xref: /openbmc/linux/include/net/tcp.h (revision ceef9ab6be7234f9e49f79769e0da88d1dccfcc7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 #include <linux/bpf.h>
50 #include <linux/filter.h>
51 #include <linux/bpf-cgroup.h>
52 
53 extern struct inet_hashinfo tcp_hashinfo;
54 
55 extern struct percpu_counter tcp_orphan_count;
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
57 
58 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 
132 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
133 #if HZ >= 100
134 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
135 #define TCP_ATO_MIN	((unsigned)(HZ/25))
136 #else
137 #define TCP_DELACK_MIN	4U
138 #define TCP_ATO_MIN	4U
139 #endif
140 #define TCP_RTO_MAX	((unsigned)(120*HZ))
141 #define TCP_RTO_MIN	((unsigned)(HZ/5))
142 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
143 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
144 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
145 						 * used as a fallback RTO for the
146 						 * initial data transmission if no
147 						 * valid RTT sample has been acquired,
148 						 * most likely due to retrans in 3WHS.
149 						 */
150 
151 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
152 					                 * for local resources.
153 					                 */
154 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
155 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
156 #define TCP_KEEPALIVE_INTVL	(75*HZ)
157 
158 #define MAX_TCP_KEEPIDLE	32767
159 #define MAX_TCP_KEEPINTVL	32767
160 #define MAX_TCP_KEEPCNT		127
161 #define MAX_TCP_SYNCNT		127
162 
163 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
164 
165 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
166 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
167 					 * after this time. It should be equal
168 					 * (or greater than) TCP_TIMEWAIT_LEN
169 					 * to provide reliability equal to one
170 					 * provided by timewait state.
171 					 */
172 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
173 					 * timestamps. It must be less than
174 					 * minimal timewait lifetime.
175 					 */
176 /*
177  *	TCP option
178  */
179 
180 #define TCPOPT_NOP		1	/* Padding */
181 #define TCPOPT_EOL		0	/* End of options */
182 #define TCPOPT_MSS		2	/* Segment size negotiating */
183 #define TCPOPT_WINDOW		3	/* Window scaling */
184 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
185 #define TCPOPT_SACK             5       /* SACK Block */
186 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
187 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 extern int sysctl_tcp_wmem[3];
249 extern int sysctl_tcp_rmem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 
253 extern int sysctl_tcp_limit_output_bytes;
254 extern int sysctl_tcp_challenge_ack_limit;
255 extern int sysctl_tcp_min_tso_segs;
256 extern int sysctl_tcp_min_rtt_wlen;
257 extern int sysctl_tcp_autocorking;
258 extern int sysctl_tcp_invalid_ratelimit;
259 extern int sysctl_tcp_pacing_ss_ratio;
260 extern int sysctl_tcp_pacing_ca_ratio;
261 
262 extern atomic_long_t tcp_memory_allocated;
263 extern struct percpu_counter tcp_sockets_allocated;
264 extern unsigned long tcp_memory_pressure;
265 
266 /* optimized version of sk_under_memory_pressure() for TCP sockets */
267 static inline bool tcp_under_memory_pressure(const struct sock *sk)
268 {
269 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
270 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
271 		return true;
272 
273 	return tcp_memory_pressure;
274 }
275 /*
276  * The next routines deal with comparing 32 bit unsigned ints
277  * and worry about wraparound (automatic with unsigned arithmetic).
278  */
279 
280 static inline bool before(__u32 seq1, __u32 seq2)
281 {
282         return (__s32)(seq1-seq2) < 0;
283 }
284 #define after(seq2, seq1) 	before(seq1, seq2)
285 
286 /* is s2<=s1<=s3 ? */
287 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
288 {
289 	return seq3 - seq2 >= seq1 - seq2;
290 }
291 
292 static inline bool tcp_out_of_memory(struct sock *sk)
293 {
294 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
295 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
296 		return true;
297 	return false;
298 }
299 
300 void sk_forced_mem_schedule(struct sock *sk, int size);
301 
302 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
303 {
304 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
305 	int orphans = percpu_counter_read_positive(ocp);
306 
307 	if (orphans << shift > sysctl_tcp_max_orphans) {
308 		orphans = percpu_counter_sum_positive(ocp);
309 		if (orphans << shift > sysctl_tcp_max_orphans)
310 			return true;
311 	}
312 	return false;
313 }
314 
315 bool tcp_check_oom(struct sock *sk, int shift);
316 
317 
318 extern struct proto tcp_prot;
319 
320 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
321 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
322 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
323 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
324 
325 void tcp_tasklet_init(void);
326 
327 void tcp_v4_err(struct sk_buff *skb, u32);
328 
329 void tcp_shutdown(struct sock *sk, int how);
330 
331 int tcp_v4_early_demux(struct sk_buff *skb);
332 int tcp_v4_rcv(struct sk_buff *skb);
333 
334 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
335 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
336 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
337 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
338 		 int flags);
339 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
340 			size_t size, int flags);
341 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
342 		 size_t size, int flags);
343 void tcp_release_cb(struct sock *sk);
344 void tcp_wfree(struct sk_buff *skb);
345 void tcp_write_timer_handler(struct sock *sk);
346 void tcp_delack_timer_handler(struct sock *sk);
347 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
348 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
349 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
350 			 const struct tcphdr *th);
351 void tcp_rcv_space_adjust(struct sock *sk);
352 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
353 void tcp_twsk_destructor(struct sock *sk);
354 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
355 			struct pipe_inode_info *pipe, size_t len,
356 			unsigned int flags);
357 
358 static inline void tcp_dec_quickack_mode(struct sock *sk,
359 					 const unsigned int pkts)
360 {
361 	struct inet_connection_sock *icsk = inet_csk(sk);
362 
363 	if (icsk->icsk_ack.quick) {
364 		if (pkts >= icsk->icsk_ack.quick) {
365 			icsk->icsk_ack.quick = 0;
366 			/* Leaving quickack mode we deflate ATO. */
367 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
368 		} else
369 			icsk->icsk_ack.quick -= pkts;
370 	}
371 }
372 
373 #define	TCP_ECN_OK		1
374 #define	TCP_ECN_QUEUE_CWR	2
375 #define	TCP_ECN_DEMAND_CWR	4
376 #define	TCP_ECN_SEEN		8
377 
378 enum tcp_tw_status {
379 	TCP_TW_SUCCESS = 0,
380 	TCP_TW_RST = 1,
381 	TCP_TW_ACK = 2,
382 	TCP_TW_SYN = 3
383 };
384 
385 
386 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
387 					      struct sk_buff *skb,
388 					      const struct tcphdr *th);
389 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
390 			   struct request_sock *req, bool fastopen);
391 int tcp_child_process(struct sock *parent, struct sock *child,
392 		      struct sk_buff *skb);
393 void tcp_enter_loss(struct sock *sk);
394 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
395 void tcp_clear_retrans(struct tcp_sock *tp);
396 void tcp_update_metrics(struct sock *sk);
397 void tcp_init_metrics(struct sock *sk);
398 void tcp_metrics_init(void);
399 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
400 void tcp_disable_fack(struct tcp_sock *tp);
401 void tcp_close(struct sock *sk, long timeout);
402 void tcp_init_sock(struct sock *sk);
403 void tcp_init_transfer(struct sock *sk, int bpf_op);
404 unsigned int tcp_poll(struct file *file, struct socket *sock,
405 		      struct poll_table_struct *wait);
406 int tcp_getsockopt(struct sock *sk, int level, int optname,
407 		   char __user *optval, int __user *optlen);
408 int tcp_setsockopt(struct sock *sk, int level, int optname,
409 		   char __user *optval, unsigned int optlen);
410 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
411 			  char __user *optval, int __user *optlen);
412 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
413 			  char __user *optval, unsigned int optlen);
414 void tcp_set_keepalive(struct sock *sk, int val);
415 void tcp_syn_ack_timeout(const struct request_sock *req);
416 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
417 		int flags, int *addr_len);
418 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
419 		       struct tcp_options_received *opt_rx,
420 		       int estab, struct tcp_fastopen_cookie *foc);
421 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
422 
423 /*
424  *	TCP v4 functions exported for the inet6 API
425  */
426 
427 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
428 void tcp_v4_mtu_reduced(struct sock *sk);
429 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
430 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
431 struct sock *tcp_create_openreq_child(const struct sock *sk,
432 				      struct request_sock *req,
433 				      struct sk_buff *skb);
434 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
435 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
436 				  struct request_sock *req,
437 				  struct dst_entry *dst,
438 				  struct request_sock *req_unhash,
439 				  bool *own_req);
440 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
441 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
442 int tcp_connect(struct sock *sk);
443 enum tcp_synack_type {
444 	TCP_SYNACK_NORMAL,
445 	TCP_SYNACK_FASTOPEN,
446 	TCP_SYNACK_COOKIE,
447 };
448 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
449 				struct request_sock *req,
450 				struct tcp_fastopen_cookie *foc,
451 				enum tcp_synack_type synack_type);
452 int tcp_disconnect(struct sock *sk, int flags);
453 
454 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
455 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
456 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
457 
458 /* From syncookies.c */
459 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
460 				 struct request_sock *req,
461 				 struct dst_entry *dst, u32 tsoff);
462 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
463 		      u32 cookie);
464 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
465 #ifdef CONFIG_SYN_COOKIES
466 
467 /* Syncookies use a monotonic timer which increments every 60 seconds.
468  * This counter is used both as a hash input and partially encoded into
469  * the cookie value.  A cookie is only validated further if the delta
470  * between the current counter value and the encoded one is less than this,
471  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
472  * the counter advances immediately after a cookie is generated).
473  */
474 #define MAX_SYNCOOKIE_AGE	2
475 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
476 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
477 
478 /* syncookies: remember time of last synqueue overflow
479  * But do not dirty this field too often (once per second is enough)
480  * It is racy as we do not hold a lock, but race is very minor.
481  */
482 static inline void tcp_synq_overflow(const struct sock *sk)
483 {
484 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
485 	unsigned long now = jiffies;
486 
487 	if (time_after(now, last_overflow + HZ))
488 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
489 }
490 
491 /* syncookies: no recent synqueue overflow on this listening socket? */
492 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
493 {
494 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
495 
496 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
497 }
498 
499 static inline u32 tcp_cookie_time(void)
500 {
501 	u64 val = get_jiffies_64();
502 
503 	do_div(val, TCP_SYNCOOKIE_PERIOD);
504 	return val;
505 }
506 
507 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
508 			      u16 *mssp);
509 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
510 u64 cookie_init_timestamp(struct request_sock *req);
511 bool cookie_timestamp_decode(const struct net *net,
512 			     struct tcp_options_received *opt);
513 bool cookie_ecn_ok(const struct tcp_options_received *opt,
514 		   const struct net *net, const struct dst_entry *dst);
515 
516 /* From net/ipv6/syncookies.c */
517 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
518 		      u32 cookie);
519 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
520 
521 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
522 			      const struct tcphdr *th, u16 *mssp);
523 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
524 #endif
525 /* tcp_output.c */
526 
527 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
528 		     int min_tso_segs);
529 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
530 			       int nonagle);
531 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
532 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
533 void tcp_retransmit_timer(struct sock *sk);
534 void tcp_xmit_retransmit_queue(struct sock *);
535 void tcp_simple_retransmit(struct sock *);
536 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
537 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
538 enum tcp_queue {
539 	TCP_FRAG_IN_WRITE_QUEUE,
540 	TCP_FRAG_IN_RTX_QUEUE,
541 };
542 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
543 		 struct sk_buff *skb, u32 len,
544 		 unsigned int mss_now, gfp_t gfp);
545 
546 void tcp_send_probe0(struct sock *);
547 void tcp_send_partial(struct sock *);
548 int tcp_write_wakeup(struct sock *, int mib);
549 void tcp_send_fin(struct sock *sk);
550 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
551 int tcp_send_synack(struct sock *);
552 void tcp_push_one(struct sock *, unsigned int mss_now);
553 void tcp_send_ack(struct sock *sk);
554 void tcp_send_delayed_ack(struct sock *sk);
555 void tcp_send_loss_probe(struct sock *sk);
556 bool tcp_schedule_loss_probe(struct sock *sk);
557 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
558 			     const struct sk_buff *next_skb);
559 
560 /* tcp_input.c */
561 void tcp_rearm_rto(struct sock *sk);
562 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
563 void tcp_reset(struct sock *sk);
564 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
565 void tcp_fin(struct sock *sk);
566 
567 /* tcp_timer.c */
568 void tcp_init_xmit_timers(struct sock *);
569 static inline void tcp_clear_xmit_timers(struct sock *sk)
570 {
571 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
572 	inet_csk_clear_xmit_timers(sk);
573 }
574 
575 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
576 unsigned int tcp_current_mss(struct sock *sk);
577 
578 /* Bound MSS / TSO packet size with the half of the window */
579 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
580 {
581 	int cutoff;
582 
583 	/* When peer uses tiny windows, there is no use in packetizing
584 	 * to sub-MSS pieces for the sake of SWS or making sure there
585 	 * are enough packets in the pipe for fast recovery.
586 	 *
587 	 * On the other hand, for extremely large MSS devices, handling
588 	 * smaller than MSS windows in this way does make sense.
589 	 */
590 	if (tp->max_window > TCP_MSS_DEFAULT)
591 		cutoff = (tp->max_window >> 1);
592 	else
593 		cutoff = tp->max_window;
594 
595 	if (cutoff && pktsize > cutoff)
596 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
597 	else
598 		return pktsize;
599 }
600 
601 /* tcp.c */
602 void tcp_get_info(struct sock *, struct tcp_info *);
603 
604 /* Read 'sendfile()'-style from a TCP socket */
605 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
606 		  sk_read_actor_t recv_actor);
607 
608 void tcp_initialize_rcv_mss(struct sock *sk);
609 
610 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
611 int tcp_mss_to_mtu(struct sock *sk, int mss);
612 void tcp_mtup_init(struct sock *sk);
613 void tcp_init_buffer_space(struct sock *sk);
614 
615 static inline void tcp_bound_rto(const struct sock *sk)
616 {
617 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
618 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
619 }
620 
621 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
622 {
623 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
624 }
625 
626 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
627 {
628 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
629 			       ntohl(TCP_FLAG_ACK) |
630 			       snd_wnd);
631 }
632 
633 static inline void tcp_fast_path_on(struct tcp_sock *tp)
634 {
635 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
636 }
637 
638 static inline void tcp_fast_path_check(struct sock *sk)
639 {
640 	struct tcp_sock *tp = tcp_sk(sk);
641 
642 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
643 	    tp->rcv_wnd &&
644 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
645 	    !tp->urg_data)
646 		tcp_fast_path_on(tp);
647 }
648 
649 /* Compute the actual rto_min value */
650 static inline u32 tcp_rto_min(struct sock *sk)
651 {
652 	const struct dst_entry *dst = __sk_dst_get(sk);
653 	u32 rto_min = TCP_RTO_MIN;
654 
655 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
656 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
657 	return rto_min;
658 }
659 
660 static inline u32 tcp_rto_min_us(struct sock *sk)
661 {
662 	return jiffies_to_usecs(tcp_rto_min(sk));
663 }
664 
665 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
666 {
667 	return dst_metric_locked(dst, RTAX_CC_ALGO);
668 }
669 
670 /* Minimum RTT in usec. ~0 means not available. */
671 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
672 {
673 	return minmax_get(&tp->rtt_min);
674 }
675 
676 /* Compute the actual receive window we are currently advertising.
677  * Rcv_nxt can be after the window if our peer push more data
678  * than the offered window.
679  */
680 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
681 {
682 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
683 
684 	if (win < 0)
685 		win = 0;
686 	return (u32) win;
687 }
688 
689 /* Choose a new window, without checks for shrinking, and without
690  * scaling applied to the result.  The caller does these things
691  * if necessary.  This is a "raw" window selection.
692  */
693 u32 __tcp_select_window(struct sock *sk);
694 
695 void tcp_send_window_probe(struct sock *sk);
696 
697 /* TCP uses 32bit jiffies to save some space.
698  * Note that this is different from tcp_time_stamp, which
699  * historically has been the same until linux-4.13.
700  */
701 #define tcp_jiffies32 ((u32)jiffies)
702 
703 /*
704  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
705  * It is no longer tied to jiffies, but to 1 ms clock.
706  * Note: double check if you want to use tcp_jiffies32 instead of this.
707  */
708 #define TCP_TS_HZ	1000
709 
710 static inline u64 tcp_clock_ns(void)
711 {
712 	return local_clock();
713 }
714 
715 static inline u64 tcp_clock_us(void)
716 {
717 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
718 }
719 
720 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
721 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
722 {
723 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
724 }
725 
726 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
727 static inline u32 tcp_time_stamp_raw(void)
728 {
729 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
730 }
731 
732 
733 /* Refresh 1us clock of a TCP socket,
734  * ensuring monotically increasing values.
735  */
736 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
737 {
738 	u64 val = tcp_clock_us();
739 
740 	if (val > tp->tcp_mstamp)
741 		tp->tcp_mstamp = val;
742 }
743 
744 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
745 {
746 	return max_t(s64, t1 - t0, 0);
747 }
748 
749 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
750 {
751 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
752 }
753 
754 
755 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
756 
757 #define TCPHDR_FIN 0x01
758 #define TCPHDR_SYN 0x02
759 #define TCPHDR_RST 0x04
760 #define TCPHDR_PSH 0x08
761 #define TCPHDR_ACK 0x10
762 #define TCPHDR_URG 0x20
763 #define TCPHDR_ECE 0x40
764 #define TCPHDR_CWR 0x80
765 
766 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
767 
768 /* This is what the send packet queuing engine uses to pass
769  * TCP per-packet control information to the transmission code.
770  * We also store the host-order sequence numbers in here too.
771  * This is 44 bytes if IPV6 is enabled.
772  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
773  */
774 struct tcp_skb_cb {
775 	__u32		seq;		/* Starting sequence number	*/
776 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
777 	union {
778 		/* Note : tcp_tw_isn is used in input path only
779 		 *	  (isn chosen by tcp_timewait_state_process())
780 		 *
781 		 * 	  tcp_gso_segs/size are used in write queue only,
782 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
783 		 */
784 		__u32		tcp_tw_isn;
785 		struct {
786 			u16	tcp_gso_segs;
787 			u16	tcp_gso_size;
788 		};
789 	};
790 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
791 
792 	__u8		sacked;		/* State flags for SACK/FACK.	*/
793 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
794 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
795 #define TCPCB_LOST		0x04	/* SKB is lost			*/
796 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
797 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
798 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
799 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
800 				TCPCB_REPAIRED)
801 
802 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
803 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
804 			eor:1,		/* Is skb MSG_EOR marked? */
805 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
806 			unused:5;
807 	__u32		ack_seq;	/* Sequence number ACK'd	*/
808 	union {
809 		struct {
810 			/* There is space for up to 24 bytes */
811 			__u32 in_flight:30,/* Bytes in flight at transmit */
812 			      is_app_limited:1, /* cwnd not fully used? */
813 			      unused:1;
814 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
815 			__u32 delivered;
816 			/* start of send pipeline phase */
817 			u64 first_tx_mstamp;
818 			/* when we reached the "delivered" count */
819 			u64 delivered_mstamp;
820 		} tx;   /* only used for outgoing skbs */
821 		union {
822 			struct inet_skb_parm	h4;
823 #if IS_ENABLED(CONFIG_IPV6)
824 			struct inet6_skb_parm	h6;
825 #endif
826 		} header;	/* For incoming skbs */
827 		struct {
828 			__u32 key;
829 			__u32 flags;
830 			struct bpf_map *map;
831 		} bpf;
832 	};
833 };
834 
835 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
836 
837 
838 #if IS_ENABLED(CONFIG_IPV6)
839 /* This is the variant of inet6_iif() that must be used by TCP,
840  * as TCP moves IP6CB into a different location in skb->cb[]
841  */
842 static inline int tcp_v6_iif(const struct sk_buff *skb)
843 {
844 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
845 
846 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
847 }
848 
849 /* TCP_SKB_CB reference means this can not be used from early demux */
850 static inline int tcp_v6_sdif(const struct sk_buff *skb)
851 {
852 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
853 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
854 		return TCP_SKB_CB(skb)->header.h6.iif;
855 #endif
856 	return 0;
857 }
858 #endif
859 
860 /* TCP_SKB_CB reference means this can not be used from early demux */
861 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
862 {
863 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
864 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
865 	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
866 		return true;
867 #endif
868 	return false;
869 }
870 
871 /* TCP_SKB_CB reference means this can not be used from early demux */
872 static inline int tcp_v4_sdif(struct sk_buff *skb)
873 {
874 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
875 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
876 		return TCP_SKB_CB(skb)->header.h4.iif;
877 #endif
878 	return 0;
879 }
880 
881 /* Due to TSO, an SKB can be composed of multiple actual
882  * packets.  To keep these tracked properly, we use this.
883  */
884 static inline int tcp_skb_pcount(const struct sk_buff *skb)
885 {
886 	return TCP_SKB_CB(skb)->tcp_gso_segs;
887 }
888 
889 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
890 {
891 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
892 }
893 
894 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
895 {
896 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
897 }
898 
899 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
900 static inline int tcp_skb_mss(const struct sk_buff *skb)
901 {
902 	return TCP_SKB_CB(skb)->tcp_gso_size;
903 }
904 
905 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
906 {
907 	return likely(!TCP_SKB_CB(skb)->eor);
908 }
909 
910 /* Events passed to congestion control interface */
911 enum tcp_ca_event {
912 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
913 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
914 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
915 	CA_EVENT_LOSS,		/* loss timeout */
916 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
917 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
918 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
919 	CA_EVENT_NON_DELAYED_ACK,
920 };
921 
922 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
923 enum tcp_ca_ack_event_flags {
924 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
925 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
926 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
927 };
928 
929 /*
930  * Interface for adding new TCP congestion control handlers
931  */
932 #define TCP_CA_NAME_MAX	16
933 #define TCP_CA_MAX	128
934 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
935 
936 #define TCP_CA_UNSPEC	0
937 
938 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
939 #define TCP_CONG_NON_RESTRICTED 0x1
940 /* Requires ECN/ECT set on all packets */
941 #define TCP_CONG_NEEDS_ECN	0x2
942 
943 union tcp_cc_info;
944 
945 struct ack_sample {
946 	u32 pkts_acked;
947 	s32 rtt_us;
948 	u32 in_flight;
949 };
950 
951 /* A rate sample measures the number of (original/retransmitted) data
952  * packets delivered "delivered" over an interval of time "interval_us".
953  * The tcp_rate.c code fills in the rate sample, and congestion
954  * control modules that define a cong_control function to run at the end
955  * of ACK processing can optionally chose to consult this sample when
956  * setting cwnd and pacing rate.
957  * A sample is invalid if "delivered" or "interval_us" is negative.
958  */
959 struct rate_sample {
960 	u64  prior_mstamp; /* starting timestamp for interval */
961 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
962 	s32  delivered;		/* number of packets delivered over interval */
963 	long interval_us;	/* time for tp->delivered to incr "delivered" */
964 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
965 	int  losses;		/* number of packets marked lost upon ACK */
966 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
967 	u32  prior_in_flight;	/* in flight before this ACK */
968 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
969 	bool is_retrans;	/* is sample from retransmission? */
970 };
971 
972 struct tcp_congestion_ops {
973 	struct list_head	list;
974 	u32 key;
975 	u32 flags;
976 
977 	/* initialize private data (optional) */
978 	void (*init)(struct sock *sk);
979 	/* cleanup private data  (optional) */
980 	void (*release)(struct sock *sk);
981 
982 	/* return slow start threshold (required) */
983 	u32 (*ssthresh)(struct sock *sk);
984 	/* do new cwnd calculation (required) */
985 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
986 	/* call before changing ca_state (optional) */
987 	void (*set_state)(struct sock *sk, u8 new_state);
988 	/* call when cwnd event occurs (optional) */
989 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
990 	/* call when ack arrives (optional) */
991 	void (*in_ack_event)(struct sock *sk, u32 flags);
992 	/* new value of cwnd after loss (required) */
993 	u32  (*undo_cwnd)(struct sock *sk);
994 	/* hook for packet ack accounting (optional) */
995 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
996 	/* suggest number of segments for each skb to transmit (optional) */
997 	u32 (*tso_segs_goal)(struct sock *sk);
998 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
999 	u32 (*sndbuf_expand)(struct sock *sk);
1000 	/* call when packets are delivered to update cwnd and pacing rate,
1001 	 * after all the ca_state processing. (optional)
1002 	 */
1003 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1004 	/* get info for inet_diag (optional) */
1005 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1006 			   union tcp_cc_info *info);
1007 
1008 	char 		name[TCP_CA_NAME_MAX];
1009 	struct module 	*owner;
1010 };
1011 
1012 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1013 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1014 
1015 void tcp_assign_congestion_control(struct sock *sk);
1016 void tcp_init_congestion_control(struct sock *sk);
1017 void tcp_cleanup_congestion_control(struct sock *sk);
1018 int tcp_set_default_congestion_control(const char *name);
1019 void tcp_get_default_congestion_control(char *name);
1020 void tcp_get_available_congestion_control(char *buf, size_t len);
1021 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1022 int tcp_set_allowed_congestion_control(char *allowed);
1023 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1024 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1025 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1026 
1027 u32 tcp_reno_ssthresh(struct sock *sk);
1028 u32 tcp_reno_undo_cwnd(struct sock *sk);
1029 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1030 extern struct tcp_congestion_ops tcp_reno;
1031 
1032 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1033 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1034 #ifdef CONFIG_INET
1035 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1036 #else
1037 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1038 {
1039 	return NULL;
1040 }
1041 #endif
1042 
1043 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1044 {
1045 	const struct inet_connection_sock *icsk = inet_csk(sk);
1046 
1047 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1048 }
1049 
1050 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1051 {
1052 	struct inet_connection_sock *icsk = inet_csk(sk);
1053 
1054 	if (icsk->icsk_ca_ops->set_state)
1055 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1056 	icsk->icsk_ca_state = ca_state;
1057 }
1058 
1059 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1060 {
1061 	const struct inet_connection_sock *icsk = inet_csk(sk);
1062 
1063 	if (icsk->icsk_ca_ops->cwnd_event)
1064 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1065 }
1066 
1067 /* From tcp_rate.c */
1068 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1069 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1070 			    struct rate_sample *rs);
1071 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1072 		  struct rate_sample *rs);
1073 void tcp_rate_check_app_limited(struct sock *sk);
1074 
1075 /* These functions determine how the current flow behaves in respect of SACK
1076  * handling. SACK is negotiated with the peer, and therefore it can vary
1077  * between different flows.
1078  *
1079  * tcp_is_sack - SACK enabled
1080  * tcp_is_reno - No SACK
1081  * tcp_is_fack - FACK enabled, implies SACK enabled
1082  */
1083 static inline int tcp_is_sack(const struct tcp_sock *tp)
1084 {
1085 	return tp->rx_opt.sack_ok;
1086 }
1087 
1088 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1089 {
1090 	return !tcp_is_sack(tp);
1091 }
1092 
1093 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1094 {
1095 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1096 }
1097 
1098 static inline void tcp_enable_fack(struct tcp_sock *tp)
1099 {
1100 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1101 }
1102 
1103 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1104 {
1105 	return tp->sacked_out + tp->lost_out;
1106 }
1107 
1108 /* This determines how many packets are "in the network" to the best
1109  * of our knowledge.  In many cases it is conservative, but where
1110  * detailed information is available from the receiver (via SACK
1111  * blocks etc.) we can make more aggressive calculations.
1112  *
1113  * Use this for decisions involving congestion control, use just
1114  * tp->packets_out to determine if the send queue is empty or not.
1115  *
1116  * Read this equation as:
1117  *
1118  *	"Packets sent once on transmission queue" MINUS
1119  *	"Packets left network, but not honestly ACKed yet" PLUS
1120  *	"Packets fast retransmitted"
1121  */
1122 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1123 {
1124 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1125 }
1126 
1127 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1128 
1129 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1130 {
1131 	return tp->snd_cwnd < tp->snd_ssthresh;
1132 }
1133 
1134 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1135 {
1136 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1137 }
1138 
1139 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1140 {
1141 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1142 	       (1 << inet_csk(sk)->icsk_ca_state);
1143 }
1144 
1145 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1146  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1147  * ssthresh.
1148  */
1149 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1150 {
1151 	const struct tcp_sock *tp = tcp_sk(sk);
1152 
1153 	if (tcp_in_cwnd_reduction(sk))
1154 		return tp->snd_ssthresh;
1155 	else
1156 		return max(tp->snd_ssthresh,
1157 			   ((tp->snd_cwnd >> 1) +
1158 			    (tp->snd_cwnd >> 2)));
1159 }
1160 
1161 /* Use define here intentionally to get WARN_ON location shown at the caller */
1162 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1163 
1164 void tcp_enter_cwr(struct sock *sk);
1165 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1166 
1167 /* The maximum number of MSS of available cwnd for which TSO defers
1168  * sending if not using sysctl_tcp_tso_win_divisor.
1169  */
1170 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1171 {
1172 	return 3;
1173 }
1174 
1175 /* Returns end sequence number of the receiver's advertised window */
1176 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1177 {
1178 	return tp->snd_una + tp->snd_wnd;
1179 }
1180 
1181 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1182  * flexible approach. The RFC suggests cwnd should not be raised unless
1183  * it was fully used previously. And that's exactly what we do in
1184  * congestion avoidance mode. But in slow start we allow cwnd to grow
1185  * as long as the application has used half the cwnd.
1186  * Example :
1187  *    cwnd is 10 (IW10), but application sends 9 frames.
1188  *    We allow cwnd to reach 18 when all frames are ACKed.
1189  * This check is safe because it's as aggressive as slow start which already
1190  * risks 100% overshoot. The advantage is that we discourage application to
1191  * either send more filler packets or data to artificially blow up the cwnd
1192  * usage, and allow application-limited process to probe bw more aggressively.
1193  */
1194 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1195 {
1196 	const struct tcp_sock *tp = tcp_sk(sk);
1197 
1198 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1199 	if (tcp_in_slow_start(tp))
1200 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1201 
1202 	return tp->is_cwnd_limited;
1203 }
1204 
1205 /* Something is really bad, we could not queue an additional packet,
1206  * because qdisc is full or receiver sent a 0 window.
1207  * We do not want to add fuel to the fire, or abort too early,
1208  * so make sure the timer we arm now is at least 200ms in the future,
1209  * regardless of current icsk_rto value (as it could be ~2ms)
1210  */
1211 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1212 {
1213 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1214 }
1215 
1216 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1217 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1218 					    unsigned long max_when)
1219 {
1220 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1221 
1222 	return (unsigned long)min_t(u64, when, max_when);
1223 }
1224 
1225 static inline void tcp_check_probe_timer(struct sock *sk)
1226 {
1227 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1228 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1229 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1230 }
1231 
1232 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1233 {
1234 	tp->snd_wl1 = seq;
1235 }
1236 
1237 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1238 {
1239 	tp->snd_wl1 = seq;
1240 }
1241 
1242 /*
1243  * Calculate(/check) TCP checksum
1244  */
1245 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1246 				   __be32 daddr, __wsum base)
1247 {
1248 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1249 }
1250 
1251 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1252 {
1253 	return __skb_checksum_complete(skb);
1254 }
1255 
1256 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1257 {
1258 	return !skb_csum_unnecessary(skb) &&
1259 		__tcp_checksum_complete(skb);
1260 }
1261 
1262 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1263 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1264 
1265 #undef STATE_TRACE
1266 
1267 #ifdef STATE_TRACE
1268 static const char *statename[]={
1269 	"Unused","Established","Syn Sent","Syn Recv",
1270 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1271 	"Close Wait","Last ACK","Listen","Closing"
1272 };
1273 #endif
1274 void tcp_set_state(struct sock *sk, int state);
1275 
1276 void tcp_done(struct sock *sk);
1277 
1278 int tcp_abort(struct sock *sk, int err);
1279 
1280 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1281 {
1282 	rx_opt->dsack = 0;
1283 	rx_opt->num_sacks = 0;
1284 }
1285 
1286 u32 tcp_default_init_rwnd(u32 mss);
1287 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1288 
1289 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1290 {
1291 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1292 	struct tcp_sock *tp = tcp_sk(sk);
1293 	s32 delta;
1294 
1295 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1296 	    ca_ops->cong_control)
1297 		return;
1298 	delta = tcp_jiffies32 - tp->lsndtime;
1299 	if (delta > inet_csk(sk)->icsk_rto)
1300 		tcp_cwnd_restart(sk, delta);
1301 }
1302 
1303 /* Determine a window scaling and initial window to offer. */
1304 void tcp_select_initial_window(const struct sock *sk, int __space,
1305 			       __u32 mss, __u32 *rcv_wnd,
1306 			       __u32 *window_clamp, int wscale_ok,
1307 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1308 
1309 static inline int tcp_win_from_space(const struct sock *sk, int space)
1310 {
1311 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1312 
1313 	return tcp_adv_win_scale <= 0 ?
1314 		(space>>(-tcp_adv_win_scale)) :
1315 		space - (space>>tcp_adv_win_scale);
1316 }
1317 
1318 /* Note: caller must be prepared to deal with negative returns */
1319 static inline int tcp_space(const struct sock *sk)
1320 {
1321 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1322 				  atomic_read(&sk->sk_rmem_alloc));
1323 }
1324 
1325 static inline int tcp_full_space(const struct sock *sk)
1326 {
1327 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1328 }
1329 
1330 extern void tcp_openreq_init_rwin(struct request_sock *req,
1331 				  const struct sock *sk_listener,
1332 				  const struct dst_entry *dst);
1333 
1334 void tcp_enter_memory_pressure(struct sock *sk);
1335 void tcp_leave_memory_pressure(struct sock *sk);
1336 
1337 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1338 {
1339 	struct net *net = sock_net((struct sock *)tp);
1340 
1341 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1342 }
1343 
1344 static inline int keepalive_time_when(const struct tcp_sock *tp)
1345 {
1346 	struct net *net = sock_net((struct sock *)tp);
1347 
1348 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1349 }
1350 
1351 static inline int keepalive_probes(const struct tcp_sock *tp)
1352 {
1353 	struct net *net = sock_net((struct sock *)tp);
1354 
1355 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1356 }
1357 
1358 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1359 {
1360 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1361 
1362 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1363 			  tcp_jiffies32 - tp->rcv_tstamp);
1364 }
1365 
1366 static inline int tcp_fin_time(const struct sock *sk)
1367 {
1368 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1369 	const int rto = inet_csk(sk)->icsk_rto;
1370 
1371 	if (fin_timeout < (rto << 2) - (rto >> 1))
1372 		fin_timeout = (rto << 2) - (rto >> 1);
1373 
1374 	return fin_timeout;
1375 }
1376 
1377 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1378 				  int paws_win)
1379 {
1380 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1381 		return true;
1382 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1383 		return true;
1384 	/*
1385 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1386 	 * then following tcp messages have valid values. Ignore 0 value,
1387 	 * or else 'negative' tsval might forbid us to accept their packets.
1388 	 */
1389 	if (!rx_opt->ts_recent)
1390 		return true;
1391 	return false;
1392 }
1393 
1394 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1395 				   int rst)
1396 {
1397 	if (tcp_paws_check(rx_opt, 0))
1398 		return false;
1399 
1400 	/* RST segments are not recommended to carry timestamp,
1401 	   and, if they do, it is recommended to ignore PAWS because
1402 	   "their cleanup function should take precedence over timestamps."
1403 	   Certainly, it is mistake. It is necessary to understand the reasons
1404 	   of this constraint to relax it: if peer reboots, clock may go
1405 	   out-of-sync and half-open connections will not be reset.
1406 	   Actually, the problem would be not existing if all
1407 	   the implementations followed draft about maintaining clock
1408 	   via reboots. Linux-2.2 DOES NOT!
1409 
1410 	   However, we can relax time bounds for RST segments to MSL.
1411 	 */
1412 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1413 		return false;
1414 	return true;
1415 }
1416 
1417 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1418 			  int mib_idx, u32 *last_oow_ack_time);
1419 
1420 static inline void tcp_mib_init(struct net *net)
1421 {
1422 	/* See RFC 2012 */
1423 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1424 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1425 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1426 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1427 }
1428 
1429 /* from STCP */
1430 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1431 {
1432 	tp->lost_skb_hint = NULL;
1433 }
1434 
1435 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1436 {
1437 	tcp_clear_retrans_hints_partial(tp);
1438 	tp->retransmit_skb_hint = NULL;
1439 }
1440 
1441 union tcp_md5_addr {
1442 	struct in_addr  a4;
1443 #if IS_ENABLED(CONFIG_IPV6)
1444 	struct in6_addr	a6;
1445 #endif
1446 };
1447 
1448 /* - key database */
1449 struct tcp_md5sig_key {
1450 	struct hlist_node	node;
1451 	u8			keylen;
1452 	u8			family; /* AF_INET or AF_INET6 */
1453 	union tcp_md5_addr	addr;
1454 	u8			prefixlen;
1455 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1456 	struct rcu_head		rcu;
1457 };
1458 
1459 /* - sock block */
1460 struct tcp_md5sig_info {
1461 	struct hlist_head	head;
1462 	struct rcu_head		rcu;
1463 };
1464 
1465 /* - pseudo header */
1466 struct tcp4_pseudohdr {
1467 	__be32		saddr;
1468 	__be32		daddr;
1469 	__u8		pad;
1470 	__u8		protocol;
1471 	__be16		len;
1472 };
1473 
1474 struct tcp6_pseudohdr {
1475 	struct in6_addr	saddr;
1476 	struct in6_addr daddr;
1477 	__be32		len;
1478 	__be32		protocol;	/* including padding */
1479 };
1480 
1481 union tcp_md5sum_block {
1482 	struct tcp4_pseudohdr ip4;
1483 #if IS_ENABLED(CONFIG_IPV6)
1484 	struct tcp6_pseudohdr ip6;
1485 #endif
1486 };
1487 
1488 /* - pool: digest algorithm, hash description and scratch buffer */
1489 struct tcp_md5sig_pool {
1490 	struct ahash_request	*md5_req;
1491 	void			*scratch;
1492 };
1493 
1494 /* - functions */
1495 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1496 			const struct sock *sk, const struct sk_buff *skb);
1497 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1498 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1499 		   gfp_t gfp);
1500 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1501 		   int family, u8 prefixlen);
1502 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1503 					 const struct sock *addr_sk);
1504 
1505 #ifdef CONFIG_TCP_MD5SIG
1506 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1507 					 const union tcp_md5_addr *addr,
1508 					 int family);
1509 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1510 #else
1511 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1512 					 const union tcp_md5_addr *addr,
1513 					 int family)
1514 {
1515 	return NULL;
1516 }
1517 #define tcp_twsk_md5_key(twsk)	NULL
1518 #endif
1519 
1520 bool tcp_alloc_md5sig_pool(void);
1521 
1522 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1523 static inline void tcp_put_md5sig_pool(void)
1524 {
1525 	local_bh_enable();
1526 }
1527 
1528 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1529 			  unsigned int header_len);
1530 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1531 		     const struct tcp_md5sig_key *key);
1532 
1533 /* From tcp_fastopen.c */
1534 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1535 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1536 			    unsigned long *last_syn_loss);
1537 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1538 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1539 			    u16 try_exp);
1540 struct tcp_fastopen_request {
1541 	/* Fast Open cookie. Size 0 means a cookie request */
1542 	struct tcp_fastopen_cookie	cookie;
1543 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1544 	size_t				size;
1545 	int				copied;	/* queued in tcp_connect() */
1546 };
1547 void tcp_free_fastopen_req(struct tcp_sock *tp);
1548 void tcp_fastopen_destroy_cipher(struct sock *sk);
1549 void tcp_fastopen_ctx_destroy(struct net *net);
1550 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1551 			      void *key, unsigned int len);
1552 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1553 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1554 			      struct request_sock *req,
1555 			      struct tcp_fastopen_cookie *foc,
1556 			      const struct dst_entry *dst);
1557 void tcp_fastopen_init_key_once(struct net *net);
1558 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1559 			     struct tcp_fastopen_cookie *cookie);
1560 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1561 #define TCP_FASTOPEN_KEY_LENGTH 16
1562 
1563 /* Fastopen key context */
1564 struct tcp_fastopen_context {
1565 	struct crypto_cipher	*tfm;
1566 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1567 	struct rcu_head		rcu;
1568 };
1569 
1570 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1571 void tcp_fastopen_active_disable(struct sock *sk);
1572 bool tcp_fastopen_active_should_disable(struct sock *sk);
1573 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1574 void tcp_fastopen_active_timeout_reset(void);
1575 
1576 /* Latencies incurred by various limits for a sender. They are
1577  * chronograph-like stats that are mutually exclusive.
1578  */
1579 enum tcp_chrono {
1580 	TCP_CHRONO_UNSPEC,
1581 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1582 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1583 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1584 	__TCP_CHRONO_MAX,
1585 };
1586 
1587 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1588 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1589 
1590 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1591  * the same memory storage than skb->destructor/_skb_refdst
1592  */
1593 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1594 {
1595 	skb->destructor = NULL;
1596 	skb->_skb_refdst = 0UL;
1597 }
1598 
1599 #define tcp_skb_tsorted_save(skb) {		\
1600 	unsigned long _save = skb->_skb_refdst;	\
1601 	skb->_skb_refdst = 0UL;
1602 
1603 #define tcp_skb_tsorted_restore(skb)		\
1604 	skb->_skb_refdst = _save;		\
1605 }
1606 
1607 void tcp_write_queue_purge(struct sock *sk);
1608 
1609 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1610 {
1611 	return skb_rb_first(&sk->tcp_rtx_queue);
1612 }
1613 
1614 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1615 {
1616 	return skb_peek(&sk->sk_write_queue);
1617 }
1618 
1619 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1620 {
1621 	return skb_peek_tail(&sk->sk_write_queue);
1622 }
1623 
1624 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1625 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1626 
1627 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1628 {
1629 	return skb_peek(&sk->sk_write_queue);
1630 }
1631 
1632 static inline bool tcp_skb_is_last(const struct sock *sk,
1633 				   const struct sk_buff *skb)
1634 {
1635 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1636 }
1637 
1638 static inline bool tcp_write_queue_empty(const struct sock *sk)
1639 {
1640 	return skb_queue_empty(&sk->sk_write_queue);
1641 }
1642 
1643 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1644 {
1645 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1646 }
1647 
1648 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1649 {
1650 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1651 }
1652 
1653 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1654 {
1655 	if (tcp_write_queue_empty(sk))
1656 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1657 
1658 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1659 		tcp_sk(sk)->highest_sack = NULL;
1660 }
1661 
1662 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1663 {
1664 	__skb_queue_tail(&sk->sk_write_queue, skb);
1665 }
1666 
1667 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1668 {
1669 	__tcp_add_write_queue_tail(sk, skb);
1670 
1671 	/* Queue it, remembering where we must start sending. */
1672 	if (sk->sk_write_queue.next == skb) {
1673 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1674 
1675 		if (tcp_sk(sk)->highest_sack == NULL)
1676 			tcp_sk(sk)->highest_sack = skb;
1677 	}
1678 }
1679 
1680 /* Insert new before skb on the write queue of sk.  */
1681 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1682 						  struct sk_buff *skb,
1683 						  struct sock *sk)
1684 {
1685 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1686 }
1687 
1688 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1689 {
1690 	tcp_skb_tsorted_anchor_cleanup(skb);
1691 	__skb_unlink(skb, &sk->sk_write_queue);
1692 }
1693 
1694 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1695 
1696 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1697 {
1698 	tcp_skb_tsorted_anchor_cleanup(skb);
1699 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1700 }
1701 
1702 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1703 {
1704 	list_del(&skb->tcp_tsorted_anchor);
1705 	tcp_rtx_queue_unlink(skb, sk);
1706 	sk_wmem_free_skb(sk, skb);
1707 }
1708 
1709 static inline void tcp_push_pending_frames(struct sock *sk)
1710 {
1711 	if (tcp_send_head(sk)) {
1712 		struct tcp_sock *tp = tcp_sk(sk);
1713 
1714 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1715 	}
1716 }
1717 
1718 /* Start sequence of the skb just after the highest skb with SACKed
1719  * bit, valid only if sacked_out > 0 or when the caller has ensured
1720  * validity by itself.
1721  */
1722 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1723 {
1724 	if (!tp->sacked_out)
1725 		return tp->snd_una;
1726 
1727 	if (tp->highest_sack == NULL)
1728 		return tp->snd_nxt;
1729 
1730 	return TCP_SKB_CB(tp->highest_sack)->seq;
1731 }
1732 
1733 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1734 {
1735 	struct sk_buff *next = skb_rb_next(skb);
1736 
1737 	tcp_sk(sk)->highest_sack = next ?: tcp_send_head(sk);
1738 }
1739 
1740 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1741 {
1742 	return tcp_sk(sk)->highest_sack;
1743 }
1744 
1745 static inline void tcp_highest_sack_reset(struct sock *sk)
1746 {
1747 	struct sk_buff *skb = tcp_rtx_queue_head(sk);
1748 
1749 	tcp_sk(sk)->highest_sack = skb ?: tcp_send_head(sk);
1750 }
1751 
1752 /* Called when old skb is about to be deleted (to be combined with new skb) */
1753 static inline void tcp_highest_sack_combine(struct sock *sk,
1754 					    struct sk_buff *old,
1755 					    struct sk_buff *new)
1756 {
1757 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1758 		tcp_sk(sk)->highest_sack = new;
1759 }
1760 
1761 /* This helper checks if socket has IP_TRANSPARENT set */
1762 static inline bool inet_sk_transparent(const struct sock *sk)
1763 {
1764 	switch (sk->sk_state) {
1765 	case TCP_TIME_WAIT:
1766 		return inet_twsk(sk)->tw_transparent;
1767 	case TCP_NEW_SYN_RECV:
1768 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1769 	}
1770 	return inet_sk(sk)->transparent;
1771 }
1772 
1773 /* Determines whether this is a thin stream (which may suffer from
1774  * increased latency). Used to trigger latency-reducing mechanisms.
1775  */
1776 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1777 {
1778 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1779 }
1780 
1781 /* /proc */
1782 enum tcp_seq_states {
1783 	TCP_SEQ_STATE_LISTENING,
1784 	TCP_SEQ_STATE_ESTABLISHED,
1785 };
1786 
1787 int tcp_seq_open(struct inode *inode, struct file *file);
1788 
1789 struct tcp_seq_afinfo {
1790 	char				*name;
1791 	sa_family_t			family;
1792 	const struct file_operations	*seq_fops;
1793 	struct seq_operations		seq_ops;
1794 };
1795 
1796 struct tcp_iter_state {
1797 	struct seq_net_private	p;
1798 	sa_family_t		family;
1799 	enum tcp_seq_states	state;
1800 	struct sock		*syn_wait_sk;
1801 	int			bucket, offset, sbucket, num;
1802 	loff_t			last_pos;
1803 };
1804 
1805 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1806 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1807 
1808 extern struct request_sock_ops tcp_request_sock_ops;
1809 extern struct request_sock_ops tcp6_request_sock_ops;
1810 
1811 void tcp_v4_destroy_sock(struct sock *sk);
1812 
1813 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1814 				netdev_features_t features);
1815 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1816 int tcp_gro_complete(struct sk_buff *skb);
1817 
1818 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1819 
1820 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1821 {
1822 	struct net *net = sock_net((struct sock *)tp);
1823 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1824 }
1825 
1826 static inline bool tcp_stream_memory_free(const struct sock *sk)
1827 {
1828 	const struct tcp_sock *tp = tcp_sk(sk);
1829 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1830 
1831 	return notsent_bytes < tcp_notsent_lowat(tp);
1832 }
1833 
1834 #ifdef CONFIG_PROC_FS
1835 int tcp4_proc_init(void);
1836 void tcp4_proc_exit(void);
1837 #endif
1838 
1839 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1840 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1841 		     const struct tcp_request_sock_ops *af_ops,
1842 		     struct sock *sk, struct sk_buff *skb);
1843 
1844 /* TCP af-specific functions */
1845 struct tcp_sock_af_ops {
1846 #ifdef CONFIG_TCP_MD5SIG
1847 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1848 						const struct sock *addr_sk);
1849 	int		(*calc_md5_hash)(char *location,
1850 					 const struct tcp_md5sig_key *md5,
1851 					 const struct sock *sk,
1852 					 const struct sk_buff *skb);
1853 	int		(*md5_parse)(struct sock *sk,
1854 				     int optname,
1855 				     char __user *optval,
1856 				     int optlen);
1857 #endif
1858 };
1859 
1860 struct tcp_request_sock_ops {
1861 	u16 mss_clamp;
1862 #ifdef CONFIG_TCP_MD5SIG
1863 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1864 						 const struct sock *addr_sk);
1865 	int		(*calc_md5_hash) (char *location,
1866 					  const struct tcp_md5sig_key *md5,
1867 					  const struct sock *sk,
1868 					  const struct sk_buff *skb);
1869 #endif
1870 	void (*init_req)(struct request_sock *req,
1871 			 const struct sock *sk_listener,
1872 			 struct sk_buff *skb);
1873 #ifdef CONFIG_SYN_COOKIES
1874 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1875 				 __u16 *mss);
1876 #endif
1877 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1878 				       const struct request_sock *req);
1879 	u32 (*init_seq)(const struct sk_buff *skb);
1880 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1881 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1882 			   struct flowi *fl, struct request_sock *req,
1883 			   struct tcp_fastopen_cookie *foc,
1884 			   enum tcp_synack_type synack_type);
1885 };
1886 
1887 #ifdef CONFIG_SYN_COOKIES
1888 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1889 					 const struct sock *sk, struct sk_buff *skb,
1890 					 __u16 *mss)
1891 {
1892 	tcp_synq_overflow(sk);
1893 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1894 	return ops->cookie_init_seq(skb, mss);
1895 }
1896 #else
1897 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1898 					 const struct sock *sk, struct sk_buff *skb,
1899 					 __u16 *mss)
1900 {
1901 	return 0;
1902 }
1903 #endif
1904 
1905 int tcpv4_offload_init(void);
1906 
1907 void tcp_v4_init(void);
1908 void tcp_init(void);
1909 
1910 /* tcp_recovery.c */
1911 extern void tcp_rack_mark_lost(struct sock *sk);
1912 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1913 			     u64 xmit_time);
1914 extern void tcp_rack_reo_timeout(struct sock *sk);
1915 
1916 /* At how many usecs into the future should the RTO fire? */
1917 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1918 {
1919 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1920 	u32 rto = inet_csk(sk)->icsk_rto;
1921 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1922 
1923 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1924 }
1925 
1926 /*
1927  * Save and compile IPv4 options, return a pointer to it
1928  */
1929 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1930 							 struct sk_buff *skb)
1931 {
1932 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1933 	struct ip_options_rcu *dopt = NULL;
1934 
1935 	if (opt->optlen) {
1936 		int opt_size = sizeof(*dopt) + opt->optlen;
1937 
1938 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1939 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1940 			kfree(dopt);
1941 			dopt = NULL;
1942 		}
1943 	}
1944 	return dopt;
1945 }
1946 
1947 /* locally generated TCP pure ACKs have skb->truesize == 2
1948  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1949  * This is much faster than dissecting the packet to find out.
1950  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1951  */
1952 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1953 {
1954 	return skb->truesize == 2;
1955 }
1956 
1957 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1958 {
1959 	skb->truesize = 2;
1960 }
1961 
1962 static inline int tcp_inq(struct sock *sk)
1963 {
1964 	struct tcp_sock *tp = tcp_sk(sk);
1965 	int answ;
1966 
1967 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1968 		answ = 0;
1969 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1970 		   !tp->urg_data ||
1971 		   before(tp->urg_seq, tp->copied_seq) ||
1972 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1973 
1974 		answ = tp->rcv_nxt - tp->copied_seq;
1975 
1976 		/* Subtract 1, if FIN was received */
1977 		if (answ && sock_flag(sk, SOCK_DONE))
1978 			answ--;
1979 	} else {
1980 		answ = tp->urg_seq - tp->copied_seq;
1981 	}
1982 
1983 	return answ;
1984 }
1985 
1986 int tcp_peek_len(struct socket *sock);
1987 
1988 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1989 {
1990 	u16 segs_in;
1991 
1992 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1993 	tp->segs_in += segs_in;
1994 	if (skb->len > tcp_hdrlen(skb))
1995 		tp->data_segs_in += segs_in;
1996 }
1997 
1998 /*
1999  * TCP listen path runs lockless.
2000  * We forced "struct sock" to be const qualified to make sure
2001  * we don't modify one of its field by mistake.
2002  * Here, we increment sk_drops which is an atomic_t, so we can safely
2003  * make sock writable again.
2004  */
2005 static inline void tcp_listendrop(const struct sock *sk)
2006 {
2007 	atomic_inc(&((struct sock *)sk)->sk_drops);
2008 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2009 }
2010 
2011 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2012 
2013 /*
2014  * Interface for adding Upper Level Protocols over TCP
2015  */
2016 
2017 #define TCP_ULP_NAME_MAX	16
2018 #define TCP_ULP_MAX		128
2019 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2020 
2021 struct tcp_ulp_ops {
2022 	struct list_head	list;
2023 
2024 	/* initialize ulp */
2025 	int (*init)(struct sock *sk);
2026 	/* cleanup ulp */
2027 	void (*release)(struct sock *sk);
2028 
2029 	char		name[TCP_ULP_NAME_MAX];
2030 	struct module	*owner;
2031 };
2032 int tcp_register_ulp(struct tcp_ulp_ops *type);
2033 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2034 int tcp_set_ulp(struct sock *sk, const char *name);
2035 void tcp_get_available_ulp(char *buf, size_t len);
2036 void tcp_cleanup_ulp(struct sock *sk);
2037 
2038 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2039  * is < 0, then the BPF op failed (for example if the loaded BPF
2040  * program does not support the chosen operation or there is no BPF
2041  * program loaded).
2042  */
2043 #ifdef CONFIG_BPF
2044 static inline int tcp_call_bpf(struct sock *sk, int op)
2045 {
2046 	struct bpf_sock_ops_kern sock_ops;
2047 	int ret;
2048 
2049 	if (sk_fullsock(sk))
2050 		sock_owned_by_me(sk);
2051 
2052 	memset(&sock_ops, 0, sizeof(sock_ops));
2053 	sock_ops.sk = sk;
2054 	sock_ops.op = op;
2055 
2056 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2057 	if (ret == 0)
2058 		ret = sock_ops.reply;
2059 	else
2060 		ret = -1;
2061 	return ret;
2062 }
2063 #else
2064 static inline int tcp_call_bpf(struct sock *sk, int op)
2065 {
2066 	return -EPERM;
2067 }
2068 #endif
2069 
2070 static inline u32 tcp_timeout_init(struct sock *sk)
2071 {
2072 	int timeout;
2073 
2074 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2075 
2076 	if (timeout <= 0)
2077 		timeout = TCP_TIMEOUT_INIT;
2078 	return timeout;
2079 }
2080 
2081 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2082 {
2083 	int rwnd;
2084 
2085 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2086 
2087 	if (rwnd < 0)
2088 		rwnd = 0;
2089 	return rwnd;
2090 }
2091 
2092 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2093 {
2094 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2095 }
2096 
2097 #if IS_ENABLED(CONFIG_SMC)
2098 extern struct static_key_false tcp_have_smc;
2099 #endif
2100 #endif	/* _TCP_H */
2101