr, 2206 u64 *page_list, int list_len, 2207 u64 iova); 2208 int (*unmap_fmr)(struct list_head *fmr_list); 2209 int (*dealloc_fmr)(struct ib_fmr *fmr); 2210 int (*attach_mcast)(struct ib_qp *qp, 2211 union ib_gid *gid, 2212 u16 lid); 2213 int (*detach_mcast)(struct ib_qp *qp, 2214 union ib_gid *gid, 2215 u16 lid); 2216 int (*process_mad)(struct ib_device *device, 2217 int process_mad_flags, 2218 u8 port_num, 2219 const struct ib_wc *in_wc, 2220 const struct ib_grh *in_grh, 2221 const struct ib_mad_hdr *in_mad, 2222 size_t in_mad_size, 2223 struct ib_mad_hdr *out_mad, 2224 size_t *out_mad_size, 2225 u16 *out_mad_pkey_index); 2226 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2227 struct ib_ucontext *ucontext, 2228 struct ib_udata *udata); 2229 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2230 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2231 struct ib_flow_attr 2232 *flow_attr, 2233 int domain); 2234 int (*destroy_flow)(struct ib_flow *flow_id); 2235 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2236 struct ib_mr_status *mr_status); 2237 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2238 void (*drain_rq)(struct ib_qp *qp); 2239 void (*drain_sq)(struct ib_qp *qp); 2240 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2241 int state); 2242 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2243 struct ifla_vf_info *ivf); 2244 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2245 struct ifla_vf_stats *stats); 2246 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2247 int type); 2248 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2249 struct ib_wq_init_attr *init_attr, 2250 struct ib_udata *udata); 2251 int (*destroy_wq)(struct ib_wq *wq); 2252 int (*modify_wq)(struct ib_wq *wq, 2253 struct ib_wq_attr *attr, 2254 u32 wq_attr_mask, 2255 struct ib_udata *udata); 2256 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2257 struct ib_rwq_ind_table_init_attr *init_attr, 2258 struct ib_udata *udata); 2259 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2260 /** 2261 * rdma netdev operation 2262 * 2263 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it 2264 * doesn't support the specified rdma netdev type. 2265 */ 2266 struct net_device *(*alloc_rdma_netdev)( 2267 struct ib_device *device, 2268 u8 port_num, 2269 enum rdma_netdev_t type, 2270 const char *name, 2271 unsigned char name_assign_type, 2272 void (*setup)(struct net_device *)); 2273 2274 struct module *owner; 2275 struct device dev; 2276 struct kobject *ports_parent; 2277 struct list_head port_list; 2278 2279 enum { 2280 IB_DEV_UNINITIALIZED, 2281 IB_DEV_REGISTERED, 2282 IB_DEV_UNREGISTERED 2283 } reg_state; 2284 2285 int uverbs_abi_ver; 2286 u64 uverbs_cmd_mask; 2287 u64 uverbs_ex_cmd_mask; 2288 2289 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2290 __be64 node_guid; 2291 u32 local_dma_lkey; 2292 u16 is_switch:1; 2293 u8 node_type; 2294 u8 phys_port_cnt; 2295 struct ib_device_attr attrs; 2296 struct attribute_group *hw_stats_ag; 2297 struct rdma_hw_stats *hw_stats; 2298 2299 #ifdef CONFIG_CGROUP_RDMA 2300 struct rdmacg_device cg_device; 2301 #endif 2302 2303 u32 index; 2304 2305 /** 2306 * The following mandatory functions are used only at device 2307 * registration. Keep functions such as these at the end of this 2308 * structure to avoid cache line misses when accessing struct ib_device 2309 * in fast paths. 2310 */ 2311 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2312 void (*get_dev_fw_str)(struct ib_device *, char *str); 2313 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2314 int comp_vector); 2315 }; 2316 2317 struct ib_client { 2318 char *name; 2319 void (*add) (struct ib_device *); 2320 void (*remove)(struct ib_device *, void *client_data); 2321 2322 /* Returns the net_dev belonging to this ib_client and matching the 2323 * given parameters. 2324 * @dev: An RDMA device that the net_dev use for communication. 2325 * @port: A physical port number on the RDMA device. 2326 * @pkey: P_Key that the net_dev uses if applicable. 2327 * @gid: A GID that the net_dev uses to communicate. 2328 * @addr: An IP address the net_dev is configured with. 2329 * @client_data: The device's client data set by ib_set_client_data(). 2330 * 2331 * An ib_client that implements a net_dev on top of RDMA devices 2332 * (such as IP over IB) should implement this callback, allowing the 2333 * rdma_cm module to find the right net_dev for a given request. 2334 * 2335 * The caller is responsible for calling dev_put on the returned 2336 * netdev. */ 2337 struct net_device *(*get_net_dev_by_params)( 2338 struct ib_device *dev, 2339 u8 port, 2340 u16 pkey, 2341 const union ib_gid *gid, 2342 const struct sockaddr *addr, 2343 void *client_data); 2344 struct list_head list; 2345 }; 2346 2347 struct ib_device *ib_alloc_device(size_t size); 2348 void ib_dealloc_device(struct ib_device *device); 2349 2350 void ib_get_device_fw_str(struct ib_device *device, char *str); 2351 2352 int ib_register_device(struct ib_device *device, 2353 int (*port_callback)(struct ib_device *, 2354 u8, struct kobject *)); 2355 void ib_unregister_device(struct ib_device *device); 2356 2357 int ib_register_client (struct ib_client *client); 2358 void ib_unregister_client(struct ib_client *client); 2359 2360 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2361 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2362 void *data); 2363 2364 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2365 { 2366 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2367 } 2368 2369 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2370 { 2371 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2372 } 2373 2374 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2375 size_t offset, 2376 size_t len) 2377 { 2378 const void __user *p = udata->inbuf + offset; 2379 bool ret; 2380 u8 *buf; 2381 2382 if (len > USHRT_MAX) 2383 return false; 2384 2385 buf = memdup_user(p, len); 2386 if (IS_ERR(buf)) 2387 return false; 2388 2389 ret = !memchr_inv(buf, 0, len); 2390 kfree(buf); 2391 return ret; 2392 } 2393 2394 /** 2395 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2396 * contains all required attributes and no attributes not allowed for 2397 * the given QP state transition. 2398 * @cur_state: Current QP state 2399 * @next_state: Next QP state 2400 * @type: QP type 2401 * @mask: Mask of supplied QP attributes 2402 * @ll : link layer of port 2403 * 2404 * This function is a helper function that a low-level driver's 2405 * modify_qp method can use to validate the consumer's input. It 2406 * checks that cur_state and next_state are valid QP states, that a 2407 * transition from cur_state to next_state is allowed by the IB spec, 2408 * and that the attribute mask supplied is allowed for the transition. 2409 */ 2410 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2411 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2412 enum rdma_link_layer ll); 2413 2414 int ib_register_event_handler (struct ib_event_handler *event_handler); 2415 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2416 void ib_dispatch_event(struct ib_event *event); 2417 2418 int ib_query_port(struct ib_device *device, 2419 u8 port_num, struct ib_port_attr *port_attr); 2420 2421 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2422 u8 port_num); 2423 2424 /** 2425 * rdma_cap_ib_switch - Check if the device is IB switch 2426 * @device: Device to check 2427 * 2428 * Device driver is responsible for setting is_switch bit on 2429 * in ib_device structure at init time. 2430 * 2431 * Return: true if the device is IB switch. 2432 */ 2433 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2434 { 2435 return device->is_switch; 2436 } 2437 2438 /** 2439 * rdma_start_port - Return the first valid port number for the device 2440 * specified 2441 * 2442 * @device: Device to be checked 2443 * 2444 * Return start port number 2445 */ 2446 static inline u8 rdma_start_port(const struct ib_device *device) 2447 { 2448 return rdma_cap_ib_switch(device) ? 0 : 1; 2449 } 2450 2451 /** 2452 * rdma_end_port - Return the last valid port number for the device 2453 * specified 2454 * 2455 * @device: Device to be checked 2456 * 2457 * Return last port number 2458 */ 2459 static inline u8 rdma_end_port(const struct ib_device *device) 2460 { 2461 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2462 } 2463 2464 static inline int rdma_is_port_valid(const struct ib_device *device, 2465 unsigned int port) 2466 { 2467 return (port >= rdma_start_port(device) && 2468 port <= rdma_end_port(device)); 2469 } 2470 2471 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2472 { 2473 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2474 } 2475 2476 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2477 { 2478 return device->port_immutable[port_num].core_cap_flags & 2479 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2480 } 2481 2482 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2483 { 2484 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2485 } 2486 2487 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2488 { 2489 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2490 } 2491 2492 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2493 { 2494 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2495 } 2496 2497 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2498 { 2499 return rdma_protocol_ib(device, port_num) || 2500 rdma_protocol_roce(device, port_num); 2501 } 2502 2503 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2504 { 2505 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2506 } 2507 2508 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2509 { 2510 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2511 } 2512 2513 /** 2514 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2515 * Management Datagrams. 2516 * @device: Device to check 2517 * @port_num: Port number to check 2518 * 2519 * Management Datagrams (MAD) are a required part of the InfiniBand 2520 * specification and are supported on all InfiniBand devices. A slightly 2521 * extended version are also supported on OPA interfaces. 2522 * 2523 * Return: true if the port supports sending/receiving of MAD packets. 2524 */ 2525 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2526 { 2527 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2528 } 2529 2530 /** 2531 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2532 * Management Datagrams. 2533 * @device: Device to check 2534 * @port_num: Port number to check 2535 * 2536 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2537 * datagrams with their own versions. These OPA MADs share many but not all of 2538 * the characteristics of InfiniBand MADs. 2539 * 2540 * OPA MADs differ in the following ways: 2541 * 2542 * 1) MADs are variable size up to 2K 2543 * IBTA defined MADs remain fixed at 256 bytes 2544 * 2) OPA SMPs must carry valid PKeys 2545 * 3) OPA SMP packets are a different format 2546 * 2547 * Return: true if the port supports OPA MAD packet formats. 2548 */ 2549 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2550 { 2551 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2552 == RDMA_CORE_CAP_OPA_MAD; 2553 } 2554 2555 /** 2556 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2557 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2558 * @device: Device to check 2559 * @port_num: Port number to check 2560 * 2561 * Each InfiniBand node is required to provide a Subnet Management Agent 2562 * that the subnet manager can access. Prior to the fabric being fully 2563 * configured by the subnet manager, the SMA is accessed via a well known 2564 * interface called the Subnet Management Interface (SMI). This interface 2565 * uses directed route packets to communicate with the SM to get around the 2566 * chicken and egg problem of the SM needing to know what's on the fabric 2567 * in order to configure the fabric, and needing to configure the fabric in 2568 * order to send packets to the devices on the fabric. These directed 2569 * route packets do not need the fabric fully configured in order to reach 2570 * their destination. The SMI is the only method allowed to send 2571 * directed route packets on an InfiniBand fabric. 2572 * 2573 * Return: true if the port provides an SMI. 2574 */ 2575 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2576 { 2577 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2578 } 2579 2580 /** 2581 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2582 * Communication Manager. 2583 * @device: Device to check 2584 * @port_num: Port number to check 2585 * 2586 * The InfiniBand Communication Manager is one of many pre-defined General 2587 * Service Agents (GSA) that are accessed via the General Service 2588 * Interface (GSI). It's role is to facilitate establishment of connections 2589 * between nodes as well as other management related tasks for established 2590 * connections. 2591 * 2592 * Return: true if the port supports an IB CM (this does not guarantee that 2593 * a CM is actually running however). 2594 */ 2595 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2596 { 2597 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2598 } 2599 2600 /** 2601 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2602 * Communication Manager. 2603 * @device: Device to check 2604 * @port_num: Port number to check 2605 * 2606 * Similar to above, but specific to iWARP connections which have a different 2607 * managment protocol than InfiniBand. 2608 * 2609 * Return: true if the port supports an iWARP CM (this does not guarantee that 2610 * a CM is actually running however). 2611 */ 2612 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2613 { 2614 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2615 } 2616 2617 /** 2618 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2619 * Subnet Administration. 2620 * @device: Device to check 2621 * @port_num: Port number to check 2622 * 2623 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2624 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2625 * fabrics, devices should resolve routes to other hosts by contacting the 2626 * SA to query the proper route. 2627 * 2628 * Return: true if the port should act as a client to the fabric Subnet 2629 * Administration interface. This does not imply that the SA service is 2630 * running locally. 2631 */ 2632 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2633 { 2634 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2635 } 2636 2637 /** 2638 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2639 * Multicast. 2640 * @device: Device to check 2641 * @port_num: Port number to check 2642 * 2643 * InfiniBand multicast registration is more complex than normal IPv4 or 2644 * IPv6 multicast registration. Each Host Channel Adapter must register 2645 * with the Subnet Manager when it wishes to join a multicast group. It 2646 * should do so only once regardless of how many queue pairs it subscribes 2647 * to this group. And it should leave the group only after all queue pairs 2648 * attached to the group have been detached. 2649 * 2650 * Return: true if the port must undertake the additional adminstrative 2651 * overhead of registering/unregistering with the SM and tracking of the 2652 * total number of queue pairs attached to the multicast group. 2653 */ 2654 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2655 { 2656 return rdma_cap_ib_sa(device, port_num); 2657 } 2658 2659 /** 2660 * rdma_cap_af_ib - Check if the port of device has the capability 2661 * Native Infiniband Address. 2662 * @device: Device to check 2663 * @port_num: Port number to check 2664 * 2665 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2666 * GID. RoCE uses a different mechanism, but still generates a GID via 2667 * a prescribed mechanism and port specific data. 2668 * 2669 * Return: true if the port uses a GID address to identify devices on the 2670 * network. 2671 */ 2672 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2673 { 2674 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2675 } 2676 2677 /** 2678 * rdma_cap_eth_ah - Check if the port of device has the capability 2679 * Ethernet Address Handle. 2680 * @device: Device to check 2681 * @port_num: Port number to check 2682 * 2683 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2684 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2685 * port. Normally, packet headers are generated by the sending host 2686 * adapter, but when sending connectionless datagrams, we must manually 2687 * inject the proper headers for the fabric we are communicating over. 2688 * 2689 * Return: true if we are running as a RoCE port and must force the 2690 * addition of a Global Route Header built from our Ethernet Address 2691 * Handle into our header list for connectionless packets. 2692 */ 2693 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2694 { 2695 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2696 } 2697 2698 /** 2699 * rdma_cap_opa_ah - Check if the port of device supports 2700 * OPA Address handles 2701 * @device: Device to check 2702 * @port_num: Port number to check 2703 * 2704 * Return: true if we are running on an OPA device which supports 2705 * the extended OPA addressing. 2706 */ 2707 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 2708 { 2709 return (device->port_immutable[port_num].core_cap_flags & 2710 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 2711 } 2712 2713 /** 2714 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2715 * 2716 * @device: Device 2717 * @port_num: Port number 2718 * 2719 * This MAD size includes the MAD headers and MAD payload. No other headers 2720 * are included. 2721 * 2722 * Return the max MAD size required by the Port. Will return 0 if the port 2723 * does not support MADs 2724 */ 2725 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2726 { 2727 return device->port_immutable[port_num].max_mad_size; 2728 } 2729 2730 /** 2731 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2732 * @device: Device to check 2733 * @port_num: Port number to check 2734 * 2735 * RoCE GID table mechanism manages the various GIDs for a device. 2736 * 2737 * NOTE: if allocating the port's GID table has failed, this call will still 2738 * return true, but any RoCE GID table API will fail. 2739 * 2740 * Return: true if the port uses RoCE GID table mechanism in order to manage 2741 * its GIDs. 2742 */ 2743 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2744 u8 port_num) 2745 { 2746 return rdma_protocol_roce(device, port_num) && 2747 device->add_gid && device->del_gid; 2748 } 2749 2750 /* 2751 * Check if the device supports READ W/ INVALIDATE. 2752 */ 2753 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2754 { 2755 /* 2756 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2757 * has support for it yet. 2758 */ 2759 return rdma_protocol_iwarp(dev, port_num); 2760 } 2761 2762 int ib_query_gid(struct ib_device *device, 2763 u8 port_num, int index, union ib_gid *gid, 2764 struct ib_gid_attr *attr); 2765 2766 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2767 int state); 2768 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2769 struct ifla_vf_info *info); 2770 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2771 struct ifla_vf_stats *stats); 2772 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2773 int type); 2774 2775 int ib_query_pkey(struct ib_device *device, 2776 u8 port_num, u16 index, u16 *pkey); 2777 2778 int ib_modify_device(struct ib_device *device, 2779 int device_modify_mask, 2780 struct ib_device_modify *device_modify); 2781 2782 int ib_modify_port(struct ib_device *device, 2783 u8 port_num, int port_modify_mask, 2784 struct ib_port_modify *port_modify); 2785 2786 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2787 enum ib_gid_type gid_type, struct net_device *ndev, 2788 u8 *port_num, u16 *index); 2789 2790 int ib_find_pkey(struct ib_device *device, 2791 u8 port_num, u16 pkey, u16 *index); 2792 2793 enum ib_pd_flags { 2794 /* 2795 * Create a memory registration for all memory in the system and place 2796 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2797 * ULPs to avoid the overhead of dynamic MRs. 2798 * 2799 * This flag is generally considered unsafe and must only be used in 2800 * extremly trusted environments. Every use of it will log a warning 2801 * in the kernel log. 2802 */ 2803 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2804 }; 2805 2806 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2807 const char *caller); 2808 #define ib_alloc_pd(device, flags) \ 2809 __ib_alloc_pd((device), (flags), __func__) 2810 void ib_dealloc_pd(struct ib_pd *pd); 2811 2812 /** 2813 * rdma_create_ah - Creates an address handle for the given address vector. 2814 * @pd: The protection domain associated with the address handle. 2815 * @ah_attr: The attributes of the address vector. 2816 * 2817 * The address handle is used to reference a local or global destination 2818 * in all UD QP post sends. 2819 */ 2820 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 2821 2822 /** 2823 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2824 * work completion. 2825 * @hdr: the L3 header to parse 2826 * @net_type: type of header to parse 2827 * @sgid: place to store source gid 2828 * @dgid: place to store destination gid 2829 */ 2830 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2831 enum rdma_network_type net_type, 2832 union ib_gid *sgid, union ib_gid *dgid); 2833 2834 /** 2835 * ib_get_rdma_header_version - Get the header version 2836 * @hdr: the L3 header to parse 2837 */ 2838 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2839 2840 /** 2841 * ib_init_ah_from_wc - Initializes address handle attributes from a 2842 * work completion. 2843 * @device: Device on which the received message arrived. 2844 * @port_num: Port on which the received message arrived. 2845 * @wc: Work completion associated with the received message. 2846 * @grh: References the received global route header. This parameter is 2847 * ignored unless the work completion indicates that the GRH is valid. 2848 * @ah_attr: Returned attributes that can be used when creating an address 2849 * handle for replying to the message. 2850 */ 2851 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2852 const struct ib_wc *wc, const struct ib_grh *grh, 2853 struct rdma_ah_attr *ah_attr); 2854 2855 /** 2856 * ib_create_ah_from_wc - Creates an address handle associated with the 2857 * sender of the specified work completion. 2858 * @pd: The protection domain associated with the address handle. 2859 * @wc: Work completion information associated with a received message. 2860 * @grh: References the received global route header. This parameter is 2861 * ignored unless the work completion indicates that the GRH is valid. 2862 * @port_num: The outbound port number to associate with the address. 2863 * 2864 * The address handle is used to reference a local or global destination 2865 * in all UD QP post sends. 2866 */ 2867 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2868 const struct ib_grh *grh, u8 port_num); 2869 2870 /** 2871 * rdma_modify_ah - Modifies the address vector associated with an address 2872 * handle. 2873 * @ah: The address handle to modify. 2874 * @ah_attr: The new address vector attributes to associate with the 2875 * address handle. 2876 */ 2877 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2878 2879 /** 2880 * rdma_query_ah - Queries the address vector associated with an address 2881 * handle. 2882 * @ah: The address handle to query. 2883 * @ah_attr: The address vector attributes associated with the address 2884 * handle. 2885 */ 2886 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2887 2888 /** 2889 * rdma_destroy_ah - Destroys an address handle. 2890 * @ah: The address handle to destroy. 2891 */ 2892 int rdma_destroy_ah(struct ib_ah *ah); 2893 2894 /** 2895 * ib_create_srq - Creates a SRQ associated with the specified protection 2896 * domain. 2897 * @pd: The protection domain associated with the SRQ. 2898 * @srq_init_attr: A list of initial attributes required to create the 2899 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2900 * the actual capabilities of the created SRQ. 2901 * 2902 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2903 * requested size of the SRQ, and set to the actual values allocated 2904 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2905 * will always be at least as large as the requested values. 2906 */ 2907 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2908 struct ib_srq_init_attr *srq_init_attr); 2909 2910 /** 2911 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2912 * @srq: The SRQ to modify. 2913 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2914 * the current values of selected SRQ attributes are returned. 2915 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2916 * are being modified. 2917 * 2918 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2919 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2920 * the number of receives queued drops below the limit. 2921 */ 2922 int ib_modify_srq(struct ib_srq *srq, 2923 struct ib_srq_attr *srq_attr, 2924 enum ib_srq_attr_mask srq_attr_mask); 2925 2926 /** 2927 * ib_query_srq - Returns the attribute list and current values for the 2928 * specified SRQ. 2929 * @srq: The SRQ to query. 2930 * @srq_attr: The attributes of the specified SRQ. 2931 */ 2932 int ib_query_srq(struct ib_srq *srq, 2933 struct ib_srq_attr *srq_attr); 2934 2935 /** 2936 * ib_destroy_srq - Destroys the specified SRQ. 2937 * @srq: The SRQ to destroy. 2938 */ 2939 int ib_destroy_srq(struct ib_srq *srq); 2940 2941 /** 2942 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2943 * @srq: The SRQ to post the work request on. 2944 * @recv_wr: A list of work requests to post on the receive queue. 2945 * @bad_recv_wr: On an immediate failure, this parameter will reference 2946 * the work request that failed to be posted on the QP. 2947 */ 2948 static inline int ib_post_srq_recv(struct ib_srq *srq, 2949 struct ib_recv_wr *recv_wr, 2950 struct ib_recv_wr **bad_recv_wr) 2951 { 2952 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2953 } 2954 2955 /** 2956 * ib_create_qp - Creates a QP associated with the specified protection 2957 * domain. 2958 * @pd: The protection domain associated with the QP. 2959 * @qp_init_attr: A list of initial attributes required to create the 2960 * QP. If QP creation succeeds, then the attributes are updated to 2961 * the actual capabilities of the created QP. 2962 */ 2963 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2964 struct ib_qp_init_attr *qp_init_attr); 2965 2966 /** 2967 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 2968 * @qp: The QP to modify. 2969 * @attr: On input, specifies the QP attributes to modify. On output, 2970 * the current values of selected QP attributes are returned. 2971 * @attr_mask: A bit-mask used to specify which attributes of the QP 2972 * are being modified. 2973 * @udata: pointer to user's input output buffer information 2974 * are being modified. 2975 * It returns 0 on success and returns appropriate error code on error. 2976 */ 2977 int ib_modify_qp_with_udata(struct ib_qp *qp, 2978 struct ib_qp_attr *attr, 2979 int attr_mask, 2980 struct ib_udata *udata); 2981 2982 /** 2983 * ib_modify_qp - Modifies the attributes for the specified QP and then 2984 * transitions the QP to the given state. 2985 * @qp: The QP to modify. 2986 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2987 * the current values of selected QP attributes are returned. 2988 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2989 * are being modified. 2990 */ 2991 int ib_modify_qp(struct ib_qp *qp, 2992 struct ib_qp_attr *qp_attr, 2993 int qp_attr_mask); 2994 2995 /** 2996 * ib_query_qp - Returns the attribute list and current values for the 2997 * specified QP. 2998 * @qp: The QP to query. 2999 * @qp_attr: The attributes of the specified QP. 3000 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3001 * @qp_init_attr: Additional attributes of the selected QP. 3002 * 3003 * The qp_attr_mask may be used to limit the query to gathering only the 3004 * selected attributes. 3005 */ 3006 int ib_query_qp(struct ib_qp *qp, 3007 struct ib_qp_attr *qp_attr, 3008 int qp_attr_mask, 3009 struct ib_qp_init_attr *qp_init_attr); 3010 3011 /** 3012 * ib_destroy_qp - Destroys the specified QP. 3013 * @qp: The QP to destroy. 3014 */ 3015 int ib_destroy_qp(struct ib_qp *qp); 3016 3017 /** 3018 * ib_open_qp - Obtain a reference to an existing sharable QP. 3019 * @xrcd - XRC domain 3020 * @qp_open_attr: Attributes identifying the QP to open. 3021 * 3022 * Returns a reference to a sharable QP. 3023 */ 3024 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3025 struct ib_qp_open_attr *qp_open_attr); 3026 3027 /** 3028 * ib_close_qp - Release an external reference to a QP. 3029 * @qp: The QP handle to release 3030 * 3031 * The opened QP handle is released by the caller. The underlying 3032 * shared QP is not destroyed until all internal references are released. 3033 */ 3034 int ib_close_qp(struct ib_qp *qp); 3035 3036 /** 3037 * ib_post_send - Posts a list of work requests to the send queue of 3038 * the specified QP. 3039 * @qp: The QP to post the work request on. 3040 * @send_wr: A list of work requests to post on the send queue. 3041 * @bad_send_wr: On an immediate failure, this parameter will reference 3042 * the work request that failed to be posted on the QP. 3043 * 3044 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3045 * error is returned, the QP state shall not be affected, 3046 * ib_post_send() will return an immediate error after queueing any 3047 * earlier work requests in the list. 3048 */ 3049 static inline int ib_post_send(struct ib_qp *qp, 3050 struct ib_send_wr *send_wr, 3051 struct ib_send_wr **bad_send_wr) 3052 { 3053 return qp->device->post_send(qp, send_wr, bad_send_wr); 3054 } 3055 3056 /** 3057 * ib_post_recv - Posts a list of work requests to the receive queue of 3058 * the specified QP. 3059 * @qp: The QP to post the work request on. 3060 * @recv_wr: A list of work requests to post on the receive queue. 3061 * @bad_recv_wr: On an immediate failure, this parameter will reference 3062 * the work request that failed to be posted on the QP. 3063 */ 3064 static inline int ib_post_recv(struct ib_qp *qp, 3065 struct ib_recv_wr *recv_wr, 3066 struct ib_recv_wr **bad_recv_wr) 3067 { 3068 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3069 } 3070 3071 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3072 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 3073 void ib_free_cq(struct ib_cq *cq); 3074 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3075 3076 /** 3077 * ib_create_cq - Creates a CQ on the specified device. 3078 * @device: The device on which to create the CQ. 3079 * @comp_handler: A user-specified callback that is invoked when a 3080 * completion event occurs on the CQ. 3081 * @event_handler: A user-specified callback that is invoked when an 3082 * asynchronous event not associated with a completion occurs on the CQ. 3083 * @cq_context: Context associated with the CQ returned to the user via 3084 * the associated completion and event handlers. 3085 * @cq_attr: The attributes the CQ should be created upon. 3086 * 3087 * Users can examine the cq structure to determine the actual CQ size. 3088 */ 3089 struct ib_cq *ib_create_cq(struct ib_device *device, 3090 ib_comp_handler comp_handler, 3091 void (*event_handler)(struct ib_event *, void *), 3092 void *cq_context, 3093 const struct ib_cq_init_attr *cq_attr); 3094 3095 /** 3096 * ib_resize_cq - Modifies the capacity of the CQ. 3097 * @cq: The CQ to resize. 3098 * @cqe: The minimum size of the CQ. 3099 * 3100 * Users can examine the cq structure to determine the actual CQ size. 3101 */ 3102 int ib_resize_cq(struct ib_cq *cq, int cqe); 3103 3104 /** 3105 * ib_modify_cq - Modifies moderation params of the CQ 3106 * @cq: The CQ to modify. 3107 * @cq_count: number of CQEs that will trigger an event 3108 * @cq_period: max period of time in usec before triggering an event 3109 * 3110 */ 3111 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3112 3113 /** 3114 * ib_destroy_cq - Destroys the specified CQ. 3115 * @cq: The CQ to destroy. 3116 */ 3117 int ib_destroy_cq(struct ib_cq *cq); 3118 3119 /** 3120 * ib_poll_cq - poll a CQ for completion(s) 3121 * @cq:the CQ being polled 3122 * @num_entries:maximum number of completions to return 3123 * @wc:array of at least @num_entries &struct ib_wc where completions 3124 * will be returned 3125 * 3126 * Poll a CQ for (possibly multiple) completions. If the return value 3127 * is < 0, an error occurred. If the return value is >= 0, it is the 3128 * number of completions returned. If the return value is 3129 * non-negative and < num_entries, then the CQ was emptied. 3130 */ 3131 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3132 struct ib_wc *wc) 3133 { 3134 return cq->device->poll_cq(cq, num_entries, wc); 3135 } 3136 3137 /** 3138 * ib_peek_cq - Returns the number of unreaped completions currently 3139 * on the specified CQ. 3140 * @cq: The CQ to peek. 3141 * @wc_cnt: A minimum number of unreaped completions to check for. 3142 * 3143 * If the number of unreaped completions is greater than or equal to wc_cnt, 3144 * this function returns wc_cnt, otherwise, it returns the actual number of 3145 * unreaped completions. 3146 */ 3147 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3148 3149 /** 3150 * ib_req_notify_cq - Request completion notification on a CQ. 3151 * @cq: The CQ to generate an event for. 3152 * @flags: 3153 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3154 * to request an event on the next solicited event or next work 3155 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3156 * may also be |ed in to request a hint about missed events, as 3157 * described below. 3158 * 3159 * Return Value: 3160 * < 0 means an error occurred while requesting notification 3161 * == 0 means notification was requested successfully, and if 3162 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3163 * were missed and it is safe to wait for another event. In 3164 * this case is it guaranteed that any work completions added 3165 * to the CQ since the last CQ poll will trigger a completion 3166 * notification event. 3167 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3168 * in. It means that the consumer must poll the CQ again to 3169 * make sure it is empty to avoid missing an event because of a 3170 * race between requesting notification and an entry being 3171 * added to the CQ. This return value means it is possible 3172 * (but not guaranteed) that a work completion has been added 3173 * to the CQ since the last poll without triggering a 3174 * completion notification event. 3175 */ 3176 static inline int ib_req_notify_cq(struct ib_cq *cq, 3177 enum ib_cq_notify_flags flags) 3178 { 3179 return cq->device->req_notify_cq(cq, flags); 3180 } 3181 3182 /** 3183 * ib_req_ncomp_notif - Request completion notification when there are 3184 * at least the specified number of unreaped completions on the CQ. 3185 * @cq: The CQ to generate an event for. 3186 * @wc_cnt: The number of unreaped completions that should be on the 3187 * CQ before an event is generated. 3188 */ 3189 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3190 { 3191 return cq->device->req_ncomp_notif ? 3192 cq->device->req_ncomp_notif(cq, wc_cnt) : 3193 -ENOSYS; 3194 } 3195 3196 /** 3197 * ib_dma_mapping_error - check a DMA addr for error 3198 * @dev: The device for which the dma_addr was created 3199 * @dma_addr: The DMA address to check 3200 */ 3201 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3202 { 3203 return dma_mapping_error(dev->dma_device, dma_addr); 3204 } 3205 3206 /** 3207 * ib_dma_map_single - Map a kernel virtual address to DMA address 3208 * @dev: The device for which the dma_addr is to be created 3209 * @cpu_addr: The kernel virtual address 3210 * @size: The size of the region in bytes 3211 * @direction: The direction of the DMA 3212 */ 3213 static inline u64 ib_dma_map_single(struct ib_device *dev, 3214 void *cpu_addr, size_t size, 3215 enum dma_data_direction direction) 3216 { 3217 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3218 } 3219 3220 /** 3221 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3222 * @dev: The device for which the DMA address was created 3223 * @addr: The DMA address 3224 * @size: The size of the region in bytes 3225 * @direction: The direction of the DMA 3226 */ 3227 static inline void ib_dma_unmap_single(struct ib_device *dev, 3228 u64 addr, size_t size, 3229 enum dma_data_direction direction) 3230 { 3231 dma_unmap_single(dev->dma_device, addr, size, direction); 3232 } 3233 3234 /** 3235 * ib_dma_map_page - Map a physical page to DMA address 3236 * @dev: The device for which the dma_addr is to be created 3237 * @page: The page to be mapped 3238 * @offset: The offset within the page 3239 * @size: The size of the region in bytes 3240 * @direction: The direction of the DMA 3241 */ 3242 static inline u64 ib_dma_map_page(struct ib_device *dev, 3243 struct page *page, 3244 unsigned long offset, 3245 size_t size, 3246 enum dma_data_direction direction) 3247 { 3248 return dma_map_page(dev->dma_device, page, offset, size, direction); 3249 } 3250 3251 /** 3252 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3253 * @dev: The device for which the DMA address was created 3254 * @addr: The DMA address 3255 * @size: The size of the region in bytes 3256 * @direction: The direction of the DMA 3257 */ 3258 static inline void ib_dma_unmap_page(struct ib_device *dev, 3259 u64 addr, size_t size, 3260 enum dma_data_direction direction) 3261 { 3262 dma_unmap_page(dev->dma_device, addr, size, direction); 3263 } 3264 3265 /** 3266 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3267 * @dev: The device for which the DMA addresses are to be created 3268 * @sg: The array of scatter/gather entries 3269 * @nents: The number of scatter/gather entries 3270 * @direction: The direction of the DMA 3271 */ 3272 static inline int ib_dma_map_sg(struct ib_device *dev, 3273 struct scatterlist *sg, int nents, 3274 enum dma_data_direction direction) 3275 { 3276 return dma_map_sg(dev->dma_device, sg, nents, direction); 3277 } 3278 3279 /** 3280 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3281 * @dev: The device for which the DMA addresses were created 3282 * @sg: The array of scatter/gather entries 3283 * @nents: The number of scatter/gather entries 3284 * @direction: The direction of the DMA 3285 */ 3286 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3287 struct scatterlist *sg, int nents, 3288 enum dma_data_direction direction) 3289 { 3290 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3291 } 3292 3293 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3294 struct scatterlist *sg, int nents, 3295 enum dma_data_direction direction, 3296 unsigned long dma_attrs) 3297 { 3298 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3299 dma_attrs); 3300 } 3301 3302 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3303 struct scatterlist *sg, int nents, 3304 enum dma_data_direction direction, 3305 unsigned long dma_attrs) 3306 { 3307 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3308 } 3309 /** 3310 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3311 * @dev: The device for which the DMA addresses were created 3312 * @sg: The scatter/gather entry 3313 * 3314 * Note: this function is obsolete. To do: change all occurrences of 3315 * ib_sg_dma_address() into sg_dma_address(). 3316 */ 3317 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3318 struct scatterlist *sg) 3319 { 3320 return sg_dma_address(sg); 3321 } 3322 3323 /** 3324 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3325 * @dev: The device for which the DMA addresses were created 3326 * @sg: The scatter/gather entry 3327 * 3328 * Note: this function is obsolete. To do: change all occurrences of 3329 * ib_sg_dma_len() into sg_dma_len(). 3330 */ 3331 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3332 struct scatterlist *sg) 3333 { 3334 return sg_dma_len(sg); 3335 } 3336 3337 /** 3338 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3339 * @dev: The device for which the DMA address was created 3340 * @addr: The DMA address 3341 * @size: The size of the region in bytes 3342 * @dir: The direction of the DMA 3343 */ 3344 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3345 u64 addr, 3346 size_t size, 3347 enum dma_data_direction dir) 3348 { 3349 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3350 } 3351 3352 /** 3353 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3354 * @dev: The device for which the DMA address was created 3355 * @addr: The DMA address 3356 * @size: The size of the region in bytes 3357 * @dir: The direction of the DMA 3358 */ 3359 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3360 u64 addr, 3361 size_t size, 3362 enum dma_data_direction dir) 3363 { 3364 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3365 } 3366 3367 /** 3368 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3369 * @dev: The device for which the DMA address is requested 3370 * @size: The size of the region to allocate in bytes 3371 * @dma_handle: A pointer for returning the DMA address of the region 3372 * @flag: memory allocator flags 3373 */ 3374 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3375 size_t size, 3376 dma_addr_t *dma_handle, 3377 gfp_t flag) 3378 { 3379 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3380 } 3381 3382 /** 3383 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3384 * @dev: The device for which the DMA addresses were allocated 3385 * @size: The size of the region 3386 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3387 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3388 */ 3389 static inline void ib_dma_free_coherent(struct ib_device *dev, 3390 size_t size, void *cpu_addr, 3391 dma_addr_t dma_handle) 3392 { 3393 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3394 } 3395 3396 /** 3397 * ib_dereg_mr - Deregisters a memory region and removes it from the 3398 * HCA translation table. 3399 * @mr: The memory region to deregister. 3400 * 3401 * This function can fail, if the memory region has memory windows bound to it. 3402 */ 3403 int ib_dereg_mr(struct ib_mr *mr); 3404 3405 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3406 enum ib_mr_type mr_type, 3407 u32 max_num_sg); 3408 3409 /** 3410 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3411 * R_Key and L_Key. 3412 * @mr - struct ib_mr pointer to be updated. 3413 * @newkey - new key to be used. 3414 */ 3415 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3416 { 3417 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3418 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3419 } 3420 3421 /** 3422 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3423 * for calculating a new rkey for type 2 memory windows. 3424 * @rkey - the rkey to increment. 3425 */ 3426 static inline u32 ib_inc_rkey(u32 rkey) 3427 { 3428 const u32 mask = 0x000000ff; 3429 return ((rkey + 1) & mask) | (rkey & ~mask); 3430 } 3431 3432 /** 3433 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3434 * @pd: The protection domain associated with the unmapped region. 3435 * @mr_access_flags: Specifies the memory access rights. 3436 * @fmr_attr: Attributes of the unmapped region. 3437 * 3438 * A fast memory region must be mapped before it can be used as part of 3439 * a work request. 3440 */ 3441 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3442 int mr_access_flags, 3443 struct ib_fmr_attr *fmr_attr); 3444 3445 /** 3446 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3447 * @fmr: The fast memory region to associate with the pages. 3448 * @page_list: An array of physical pages to map to the fast memory region. 3449 * @list_len: The number of pages in page_list. 3450 * @iova: The I/O virtual address to use with the mapped region. 3451 */ 3452 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3453 u64 *page_list, int list_len, 3454 u64 iova) 3455 { 3456 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3457 } 3458 3459 /** 3460 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3461 * @fmr_list: A linked list of fast memory regions to unmap. 3462 */ 3463 int ib_unmap_fmr(struct list_head *fmr_list); 3464 3465 /** 3466 * ib_dealloc_fmr - Deallocates a fast memory region. 3467 * @fmr: The fast memory region to deallocate. 3468 */ 3469 int ib_dealloc_fmr(struct ib_fmr *fmr); 3470 3471 /** 3472 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3473 * @qp: QP to attach to the multicast group. The QP must be type 3474 * IB_QPT_UD. 3475 * @gid: Multicast group GID. 3476 * @lid: Multicast group LID in host byte order. 3477 * 3478 * In order to send and receive multicast packets, subnet 3479 * administration must have created the multicast group and configured 3480 * the fabric appropriately. The port associated with the specified 3481 * QP must also be a member of the multicast group. 3482 */ 3483 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3484 3485 /** 3486 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3487 * @qp: QP to detach from the multicast group. 3488 * @gid: Multicast group GID. 3489 * @lid: Multicast group LID in host byte order. 3490 */ 3491 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3492 3493 /** 3494 * ib_alloc_xrcd - Allocates an XRC domain. 3495 * @device: The device on which to allocate the XRC domain. 3496 */ 3497 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3498 3499 /** 3500 * ib_dealloc_xrcd - Deallocates an XRC domain. 3501 * @xrcd: The XRC domain to deallocate. 3502 */ 3503 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3504 3505 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3506 struct ib_flow_attr *flow_attr, int domain); 3507 int ib_destroy_flow(struct ib_flow *flow_id); 3508 3509 static inline int ib_check_mr_access(int flags) 3510 { 3511 /* 3512 * Local write permission is required if remote write or 3513 * remote atomic permission is also requested. 3514 */ 3515 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3516 !(flags & IB_ACCESS_LOCAL_WRITE)) 3517 return -EINVAL; 3518 3519 return 0; 3520 } 3521 3522 /** 3523 * ib_check_mr_status: lightweight check of MR status. 3524 * This routine may provide status checks on a selected 3525 * ib_mr. first use is for signature status check. 3526 * 3527 * @mr: A memory region. 3528 * @check_mask: Bitmask of which checks to perform from 3529 * ib_mr_status_check enumeration. 3530 * @mr_status: The container of relevant status checks. 3531 * failed checks will be indicated in the status bitmask 3532 * and the relevant info shall be in the error item. 3533 */ 3534 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3535 struct ib_mr_status *mr_status); 3536 3537 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3538 u16 pkey, const union ib_gid *gid, 3539 const struct sockaddr *addr); 3540 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3541 struct ib_wq_init_attr *init_attr); 3542 int ib_destroy_wq(struct ib_wq *wq); 3543 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3544 u32 wq_attr_mask); 3545 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3546 struct ib_rwq_ind_table_init_attr* 3547 wq_ind_table_init_attr); 3548 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3549 3550 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3551 unsigned int *sg_offset, unsigned int page_size); 3552 3553 static inline int 3554 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3555 unsigned int *sg_offset, unsigned int page_size) 3556 { 3557 int n; 3558 3559 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3560 mr->iova = 0; 3561 3562 return n; 3563 } 3564 3565 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3566 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3567 3568 void ib_drain_rq(struct ib_qp *qp); 3569 void ib_drain_sq(struct ib_qp *qp); 3570 void ib_drain_qp(struct ib_qp *qp); 3571 3572 int ib_resolve_eth_dmac(struct ib_device *device, 3573 struct rdma_ah_attr *ah_attr); 3574 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3575 3576 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3577 { 3578 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3579 return attr->roce.dmac; 3580 return NULL; 3581 } 3582 3583 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3584 { 3585 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3586 attr->ib.dlid = (u16)dlid; 3587 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3588 attr->opa.dlid = dlid; 3589 } 3590 3591 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3592 { 3593 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3594 return attr->ib.dlid; 3595 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3596 return attr->opa.dlid; 3597 return 0; 3598 } 3599 3600 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 3601 { 3602 attr->sl = sl; 3603 } 3604 3605 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 3606 { 3607 return attr->sl; 3608 } 3609 3610 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 3611 u8 src_path_bits) 3612 { 3613 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3614 attr->ib.src_path_bits = src_path_bits; 3615 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3616 attr->opa.src_path_bits = src_path_bits; 3617 } 3618 3619 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 3620 { 3621 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3622 return attr->ib.src_path_bits; 3623 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3624 return attr->opa.src_path_bits; 3625 return 0; 3626 } 3627 3628 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 3629 { 3630 attr->port_num = port_num; 3631 } 3632 3633 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 3634 { 3635 return attr->port_num; 3636 } 3637 3638 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 3639 u8 static_rate) 3640 { 3641 attr->static_rate = static_rate; 3642 } 3643 3644 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 3645 { 3646 return attr->static_rate; 3647 } 3648 3649 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 3650 enum ib_ah_flags flag) 3651 { 3652 attr->ah_flags = flag; 3653 } 3654 3655 static inline enum ib_ah_flags 3656 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 3657 { 3658 return attr->ah_flags; 3659 } 3660 3661 static inline const struct ib_global_route 3662 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 3663 { 3664 return &attr->grh; 3665 } 3666 3667 /*To retrieve and modify the grh */ 3668 static inline struct ib_global_route 3669 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 3670 { 3671 return &attr->grh; 3672 } 3673 3674 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 3675 { 3676 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3677 3678 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 3679 } 3680 3681 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 3682 __be64 prefix) 3683 { 3684 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3685 3686 grh->dgid.global.subnet_prefix = prefix; 3687 } 3688 3689 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 3690 __be64 if_id) 3691 { 3692 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3693 3694 grh->dgid.global.interface_id = if_id; 3695 } 3696 3697 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 3698 union ib_gid *dgid, u32 flow_label, 3699 u8 sgid_index, u8 hop_limit, 3700 u8 traffic_class) 3701 { 3702 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3703 3704 attr->ah_flags = IB_AH_GRH; 3705 if (dgid) 3706 grh->dgid = *dgid; 3707 grh->flow_label = flow_label; 3708 grh->sgid_index = sgid_index; 3709 grh->hop_limit = hop_limit; 3710 grh->traffic_class = traffic_class; 3711 } 3712 3713 /*Get AH type */ 3714 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 3715 u32 port_num) 3716 { 3717 if ((rdma_protocol_roce(dev, port_num)) || 3718 (rdma_protocol_iwarp(dev, port_num))) 3719 return RDMA_AH_ATTR_TYPE_ROCE; 3720 else if ((rdma_protocol_ib(dev, port_num)) && 3721 (rdma_cap_opa_ah(dev, port_num))) 3722 return RDMA_AH_ATTR_TYPE_OPA; 3723 else 3724 return RDMA_AH_ATTR_TYPE_IB; 3725 } 3726 3727 /** 3728 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 3729 * In the current implementation the only way to get 3730 * get the 32bit lid is from other sources for OPA. 3731 * For IB, lids will always be 16bits so cast the 3732 * value accordingly. 3733 * 3734 * @lid: A 32bit LID 3735 */ 3736 static inline u16 ib_lid_cpu16(u32 lid) 3737 { 3738 WARN_ON_ONCE(lid & 0xFFFF0000); 3739 return (u16)lid; 3740 } 3741 3742 /** 3743 * ib_lid_be16 - Return lid in 16bit BE encoding. 3744 * 3745 * @lid: A 32bit LID 3746 */ 3747 static inline __be16 ib_lid_be16(u32 lid) 3748 { 3749 WARN_ON_ONCE(lid & 0xFFFF0000); 3750 return cpu_to_be16((u16)lid); 3751 } 3752 3753 /** 3754 * ib_get_vector_affinity - Get the affinity mappings of a given completion 3755 * vector 3756 * @device: the rdma device 3757 * @comp_vector: index of completion vector 3758 * 3759 * Returns NULL on failure, otherwise a corresponding cpu map of the 3760 * completion vector (returns all-cpus map if the device driver doesn't 3761 * implement get_vector_affinity). 3762 */ 3763 static inline const struct cpumask * 3764 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 3765 { 3766 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 3767 !device->get_vector_affinity) 3768 return NULL; 3769 3770 return device->get_vector_affinity(device, comp_vector); 3771 3772 } 3773 3774 #endif /* IB_VERBS_H */ 3775