xref: /openbmc/linux/include/net/tcp.h (revision 9e9fd65d1fa51d919d54d731be0e66492b5b6c5a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND	10
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		512
72 
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75 
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING	127
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* urg_data states */
83 #define TCP_URG_VALID	0x0100
84 #define TCP_URG_NOTYET	0x0200
85 #define TCP_URG_READ	0x0400
86 
87 #define TCP_RETR1	3	/*
88 				 * This is how many retries it does before it
89 				 * tries to figure out if the gateway is
90 				 * down. Minimal RFC value is 3; it corresponds
91 				 * to ~3sec-8min depending on RTO.
92 				 */
93 
94 #define TCP_RETR2	15	/*
95 				 * This should take at least
96 				 * 90 minutes to time out.
97 				 * RFC1122 says that the limit is 100 sec.
98 				 * 15 is ~13-30min depending on RTO.
99 				 */
100 
101 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
102 				 * connection: ~180sec is RFC minimum	*/
103 
104 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
105 				 * connection: ~180sec is RFC minimum	*/
106 
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 				  * state, about 60 seconds	*/
109 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
110                                  /* BSD style FIN_WAIT2 deadlock breaker.
111 				  * It used to be 3min, new value is 60sec,
112 				  * to combine FIN-WAIT-2 timeout with
113 				  * TIME-WAIT timer.
114 				  */
115 
116 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN	((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN	4U
122 #define TCP_ATO_MIN	4U
123 #endif
124 #define TCP_RTO_MAX	((unsigned)(120*HZ))
125 #define TCP_RTO_MIN	((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
128 						 * used as a fallback RTO for the
129 						 * initial data transmission if no
130 						 * valid RTT sample has been acquired,
131 						 * most likely due to retrans in 3WHS.
132 						 */
133 
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 					                 * for local resources.
136 					                 */
137 
138 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
139 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
140 #define TCP_KEEPALIVE_INTVL	(75*HZ)
141 
142 #define MAX_TCP_KEEPIDLE	32767
143 #define MAX_TCP_KEEPINTVL	32767
144 #define MAX_TCP_KEEPCNT		127
145 #define MAX_TCP_SYNCNT		127
146 
147 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
148 
149 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
151 					 * after this time. It should be equal
152 					 * (or greater than) TCP_TIMEWAIT_LEN
153 					 * to provide reliability equal to one
154 					 * provided by timewait state.
155 					 */
156 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
157 					 * timestamps. It must be less than
158 					 * minimal timewait lifetime.
159 					 */
160 /*
161  *	TCP option
162  */
163 
164 #define TCPOPT_NOP		1	/* Padding */
165 #define TCPOPT_EOL		0	/* End of options */
166 #define TCPOPT_MSS		2	/* Segment size negotiating */
167 #define TCPOPT_WINDOW		3	/* Window scaling */
168 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
169 #define TCPOPT_SACK             5       /* SACK Block */
170 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
173 
174 /*
175  *     TCP option lengths
176  */
177 
178 #define TCPOLEN_MSS            4
179 #define TCPOLEN_WINDOW         3
180 #define TCPOLEN_SACK_PERM      2
181 #define TCPOLEN_TIMESTAMP      10
182 #define TCPOLEN_MD5SIG         18
183 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
184 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
185 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
186 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
187 
188 /* But this is what stacks really send out. */
189 #define TCPOLEN_TSTAMP_ALIGNED		12
190 #define TCPOLEN_WSCALE_ALIGNED		4
191 #define TCPOLEN_SACKPERM_ALIGNED	4
192 #define TCPOLEN_SACK_BASE		2
193 #define TCPOLEN_SACK_BASE_ALIGNED	4
194 #define TCPOLEN_SACK_PERBLOCK		8
195 #define TCPOLEN_MD5SIG_ALIGNED		20
196 #define TCPOLEN_MSS_ALIGNED		4
197 
198 /* Flags in tp->nonagle */
199 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
200 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
201 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
202 
203 /* TCP thin-stream limits */
204 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
205 
206 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
207 #define TCP_INIT_CWND		10
208 
209 extern struct inet_timewait_death_row tcp_death_row;
210 
211 /* sysctl variables for tcp */
212 extern int sysctl_tcp_timestamps;
213 extern int sysctl_tcp_window_scaling;
214 extern int sysctl_tcp_sack;
215 extern int sysctl_tcp_fin_timeout;
216 extern int sysctl_tcp_keepalive_time;
217 extern int sysctl_tcp_keepalive_probes;
218 extern int sysctl_tcp_keepalive_intvl;
219 extern int sysctl_tcp_syn_retries;
220 extern int sysctl_tcp_synack_retries;
221 extern int sysctl_tcp_retries1;
222 extern int sysctl_tcp_retries2;
223 extern int sysctl_tcp_orphan_retries;
224 extern int sysctl_tcp_syncookies;
225 extern int sysctl_tcp_retrans_collapse;
226 extern int sysctl_tcp_stdurg;
227 extern int sysctl_tcp_rfc1337;
228 extern int sysctl_tcp_abort_on_overflow;
229 extern int sysctl_tcp_max_orphans;
230 extern int sysctl_tcp_fack;
231 extern int sysctl_tcp_reordering;
232 extern int sysctl_tcp_ecn;
233 extern int sysctl_tcp_dsack;
234 extern int sysctl_tcp_wmem[3];
235 extern int sysctl_tcp_rmem[3];
236 extern int sysctl_tcp_app_win;
237 extern int sysctl_tcp_adv_win_scale;
238 extern int sysctl_tcp_tw_reuse;
239 extern int sysctl_tcp_frto;
240 extern int sysctl_tcp_frto_response;
241 extern int sysctl_tcp_low_latency;
242 extern int sysctl_tcp_dma_copybreak;
243 extern int sysctl_tcp_nometrics_save;
244 extern int sysctl_tcp_moderate_rcvbuf;
245 extern int sysctl_tcp_tso_win_divisor;
246 extern int sysctl_tcp_abc;
247 extern int sysctl_tcp_mtu_probing;
248 extern int sysctl_tcp_base_mss;
249 extern int sysctl_tcp_workaround_signed_windows;
250 extern int sysctl_tcp_slow_start_after_idle;
251 extern int sysctl_tcp_max_ssthresh;
252 extern int sysctl_tcp_cookie_size;
253 extern int sysctl_tcp_thin_linear_timeouts;
254 extern int sysctl_tcp_thin_dupack;
255 extern int sysctl_tcp_early_retrans;
256 
257 extern atomic_long_t tcp_memory_allocated;
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern int tcp_memory_pressure;
260 
261 /*
262  * The next routines deal with comparing 32 bit unsigned ints
263  * and worry about wraparound (automatic with unsigned arithmetic).
264  */
265 
266 static inline bool before(__u32 seq1, __u32 seq2)
267 {
268         return (__s32)(seq1-seq2) < 0;
269 }
270 #define after(seq2, seq1) 	before(seq1, seq2)
271 
272 /* is s2<=s1<=s3 ? */
273 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
274 {
275 	return seq3 - seq2 >= seq1 - seq2;
276 }
277 
278 static inline bool tcp_out_of_memory(struct sock *sk)
279 {
280 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
281 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
282 		return true;
283 	return false;
284 }
285 
286 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
287 {
288 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
289 	int orphans = percpu_counter_read_positive(ocp);
290 
291 	if (orphans << shift > sysctl_tcp_max_orphans) {
292 		orphans = percpu_counter_sum_positive(ocp);
293 		if (orphans << shift > sysctl_tcp_max_orphans)
294 			return true;
295 	}
296 	return false;
297 }
298 
299 extern bool tcp_check_oom(struct sock *sk, int shift);
300 
301 /* syncookies: remember time of last synqueue overflow */
302 static inline void tcp_synq_overflow(struct sock *sk)
303 {
304 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
305 }
306 
307 /* syncookies: no recent synqueue overflow on this listening socket? */
308 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
309 {
310 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
311 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
312 }
313 
314 extern struct proto tcp_prot;
315 
316 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
317 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
318 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
319 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
320 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
321 
322 extern void tcp_init_mem(struct net *net);
323 
324 extern void tcp_v4_err(struct sk_buff *skb, u32);
325 
326 extern void tcp_shutdown (struct sock *sk, int how);
327 
328 extern int tcp_v4_rcv(struct sk_buff *skb);
329 
330 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
331 extern void *tcp_v4_tw_get_peer(struct sock *sk);
332 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
333 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
334 		       size_t size);
335 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
336 			size_t size, int flags);
337 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
338 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
339 				 const struct tcphdr *th, unsigned int len);
340 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
341 			       const struct tcphdr *th, unsigned int len);
342 extern void tcp_rcv_space_adjust(struct sock *sk);
343 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
344 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
345 extern void tcp_twsk_destructor(struct sock *sk);
346 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
347 			       struct pipe_inode_info *pipe, size_t len,
348 			       unsigned int flags);
349 
350 static inline void tcp_dec_quickack_mode(struct sock *sk,
351 					 const unsigned int pkts)
352 {
353 	struct inet_connection_sock *icsk = inet_csk(sk);
354 
355 	if (icsk->icsk_ack.quick) {
356 		if (pkts >= icsk->icsk_ack.quick) {
357 			icsk->icsk_ack.quick = 0;
358 			/* Leaving quickack mode we deflate ATO. */
359 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
360 		} else
361 			icsk->icsk_ack.quick -= pkts;
362 	}
363 }
364 
365 #define	TCP_ECN_OK		1
366 #define	TCP_ECN_QUEUE_CWR	2
367 #define	TCP_ECN_DEMAND_CWR	4
368 #define	TCP_ECN_SEEN		8
369 
370 enum tcp_tw_status {
371 	TCP_TW_SUCCESS = 0,
372 	TCP_TW_RST = 1,
373 	TCP_TW_ACK = 2,
374 	TCP_TW_SYN = 3
375 };
376 
377 
378 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
379 						     struct sk_buff *skb,
380 						     const struct tcphdr *th);
381 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
382 				   struct request_sock *req,
383 				   struct request_sock **prev);
384 extern int tcp_child_process(struct sock *parent, struct sock *child,
385 			     struct sk_buff *skb);
386 extern bool tcp_use_frto(struct sock *sk);
387 extern void tcp_enter_frto(struct sock *sk);
388 extern void tcp_enter_loss(struct sock *sk, int how);
389 extern void tcp_clear_retrans(struct tcp_sock *tp);
390 extern void tcp_update_metrics(struct sock *sk);
391 extern void tcp_close(struct sock *sk, long timeout);
392 extern void tcp_init_sock(struct sock *sk);
393 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
394 			     struct poll_table_struct *wait);
395 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
396 			  char __user *optval, int __user *optlen);
397 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, unsigned int optlen);
399 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
400 				 char __user *optval, int __user *optlen);
401 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
402 				 char __user *optval, unsigned int optlen);
403 extern void tcp_set_keepalive(struct sock *sk, int val);
404 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
405 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
406 		       size_t len, int nonblock, int flags, int *addr_len);
407 extern void tcp_parse_options(const struct sk_buff *skb,
408 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
409 			      int estab);
410 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
411 
412 /*
413  *	TCP v4 functions exported for the inet6 API
414  */
415 
416 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
417 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
418 extern struct sock * tcp_create_openreq_child(struct sock *sk,
419 					      struct request_sock *req,
420 					      struct sk_buff *skb);
421 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
422 					  struct request_sock *req,
423 					  struct dst_entry *dst);
424 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
425 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
426 			  int addr_len);
427 extern int tcp_connect(struct sock *sk);
428 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
429 					struct request_sock *req,
430 					struct request_values *rvp);
431 extern int tcp_disconnect(struct sock *sk, int flags);
432 
433 void tcp_connect_init(struct sock *sk);
434 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
435 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
436 
437 /* From syncookies.c */
438 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
439 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
440 				    struct ip_options *opt);
441 #ifdef CONFIG_SYN_COOKIES
442 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
443 				     __u16 *mss);
444 #else
445 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
446 					    struct sk_buff *skb,
447 					    __u16 *mss)
448 {
449 	return 0;
450 }
451 #endif
452 
453 extern __u32 cookie_init_timestamp(struct request_sock *req);
454 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
455 
456 /* From net/ipv6/syncookies.c */
457 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
458 #ifdef CONFIG_SYN_COOKIES
459 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
460 				     __u16 *mss);
461 #else
462 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
463 					    struct sk_buff *skb,
464 					    __u16 *mss)
465 {
466 	return 0;
467 }
468 #endif
469 /* tcp_output.c */
470 
471 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
472 				      int nonagle);
473 extern bool tcp_may_send_now(struct sock *sk);
474 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
475 extern void tcp_retransmit_timer(struct sock *sk);
476 extern void tcp_xmit_retransmit_queue(struct sock *);
477 extern void tcp_simple_retransmit(struct sock *);
478 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
479 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
480 
481 extern void tcp_send_probe0(struct sock *);
482 extern void tcp_send_partial(struct sock *);
483 extern int tcp_write_wakeup(struct sock *);
484 extern void tcp_send_fin(struct sock *sk);
485 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
486 extern int tcp_send_synack(struct sock *);
487 extern bool tcp_syn_flood_action(struct sock *sk,
488 				 const struct sk_buff *skb,
489 				 const char *proto);
490 extern void tcp_push_one(struct sock *, unsigned int mss_now);
491 extern void tcp_send_ack(struct sock *sk);
492 extern void tcp_send_delayed_ack(struct sock *sk);
493 
494 /* tcp_input.c */
495 extern void tcp_cwnd_application_limited(struct sock *sk);
496 extern void tcp_resume_early_retransmit(struct sock *sk);
497 extern void tcp_rearm_rto(struct sock *sk);
498 
499 /* tcp_timer.c */
500 extern void tcp_init_xmit_timers(struct sock *);
501 static inline void tcp_clear_xmit_timers(struct sock *sk)
502 {
503 	inet_csk_clear_xmit_timers(sk);
504 }
505 
506 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
507 extern unsigned int tcp_current_mss(struct sock *sk);
508 
509 /* Bound MSS / TSO packet size with the half of the window */
510 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
511 {
512 	int cutoff;
513 
514 	/* When peer uses tiny windows, there is no use in packetizing
515 	 * to sub-MSS pieces for the sake of SWS or making sure there
516 	 * are enough packets in the pipe for fast recovery.
517 	 *
518 	 * On the other hand, for extremely large MSS devices, handling
519 	 * smaller than MSS windows in this way does make sense.
520 	 */
521 	if (tp->max_window >= 512)
522 		cutoff = (tp->max_window >> 1);
523 	else
524 		cutoff = tp->max_window;
525 
526 	if (cutoff && pktsize > cutoff)
527 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
528 	else
529 		return pktsize;
530 }
531 
532 /* tcp.c */
533 extern void tcp_get_info(const struct sock *, struct tcp_info *);
534 
535 /* Read 'sendfile()'-style from a TCP socket */
536 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
537 				unsigned int, size_t);
538 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
539 			 sk_read_actor_t recv_actor);
540 
541 extern void tcp_initialize_rcv_mss(struct sock *sk);
542 
543 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
544 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
545 extern void tcp_mtup_init(struct sock *sk);
546 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
547 
548 static inline void tcp_bound_rto(const struct sock *sk)
549 {
550 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
551 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
552 }
553 
554 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
555 {
556 	return (tp->srtt >> 3) + tp->rttvar;
557 }
558 
559 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
560 {
561 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
562 			       ntohl(TCP_FLAG_ACK) |
563 			       snd_wnd);
564 }
565 
566 static inline void tcp_fast_path_on(struct tcp_sock *tp)
567 {
568 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
569 }
570 
571 static inline void tcp_fast_path_check(struct sock *sk)
572 {
573 	struct tcp_sock *tp = tcp_sk(sk);
574 
575 	if (skb_queue_empty(&tp->out_of_order_queue) &&
576 	    tp->rcv_wnd &&
577 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
578 	    !tp->urg_data)
579 		tcp_fast_path_on(tp);
580 }
581 
582 /* Compute the actual rto_min value */
583 static inline u32 tcp_rto_min(struct sock *sk)
584 {
585 	const struct dst_entry *dst = __sk_dst_get(sk);
586 	u32 rto_min = TCP_RTO_MIN;
587 
588 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
589 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
590 	return rto_min;
591 }
592 
593 /* Compute the actual receive window we are currently advertising.
594  * Rcv_nxt can be after the window if our peer push more data
595  * than the offered window.
596  */
597 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
598 {
599 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
600 
601 	if (win < 0)
602 		win = 0;
603 	return (u32) win;
604 }
605 
606 /* Choose a new window, without checks for shrinking, and without
607  * scaling applied to the result.  The caller does these things
608  * if necessary.  This is a "raw" window selection.
609  */
610 extern u32 __tcp_select_window(struct sock *sk);
611 
612 void tcp_send_window_probe(struct sock *sk);
613 
614 /* TCP timestamps are only 32-bits, this causes a slight
615  * complication on 64-bit systems since we store a snapshot
616  * of jiffies in the buffer control blocks below.  We decided
617  * to use only the low 32-bits of jiffies and hide the ugly
618  * casts with the following macro.
619  */
620 #define tcp_time_stamp		((__u32)(jiffies))
621 
622 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
623 
624 #define TCPHDR_FIN 0x01
625 #define TCPHDR_SYN 0x02
626 #define TCPHDR_RST 0x04
627 #define TCPHDR_PSH 0x08
628 #define TCPHDR_ACK 0x10
629 #define TCPHDR_URG 0x20
630 #define TCPHDR_ECE 0x40
631 #define TCPHDR_CWR 0x80
632 
633 /* This is what the send packet queuing engine uses to pass
634  * TCP per-packet control information to the transmission code.
635  * We also store the host-order sequence numbers in here too.
636  * This is 44 bytes if IPV6 is enabled.
637  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
638  */
639 struct tcp_skb_cb {
640 	union {
641 		struct inet_skb_parm	h4;
642 #if IS_ENABLED(CONFIG_IPV6)
643 		struct inet6_skb_parm	h6;
644 #endif
645 	} header;	/* For incoming frames		*/
646 	__u32		seq;		/* Starting sequence number	*/
647 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
648 	__u32		when;		/* used to compute rtt's	*/
649 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
650 
651 	__u8		sacked;		/* State flags for SACK/FACK.	*/
652 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
653 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
654 #define TCPCB_LOST		0x04	/* SKB is lost			*/
655 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
656 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
657 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
658 
659 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
660 	/* 1 byte hole */
661 	__u32		ack_seq;	/* Sequence number ACK'd	*/
662 };
663 
664 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
665 
666 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
667  *
668  * If we receive a SYN packet with these bits set, it means a network is
669  * playing bad games with TOS bits. In order to avoid possible false congestion
670  * notifications, we disable TCP ECN negociation.
671  */
672 static inline void
673 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb)
674 {
675 	const struct tcphdr *th = tcp_hdr(skb);
676 
677 	if (sysctl_tcp_ecn && th->ece && th->cwr &&
678 	    INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
679 		inet_rsk(req)->ecn_ok = 1;
680 }
681 
682 /* Due to TSO, an SKB can be composed of multiple actual
683  * packets.  To keep these tracked properly, we use this.
684  */
685 static inline int tcp_skb_pcount(const struct sk_buff *skb)
686 {
687 	return skb_shinfo(skb)->gso_segs;
688 }
689 
690 /* This is valid iff tcp_skb_pcount() > 1. */
691 static inline int tcp_skb_mss(const struct sk_buff *skb)
692 {
693 	return skb_shinfo(skb)->gso_size;
694 }
695 
696 /* Events passed to congestion control interface */
697 enum tcp_ca_event {
698 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
699 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
700 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
701 	CA_EVENT_FRTO,		/* fast recovery timeout */
702 	CA_EVENT_LOSS,		/* loss timeout */
703 	CA_EVENT_FAST_ACK,	/* in sequence ack */
704 	CA_EVENT_SLOW_ACK,	/* other ack */
705 };
706 
707 /*
708  * Interface for adding new TCP congestion control handlers
709  */
710 #define TCP_CA_NAME_MAX	16
711 #define TCP_CA_MAX	128
712 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
713 
714 #define TCP_CONG_NON_RESTRICTED 0x1
715 #define TCP_CONG_RTT_STAMP	0x2
716 
717 struct tcp_congestion_ops {
718 	struct list_head	list;
719 	unsigned long flags;
720 
721 	/* initialize private data (optional) */
722 	void (*init)(struct sock *sk);
723 	/* cleanup private data  (optional) */
724 	void (*release)(struct sock *sk);
725 
726 	/* return slow start threshold (required) */
727 	u32 (*ssthresh)(struct sock *sk);
728 	/* lower bound for congestion window (optional) */
729 	u32 (*min_cwnd)(const struct sock *sk);
730 	/* do new cwnd calculation (required) */
731 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
732 	/* call before changing ca_state (optional) */
733 	void (*set_state)(struct sock *sk, u8 new_state);
734 	/* call when cwnd event occurs (optional) */
735 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
736 	/* new value of cwnd after loss (optional) */
737 	u32  (*undo_cwnd)(struct sock *sk);
738 	/* hook for packet ack accounting (optional) */
739 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
740 	/* get info for inet_diag (optional) */
741 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
742 
743 	char 		name[TCP_CA_NAME_MAX];
744 	struct module 	*owner;
745 };
746 
747 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
748 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
749 
750 extern void tcp_init_congestion_control(struct sock *sk);
751 extern void tcp_cleanup_congestion_control(struct sock *sk);
752 extern int tcp_set_default_congestion_control(const char *name);
753 extern void tcp_get_default_congestion_control(char *name);
754 extern void tcp_get_available_congestion_control(char *buf, size_t len);
755 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
756 extern int tcp_set_allowed_congestion_control(char *allowed);
757 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
758 extern void tcp_slow_start(struct tcp_sock *tp);
759 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
760 
761 extern struct tcp_congestion_ops tcp_init_congestion_ops;
762 extern u32 tcp_reno_ssthresh(struct sock *sk);
763 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
764 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
765 extern struct tcp_congestion_ops tcp_reno;
766 
767 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
768 {
769 	struct inet_connection_sock *icsk = inet_csk(sk);
770 
771 	if (icsk->icsk_ca_ops->set_state)
772 		icsk->icsk_ca_ops->set_state(sk, ca_state);
773 	icsk->icsk_ca_state = ca_state;
774 }
775 
776 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
777 {
778 	const struct inet_connection_sock *icsk = inet_csk(sk);
779 
780 	if (icsk->icsk_ca_ops->cwnd_event)
781 		icsk->icsk_ca_ops->cwnd_event(sk, event);
782 }
783 
784 /* These functions determine how the current flow behaves in respect of SACK
785  * handling. SACK is negotiated with the peer, and therefore it can vary
786  * between different flows.
787  *
788  * tcp_is_sack - SACK enabled
789  * tcp_is_reno - No SACK
790  * tcp_is_fack - FACK enabled, implies SACK enabled
791  */
792 static inline int tcp_is_sack(const struct tcp_sock *tp)
793 {
794 	return tp->rx_opt.sack_ok;
795 }
796 
797 static inline bool tcp_is_reno(const struct tcp_sock *tp)
798 {
799 	return !tcp_is_sack(tp);
800 }
801 
802 static inline bool tcp_is_fack(const struct tcp_sock *tp)
803 {
804 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
805 }
806 
807 static inline void tcp_enable_fack(struct tcp_sock *tp)
808 {
809 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
810 }
811 
812 /* TCP early-retransmit (ER) is similar to but more conservative than
813  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
814  */
815 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
816 {
817 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
818 		!sysctl_tcp_thin_dupack && sysctl_tcp_reordering == 3;
819 	tp->early_retrans_delayed = 0;
820 }
821 
822 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
823 {
824 	tp->do_early_retrans = 0;
825 }
826 
827 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
828 {
829 	return tp->sacked_out + tp->lost_out;
830 }
831 
832 /* This determines how many packets are "in the network" to the best
833  * of our knowledge.  In many cases it is conservative, but where
834  * detailed information is available from the receiver (via SACK
835  * blocks etc.) we can make more aggressive calculations.
836  *
837  * Use this for decisions involving congestion control, use just
838  * tp->packets_out to determine if the send queue is empty or not.
839  *
840  * Read this equation as:
841  *
842  *	"Packets sent once on transmission queue" MINUS
843  *	"Packets left network, but not honestly ACKed yet" PLUS
844  *	"Packets fast retransmitted"
845  */
846 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
847 {
848 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
849 }
850 
851 #define TCP_INFINITE_SSTHRESH	0x7fffffff
852 
853 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
854 {
855 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
856 }
857 
858 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
859  * The exception is rate halving phase, when cwnd is decreasing towards
860  * ssthresh.
861  */
862 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
863 {
864 	const struct tcp_sock *tp = tcp_sk(sk);
865 
866 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
867 		return tp->snd_ssthresh;
868 	else
869 		return max(tp->snd_ssthresh,
870 			   ((tp->snd_cwnd >> 1) +
871 			    (tp->snd_cwnd >> 2)));
872 }
873 
874 /* Use define here intentionally to get WARN_ON location shown at the caller */
875 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
876 
877 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
878 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
879 
880 /* The maximum number of MSS of available cwnd for which TSO defers
881  * sending if not using sysctl_tcp_tso_win_divisor.
882  */
883 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
884 {
885 	return 3;
886 }
887 
888 /* Slow start with delack produces 3 packets of burst, so that
889  * it is safe "de facto".  This will be the default - same as
890  * the default reordering threshold - but if reordering increases,
891  * we must be able to allow cwnd to burst at least this much in order
892  * to not pull it back when holes are filled.
893  */
894 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
895 {
896 	return tp->reordering;
897 }
898 
899 /* Returns end sequence number of the receiver's advertised window */
900 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
901 {
902 	return tp->snd_una + tp->snd_wnd;
903 }
904 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
905 
906 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
907 				       const struct sk_buff *skb)
908 {
909 	if (skb->len < mss)
910 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
911 }
912 
913 static inline void tcp_check_probe_timer(struct sock *sk)
914 {
915 	const struct tcp_sock *tp = tcp_sk(sk);
916 	const struct inet_connection_sock *icsk = inet_csk(sk);
917 
918 	if (!tp->packets_out && !icsk->icsk_pending)
919 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
920 					  icsk->icsk_rto, TCP_RTO_MAX);
921 }
922 
923 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
924 {
925 	tp->snd_wl1 = seq;
926 }
927 
928 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
929 {
930 	tp->snd_wl1 = seq;
931 }
932 
933 /*
934  * Calculate(/check) TCP checksum
935  */
936 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
937 				   __be32 daddr, __wsum base)
938 {
939 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
940 }
941 
942 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
943 {
944 	return __skb_checksum_complete(skb);
945 }
946 
947 static inline bool tcp_checksum_complete(struct sk_buff *skb)
948 {
949 	return !skb_csum_unnecessary(skb) &&
950 		__tcp_checksum_complete(skb);
951 }
952 
953 /* Prequeue for VJ style copy to user, combined with checksumming. */
954 
955 static inline void tcp_prequeue_init(struct tcp_sock *tp)
956 {
957 	tp->ucopy.task = NULL;
958 	tp->ucopy.len = 0;
959 	tp->ucopy.memory = 0;
960 	skb_queue_head_init(&tp->ucopy.prequeue);
961 #ifdef CONFIG_NET_DMA
962 	tp->ucopy.dma_chan = NULL;
963 	tp->ucopy.wakeup = 0;
964 	tp->ucopy.pinned_list = NULL;
965 	tp->ucopy.dma_cookie = 0;
966 #endif
967 }
968 
969 /* Packet is added to VJ-style prequeue for processing in process
970  * context, if a reader task is waiting. Apparently, this exciting
971  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
972  * failed somewhere. Latency? Burstiness? Well, at least now we will
973  * see, why it failed. 8)8)				  --ANK
974  *
975  * NOTE: is this not too big to inline?
976  */
977 static inline bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
978 {
979 	struct tcp_sock *tp = tcp_sk(sk);
980 
981 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
982 		return false;
983 
984 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
985 	tp->ucopy.memory += skb->truesize;
986 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
987 		struct sk_buff *skb1;
988 
989 		BUG_ON(sock_owned_by_user(sk));
990 
991 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
992 			sk_backlog_rcv(sk, skb1);
993 			NET_INC_STATS_BH(sock_net(sk),
994 					 LINUX_MIB_TCPPREQUEUEDROPPED);
995 		}
996 
997 		tp->ucopy.memory = 0;
998 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
999 		wake_up_interruptible_sync_poll(sk_sleep(sk),
1000 					   POLLIN | POLLRDNORM | POLLRDBAND);
1001 		if (!inet_csk_ack_scheduled(sk))
1002 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1003 						  (3 * tcp_rto_min(sk)) / 4,
1004 						  TCP_RTO_MAX);
1005 	}
1006 	return true;
1007 }
1008 
1009 
1010 #undef STATE_TRACE
1011 
1012 #ifdef STATE_TRACE
1013 static const char *statename[]={
1014 	"Unused","Established","Syn Sent","Syn Recv",
1015 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1016 	"Close Wait","Last ACK","Listen","Closing"
1017 };
1018 #endif
1019 extern void tcp_set_state(struct sock *sk, int state);
1020 
1021 extern void tcp_done(struct sock *sk);
1022 
1023 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1024 {
1025 	rx_opt->dsack = 0;
1026 	rx_opt->num_sacks = 0;
1027 }
1028 
1029 /* Determine a window scaling and initial window to offer. */
1030 extern void tcp_select_initial_window(int __space, __u32 mss,
1031 				      __u32 *rcv_wnd, __u32 *window_clamp,
1032 				      int wscale_ok, __u8 *rcv_wscale,
1033 				      __u32 init_rcv_wnd);
1034 
1035 static inline int tcp_win_from_space(int space)
1036 {
1037 	return sysctl_tcp_adv_win_scale<=0 ?
1038 		(space>>(-sysctl_tcp_adv_win_scale)) :
1039 		space - (space>>sysctl_tcp_adv_win_scale);
1040 }
1041 
1042 /* Note: caller must be prepared to deal with negative returns */
1043 static inline int tcp_space(const struct sock *sk)
1044 {
1045 	return tcp_win_from_space(sk->sk_rcvbuf -
1046 				  atomic_read(&sk->sk_rmem_alloc));
1047 }
1048 
1049 static inline int tcp_full_space(const struct sock *sk)
1050 {
1051 	return tcp_win_from_space(sk->sk_rcvbuf);
1052 }
1053 
1054 static inline void tcp_openreq_init(struct request_sock *req,
1055 				    struct tcp_options_received *rx_opt,
1056 				    struct sk_buff *skb)
1057 {
1058 	struct inet_request_sock *ireq = inet_rsk(req);
1059 
1060 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1061 	req->cookie_ts = 0;
1062 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1063 	req->mss = rx_opt->mss_clamp;
1064 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1065 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1066 	ireq->sack_ok = rx_opt->sack_ok;
1067 	ireq->snd_wscale = rx_opt->snd_wscale;
1068 	ireq->wscale_ok = rx_opt->wscale_ok;
1069 	ireq->acked = 0;
1070 	ireq->ecn_ok = 0;
1071 	ireq->rmt_port = tcp_hdr(skb)->source;
1072 	ireq->loc_port = tcp_hdr(skb)->dest;
1073 }
1074 
1075 extern void tcp_enter_memory_pressure(struct sock *sk);
1076 
1077 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1078 {
1079 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1080 }
1081 
1082 static inline int keepalive_time_when(const struct tcp_sock *tp)
1083 {
1084 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1085 }
1086 
1087 static inline int keepalive_probes(const struct tcp_sock *tp)
1088 {
1089 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1090 }
1091 
1092 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1093 {
1094 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1095 
1096 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1097 			  tcp_time_stamp - tp->rcv_tstamp);
1098 }
1099 
1100 static inline int tcp_fin_time(const struct sock *sk)
1101 {
1102 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1103 	const int rto = inet_csk(sk)->icsk_rto;
1104 
1105 	if (fin_timeout < (rto << 2) - (rto >> 1))
1106 		fin_timeout = (rto << 2) - (rto >> 1);
1107 
1108 	return fin_timeout;
1109 }
1110 
1111 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1112 				  int paws_win)
1113 {
1114 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1115 		return true;
1116 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1117 		return true;
1118 	/*
1119 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1120 	 * then following tcp messages have valid values. Ignore 0 value,
1121 	 * or else 'negative' tsval might forbid us to accept their packets.
1122 	 */
1123 	if (!rx_opt->ts_recent)
1124 		return true;
1125 	return false;
1126 }
1127 
1128 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1129 				   int rst)
1130 {
1131 	if (tcp_paws_check(rx_opt, 0))
1132 		return false;
1133 
1134 	/* RST segments are not recommended to carry timestamp,
1135 	   and, if they do, it is recommended to ignore PAWS because
1136 	   "their cleanup function should take precedence over timestamps."
1137 	   Certainly, it is mistake. It is necessary to understand the reasons
1138 	   of this constraint to relax it: if peer reboots, clock may go
1139 	   out-of-sync and half-open connections will not be reset.
1140 	   Actually, the problem would be not existing if all
1141 	   the implementations followed draft about maintaining clock
1142 	   via reboots. Linux-2.2 DOES NOT!
1143 
1144 	   However, we can relax time bounds for RST segments to MSL.
1145 	 */
1146 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1147 		return false;
1148 	return true;
1149 }
1150 
1151 static inline void tcp_mib_init(struct net *net)
1152 {
1153 	/* See RFC 2012 */
1154 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1155 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1156 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1157 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1158 }
1159 
1160 /* from STCP */
1161 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1162 {
1163 	tp->lost_skb_hint = NULL;
1164 	tp->scoreboard_skb_hint = NULL;
1165 }
1166 
1167 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1168 {
1169 	tcp_clear_retrans_hints_partial(tp);
1170 	tp->retransmit_skb_hint = NULL;
1171 }
1172 
1173 /* MD5 Signature */
1174 struct crypto_hash;
1175 
1176 union tcp_md5_addr {
1177 	struct in_addr  a4;
1178 #if IS_ENABLED(CONFIG_IPV6)
1179 	struct in6_addr	a6;
1180 #endif
1181 };
1182 
1183 /* - key database */
1184 struct tcp_md5sig_key {
1185 	struct hlist_node	node;
1186 	u8			keylen;
1187 	u8			family; /* AF_INET or AF_INET6 */
1188 	union tcp_md5_addr	addr;
1189 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1190 	struct rcu_head		rcu;
1191 };
1192 
1193 /* - sock block */
1194 struct tcp_md5sig_info {
1195 	struct hlist_head	head;
1196 	struct rcu_head		rcu;
1197 };
1198 
1199 /* - pseudo header */
1200 struct tcp4_pseudohdr {
1201 	__be32		saddr;
1202 	__be32		daddr;
1203 	__u8		pad;
1204 	__u8		protocol;
1205 	__be16		len;
1206 };
1207 
1208 struct tcp6_pseudohdr {
1209 	struct in6_addr	saddr;
1210 	struct in6_addr daddr;
1211 	__be32		len;
1212 	__be32		protocol;	/* including padding */
1213 };
1214 
1215 union tcp_md5sum_block {
1216 	struct tcp4_pseudohdr ip4;
1217 #if IS_ENABLED(CONFIG_IPV6)
1218 	struct tcp6_pseudohdr ip6;
1219 #endif
1220 };
1221 
1222 /* - pool: digest algorithm, hash description and scratch buffer */
1223 struct tcp_md5sig_pool {
1224 	struct hash_desc	md5_desc;
1225 	union tcp_md5sum_block	md5_blk;
1226 };
1227 
1228 /* - functions */
1229 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1230 			       const struct sock *sk,
1231 			       const struct request_sock *req,
1232 			       const struct sk_buff *skb);
1233 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1234 			  int family, const u8 *newkey,
1235 			  u8 newkeylen, gfp_t gfp);
1236 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1237 			  int family);
1238 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1239 					 struct sock *addr_sk);
1240 
1241 #ifdef CONFIG_TCP_MD5SIG
1242 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1243 			const union tcp_md5_addr *addr, int family);
1244 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1245 #else
1246 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1247 					 const union tcp_md5_addr *addr,
1248 					 int family)
1249 {
1250 	return NULL;
1251 }
1252 #define tcp_twsk_md5_key(twsk)	NULL
1253 #endif
1254 
1255 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1256 extern void tcp_free_md5sig_pool(void);
1257 
1258 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1259 extern void tcp_put_md5sig_pool(void);
1260 
1261 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1262 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1263 				 unsigned int header_len);
1264 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1265 			    const struct tcp_md5sig_key *key);
1266 
1267 /* write queue abstraction */
1268 static inline void tcp_write_queue_purge(struct sock *sk)
1269 {
1270 	struct sk_buff *skb;
1271 
1272 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1273 		sk_wmem_free_skb(sk, skb);
1274 	sk_mem_reclaim(sk);
1275 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1276 }
1277 
1278 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1279 {
1280 	return skb_peek(&sk->sk_write_queue);
1281 }
1282 
1283 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1284 {
1285 	return skb_peek_tail(&sk->sk_write_queue);
1286 }
1287 
1288 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1289 						   const struct sk_buff *skb)
1290 {
1291 	return skb_queue_next(&sk->sk_write_queue, skb);
1292 }
1293 
1294 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1295 						   const struct sk_buff *skb)
1296 {
1297 	return skb_queue_prev(&sk->sk_write_queue, skb);
1298 }
1299 
1300 #define tcp_for_write_queue(skb, sk)					\
1301 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1302 
1303 #define tcp_for_write_queue_from(skb, sk)				\
1304 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1305 
1306 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1307 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1308 
1309 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1310 {
1311 	return sk->sk_send_head;
1312 }
1313 
1314 static inline bool tcp_skb_is_last(const struct sock *sk,
1315 				   const struct sk_buff *skb)
1316 {
1317 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1318 }
1319 
1320 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1321 {
1322 	if (tcp_skb_is_last(sk, skb))
1323 		sk->sk_send_head = NULL;
1324 	else
1325 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1326 }
1327 
1328 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1329 {
1330 	if (sk->sk_send_head == skb_unlinked)
1331 		sk->sk_send_head = NULL;
1332 }
1333 
1334 static inline void tcp_init_send_head(struct sock *sk)
1335 {
1336 	sk->sk_send_head = NULL;
1337 }
1338 
1339 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1340 {
1341 	__skb_queue_tail(&sk->sk_write_queue, skb);
1342 }
1343 
1344 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1345 {
1346 	__tcp_add_write_queue_tail(sk, skb);
1347 
1348 	/* Queue it, remembering where we must start sending. */
1349 	if (sk->sk_send_head == NULL) {
1350 		sk->sk_send_head = skb;
1351 
1352 		if (tcp_sk(sk)->highest_sack == NULL)
1353 			tcp_sk(sk)->highest_sack = skb;
1354 	}
1355 }
1356 
1357 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1358 {
1359 	__skb_queue_head(&sk->sk_write_queue, skb);
1360 }
1361 
1362 /* Insert buff after skb on the write queue of sk.  */
1363 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1364 						struct sk_buff *buff,
1365 						struct sock *sk)
1366 {
1367 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1368 }
1369 
1370 /* Insert new before skb on the write queue of sk.  */
1371 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1372 						  struct sk_buff *skb,
1373 						  struct sock *sk)
1374 {
1375 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1376 
1377 	if (sk->sk_send_head == skb)
1378 		sk->sk_send_head = new;
1379 }
1380 
1381 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1382 {
1383 	__skb_unlink(skb, &sk->sk_write_queue);
1384 }
1385 
1386 static inline bool tcp_write_queue_empty(struct sock *sk)
1387 {
1388 	return skb_queue_empty(&sk->sk_write_queue);
1389 }
1390 
1391 static inline void tcp_push_pending_frames(struct sock *sk)
1392 {
1393 	if (tcp_send_head(sk)) {
1394 		struct tcp_sock *tp = tcp_sk(sk);
1395 
1396 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1397 	}
1398 }
1399 
1400 /* Start sequence of the skb just after the highest skb with SACKed
1401  * bit, valid only if sacked_out > 0 or when the caller has ensured
1402  * validity by itself.
1403  */
1404 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1405 {
1406 	if (!tp->sacked_out)
1407 		return tp->snd_una;
1408 
1409 	if (tp->highest_sack == NULL)
1410 		return tp->snd_nxt;
1411 
1412 	return TCP_SKB_CB(tp->highest_sack)->seq;
1413 }
1414 
1415 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1416 {
1417 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1418 						tcp_write_queue_next(sk, skb);
1419 }
1420 
1421 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1422 {
1423 	return tcp_sk(sk)->highest_sack;
1424 }
1425 
1426 static inline void tcp_highest_sack_reset(struct sock *sk)
1427 {
1428 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1429 }
1430 
1431 /* Called when old skb is about to be deleted (to be combined with new skb) */
1432 static inline void tcp_highest_sack_combine(struct sock *sk,
1433 					    struct sk_buff *old,
1434 					    struct sk_buff *new)
1435 {
1436 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1437 		tcp_sk(sk)->highest_sack = new;
1438 }
1439 
1440 /* Determines whether this is a thin stream (which may suffer from
1441  * increased latency). Used to trigger latency-reducing mechanisms.
1442  */
1443 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1444 {
1445 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1446 }
1447 
1448 /* /proc */
1449 enum tcp_seq_states {
1450 	TCP_SEQ_STATE_LISTENING,
1451 	TCP_SEQ_STATE_OPENREQ,
1452 	TCP_SEQ_STATE_ESTABLISHED,
1453 	TCP_SEQ_STATE_TIME_WAIT,
1454 };
1455 
1456 int tcp_seq_open(struct inode *inode, struct file *file);
1457 
1458 struct tcp_seq_afinfo {
1459 	char				*name;
1460 	sa_family_t			family;
1461 	const struct file_operations	*seq_fops;
1462 	struct seq_operations		seq_ops;
1463 };
1464 
1465 struct tcp_iter_state {
1466 	struct seq_net_private	p;
1467 	sa_family_t		family;
1468 	enum tcp_seq_states	state;
1469 	struct sock		*syn_wait_sk;
1470 	int			bucket, offset, sbucket, num, uid;
1471 	loff_t			last_pos;
1472 };
1473 
1474 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1475 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1476 
1477 extern struct request_sock_ops tcp_request_sock_ops;
1478 extern struct request_sock_ops tcp6_request_sock_ops;
1479 
1480 extern void tcp_v4_destroy_sock(struct sock *sk);
1481 
1482 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1483 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1484 				       netdev_features_t features);
1485 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1486 					struct sk_buff *skb);
1487 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1488 					 struct sk_buff *skb);
1489 extern int tcp_gro_complete(struct sk_buff *skb);
1490 extern int tcp4_gro_complete(struct sk_buff *skb);
1491 
1492 #ifdef CONFIG_PROC_FS
1493 extern int tcp4_proc_init(void);
1494 extern void tcp4_proc_exit(void);
1495 #endif
1496 
1497 /* TCP af-specific functions */
1498 struct tcp_sock_af_ops {
1499 #ifdef CONFIG_TCP_MD5SIG
1500 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1501 						struct sock *addr_sk);
1502 	int			(*calc_md5_hash) (char *location,
1503 						  struct tcp_md5sig_key *md5,
1504 						  const struct sock *sk,
1505 						  const struct request_sock *req,
1506 						  const struct sk_buff *skb);
1507 	int			(*md5_parse) (struct sock *sk,
1508 					      char __user *optval,
1509 					      int optlen);
1510 #endif
1511 };
1512 
1513 struct tcp_request_sock_ops {
1514 #ifdef CONFIG_TCP_MD5SIG
1515 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1516 						struct request_sock *req);
1517 	int			(*calc_md5_hash) (char *location,
1518 						  struct tcp_md5sig_key *md5,
1519 						  const struct sock *sk,
1520 						  const struct request_sock *req,
1521 						  const struct sk_buff *skb);
1522 #endif
1523 };
1524 
1525 /* Using SHA1 for now, define some constants.
1526  */
1527 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1528 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1529 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1530 
1531 extern int tcp_cookie_generator(u32 *bakery);
1532 
1533 /**
1534  *	struct tcp_cookie_values - each socket needs extra space for the
1535  *	cookies, together with (optional) space for any SYN data.
1536  *
1537  *	A tcp_sock contains a pointer to the current value, and this is
1538  *	cloned to the tcp_timewait_sock.
1539  *
1540  * @cookie_pair:	variable data from the option exchange.
1541  *
1542  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1543  *			indicates default (sysctl_tcp_cookie_size).
1544  *			After cookie sent, remembers size of cookie.
1545  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1546  *
1547  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1548  *			constant payload is specified (@s_data_constant),
1549  *			holds its length instead.
1550  *			Range 0 to TCP_MSS_DESIRED.
1551  *
1552  * @s_data_payload:	constant data that is to be included in the
1553  *			payload of SYN or SYNACK segments when the
1554  *			cookie option is present.
1555  */
1556 struct tcp_cookie_values {
1557 	struct kref	kref;
1558 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1559 	u8		cookie_pair_size;
1560 	u8		cookie_desired;
1561 	u16		s_data_desired:11,
1562 			s_data_constant:1,
1563 			s_data_in:1,
1564 			s_data_out:1,
1565 			s_data_unused:2;
1566 	u8		s_data_payload[0];
1567 };
1568 
1569 static inline void tcp_cookie_values_release(struct kref *kref)
1570 {
1571 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1572 }
1573 
1574 /* The length of constant payload data.  Note that s_data_desired is
1575  * overloaded, depending on s_data_constant: either the length of constant
1576  * data (returned here) or the limit on variable data.
1577  */
1578 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1579 {
1580 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1581 		? tp->cookie_values->s_data_desired
1582 		: 0;
1583 }
1584 
1585 /**
1586  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1587  *
1588  *	As tcp_request_sock has already been extended in other places, the
1589  *	only remaining method is to pass stack values along as function
1590  *	parameters.  These parameters are not needed after sending SYNACK.
1591  *
1592  * @cookie_bakery:	cryptographic secret and message workspace.
1593  *
1594  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1595  *			struct tcp_options_received (above).
1596  */
1597 struct tcp_extend_values {
1598 	struct request_values		rv;
1599 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1600 	u8				cookie_plus:6,
1601 					cookie_out_never:1,
1602 					cookie_in_always:1;
1603 };
1604 
1605 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1606 {
1607 	return (struct tcp_extend_values *)rvp;
1608 }
1609 
1610 extern void tcp_v4_init(void);
1611 extern void tcp_init(void);
1612 
1613 #endif	/* _TCP_H */
1614