xref: /openbmc/linux/include/net/tcp.h (revision 6aef70a851ac77967992340faaff33f44598f60a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
101 				 * when active opening a connection.
102 				 * RFC1122 says the minimum retry MUST
103 				 * be at least 180secs.  Nevertheless
104 				 * this value is corresponding to
105 				 * 63secs of retransmission with the
106 				 * current initial RTO.
107 				 */
108 
109 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
110 				 * when passive opening a connection.
111 				 * This is corresponding to 31secs of
112 				 * retransmission with the current
113 				 * initial RTO.
114 				 */
115 
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 				  * state, about 60 seconds	*/
118 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
119                                  /* BSD style FIN_WAIT2 deadlock breaker.
120 				  * It used to be 3min, new value is 60sec,
121 				  * to combine FIN-WAIT-2 timeout with
122 				  * TIME-WAIT timer.
123 				  */
124 
125 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN	((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN	4U
131 #define TCP_ATO_MIN	4U
132 #endif
133 #define TCP_RTO_MAX	((unsigned)(120*HZ))
134 #define TCP_RTO_MIN	((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
137 						 * used as a fallback RTO for the
138 						 * initial data transmission if no
139 						 * valid RTT sample has been acquired,
140 						 * most likely due to retrans in 3WHS.
141 						 */
142 
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 					                 * for local resources.
145 					                 */
146 
147 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
148 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
149 #define TCP_KEEPALIVE_INTVL	(75*HZ)
150 
151 #define MAX_TCP_KEEPIDLE	32767
152 #define MAX_TCP_KEEPINTVL	32767
153 #define MAX_TCP_KEEPCNT		127
154 #define MAX_TCP_SYNCNT		127
155 
156 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
157 
158 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
159 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
160 					 * after this time. It should be equal
161 					 * (or greater than) TCP_TIMEWAIT_LEN
162 					 * to provide reliability equal to one
163 					 * provided by timewait state.
164 					 */
165 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
166 					 * timestamps. It must be less than
167 					 * minimal timewait lifetime.
168 					 */
169 /*
170  *	TCP option
171  */
172 
173 #define TCPOPT_NOP		1	/* Padding */
174 #define TCPOPT_EOL		0	/* End of options */
175 #define TCPOPT_MSS		2	/* Segment size negotiating */
176 #define TCPOPT_WINDOW		3	/* Window scaling */
177 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
178 #define TCPOPT_SACK             5       /* SACK Block */
179 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
180 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
181 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
182 #define TCPOPT_EXP		254	/* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185  */
186 #define TCPOPT_FASTOPEN_MAGIC	0xF989
187 
188 /*
189  *     TCP option lengths
190  */
191 
192 #define TCPOLEN_MSS            4
193 #define TCPOLEN_WINDOW         3
194 #define TCPOLEN_SACK_PERM      2
195 #define TCPOLEN_TIMESTAMP      10
196 #define TCPOLEN_MD5SIG         18
197 #define TCPOLEN_FASTOPEN_BASE  2
198 #define TCPOLEN_EXP_FASTOPEN_BASE  4
199 
200 /* But this is what stacks really send out. */
201 #define TCPOLEN_TSTAMP_ALIGNED		12
202 #define TCPOLEN_WSCALE_ALIGNED		4
203 #define TCPOLEN_SACKPERM_ALIGNED	4
204 #define TCPOLEN_SACK_BASE		2
205 #define TCPOLEN_SACK_BASE_ALIGNED	4
206 #define TCPOLEN_SACK_PERBLOCK		8
207 #define TCPOLEN_MD5SIG_ALIGNED		20
208 #define TCPOLEN_MSS_ALIGNED		4
209 
210 /* Flags in tp->nonagle */
211 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
212 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
213 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
214 
215 /* TCP thin-stream limits */
216 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
217 
218 /* TCP initial congestion window as per rfc6928 */
219 #define TCP_INIT_CWND		10
220 
221 /* Bit Flags for sysctl_tcp_fastopen */
222 #define	TFO_CLIENT_ENABLE	1
223 #define	TFO_SERVER_ENABLE	2
224 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
225 
226 /* Accept SYN data w/o any cookie option */
227 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
228 
229 /* Force enable TFO on all listeners, i.e., not requiring the
230  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
231  */
232 #define	TFO_SERVER_WO_SOCKOPT1	0x400
233 #define	TFO_SERVER_WO_SOCKOPT2	0x800
234 
235 extern struct inet_timewait_death_row tcp_death_row;
236 
237 /* sysctl variables for tcp */
238 extern int sysctl_tcp_timestamps;
239 extern int sysctl_tcp_window_scaling;
240 extern int sysctl_tcp_sack;
241 extern int sysctl_tcp_fastopen;
242 extern int sysctl_tcp_retrans_collapse;
243 extern int sysctl_tcp_stdurg;
244 extern int sysctl_tcp_rfc1337;
245 extern int sysctl_tcp_abort_on_overflow;
246 extern int sysctl_tcp_max_orphans;
247 extern int sysctl_tcp_fack;
248 extern int sysctl_tcp_reordering;
249 extern int sysctl_tcp_max_reordering;
250 extern int sysctl_tcp_dsack;
251 extern long sysctl_tcp_mem[3];
252 extern int sysctl_tcp_wmem[3];
253 extern int sysctl_tcp_rmem[3];
254 extern int sysctl_tcp_app_win;
255 extern int sysctl_tcp_adv_win_scale;
256 extern int sysctl_tcp_tw_reuse;
257 extern int sysctl_tcp_frto;
258 extern int sysctl_tcp_low_latency;
259 extern int sysctl_tcp_nometrics_save;
260 extern int sysctl_tcp_moderate_rcvbuf;
261 extern int sysctl_tcp_tso_win_divisor;
262 extern int sysctl_tcp_workaround_signed_windows;
263 extern int sysctl_tcp_slow_start_after_idle;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269 extern int sysctl_tcp_min_tso_segs;
270 extern int sysctl_tcp_min_rtt_wlen;
271 extern int sysctl_tcp_autocorking;
272 extern int sysctl_tcp_invalid_ratelimit;
273 extern int sysctl_tcp_pacing_ss_ratio;
274 extern int sysctl_tcp_pacing_ca_ratio;
275 
276 extern atomic_long_t tcp_memory_allocated;
277 extern struct percpu_counter tcp_sockets_allocated;
278 extern int tcp_memory_pressure;
279 
280 /* optimized version of sk_under_memory_pressure() for TCP sockets */
281 static inline bool tcp_under_memory_pressure(const struct sock *sk)
282 {
283 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
284 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
285 		return true;
286 
287 	return tcp_memory_pressure;
288 }
289 /*
290  * The next routines deal with comparing 32 bit unsigned ints
291  * and worry about wraparound (automatic with unsigned arithmetic).
292  */
293 
294 static inline bool before(__u32 seq1, __u32 seq2)
295 {
296         return (__s32)(seq1-seq2) < 0;
297 }
298 #define after(seq2, seq1) 	before(seq1, seq2)
299 
300 /* is s2<=s1<=s3 ? */
301 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
302 {
303 	return seq3 - seq2 >= seq1 - seq2;
304 }
305 
306 static inline bool tcp_out_of_memory(struct sock *sk)
307 {
308 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
309 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
310 		return true;
311 	return false;
312 }
313 
314 void sk_forced_mem_schedule(struct sock *sk, int size);
315 
316 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
317 {
318 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
319 	int orphans = percpu_counter_read_positive(ocp);
320 
321 	if (orphans << shift > sysctl_tcp_max_orphans) {
322 		orphans = percpu_counter_sum_positive(ocp);
323 		if (orphans << shift > sysctl_tcp_max_orphans)
324 			return true;
325 	}
326 	return false;
327 }
328 
329 bool tcp_check_oom(struct sock *sk, int shift);
330 
331 
332 extern struct proto tcp_prot;
333 
334 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
335 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
336 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
337 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
338 
339 void tcp_tasklet_init(void);
340 
341 void tcp_v4_err(struct sk_buff *skb, u32);
342 
343 void tcp_shutdown(struct sock *sk, int how);
344 
345 void tcp_v4_early_demux(struct sk_buff *skb);
346 int tcp_v4_rcv(struct sk_buff *skb);
347 
348 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
349 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
350 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
351 		 int flags);
352 void tcp_release_cb(struct sock *sk);
353 void tcp_wfree(struct sk_buff *skb);
354 void tcp_write_timer_handler(struct sock *sk);
355 void tcp_delack_timer_handler(struct sock *sk);
356 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
357 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
358 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
359 			 const struct tcphdr *th, unsigned int len);
360 void tcp_rcv_space_adjust(struct sock *sk);
361 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
362 void tcp_twsk_destructor(struct sock *sk);
363 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
364 			struct pipe_inode_info *pipe, size_t len,
365 			unsigned int flags);
366 
367 static inline void tcp_dec_quickack_mode(struct sock *sk,
368 					 const unsigned int pkts)
369 {
370 	struct inet_connection_sock *icsk = inet_csk(sk);
371 
372 	if (icsk->icsk_ack.quick) {
373 		if (pkts >= icsk->icsk_ack.quick) {
374 			icsk->icsk_ack.quick = 0;
375 			/* Leaving quickack mode we deflate ATO. */
376 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
377 		} else
378 			icsk->icsk_ack.quick -= pkts;
379 	}
380 }
381 
382 #define	TCP_ECN_OK		1
383 #define	TCP_ECN_QUEUE_CWR	2
384 #define	TCP_ECN_DEMAND_CWR	4
385 #define	TCP_ECN_SEEN		8
386 
387 enum tcp_tw_status {
388 	TCP_TW_SUCCESS = 0,
389 	TCP_TW_RST = 1,
390 	TCP_TW_ACK = 2,
391 	TCP_TW_SYN = 3
392 };
393 
394 
395 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
396 					      struct sk_buff *skb,
397 					      const struct tcphdr *th);
398 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
399 			   struct request_sock *req, bool fastopen);
400 int tcp_child_process(struct sock *parent, struct sock *child,
401 		      struct sk_buff *skb);
402 void tcp_enter_loss(struct sock *sk);
403 void tcp_clear_retrans(struct tcp_sock *tp);
404 void tcp_update_metrics(struct sock *sk);
405 void tcp_init_metrics(struct sock *sk);
406 void tcp_metrics_init(void);
407 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
408 			bool paws_check, bool timestamps);
409 bool tcp_remember_stamp(struct sock *sk);
410 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
411 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
412 void tcp_disable_fack(struct tcp_sock *tp);
413 void tcp_close(struct sock *sk, long timeout);
414 void tcp_init_sock(struct sock *sk);
415 unsigned int tcp_poll(struct file *file, struct socket *sock,
416 		      struct poll_table_struct *wait);
417 int tcp_getsockopt(struct sock *sk, int level, int optname,
418 		   char __user *optval, int __user *optlen);
419 int tcp_setsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, unsigned int optlen);
421 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
422 			  char __user *optval, int __user *optlen);
423 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
424 			  char __user *optval, unsigned int optlen);
425 void tcp_set_keepalive(struct sock *sk, int val);
426 void tcp_syn_ack_timeout(const struct request_sock *req);
427 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
428 		int flags, int *addr_len);
429 void tcp_parse_options(const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	TCP v4 functions exported for the inet6 API
436  */
437 
438 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
439 void tcp_v4_mtu_reduced(struct sock *sk);
440 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
441 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
442 struct sock *tcp_create_openreq_child(const struct sock *sk,
443 				      struct request_sock *req,
444 				      struct sk_buff *skb);
445 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
446 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
447 				  struct request_sock *req,
448 				  struct dst_entry *dst,
449 				  struct request_sock *req_unhash,
450 				  bool *own_req);
451 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
452 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
453 int tcp_connect(struct sock *sk);
454 enum tcp_synack_type {
455 	TCP_SYNACK_NORMAL,
456 	TCP_SYNACK_FASTOPEN,
457 	TCP_SYNACK_COOKIE,
458 };
459 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
460 				struct request_sock *req,
461 				struct tcp_fastopen_cookie *foc,
462 				enum tcp_synack_type synack_type);
463 int tcp_disconnect(struct sock *sk, int flags);
464 
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 
469 /* From syncookies.c */
470 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471 				 struct request_sock *req,
472 				 struct dst_entry *dst);
473 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474 		      u32 cookie);
475 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476 #ifdef CONFIG_SYN_COOKIES
477 
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE	2
486 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
487 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488 
489 /* syncookies: remember time of last synqueue overflow
490  * But do not dirty this field too often (once per second is enough)
491  * It is racy as we do not hold a lock, but race is very minor.
492  */
493 static inline void tcp_synq_overflow(const struct sock *sk)
494 {
495 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
496 	unsigned long now = jiffies;
497 
498 	if (time_after(now, last_overflow + HZ))
499 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
500 }
501 
502 /* syncookies: no recent synqueue overflow on this listening socket? */
503 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
504 {
505 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
506 
507 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
508 }
509 
510 static inline u32 tcp_cookie_time(void)
511 {
512 	u64 val = get_jiffies_64();
513 
514 	do_div(val, TCP_SYNCOOKIE_PERIOD);
515 	return val;
516 }
517 
518 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
519 			      u16 *mssp);
520 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
521 __u32 cookie_init_timestamp(struct request_sock *req);
522 bool cookie_timestamp_decode(struct tcp_options_received *opt);
523 bool cookie_ecn_ok(const struct tcp_options_received *opt,
524 		   const struct net *net, const struct dst_entry *dst);
525 
526 /* From net/ipv6/syncookies.c */
527 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
528 		      u32 cookie);
529 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
530 
531 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
532 			      const struct tcphdr *th, u16 *mssp);
533 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
534 #endif
535 /* tcp_output.c */
536 
537 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
538 			       int nonagle);
539 bool tcp_may_send_now(struct sock *sk);
540 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
541 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
542 void tcp_retransmit_timer(struct sock *sk);
543 void tcp_xmit_retransmit_queue(struct sock *);
544 void tcp_simple_retransmit(struct sock *);
545 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
546 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
547 
548 void tcp_send_probe0(struct sock *);
549 void tcp_send_partial(struct sock *);
550 int tcp_write_wakeup(struct sock *, int mib);
551 void tcp_send_fin(struct sock *sk);
552 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
553 int tcp_send_synack(struct sock *);
554 void tcp_push_one(struct sock *, unsigned int mss_now);
555 void tcp_send_ack(struct sock *sk);
556 void tcp_send_delayed_ack(struct sock *sk);
557 void tcp_send_loss_probe(struct sock *sk);
558 bool tcp_schedule_loss_probe(struct sock *sk);
559 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
560 			     const struct sk_buff *next_skb);
561 
562 /* tcp_input.c */
563 void tcp_resume_early_retransmit(struct sock *sk);
564 void tcp_rearm_rto(struct sock *sk);
565 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
566 void tcp_reset(struct sock *sk);
567 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
568 void tcp_fin(struct sock *sk);
569 
570 /* tcp_timer.c */
571 void tcp_init_xmit_timers(struct sock *);
572 static inline void tcp_clear_xmit_timers(struct sock *sk)
573 {
574 	inet_csk_clear_xmit_timers(sk);
575 }
576 
577 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
578 unsigned int tcp_current_mss(struct sock *sk);
579 
580 /* Bound MSS / TSO packet size with the half of the window */
581 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
582 {
583 	int cutoff;
584 
585 	/* When peer uses tiny windows, there is no use in packetizing
586 	 * to sub-MSS pieces for the sake of SWS or making sure there
587 	 * are enough packets in the pipe for fast recovery.
588 	 *
589 	 * On the other hand, for extremely large MSS devices, handling
590 	 * smaller than MSS windows in this way does make sense.
591 	 */
592 	if (tp->max_window >= 512)
593 		cutoff = (tp->max_window >> 1);
594 	else
595 		cutoff = tp->max_window;
596 
597 	if (cutoff && pktsize > cutoff)
598 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
599 	else
600 		return pktsize;
601 }
602 
603 /* tcp.c */
604 void tcp_get_info(struct sock *, struct tcp_info *);
605 
606 /* Read 'sendfile()'-style from a TCP socket */
607 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
608 				unsigned int, size_t);
609 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
610 		  sk_read_actor_t recv_actor);
611 
612 void tcp_initialize_rcv_mss(struct sock *sk);
613 
614 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
615 int tcp_mss_to_mtu(struct sock *sk, int mss);
616 void tcp_mtup_init(struct sock *sk);
617 void tcp_init_buffer_space(struct sock *sk);
618 
619 static inline void tcp_bound_rto(const struct sock *sk)
620 {
621 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
622 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
623 }
624 
625 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
626 {
627 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
628 }
629 
630 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
631 {
632 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
633 			       ntohl(TCP_FLAG_ACK) |
634 			       snd_wnd);
635 }
636 
637 static inline void tcp_fast_path_on(struct tcp_sock *tp)
638 {
639 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
640 }
641 
642 static inline void tcp_fast_path_check(struct sock *sk)
643 {
644 	struct tcp_sock *tp = tcp_sk(sk);
645 
646 	if (skb_queue_empty(&tp->out_of_order_queue) &&
647 	    tp->rcv_wnd &&
648 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
649 	    !tp->urg_data)
650 		tcp_fast_path_on(tp);
651 }
652 
653 /* Compute the actual rto_min value */
654 static inline u32 tcp_rto_min(struct sock *sk)
655 {
656 	const struct dst_entry *dst = __sk_dst_get(sk);
657 	u32 rto_min = TCP_RTO_MIN;
658 
659 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
660 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
661 	return rto_min;
662 }
663 
664 static inline u32 tcp_rto_min_us(struct sock *sk)
665 {
666 	return jiffies_to_usecs(tcp_rto_min(sk));
667 }
668 
669 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
670 {
671 	return dst_metric_locked(dst, RTAX_CC_ALGO);
672 }
673 
674 /* Minimum RTT in usec. ~0 means not available. */
675 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
676 {
677 	return tp->rtt_min[0].rtt;
678 }
679 
680 /* Compute the actual receive window we are currently advertising.
681  * Rcv_nxt can be after the window if our peer push more data
682  * than the offered window.
683  */
684 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
685 {
686 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
687 
688 	if (win < 0)
689 		win = 0;
690 	return (u32) win;
691 }
692 
693 /* Choose a new window, without checks for shrinking, and without
694  * scaling applied to the result.  The caller does these things
695  * if necessary.  This is a "raw" window selection.
696  */
697 u32 __tcp_select_window(struct sock *sk);
698 
699 void tcp_send_window_probe(struct sock *sk);
700 
701 /* TCP timestamps are only 32-bits, this causes a slight
702  * complication on 64-bit systems since we store a snapshot
703  * of jiffies in the buffer control blocks below.  We decided
704  * to use only the low 32-bits of jiffies and hide the ugly
705  * casts with the following macro.
706  */
707 #define tcp_time_stamp		((__u32)(jiffies))
708 
709 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
710 {
711 	return skb->skb_mstamp.stamp_jiffies;
712 }
713 
714 
715 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
716 
717 #define TCPHDR_FIN 0x01
718 #define TCPHDR_SYN 0x02
719 #define TCPHDR_RST 0x04
720 #define TCPHDR_PSH 0x08
721 #define TCPHDR_ACK 0x10
722 #define TCPHDR_URG 0x20
723 #define TCPHDR_ECE 0x40
724 #define TCPHDR_CWR 0x80
725 
726 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
727 
728 /* This is what the send packet queuing engine uses to pass
729  * TCP per-packet control information to the transmission code.
730  * We also store the host-order sequence numbers in here too.
731  * This is 44 bytes if IPV6 is enabled.
732  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
733  */
734 struct tcp_skb_cb {
735 	__u32		seq;		/* Starting sequence number	*/
736 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
737 	union {
738 		/* Note : tcp_tw_isn is used in input path only
739 		 *	  (isn chosen by tcp_timewait_state_process())
740 		 *
741 		 * 	  tcp_gso_segs/size are used in write queue only,
742 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
743 		 */
744 		__u32		tcp_tw_isn;
745 		struct {
746 			u16	tcp_gso_segs;
747 			u16	tcp_gso_size;
748 		};
749 	};
750 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
751 
752 	__u8		sacked;		/* State flags for SACK/FACK.	*/
753 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
754 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
755 #define TCPCB_LOST		0x04	/* SKB is lost			*/
756 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
757 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
758 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
759 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
760 				TCPCB_REPAIRED)
761 
762 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
763 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
764 			unused:7;
765 	__u32		ack_seq;	/* Sequence number ACK'd	*/
766 	union {
767 		struct inet_skb_parm	h4;
768 #if IS_ENABLED(CONFIG_IPV6)
769 		struct inet6_skb_parm	h6;
770 #endif
771 	} header;	/* For incoming frames		*/
772 };
773 
774 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
775 
776 
777 #if IS_ENABLED(CONFIG_IPV6)
778 /* This is the variant of inet6_iif() that must be used by TCP,
779  * as TCP moves IP6CB into a different location in skb->cb[]
780  */
781 static inline int tcp_v6_iif(const struct sk_buff *skb)
782 {
783 	return TCP_SKB_CB(skb)->header.h6.iif;
784 }
785 #endif
786 
787 /* Due to TSO, an SKB can be composed of multiple actual
788  * packets.  To keep these tracked properly, we use this.
789  */
790 static inline int tcp_skb_pcount(const struct sk_buff *skb)
791 {
792 	return TCP_SKB_CB(skb)->tcp_gso_segs;
793 }
794 
795 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
796 {
797 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
798 }
799 
800 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
801 {
802 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
803 }
804 
805 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
806 static inline int tcp_skb_mss(const struct sk_buff *skb)
807 {
808 	return TCP_SKB_CB(skb)->tcp_gso_size;
809 }
810 
811 /* Events passed to congestion control interface */
812 enum tcp_ca_event {
813 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
814 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
815 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
816 	CA_EVENT_LOSS,		/* loss timeout */
817 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
818 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
819 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
820 	CA_EVENT_NON_DELAYED_ACK,
821 };
822 
823 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
824 enum tcp_ca_ack_event_flags {
825 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
826 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
827 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
828 };
829 
830 /*
831  * Interface for adding new TCP congestion control handlers
832  */
833 #define TCP_CA_NAME_MAX	16
834 #define TCP_CA_MAX	128
835 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
836 
837 #define TCP_CA_UNSPEC	0
838 
839 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
840 #define TCP_CONG_NON_RESTRICTED 0x1
841 /* Requires ECN/ECT set on all packets */
842 #define TCP_CONG_NEEDS_ECN	0x2
843 
844 union tcp_cc_info;
845 
846 struct tcp_congestion_ops {
847 	struct list_head	list;
848 	u32 key;
849 	u32 flags;
850 
851 	/* initialize private data (optional) */
852 	void (*init)(struct sock *sk);
853 	/* cleanup private data  (optional) */
854 	void (*release)(struct sock *sk);
855 
856 	/* return slow start threshold (required) */
857 	u32 (*ssthresh)(struct sock *sk);
858 	/* do new cwnd calculation (required) */
859 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
860 	/* call before changing ca_state (optional) */
861 	void (*set_state)(struct sock *sk, u8 new_state);
862 	/* call when cwnd event occurs (optional) */
863 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
864 	/* call when ack arrives (optional) */
865 	void (*in_ack_event)(struct sock *sk, u32 flags);
866 	/* new value of cwnd after loss (optional) */
867 	u32  (*undo_cwnd)(struct sock *sk);
868 	/* hook for packet ack accounting (optional) */
869 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
870 	/* get info for inet_diag (optional) */
871 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
872 			   union tcp_cc_info *info);
873 
874 	char 		name[TCP_CA_NAME_MAX];
875 	struct module 	*owner;
876 };
877 
878 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
879 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
880 
881 void tcp_assign_congestion_control(struct sock *sk);
882 void tcp_init_congestion_control(struct sock *sk);
883 void tcp_cleanup_congestion_control(struct sock *sk);
884 int tcp_set_default_congestion_control(const char *name);
885 void tcp_get_default_congestion_control(char *name);
886 void tcp_get_available_congestion_control(char *buf, size_t len);
887 void tcp_get_allowed_congestion_control(char *buf, size_t len);
888 int tcp_set_allowed_congestion_control(char *allowed);
889 int tcp_set_congestion_control(struct sock *sk, const char *name);
890 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
891 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
892 
893 u32 tcp_reno_ssthresh(struct sock *sk);
894 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
895 extern struct tcp_congestion_ops tcp_reno;
896 
897 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
898 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
899 #ifdef CONFIG_INET
900 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
901 #else
902 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
903 {
904 	return NULL;
905 }
906 #endif
907 
908 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
909 {
910 	const struct inet_connection_sock *icsk = inet_csk(sk);
911 
912 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
913 }
914 
915 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
916 {
917 	struct inet_connection_sock *icsk = inet_csk(sk);
918 
919 	if (icsk->icsk_ca_ops->set_state)
920 		icsk->icsk_ca_ops->set_state(sk, ca_state);
921 	icsk->icsk_ca_state = ca_state;
922 }
923 
924 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
925 {
926 	const struct inet_connection_sock *icsk = inet_csk(sk);
927 
928 	if (icsk->icsk_ca_ops->cwnd_event)
929 		icsk->icsk_ca_ops->cwnd_event(sk, event);
930 }
931 
932 /* These functions determine how the current flow behaves in respect of SACK
933  * handling. SACK is negotiated with the peer, and therefore it can vary
934  * between different flows.
935  *
936  * tcp_is_sack - SACK enabled
937  * tcp_is_reno - No SACK
938  * tcp_is_fack - FACK enabled, implies SACK enabled
939  */
940 static inline int tcp_is_sack(const struct tcp_sock *tp)
941 {
942 	return tp->rx_opt.sack_ok;
943 }
944 
945 static inline bool tcp_is_reno(const struct tcp_sock *tp)
946 {
947 	return !tcp_is_sack(tp);
948 }
949 
950 static inline bool tcp_is_fack(const struct tcp_sock *tp)
951 {
952 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
953 }
954 
955 static inline void tcp_enable_fack(struct tcp_sock *tp)
956 {
957 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
958 }
959 
960 /* TCP early-retransmit (ER) is similar to but more conservative than
961  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
962  */
963 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
964 {
965 	struct net *net = sock_net((struct sock *)tp);
966 
967 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
968 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
969 		net->ipv4.sysctl_tcp_reordering == 3;
970 }
971 
972 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
973 {
974 	tp->do_early_retrans = 0;
975 }
976 
977 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
978 {
979 	return tp->sacked_out + tp->lost_out;
980 }
981 
982 /* This determines how many packets are "in the network" to the best
983  * of our knowledge.  In many cases it is conservative, but where
984  * detailed information is available from the receiver (via SACK
985  * blocks etc.) we can make more aggressive calculations.
986  *
987  * Use this for decisions involving congestion control, use just
988  * tp->packets_out to determine if the send queue is empty or not.
989  *
990  * Read this equation as:
991  *
992  *	"Packets sent once on transmission queue" MINUS
993  *	"Packets left network, but not honestly ACKed yet" PLUS
994  *	"Packets fast retransmitted"
995  */
996 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
997 {
998 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
999 }
1000 
1001 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1002 
1003 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1004 {
1005 	return tp->snd_cwnd < tp->snd_ssthresh;
1006 }
1007 
1008 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1009 {
1010 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1011 }
1012 
1013 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1014 {
1015 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1016 	       (1 << inet_csk(sk)->icsk_ca_state);
1017 }
1018 
1019 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1020  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1021  * ssthresh.
1022  */
1023 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1024 {
1025 	const struct tcp_sock *tp = tcp_sk(sk);
1026 
1027 	if (tcp_in_cwnd_reduction(sk))
1028 		return tp->snd_ssthresh;
1029 	else
1030 		return max(tp->snd_ssthresh,
1031 			   ((tp->snd_cwnd >> 1) +
1032 			    (tp->snd_cwnd >> 2)));
1033 }
1034 
1035 /* Use define here intentionally to get WARN_ON location shown at the caller */
1036 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1037 
1038 void tcp_enter_cwr(struct sock *sk);
1039 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1040 
1041 /* The maximum number of MSS of available cwnd for which TSO defers
1042  * sending if not using sysctl_tcp_tso_win_divisor.
1043  */
1044 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1045 {
1046 	return 3;
1047 }
1048 
1049 /* Returns end sequence number of the receiver's advertised window */
1050 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1051 {
1052 	return tp->snd_una + tp->snd_wnd;
1053 }
1054 
1055 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1056  * flexible approach. The RFC suggests cwnd should not be raised unless
1057  * it was fully used previously. And that's exactly what we do in
1058  * congestion avoidance mode. But in slow start we allow cwnd to grow
1059  * as long as the application has used half the cwnd.
1060  * Example :
1061  *    cwnd is 10 (IW10), but application sends 9 frames.
1062  *    We allow cwnd to reach 18 when all frames are ACKed.
1063  * This check is safe because it's as aggressive as slow start which already
1064  * risks 100% overshoot. The advantage is that we discourage application to
1065  * either send more filler packets or data to artificially blow up the cwnd
1066  * usage, and allow application-limited process to probe bw more aggressively.
1067  */
1068 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1069 {
1070 	const struct tcp_sock *tp = tcp_sk(sk);
1071 
1072 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1073 	if (tcp_in_slow_start(tp))
1074 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1075 
1076 	return tp->is_cwnd_limited;
1077 }
1078 
1079 /* Something is really bad, we could not queue an additional packet,
1080  * because qdisc is full or receiver sent a 0 window.
1081  * We do not want to add fuel to the fire, or abort too early,
1082  * so make sure the timer we arm now is at least 200ms in the future,
1083  * regardless of current icsk_rto value (as it could be ~2ms)
1084  */
1085 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1086 {
1087 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1088 }
1089 
1090 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1091 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1092 					    unsigned long max_when)
1093 {
1094 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1095 
1096 	return (unsigned long)min_t(u64, when, max_when);
1097 }
1098 
1099 static inline void tcp_check_probe_timer(struct sock *sk)
1100 {
1101 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1102 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1103 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1104 }
1105 
1106 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1107 {
1108 	tp->snd_wl1 = seq;
1109 }
1110 
1111 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1112 {
1113 	tp->snd_wl1 = seq;
1114 }
1115 
1116 /*
1117  * Calculate(/check) TCP checksum
1118  */
1119 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1120 				   __be32 daddr, __wsum base)
1121 {
1122 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1123 }
1124 
1125 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1126 {
1127 	return __skb_checksum_complete(skb);
1128 }
1129 
1130 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1131 {
1132 	return !skb_csum_unnecessary(skb) &&
1133 		__tcp_checksum_complete(skb);
1134 }
1135 
1136 /* Prequeue for VJ style copy to user, combined with checksumming. */
1137 
1138 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1139 {
1140 	tp->ucopy.task = NULL;
1141 	tp->ucopy.len = 0;
1142 	tp->ucopy.memory = 0;
1143 	skb_queue_head_init(&tp->ucopy.prequeue);
1144 }
1145 
1146 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1147 
1148 #undef STATE_TRACE
1149 
1150 #ifdef STATE_TRACE
1151 static const char *statename[]={
1152 	"Unused","Established","Syn Sent","Syn Recv",
1153 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1154 	"Close Wait","Last ACK","Listen","Closing"
1155 };
1156 #endif
1157 void tcp_set_state(struct sock *sk, int state);
1158 
1159 void tcp_done(struct sock *sk);
1160 
1161 int tcp_abort(struct sock *sk, int err);
1162 
1163 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1164 {
1165 	rx_opt->dsack = 0;
1166 	rx_opt->num_sacks = 0;
1167 }
1168 
1169 u32 tcp_default_init_rwnd(u32 mss);
1170 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1171 
1172 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1173 {
1174 	struct tcp_sock *tp = tcp_sk(sk);
1175 	s32 delta;
1176 
1177 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1178 		return;
1179 	delta = tcp_time_stamp - tp->lsndtime;
1180 	if (delta > inet_csk(sk)->icsk_rto)
1181 		tcp_cwnd_restart(sk, delta);
1182 }
1183 
1184 /* Determine a window scaling and initial window to offer. */
1185 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1186 			       __u32 *window_clamp, int wscale_ok,
1187 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1188 
1189 static inline int tcp_win_from_space(int space)
1190 {
1191 	return sysctl_tcp_adv_win_scale<=0 ?
1192 		(space>>(-sysctl_tcp_adv_win_scale)) :
1193 		space - (space>>sysctl_tcp_adv_win_scale);
1194 }
1195 
1196 /* Note: caller must be prepared to deal with negative returns */
1197 static inline int tcp_space(const struct sock *sk)
1198 {
1199 	return tcp_win_from_space(sk->sk_rcvbuf -
1200 				  atomic_read(&sk->sk_rmem_alloc));
1201 }
1202 
1203 static inline int tcp_full_space(const struct sock *sk)
1204 {
1205 	return tcp_win_from_space(sk->sk_rcvbuf);
1206 }
1207 
1208 extern void tcp_openreq_init_rwin(struct request_sock *req,
1209 				  const struct sock *sk_listener,
1210 				  const struct dst_entry *dst);
1211 
1212 void tcp_enter_memory_pressure(struct sock *sk);
1213 
1214 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1215 {
1216 	struct net *net = sock_net((struct sock *)tp);
1217 
1218 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1219 }
1220 
1221 static inline int keepalive_time_when(const struct tcp_sock *tp)
1222 {
1223 	struct net *net = sock_net((struct sock *)tp);
1224 
1225 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1226 }
1227 
1228 static inline int keepalive_probes(const struct tcp_sock *tp)
1229 {
1230 	struct net *net = sock_net((struct sock *)tp);
1231 
1232 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1233 }
1234 
1235 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1236 {
1237 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1238 
1239 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1240 			  tcp_time_stamp - tp->rcv_tstamp);
1241 }
1242 
1243 static inline int tcp_fin_time(const struct sock *sk)
1244 {
1245 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1246 	const int rto = inet_csk(sk)->icsk_rto;
1247 
1248 	if (fin_timeout < (rto << 2) - (rto >> 1))
1249 		fin_timeout = (rto << 2) - (rto >> 1);
1250 
1251 	return fin_timeout;
1252 }
1253 
1254 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1255 				  int paws_win)
1256 {
1257 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1258 		return true;
1259 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1260 		return true;
1261 	/*
1262 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1263 	 * then following tcp messages have valid values. Ignore 0 value,
1264 	 * or else 'negative' tsval might forbid us to accept their packets.
1265 	 */
1266 	if (!rx_opt->ts_recent)
1267 		return true;
1268 	return false;
1269 }
1270 
1271 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1272 				   int rst)
1273 {
1274 	if (tcp_paws_check(rx_opt, 0))
1275 		return false;
1276 
1277 	/* RST segments are not recommended to carry timestamp,
1278 	   and, if they do, it is recommended to ignore PAWS because
1279 	   "their cleanup function should take precedence over timestamps."
1280 	   Certainly, it is mistake. It is necessary to understand the reasons
1281 	   of this constraint to relax it: if peer reboots, clock may go
1282 	   out-of-sync and half-open connections will not be reset.
1283 	   Actually, the problem would be not existing if all
1284 	   the implementations followed draft about maintaining clock
1285 	   via reboots. Linux-2.2 DOES NOT!
1286 
1287 	   However, we can relax time bounds for RST segments to MSL.
1288 	 */
1289 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1290 		return false;
1291 	return true;
1292 }
1293 
1294 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1295 			  int mib_idx, u32 *last_oow_ack_time);
1296 
1297 static inline void tcp_mib_init(struct net *net)
1298 {
1299 	/* See RFC 2012 */
1300 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1301 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1302 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1303 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1304 }
1305 
1306 /* from STCP */
1307 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1308 {
1309 	tp->lost_skb_hint = NULL;
1310 }
1311 
1312 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1313 {
1314 	tcp_clear_retrans_hints_partial(tp);
1315 	tp->retransmit_skb_hint = NULL;
1316 }
1317 
1318 union tcp_md5_addr {
1319 	struct in_addr  a4;
1320 #if IS_ENABLED(CONFIG_IPV6)
1321 	struct in6_addr	a6;
1322 #endif
1323 };
1324 
1325 /* - key database */
1326 struct tcp_md5sig_key {
1327 	struct hlist_node	node;
1328 	u8			keylen;
1329 	u8			family; /* AF_INET or AF_INET6 */
1330 	union tcp_md5_addr	addr;
1331 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1332 	struct rcu_head		rcu;
1333 };
1334 
1335 /* - sock block */
1336 struct tcp_md5sig_info {
1337 	struct hlist_head	head;
1338 	struct rcu_head		rcu;
1339 };
1340 
1341 /* - pseudo header */
1342 struct tcp4_pseudohdr {
1343 	__be32		saddr;
1344 	__be32		daddr;
1345 	__u8		pad;
1346 	__u8		protocol;
1347 	__be16		len;
1348 };
1349 
1350 struct tcp6_pseudohdr {
1351 	struct in6_addr	saddr;
1352 	struct in6_addr daddr;
1353 	__be32		len;
1354 	__be32		protocol;	/* including padding */
1355 };
1356 
1357 union tcp_md5sum_block {
1358 	struct tcp4_pseudohdr ip4;
1359 #if IS_ENABLED(CONFIG_IPV6)
1360 	struct tcp6_pseudohdr ip6;
1361 #endif
1362 };
1363 
1364 /* - pool: digest algorithm, hash description and scratch buffer */
1365 struct tcp_md5sig_pool {
1366 	struct ahash_request	*md5_req;
1367 	union tcp_md5sum_block	md5_blk;
1368 };
1369 
1370 /* - functions */
1371 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1372 			const struct sock *sk, const struct sk_buff *skb);
1373 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1374 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1375 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1376 		   int family);
1377 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1378 					 const struct sock *addr_sk);
1379 
1380 #ifdef CONFIG_TCP_MD5SIG
1381 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1382 					 const union tcp_md5_addr *addr,
1383 					 int family);
1384 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1385 #else
1386 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1387 					 const union tcp_md5_addr *addr,
1388 					 int family)
1389 {
1390 	return NULL;
1391 }
1392 #define tcp_twsk_md5_key(twsk)	NULL
1393 #endif
1394 
1395 bool tcp_alloc_md5sig_pool(void);
1396 
1397 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1398 static inline void tcp_put_md5sig_pool(void)
1399 {
1400 	local_bh_enable();
1401 }
1402 
1403 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1404 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1405 			  unsigned int header_len);
1406 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1407 		     const struct tcp_md5sig_key *key);
1408 
1409 /* From tcp_fastopen.c */
1410 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1411 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1412 			    unsigned long *last_syn_loss);
1413 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1414 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1415 			    u16 try_exp);
1416 struct tcp_fastopen_request {
1417 	/* Fast Open cookie. Size 0 means a cookie request */
1418 	struct tcp_fastopen_cookie	cookie;
1419 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1420 	size_t				size;
1421 	int				copied;	/* queued in tcp_connect() */
1422 };
1423 void tcp_free_fastopen_req(struct tcp_sock *tp);
1424 
1425 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1426 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1427 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1428 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1429 			      struct request_sock *req,
1430 			      struct tcp_fastopen_cookie *foc,
1431 			      struct dst_entry *dst);
1432 void tcp_fastopen_init_key_once(bool publish);
1433 #define TCP_FASTOPEN_KEY_LENGTH 16
1434 
1435 /* Fastopen key context */
1436 struct tcp_fastopen_context {
1437 	struct crypto_cipher	*tfm;
1438 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1439 	struct rcu_head		rcu;
1440 };
1441 
1442 /* write queue abstraction */
1443 static inline void tcp_write_queue_purge(struct sock *sk)
1444 {
1445 	struct sk_buff *skb;
1446 
1447 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1448 		sk_wmem_free_skb(sk, skb);
1449 	sk_mem_reclaim(sk);
1450 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1451 }
1452 
1453 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1454 {
1455 	return skb_peek(&sk->sk_write_queue);
1456 }
1457 
1458 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1459 {
1460 	return skb_peek_tail(&sk->sk_write_queue);
1461 }
1462 
1463 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1464 						   const struct sk_buff *skb)
1465 {
1466 	return skb_queue_next(&sk->sk_write_queue, skb);
1467 }
1468 
1469 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1470 						   const struct sk_buff *skb)
1471 {
1472 	return skb_queue_prev(&sk->sk_write_queue, skb);
1473 }
1474 
1475 #define tcp_for_write_queue(skb, sk)					\
1476 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1477 
1478 #define tcp_for_write_queue_from(skb, sk)				\
1479 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1480 
1481 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1482 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1483 
1484 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1485 {
1486 	return sk->sk_send_head;
1487 }
1488 
1489 static inline bool tcp_skb_is_last(const struct sock *sk,
1490 				   const struct sk_buff *skb)
1491 {
1492 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1493 }
1494 
1495 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1496 {
1497 	if (tcp_skb_is_last(sk, skb))
1498 		sk->sk_send_head = NULL;
1499 	else
1500 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1501 }
1502 
1503 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1504 {
1505 	if (sk->sk_send_head == skb_unlinked)
1506 		sk->sk_send_head = NULL;
1507 }
1508 
1509 static inline void tcp_init_send_head(struct sock *sk)
1510 {
1511 	sk->sk_send_head = NULL;
1512 }
1513 
1514 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1515 {
1516 	__skb_queue_tail(&sk->sk_write_queue, skb);
1517 }
1518 
1519 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1520 {
1521 	__tcp_add_write_queue_tail(sk, skb);
1522 
1523 	/* Queue it, remembering where we must start sending. */
1524 	if (sk->sk_send_head == NULL) {
1525 		sk->sk_send_head = skb;
1526 
1527 		if (tcp_sk(sk)->highest_sack == NULL)
1528 			tcp_sk(sk)->highest_sack = skb;
1529 	}
1530 }
1531 
1532 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1533 {
1534 	__skb_queue_head(&sk->sk_write_queue, skb);
1535 }
1536 
1537 /* Insert buff after skb on the write queue of sk.  */
1538 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1539 						struct sk_buff *buff,
1540 						struct sock *sk)
1541 {
1542 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1543 }
1544 
1545 /* Insert new before skb on the write queue of sk.  */
1546 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1547 						  struct sk_buff *skb,
1548 						  struct sock *sk)
1549 {
1550 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1551 
1552 	if (sk->sk_send_head == skb)
1553 		sk->sk_send_head = new;
1554 }
1555 
1556 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1557 {
1558 	__skb_unlink(skb, &sk->sk_write_queue);
1559 }
1560 
1561 static inline bool tcp_write_queue_empty(struct sock *sk)
1562 {
1563 	return skb_queue_empty(&sk->sk_write_queue);
1564 }
1565 
1566 static inline void tcp_push_pending_frames(struct sock *sk)
1567 {
1568 	if (tcp_send_head(sk)) {
1569 		struct tcp_sock *tp = tcp_sk(sk);
1570 
1571 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1572 	}
1573 }
1574 
1575 /* Start sequence of the skb just after the highest skb with SACKed
1576  * bit, valid only if sacked_out > 0 or when the caller has ensured
1577  * validity by itself.
1578  */
1579 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1580 {
1581 	if (!tp->sacked_out)
1582 		return tp->snd_una;
1583 
1584 	if (tp->highest_sack == NULL)
1585 		return tp->snd_nxt;
1586 
1587 	return TCP_SKB_CB(tp->highest_sack)->seq;
1588 }
1589 
1590 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1591 {
1592 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1593 						tcp_write_queue_next(sk, skb);
1594 }
1595 
1596 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1597 {
1598 	return tcp_sk(sk)->highest_sack;
1599 }
1600 
1601 static inline void tcp_highest_sack_reset(struct sock *sk)
1602 {
1603 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1604 }
1605 
1606 /* Called when old skb is about to be deleted (to be combined with new skb) */
1607 static inline void tcp_highest_sack_combine(struct sock *sk,
1608 					    struct sk_buff *old,
1609 					    struct sk_buff *new)
1610 {
1611 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1612 		tcp_sk(sk)->highest_sack = new;
1613 }
1614 
1615 /* This helper checks if socket has IP_TRANSPARENT set */
1616 static inline bool inet_sk_transparent(const struct sock *sk)
1617 {
1618 	switch (sk->sk_state) {
1619 	case TCP_TIME_WAIT:
1620 		return inet_twsk(sk)->tw_transparent;
1621 	case TCP_NEW_SYN_RECV:
1622 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1623 	}
1624 	return inet_sk(sk)->transparent;
1625 }
1626 
1627 /* Determines whether this is a thin stream (which may suffer from
1628  * increased latency). Used to trigger latency-reducing mechanisms.
1629  */
1630 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1631 {
1632 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1633 }
1634 
1635 /* /proc */
1636 enum tcp_seq_states {
1637 	TCP_SEQ_STATE_LISTENING,
1638 	TCP_SEQ_STATE_ESTABLISHED,
1639 };
1640 
1641 int tcp_seq_open(struct inode *inode, struct file *file);
1642 
1643 struct tcp_seq_afinfo {
1644 	char				*name;
1645 	sa_family_t			family;
1646 	const struct file_operations	*seq_fops;
1647 	struct seq_operations		seq_ops;
1648 };
1649 
1650 struct tcp_iter_state {
1651 	struct seq_net_private	p;
1652 	sa_family_t		family;
1653 	enum tcp_seq_states	state;
1654 	struct sock		*syn_wait_sk;
1655 	int			bucket, offset, sbucket, num;
1656 	loff_t			last_pos;
1657 };
1658 
1659 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1660 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1661 
1662 extern struct request_sock_ops tcp_request_sock_ops;
1663 extern struct request_sock_ops tcp6_request_sock_ops;
1664 
1665 void tcp_v4_destroy_sock(struct sock *sk);
1666 
1667 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1668 				netdev_features_t features);
1669 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1670 int tcp_gro_complete(struct sk_buff *skb);
1671 
1672 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1673 
1674 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1675 {
1676 	struct net *net = sock_net((struct sock *)tp);
1677 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1678 }
1679 
1680 static inline bool tcp_stream_memory_free(const struct sock *sk)
1681 {
1682 	const struct tcp_sock *tp = tcp_sk(sk);
1683 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1684 
1685 	return notsent_bytes < tcp_notsent_lowat(tp);
1686 }
1687 
1688 #ifdef CONFIG_PROC_FS
1689 int tcp4_proc_init(void);
1690 void tcp4_proc_exit(void);
1691 #endif
1692 
1693 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1694 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1695 		     const struct tcp_request_sock_ops *af_ops,
1696 		     struct sock *sk, struct sk_buff *skb);
1697 
1698 /* TCP af-specific functions */
1699 struct tcp_sock_af_ops {
1700 #ifdef CONFIG_TCP_MD5SIG
1701 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1702 						const struct sock *addr_sk);
1703 	int		(*calc_md5_hash)(char *location,
1704 					 const struct tcp_md5sig_key *md5,
1705 					 const struct sock *sk,
1706 					 const struct sk_buff *skb);
1707 	int		(*md5_parse)(struct sock *sk,
1708 				     char __user *optval,
1709 				     int optlen);
1710 #endif
1711 };
1712 
1713 struct tcp_request_sock_ops {
1714 	u16 mss_clamp;
1715 #ifdef CONFIG_TCP_MD5SIG
1716 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1717 						 const struct sock *addr_sk);
1718 	int		(*calc_md5_hash) (char *location,
1719 					  const struct tcp_md5sig_key *md5,
1720 					  const struct sock *sk,
1721 					  const struct sk_buff *skb);
1722 #endif
1723 	void (*init_req)(struct request_sock *req,
1724 			 const struct sock *sk_listener,
1725 			 struct sk_buff *skb);
1726 #ifdef CONFIG_SYN_COOKIES
1727 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1728 				 __u16 *mss);
1729 #endif
1730 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1731 				       const struct request_sock *req,
1732 				       bool *strict);
1733 	__u32 (*init_seq)(const struct sk_buff *skb);
1734 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1735 			   struct flowi *fl, struct request_sock *req,
1736 			   struct tcp_fastopen_cookie *foc,
1737 			   enum tcp_synack_type synack_type);
1738 };
1739 
1740 #ifdef CONFIG_SYN_COOKIES
1741 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1742 					 const struct sock *sk, struct sk_buff *skb,
1743 					 __u16 *mss)
1744 {
1745 	tcp_synq_overflow(sk);
1746 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1747 	return ops->cookie_init_seq(skb, mss);
1748 }
1749 #else
1750 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1751 					 const struct sock *sk, struct sk_buff *skb,
1752 					 __u16 *mss)
1753 {
1754 	return 0;
1755 }
1756 #endif
1757 
1758 int tcpv4_offload_init(void);
1759 
1760 void tcp_v4_init(void);
1761 void tcp_init(void);
1762 
1763 /* tcp_recovery.c */
1764 
1765 /* Flags to enable various loss recovery features. See below */
1766 extern int sysctl_tcp_recovery;
1767 
1768 /* Use TCP RACK to detect (some) tail and retransmit losses */
1769 #define TCP_RACK_LOST_RETRANS  0x1
1770 
1771 extern int tcp_rack_mark_lost(struct sock *sk);
1772 
1773 extern void tcp_rack_advance(struct tcp_sock *tp,
1774 			     const struct skb_mstamp *xmit_time, u8 sacked);
1775 
1776 /*
1777  * Save and compile IPv4 options, return a pointer to it
1778  */
1779 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1780 {
1781 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1782 	struct ip_options_rcu *dopt = NULL;
1783 
1784 	if (opt->optlen) {
1785 		int opt_size = sizeof(*dopt) + opt->optlen;
1786 
1787 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1788 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1789 			kfree(dopt);
1790 			dopt = NULL;
1791 		}
1792 	}
1793 	return dopt;
1794 }
1795 
1796 /* locally generated TCP pure ACKs have skb->truesize == 2
1797  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1798  * This is much faster than dissecting the packet to find out.
1799  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1800  */
1801 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1802 {
1803 	return skb->truesize == 2;
1804 }
1805 
1806 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1807 {
1808 	skb->truesize = 2;
1809 }
1810 
1811 static inline int tcp_inq(struct sock *sk)
1812 {
1813 	struct tcp_sock *tp = tcp_sk(sk);
1814 	int answ;
1815 
1816 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1817 		answ = 0;
1818 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1819 		   !tp->urg_data ||
1820 		   before(tp->urg_seq, tp->copied_seq) ||
1821 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1822 
1823 		answ = tp->rcv_nxt - tp->copied_seq;
1824 
1825 		/* Subtract 1, if FIN was received */
1826 		if (answ && sock_flag(sk, SOCK_DONE))
1827 			answ--;
1828 	} else {
1829 		answ = tp->urg_seq - tp->copied_seq;
1830 	}
1831 
1832 	return answ;
1833 }
1834 
1835 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1836 {
1837 	u16 segs_in;
1838 
1839 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1840 	tp->segs_in += segs_in;
1841 	if (skb->len > tcp_hdrlen(skb))
1842 		tp->data_segs_in += segs_in;
1843 }
1844 
1845 /*
1846  * TCP listen path runs lockless.
1847  * We forced "struct sock" to be const qualified to make sure
1848  * we don't modify one of its field by mistake.
1849  * Here, we increment sk_drops which is an atomic_t, so we can safely
1850  * make sock writable again.
1851  */
1852 static inline void tcp_listendrop(const struct sock *sk)
1853 {
1854 	atomic_inc(&((struct sock *)sk)->sk_drops);
1855 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1856 }
1857 
1858 #endif	/* _TCP_H */
1859