xref: /openbmc/linux/include/net/tcp.h (revision 64794d6db49730d22f440aef0cf4da98a56a4ea3)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 		 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 			size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 			       struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 		 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 	      int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 					 const unsigned int pkts)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 		   unsigned int optlen);
409 void tcp_set_keepalive(struct sock *sk, int val);
410 void tcp_syn_ack_timeout(const struct request_sock *req);
411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 		int flags, int *addr_len);
413 int tcp_set_rcvlowat(struct sock *sk, int val);
414 int tcp_set_window_clamp(struct sock *sk, int val);
415 void tcp_update_recv_tstamps(struct sk_buff *skb,
416 			     struct scm_timestamping_internal *tss);
417 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
418 			struct scm_timestamping_internal *tss);
419 void tcp_data_ready(struct sock *sk);
420 #ifdef CONFIG_MMU
421 int tcp_mmap(struct file *file, struct socket *sock,
422 	     struct vm_area_struct *vma);
423 #endif
424 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
425 		       struct tcp_options_received *opt_rx,
426 		       int estab, struct tcp_fastopen_cookie *foc);
427 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
428 
429 /*
430  *	BPF SKB-less helpers
431  */
432 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
433 			 struct tcphdr *th, u32 *cookie);
434 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
435 			 struct tcphdr *th, u32 *cookie);
436 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
437 			  const struct tcp_request_sock_ops *af_ops,
438 			  struct sock *sk, struct tcphdr *th);
439 /*
440  *	TCP v4 functions exported for the inet6 API
441  */
442 
443 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
444 void tcp_v4_mtu_reduced(struct sock *sk);
445 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
446 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
447 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
448 struct sock *tcp_create_openreq_child(const struct sock *sk,
449 				      struct request_sock *req,
450 				      struct sk_buff *skb);
451 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
452 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
453 				  struct request_sock *req,
454 				  struct dst_entry *dst,
455 				  struct request_sock *req_unhash,
456 				  bool *own_req);
457 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
458 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
459 int tcp_connect(struct sock *sk);
460 enum tcp_synack_type {
461 	TCP_SYNACK_NORMAL,
462 	TCP_SYNACK_FASTOPEN,
463 	TCP_SYNACK_COOKIE,
464 };
465 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
466 				struct request_sock *req,
467 				struct tcp_fastopen_cookie *foc,
468 				enum tcp_synack_type synack_type,
469 				struct sk_buff *syn_skb);
470 int tcp_disconnect(struct sock *sk, int flags);
471 
472 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
473 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
474 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
475 
476 /* From syncookies.c */
477 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
478 				 struct request_sock *req,
479 				 struct dst_entry *dst, u32 tsoff);
480 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
481 		      u32 cookie);
482 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
483 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
484 					    struct sock *sk, struct sk_buff *skb);
485 #ifdef CONFIG_SYN_COOKIES
486 
487 /* Syncookies use a monotonic timer which increments every 60 seconds.
488  * This counter is used both as a hash input and partially encoded into
489  * the cookie value.  A cookie is only validated further if the delta
490  * between the current counter value and the encoded one is less than this,
491  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
492  * the counter advances immediately after a cookie is generated).
493  */
494 #define MAX_SYNCOOKIE_AGE	2
495 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
496 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
497 
498 /* syncookies: remember time of last synqueue overflow
499  * But do not dirty this field too often (once per second is enough)
500  * It is racy as we do not hold a lock, but race is very minor.
501  */
502 static inline void tcp_synq_overflow(const struct sock *sk)
503 {
504 	unsigned int last_overflow;
505 	unsigned int now = jiffies;
506 
507 	if (sk->sk_reuseport) {
508 		struct sock_reuseport *reuse;
509 
510 		reuse = rcu_dereference(sk->sk_reuseport_cb);
511 		if (likely(reuse)) {
512 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
513 			if (!time_between32(now, last_overflow,
514 					    last_overflow + HZ))
515 				WRITE_ONCE(reuse->synq_overflow_ts, now);
516 			return;
517 		}
518 	}
519 
520 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
521 	if (!time_between32(now, last_overflow, last_overflow + HZ))
522 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
523 }
524 
525 /* syncookies: no recent synqueue overflow on this listening socket? */
526 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
527 {
528 	unsigned int last_overflow;
529 	unsigned int now = jiffies;
530 
531 	if (sk->sk_reuseport) {
532 		struct sock_reuseport *reuse;
533 
534 		reuse = rcu_dereference(sk->sk_reuseport_cb);
535 		if (likely(reuse)) {
536 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
537 			return !time_between32(now, last_overflow - HZ,
538 					       last_overflow +
539 					       TCP_SYNCOOKIE_VALID);
540 		}
541 	}
542 
543 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
544 
545 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
546 	 * then we're under synflood. However, we have to use
547 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
548 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
549 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
550 	 * which could lead to rejecting a valid syncookie.
551 	 */
552 	return !time_between32(now, last_overflow - HZ,
553 			       last_overflow + TCP_SYNCOOKIE_VALID);
554 }
555 
556 static inline u32 tcp_cookie_time(void)
557 {
558 	u64 val = get_jiffies_64();
559 
560 	do_div(val, TCP_SYNCOOKIE_PERIOD);
561 	return val;
562 }
563 
564 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
565 			      u16 *mssp);
566 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
567 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
568 bool cookie_timestamp_decode(const struct net *net,
569 			     struct tcp_options_received *opt);
570 bool cookie_ecn_ok(const struct tcp_options_received *opt,
571 		   const struct net *net, const struct dst_entry *dst);
572 
573 /* From net/ipv6/syncookies.c */
574 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
575 		      u32 cookie);
576 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
577 
578 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
579 			      const struct tcphdr *th, u16 *mssp);
580 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
581 #endif
582 /* tcp_output.c */
583 
584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
585 			       int nonagle);
586 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
587 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
588 void tcp_retransmit_timer(struct sock *sk);
589 void tcp_xmit_retransmit_queue(struct sock *);
590 void tcp_simple_retransmit(struct sock *);
591 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
592 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
593 enum tcp_queue {
594 	TCP_FRAG_IN_WRITE_QUEUE,
595 	TCP_FRAG_IN_RTX_QUEUE,
596 };
597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
598 		 struct sk_buff *skb, u32 len,
599 		 unsigned int mss_now, gfp_t gfp);
600 
601 void tcp_send_probe0(struct sock *);
602 void tcp_send_partial(struct sock *);
603 int tcp_write_wakeup(struct sock *, int mib);
604 void tcp_send_fin(struct sock *sk);
605 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
606 int tcp_send_synack(struct sock *);
607 void tcp_push_one(struct sock *, unsigned int mss_now);
608 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
609 void tcp_send_ack(struct sock *sk);
610 void tcp_send_delayed_ack(struct sock *sk);
611 void tcp_send_loss_probe(struct sock *sk);
612 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
613 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
614 			     const struct sk_buff *next_skb);
615 
616 /* tcp_input.c */
617 void tcp_rearm_rto(struct sock *sk);
618 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
619 void tcp_reset(struct sock *sk, struct sk_buff *skb);
620 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
621 void tcp_fin(struct sock *sk);
622 
623 /* tcp_timer.c */
624 void tcp_init_xmit_timers(struct sock *);
625 static inline void tcp_clear_xmit_timers(struct sock *sk)
626 {
627 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
628 		__sock_put(sk);
629 
630 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
631 		__sock_put(sk);
632 
633 	inet_csk_clear_xmit_timers(sk);
634 }
635 
636 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
637 unsigned int tcp_current_mss(struct sock *sk);
638 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
639 
640 /* Bound MSS / TSO packet size with the half of the window */
641 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
642 {
643 	int cutoff;
644 
645 	/* When peer uses tiny windows, there is no use in packetizing
646 	 * to sub-MSS pieces for the sake of SWS or making sure there
647 	 * are enough packets in the pipe for fast recovery.
648 	 *
649 	 * On the other hand, for extremely large MSS devices, handling
650 	 * smaller than MSS windows in this way does make sense.
651 	 */
652 	if (tp->max_window > TCP_MSS_DEFAULT)
653 		cutoff = (tp->max_window >> 1);
654 	else
655 		cutoff = tp->max_window;
656 
657 	if (cutoff && pktsize > cutoff)
658 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
659 	else
660 		return pktsize;
661 }
662 
663 /* tcp.c */
664 void tcp_get_info(struct sock *, struct tcp_info *);
665 
666 /* Read 'sendfile()'-style from a TCP socket */
667 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
668 		  sk_read_actor_t recv_actor);
669 
670 void tcp_initialize_rcv_mss(struct sock *sk);
671 
672 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
673 int tcp_mss_to_mtu(struct sock *sk, int mss);
674 void tcp_mtup_init(struct sock *sk);
675 
676 static inline void tcp_bound_rto(const struct sock *sk)
677 {
678 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
679 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
680 }
681 
682 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
683 {
684 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
685 }
686 
687 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
688 {
689 	/* mptcp hooks are only on the slow path */
690 	if (sk_is_mptcp((struct sock *)tp))
691 		return;
692 
693 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
694 			       ntohl(TCP_FLAG_ACK) |
695 			       snd_wnd);
696 }
697 
698 static inline void tcp_fast_path_on(struct tcp_sock *tp)
699 {
700 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
701 }
702 
703 static inline void tcp_fast_path_check(struct sock *sk)
704 {
705 	struct tcp_sock *tp = tcp_sk(sk);
706 
707 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
708 	    tp->rcv_wnd &&
709 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
710 	    !tp->urg_data)
711 		tcp_fast_path_on(tp);
712 }
713 
714 /* Compute the actual rto_min value */
715 static inline u32 tcp_rto_min(struct sock *sk)
716 {
717 	const struct dst_entry *dst = __sk_dst_get(sk);
718 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
719 
720 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
721 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
722 	return rto_min;
723 }
724 
725 static inline u32 tcp_rto_min_us(struct sock *sk)
726 {
727 	return jiffies_to_usecs(tcp_rto_min(sk));
728 }
729 
730 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
731 {
732 	return dst_metric_locked(dst, RTAX_CC_ALGO);
733 }
734 
735 /* Minimum RTT in usec. ~0 means not available. */
736 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
737 {
738 	return minmax_get(&tp->rtt_min);
739 }
740 
741 /* Compute the actual receive window we are currently advertising.
742  * Rcv_nxt can be after the window if our peer push more data
743  * than the offered window.
744  */
745 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
746 {
747 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
748 
749 	if (win < 0)
750 		win = 0;
751 	return (u32) win;
752 }
753 
754 /* Choose a new window, without checks for shrinking, and without
755  * scaling applied to the result.  The caller does these things
756  * if necessary.  This is a "raw" window selection.
757  */
758 u32 __tcp_select_window(struct sock *sk);
759 
760 void tcp_send_window_probe(struct sock *sk);
761 
762 /* TCP uses 32bit jiffies to save some space.
763  * Note that this is different from tcp_time_stamp, which
764  * historically has been the same until linux-4.13.
765  */
766 #define tcp_jiffies32 ((u32)jiffies)
767 
768 /*
769  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
770  * It is no longer tied to jiffies, but to 1 ms clock.
771  * Note: double check if you want to use tcp_jiffies32 instead of this.
772  */
773 #define TCP_TS_HZ	1000
774 
775 static inline u64 tcp_clock_ns(void)
776 {
777 	return ktime_get_ns();
778 }
779 
780 static inline u64 tcp_clock_us(void)
781 {
782 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
783 }
784 
785 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
786 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
787 {
788 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
789 }
790 
791 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
792 static inline u32 tcp_ns_to_ts(u64 ns)
793 {
794 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
795 }
796 
797 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
798 static inline u32 tcp_time_stamp_raw(void)
799 {
800 	return tcp_ns_to_ts(tcp_clock_ns());
801 }
802 
803 void tcp_mstamp_refresh(struct tcp_sock *tp);
804 
805 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
806 {
807 	return max_t(s64, t1 - t0, 0);
808 }
809 
810 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
811 {
812 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
813 }
814 
815 /* provide the departure time in us unit */
816 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
817 {
818 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
819 }
820 
821 
822 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
823 
824 #define TCPHDR_FIN 0x01
825 #define TCPHDR_SYN 0x02
826 #define TCPHDR_RST 0x04
827 #define TCPHDR_PSH 0x08
828 #define TCPHDR_ACK 0x10
829 #define TCPHDR_URG 0x20
830 #define TCPHDR_ECE 0x40
831 #define TCPHDR_CWR 0x80
832 
833 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
834 
835 /* This is what the send packet queuing engine uses to pass
836  * TCP per-packet control information to the transmission code.
837  * We also store the host-order sequence numbers in here too.
838  * This is 44 bytes if IPV6 is enabled.
839  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
840  */
841 struct tcp_skb_cb {
842 	__u32		seq;		/* Starting sequence number	*/
843 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
844 	union {
845 		/* Note : tcp_tw_isn is used in input path only
846 		 *	  (isn chosen by tcp_timewait_state_process())
847 		 *
848 		 * 	  tcp_gso_segs/size are used in write queue only,
849 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
850 		 */
851 		__u32		tcp_tw_isn;
852 		struct {
853 			u16	tcp_gso_segs;
854 			u16	tcp_gso_size;
855 		};
856 	};
857 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
858 
859 	__u8		sacked;		/* State flags for SACK.	*/
860 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
861 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
862 #define TCPCB_LOST		0x04	/* SKB is lost			*/
863 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
864 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
865 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
866 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
867 				TCPCB_REPAIRED)
868 
869 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
870 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
871 			eor:1,		/* Is skb MSG_EOR marked? */
872 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
873 			unused:5;
874 	__u32		ack_seq;	/* Sequence number ACK'd	*/
875 	union {
876 		struct {
877 			/* There is space for up to 24 bytes */
878 			__u32 in_flight:30,/* Bytes in flight at transmit */
879 			      is_app_limited:1, /* cwnd not fully used? */
880 			      unused:1;
881 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
882 			__u32 delivered;
883 			/* start of send pipeline phase */
884 			u64 first_tx_mstamp;
885 			/* when we reached the "delivered" count */
886 			u64 delivered_mstamp;
887 		} tx;   /* only used for outgoing skbs */
888 		union {
889 			struct inet_skb_parm	h4;
890 #if IS_ENABLED(CONFIG_IPV6)
891 			struct inet6_skb_parm	h6;
892 #endif
893 		} header;	/* For incoming skbs */
894 	};
895 };
896 
897 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
898 
899 extern const struct inet_connection_sock_af_ops ipv4_specific;
900 
901 #if IS_ENABLED(CONFIG_IPV6)
902 /* This is the variant of inet6_iif() that must be used by TCP,
903  * as TCP moves IP6CB into a different location in skb->cb[]
904  */
905 static inline int tcp_v6_iif(const struct sk_buff *skb)
906 {
907 	return TCP_SKB_CB(skb)->header.h6.iif;
908 }
909 
910 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
911 {
912 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
913 
914 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
915 }
916 
917 /* TCP_SKB_CB reference means this can not be used from early demux */
918 static inline int tcp_v6_sdif(const struct sk_buff *skb)
919 {
920 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
921 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
922 		return TCP_SKB_CB(skb)->header.h6.iif;
923 #endif
924 	return 0;
925 }
926 
927 extern const struct inet_connection_sock_af_ops ipv6_specific;
928 
929 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
930 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
931 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
932 
933 #endif
934 
935 /* TCP_SKB_CB reference means this can not be used from early demux */
936 static inline int tcp_v4_sdif(struct sk_buff *skb)
937 {
938 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
940 		return TCP_SKB_CB(skb)->header.h4.iif;
941 #endif
942 	return 0;
943 }
944 
945 /* Due to TSO, an SKB can be composed of multiple actual
946  * packets.  To keep these tracked properly, we use this.
947  */
948 static inline int tcp_skb_pcount(const struct sk_buff *skb)
949 {
950 	return TCP_SKB_CB(skb)->tcp_gso_segs;
951 }
952 
953 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
954 {
955 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
956 }
957 
958 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
959 {
960 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
961 }
962 
963 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
964 static inline int tcp_skb_mss(const struct sk_buff *skb)
965 {
966 	return TCP_SKB_CB(skb)->tcp_gso_size;
967 }
968 
969 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
970 {
971 	return likely(!TCP_SKB_CB(skb)->eor);
972 }
973 
974 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
975 					const struct sk_buff *from)
976 {
977 	return likely(tcp_skb_can_collapse_to(to) &&
978 		      mptcp_skb_can_collapse(to, from));
979 }
980 
981 /* Events passed to congestion control interface */
982 enum tcp_ca_event {
983 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
984 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
985 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
986 	CA_EVENT_LOSS,		/* loss timeout */
987 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
988 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
989 };
990 
991 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
992 enum tcp_ca_ack_event_flags {
993 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
994 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
995 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
996 };
997 
998 /*
999  * Interface for adding new TCP congestion control handlers
1000  */
1001 #define TCP_CA_NAME_MAX	16
1002 #define TCP_CA_MAX	128
1003 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1004 
1005 #define TCP_CA_UNSPEC	0
1006 
1007 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1008 #define TCP_CONG_NON_RESTRICTED 0x1
1009 /* Requires ECN/ECT set on all packets */
1010 #define TCP_CONG_NEEDS_ECN	0x2
1011 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1012 
1013 union tcp_cc_info;
1014 
1015 struct ack_sample {
1016 	u32 pkts_acked;
1017 	s32 rtt_us;
1018 	u32 in_flight;
1019 };
1020 
1021 /* A rate sample measures the number of (original/retransmitted) data
1022  * packets delivered "delivered" over an interval of time "interval_us".
1023  * The tcp_rate.c code fills in the rate sample, and congestion
1024  * control modules that define a cong_control function to run at the end
1025  * of ACK processing can optionally chose to consult this sample when
1026  * setting cwnd and pacing rate.
1027  * A sample is invalid if "delivered" or "interval_us" is negative.
1028  */
1029 struct rate_sample {
1030 	u64  prior_mstamp; /* starting timestamp for interval */
1031 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1032 	s32  delivered;		/* number of packets delivered over interval */
1033 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1034 	u32 snd_interval_us;	/* snd interval for delivered packets */
1035 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1036 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1037 	int  losses;		/* number of packets marked lost upon ACK */
1038 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1039 	u32  prior_in_flight;	/* in flight before this ACK */
1040 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1041 	bool is_retrans;	/* is sample from retransmission? */
1042 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1043 };
1044 
1045 struct tcp_congestion_ops {
1046 /* fast path fields are put first to fill one cache line */
1047 
1048 	/* return slow start threshold (required) */
1049 	u32 (*ssthresh)(struct sock *sk);
1050 
1051 	/* do new cwnd calculation (required) */
1052 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1053 
1054 	/* call before changing ca_state (optional) */
1055 	void (*set_state)(struct sock *sk, u8 new_state);
1056 
1057 	/* call when cwnd event occurs (optional) */
1058 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1059 
1060 	/* call when ack arrives (optional) */
1061 	void (*in_ack_event)(struct sock *sk, u32 flags);
1062 
1063 	/* hook for packet ack accounting (optional) */
1064 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1065 
1066 	/* override sysctl_tcp_min_tso_segs */
1067 	u32 (*min_tso_segs)(struct sock *sk);
1068 
1069 	/* call when packets are delivered to update cwnd and pacing rate,
1070 	 * after all the ca_state processing. (optional)
1071 	 */
1072 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1073 
1074 
1075 	/* new value of cwnd after loss (required) */
1076 	u32  (*undo_cwnd)(struct sock *sk);
1077 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1078 	u32 (*sndbuf_expand)(struct sock *sk);
1079 
1080 /* control/slow paths put last */
1081 	/* get info for inet_diag (optional) */
1082 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1083 			   union tcp_cc_info *info);
1084 
1085 	char 			name[TCP_CA_NAME_MAX];
1086 	struct module		*owner;
1087 	struct list_head	list;
1088 	u32			key;
1089 	u32			flags;
1090 
1091 	/* initialize private data (optional) */
1092 	void (*init)(struct sock *sk);
1093 	/* cleanup private data  (optional) */
1094 	void (*release)(struct sock *sk);
1095 } ____cacheline_aligned_in_smp;
1096 
1097 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1099 
1100 void tcp_assign_congestion_control(struct sock *sk);
1101 void tcp_init_congestion_control(struct sock *sk);
1102 void tcp_cleanup_congestion_control(struct sock *sk);
1103 int tcp_set_default_congestion_control(struct net *net, const char *name);
1104 void tcp_get_default_congestion_control(struct net *net, char *name);
1105 void tcp_get_available_congestion_control(char *buf, size_t len);
1106 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107 int tcp_set_allowed_congestion_control(char *allowed);
1108 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109 			       bool cap_net_admin);
1110 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1112 
1113 u32 tcp_reno_ssthresh(struct sock *sk);
1114 u32 tcp_reno_undo_cwnd(struct sock *sk);
1115 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116 extern struct tcp_congestion_ops tcp_reno;
1117 
1118 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1121 #ifdef CONFIG_INET
1122 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1123 #else
1124 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1125 {
1126 	return NULL;
1127 }
1128 #endif
1129 
1130 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1131 {
1132 	const struct inet_connection_sock *icsk = inet_csk(sk);
1133 
1134 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1135 }
1136 
1137 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1138 {
1139 	struct inet_connection_sock *icsk = inet_csk(sk);
1140 
1141 	if (icsk->icsk_ca_ops->set_state)
1142 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1143 	icsk->icsk_ca_state = ca_state;
1144 }
1145 
1146 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1147 {
1148 	const struct inet_connection_sock *icsk = inet_csk(sk);
1149 
1150 	if (icsk->icsk_ca_ops->cwnd_event)
1151 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1152 }
1153 
1154 /* From tcp_rate.c */
1155 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157 			    struct rate_sample *rs);
1158 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159 		  bool is_sack_reneg, struct rate_sample *rs);
1160 void tcp_rate_check_app_limited(struct sock *sk);
1161 
1162 /* These functions determine how the current flow behaves in respect of SACK
1163  * handling. SACK is negotiated with the peer, and therefore it can vary
1164  * between different flows.
1165  *
1166  * tcp_is_sack - SACK enabled
1167  * tcp_is_reno - No SACK
1168  */
1169 static inline int tcp_is_sack(const struct tcp_sock *tp)
1170 {
1171 	return likely(tp->rx_opt.sack_ok);
1172 }
1173 
1174 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1175 {
1176 	return !tcp_is_sack(tp);
1177 }
1178 
1179 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1180 {
1181 	return tp->sacked_out + tp->lost_out;
1182 }
1183 
1184 /* This determines how many packets are "in the network" to the best
1185  * of our knowledge.  In many cases it is conservative, but where
1186  * detailed information is available from the receiver (via SACK
1187  * blocks etc.) we can make more aggressive calculations.
1188  *
1189  * Use this for decisions involving congestion control, use just
1190  * tp->packets_out to determine if the send queue is empty or not.
1191  *
1192  * Read this equation as:
1193  *
1194  *	"Packets sent once on transmission queue" MINUS
1195  *	"Packets left network, but not honestly ACKed yet" PLUS
1196  *	"Packets fast retransmitted"
1197  */
1198 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1199 {
1200 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1201 }
1202 
1203 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1204 
1205 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1206 {
1207 	return tp->snd_cwnd < tp->snd_ssthresh;
1208 }
1209 
1210 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1211 {
1212 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1213 }
1214 
1215 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1216 {
1217 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1218 	       (1 << inet_csk(sk)->icsk_ca_state);
1219 }
1220 
1221 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1222  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1223  * ssthresh.
1224  */
1225 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1226 {
1227 	const struct tcp_sock *tp = tcp_sk(sk);
1228 
1229 	if (tcp_in_cwnd_reduction(sk))
1230 		return tp->snd_ssthresh;
1231 	else
1232 		return max(tp->snd_ssthresh,
1233 			   ((tp->snd_cwnd >> 1) +
1234 			    (tp->snd_cwnd >> 2)));
1235 }
1236 
1237 /* Use define here intentionally to get WARN_ON location shown at the caller */
1238 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1239 
1240 void tcp_enter_cwr(struct sock *sk);
1241 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1242 
1243 /* The maximum number of MSS of available cwnd for which TSO defers
1244  * sending if not using sysctl_tcp_tso_win_divisor.
1245  */
1246 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1247 {
1248 	return 3;
1249 }
1250 
1251 /* Returns end sequence number of the receiver's advertised window */
1252 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1253 {
1254 	return tp->snd_una + tp->snd_wnd;
1255 }
1256 
1257 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1258  * flexible approach. The RFC suggests cwnd should not be raised unless
1259  * it was fully used previously. And that's exactly what we do in
1260  * congestion avoidance mode. But in slow start we allow cwnd to grow
1261  * as long as the application has used half the cwnd.
1262  * Example :
1263  *    cwnd is 10 (IW10), but application sends 9 frames.
1264  *    We allow cwnd to reach 18 when all frames are ACKed.
1265  * This check is safe because it's as aggressive as slow start which already
1266  * risks 100% overshoot. The advantage is that we discourage application to
1267  * either send more filler packets or data to artificially blow up the cwnd
1268  * usage, and allow application-limited process to probe bw more aggressively.
1269  */
1270 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1271 {
1272 	const struct tcp_sock *tp = tcp_sk(sk);
1273 
1274 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1275 	if (tcp_in_slow_start(tp))
1276 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1277 
1278 	return tp->is_cwnd_limited;
1279 }
1280 
1281 /* BBR congestion control needs pacing.
1282  * Same remark for SO_MAX_PACING_RATE.
1283  * sch_fq packet scheduler is efficiently handling pacing,
1284  * but is not always installed/used.
1285  * Return true if TCP stack should pace packets itself.
1286  */
1287 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1288 {
1289 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1290 }
1291 
1292 /* Estimates in how many jiffies next packet for this flow can be sent.
1293  * Scheduling a retransmit timer too early would be silly.
1294  */
1295 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1296 {
1297 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1298 
1299 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1300 }
1301 
1302 static inline void tcp_reset_xmit_timer(struct sock *sk,
1303 					const int what,
1304 					unsigned long when,
1305 					const unsigned long max_when)
1306 {
1307 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1308 				  max_when);
1309 }
1310 
1311 /* Something is really bad, we could not queue an additional packet,
1312  * because qdisc is full or receiver sent a 0 window, or we are paced.
1313  * We do not want to add fuel to the fire, or abort too early,
1314  * so make sure the timer we arm now is at least 200ms in the future,
1315  * regardless of current icsk_rto value (as it could be ~2ms)
1316  */
1317 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1318 {
1319 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1320 }
1321 
1322 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1323 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1324 					    unsigned long max_when)
1325 {
1326 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1327 			   inet_csk(sk)->icsk_backoff);
1328 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1329 
1330 	return (unsigned long)min_t(u64, when, max_when);
1331 }
1332 
1333 static inline void tcp_check_probe_timer(struct sock *sk)
1334 {
1335 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1338 }
1339 
1340 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1341 {
1342 	tp->snd_wl1 = seq;
1343 }
1344 
1345 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1346 {
1347 	tp->snd_wl1 = seq;
1348 }
1349 
1350 /*
1351  * Calculate(/check) TCP checksum
1352  */
1353 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1354 				   __be32 daddr, __wsum base)
1355 {
1356 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1357 }
1358 
1359 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1360 {
1361 	return !skb_csum_unnecessary(skb) &&
1362 		__skb_checksum_complete(skb);
1363 }
1364 
1365 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1366 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1367 void tcp_set_state(struct sock *sk, int state);
1368 void tcp_done(struct sock *sk);
1369 int tcp_abort(struct sock *sk, int err);
1370 
1371 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1372 {
1373 	rx_opt->dsack = 0;
1374 	rx_opt->num_sacks = 0;
1375 }
1376 
1377 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1378 
1379 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1380 {
1381 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1382 	struct tcp_sock *tp = tcp_sk(sk);
1383 	s32 delta;
1384 
1385 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1386 	    ca_ops->cong_control)
1387 		return;
1388 	delta = tcp_jiffies32 - tp->lsndtime;
1389 	if (delta > inet_csk(sk)->icsk_rto)
1390 		tcp_cwnd_restart(sk, delta);
1391 }
1392 
1393 /* Determine a window scaling and initial window to offer. */
1394 void tcp_select_initial_window(const struct sock *sk, int __space,
1395 			       __u32 mss, __u32 *rcv_wnd,
1396 			       __u32 *window_clamp, int wscale_ok,
1397 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1398 
1399 static inline int tcp_win_from_space(const struct sock *sk, int space)
1400 {
1401 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1402 
1403 	return tcp_adv_win_scale <= 0 ?
1404 		(space>>(-tcp_adv_win_scale)) :
1405 		space - (space>>tcp_adv_win_scale);
1406 }
1407 
1408 /* Note: caller must be prepared to deal with negative returns */
1409 static inline int tcp_space(const struct sock *sk)
1410 {
1411 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1412 				  READ_ONCE(sk->sk_backlog.len) -
1413 				  atomic_read(&sk->sk_rmem_alloc));
1414 }
1415 
1416 static inline int tcp_full_space(const struct sock *sk)
1417 {
1418 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1419 }
1420 
1421 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1422 
1423 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424  * If 87.5 % (7/8) of the space has been consumed, we want to override
1425  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426  * len/truesize ratio.
1427  */
1428 static inline bool tcp_rmem_pressure(const struct sock *sk)
1429 {
1430 	int rcvbuf, threshold;
1431 
1432 	if (tcp_under_memory_pressure(sk))
1433 		return true;
1434 
1435 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436 	threshold = rcvbuf - (rcvbuf >> 3);
1437 
1438 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439 }
1440 
1441 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1442 {
1443 	const struct tcp_sock *tp = tcp_sk(sk);
1444 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1445 
1446 	if (avail <= 0)
1447 		return false;
1448 
1449 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1450 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1451 }
1452 
1453 extern void tcp_openreq_init_rwin(struct request_sock *req,
1454 				  const struct sock *sk_listener,
1455 				  const struct dst_entry *dst);
1456 
1457 void tcp_enter_memory_pressure(struct sock *sk);
1458 void tcp_leave_memory_pressure(struct sock *sk);
1459 
1460 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1461 {
1462 	struct net *net = sock_net((struct sock *)tp);
1463 
1464 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1465 }
1466 
1467 static inline int keepalive_time_when(const struct tcp_sock *tp)
1468 {
1469 	struct net *net = sock_net((struct sock *)tp);
1470 
1471 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1472 }
1473 
1474 static inline int keepalive_probes(const struct tcp_sock *tp)
1475 {
1476 	struct net *net = sock_net((struct sock *)tp);
1477 
1478 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1479 }
1480 
1481 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1482 {
1483 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1484 
1485 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1486 			  tcp_jiffies32 - tp->rcv_tstamp);
1487 }
1488 
1489 static inline int tcp_fin_time(const struct sock *sk)
1490 {
1491 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1492 	const int rto = inet_csk(sk)->icsk_rto;
1493 
1494 	if (fin_timeout < (rto << 2) - (rto >> 1))
1495 		fin_timeout = (rto << 2) - (rto >> 1);
1496 
1497 	return fin_timeout;
1498 }
1499 
1500 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1501 				  int paws_win)
1502 {
1503 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1504 		return true;
1505 	if (unlikely(!time_before32(ktime_get_seconds(),
1506 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1507 		return true;
1508 	/*
1509 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1510 	 * then following tcp messages have valid values. Ignore 0 value,
1511 	 * or else 'negative' tsval might forbid us to accept their packets.
1512 	 */
1513 	if (!rx_opt->ts_recent)
1514 		return true;
1515 	return false;
1516 }
1517 
1518 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1519 				   int rst)
1520 {
1521 	if (tcp_paws_check(rx_opt, 0))
1522 		return false;
1523 
1524 	/* RST segments are not recommended to carry timestamp,
1525 	   and, if they do, it is recommended to ignore PAWS because
1526 	   "their cleanup function should take precedence over timestamps."
1527 	   Certainly, it is mistake. It is necessary to understand the reasons
1528 	   of this constraint to relax it: if peer reboots, clock may go
1529 	   out-of-sync and half-open connections will not be reset.
1530 	   Actually, the problem would be not existing if all
1531 	   the implementations followed draft about maintaining clock
1532 	   via reboots. Linux-2.2 DOES NOT!
1533 
1534 	   However, we can relax time bounds for RST segments to MSL.
1535 	 */
1536 	if (rst && !time_before32(ktime_get_seconds(),
1537 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1538 		return false;
1539 	return true;
1540 }
1541 
1542 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1543 			  int mib_idx, u32 *last_oow_ack_time);
1544 
1545 static inline void tcp_mib_init(struct net *net)
1546 {
1547 	/* See RFC 2012 */
1548 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1549 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1550 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1551 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1552 }
1553 
1554 /* from STCP */
1555 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1556 {
1557 	tp->lost_skb_hint = NULL;
1558 }
1559 
1560 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1561 {
1562 	tcp_clear_retrans_hints_partial(tp);
1563 	tp->retransmit_skb_hint = NULL;
1564 }
1565 
1566 union tcp_md5_addr {
1567 	struct in_addr  a4;
1568 #if IS_ENABLED(CONFIG_IPV6)
1569 	struct in6_addr	a6;
1570 #endif
1571 };
1572 
1573 /* - key database */
1574 struct tcp_md5sig_key {
1575 	struct hlist_node	node;
1576 	u8			keylen;
1577 	u8			family; /* AF_INET or AF_INET6 */
1578 	u8			prefixlen;
1579 	union tcp_md5_addr	addr;
1580 	int			l3index; /* set if key added with L3 scope */
1581 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1582 	struct rcu_head		rcu;
1583 };
1584 
1585 /* - sock block */
1586 struct tcp_md5sig_info {
1587 	struct hlist_head	head;
1588 	struct rcu_head		rcu;
1589 };
1590 
1591 /* - pseudo header */
1592 struct tcp4_pseudohdr {
1593 	__be32		saddr;
1594 	__be32		daddr;
1595 	__u8		pad;
1596 	__u8		protocol;
1597 	__be16		len;
1598 };
1599 
1600 struct tcp6_pseudohdr {
1601 	struct in6_addr	saddr;
1602 	struct in6_addr daddr;
1603 	__be32		len;
1604 	__be32		protocol;	/* including padding */
1605 };
1606 
1607 union tcp_md5sum_block {
1608 	struct tcp4_pseudohdr ip4;
1609 #if IS_ENABLED(CONFIG_IPV6)
1610 	struct tcp6_pseudohdr ip6;
1611 #endif
1612 };
1613 
1614 /* - pool: digest algorithm, hash description and scratch buffer */
1615 struct tcp_md5sig_pool {
1616 	struct ahash_request	*md5_req;
1617 	void			*scratch;
1618 };
1619 
1620 /* - functions */
1621 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1622 			const struct sock *sk, const struct sk_buff *skb);
1623 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1624 		   int family, u8 prefixlen, int l3index,
1625 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1626 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1627 		   int family, u8 prefixlen, int l3index);
1628 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1629 					 const struct sock *addr_sk);
1630 
1631 #ifdef CONFIG_TCP_MD5SIG
1632 #include <linux/jump_label.h>
1633 extern struct static_key_false tcp_md5_needed;
1634 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1635 					   const union tcp_md5_addr *addr,
1636 					   int family);
1637 static inline struct tcp_md5sig_key *
1638 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1639 		  const union tcp_md5_addr *addr, int family)
1640 {
1641 	if (!static_branch_unlikely(&tcp_md5_needed))
1642 		return NULL;
1643 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1644 }
1645 
1646 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1647 #else
1648 static inline struct tcp_md5sig_key *
1649 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1650 		  const union tcp_md5_addr *addr, int family)
1651 {
1652 	return NULL;
1653 }
1654 #define tcp_twsk_md5_key(twsk)	NULL
1655 #endif
1656 
1657 bool tcp_alloc_md5sig_pool(void);
1658 
1659 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1660 static inline void tcp_put_md5sig_pool(void)
1661 {
1662 	local_bh_enable();
1663 }
1664 
1665 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1666 			  unsigned int header_len);
1667 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1668 		     const struct tcp_md5sig_key *key);
1669 
1670 /* From tcp_fastopen.c */
1671 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1672 			    struct tcp_fastopen_cookie *cookie);
1673 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1674 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1675 			    u16 try_exp);
1676 struct tcp_fastopen_request {
1677 	/* Fast Open cookie. Size 0 means a cookie request */
1678 	struct tcp_fastopen_cookie	cookie;
1679 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1680 	size_t				size;
1681 	int				copied;	/* queued in tcp_connect() */
1682 	struct ubuf_info		*uarg;
1683 };
1684 void tcp_free_fastopen_req(struct tcp_sock *tp);
1685 void tcp_fastopen_destroy_cipher(struct sock *sk);
1686 void tcp_fastopen_ctx_destroy(struct net *net);
1687 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1688 			      void *primary_key, void *backup_key);
1689 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1690 			    u64 *key);
1691 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1692 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1693 			      struct request_sock *req,
1694 			      struct tcp_fastopen_cookie *foc,
1695 			      const struct dst_entry *dst);
1696 void tcp_fastopen_init_key_once(struct net *net);
1697 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1698 			     struct tcp_fastopen_cookie *cookie);
1699 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1700 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1701 #define TCP_FASTOPEN_KEY_MAX 2
1702 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1703 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1704 
1705 /* Fastopen key context */
1706 struct tcp_fastopen_context {
1707 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1708 	int		num;
1709 	struct rcu_head	rcu;
1710 };
1711 
1712 void tcp_fastopen_active_disable(struct sock *sk);
1713 bool tcp_fastopen_active_should_disable(struct sock *sk);
1714 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1715 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1716 
1717 /* Caller needs to wrap with rcu_read_(un)lock() */
1718 static inline
1719 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1720 {
1721 	struct tcp_fastopen_context *ctx;
1722 
1723 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1724 	if (!ctx)
1725 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1726 	return ctx;
1727 }
1728 
1729 static inline
1730 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1731 			       const struct tcp_fastopen_cookie *orig)
1732 {
1733 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1734 	    orig->len == foc->len &&
1735 	    !memcmp(orig->val, foc->val, foc->len))
1736 		return true;
1737 	return false;
1738 }
1739 
1740 static inline
1741 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1742 {
1743 	return ctx->num;
1744 }
1745 
1746 /* Latencies incurred by various limits for a sender. They are
1747  * chronograph-like stats that are mutually exclusive.
1748  */
1749 enum tcp_chrono {
1750 	TCP_CHRONO_UNSPEC,
1751 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1752 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1753 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1754 	__TCP_CHRONO_MAX,
1755 };
1756 
1757 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1758 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1759 
1760 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1761  * the same memory storage than skb->destructor/_skb_refdst
1762  */
1763 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1764 {
1765 	skb->destructor = NULL;
1766 	skb->_skb_refdst = 0UL;
1767 }
1768 
1769 #define tcp_skb_tsorted_save(skb) {		\
1770 	unsigned long _save = skb->_skb_refdst;	\
1771 	skb->_skb_refdst = 0UL;
1772 
1773 #define tcp_skb_tsorted_restore(skb)		\
1774 	skb->_skb_refdst = _save;		\
1775 }
1776 
1777 void tcp_write_queue_purge(struct sock *sk);
1778 
1779 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1780 {
1781 	return skb_rb_first(&sk->tcp_rtx_queue);
1782 }
1783 
1784 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1785 {
1786 	return skb_rb_last(&sk->tcp_rtx_queue);
1787 }
1788 
1789 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1790 {
1791 	return skb_peek(&sk->sk_write_queue);
1792 }
1793 
1794 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1795 {
1796 	return skb_peek_tail(&sk->sk_write_queue);
1797 }
1798 
1799 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1800 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1801 
1802 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1803 {
1804 	return skb_peek(&sk->sk_write_queue);
1805 }
1806 
1807 static inline bool tcp_skb_is_last(const struct sock *sk,
1808 				   const struct sk_buff *skb)
1809 {
1810 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1811 }
1812 
1813 /**
1814  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1815  * @sk: socket
1816  *
1817  * Since the write queue can have a temporary empty skb in it,
1818  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1819  */
1820 static inline bool tcp_write_queue_empty(const struct sock *sk)
1821 {
1822 	const struct tcp_sock *tp = tcp_sk(sk);
1823 
1824 	return tp->write_seq == tp->snd_nxt;
1825 }
1826 
1827 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1828 {
1829 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1830 }
1831 
1832 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1833 {
1834 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1835 }
1836 
1837 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1838 {
1839 	__skb_queue_tail(&sk->sk_write_queue, skb);
1840 
1841 	/* Queue it, remembering where we must start sending. */
1842 	if (sk->sk_write_queue.next == skb)
1843 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1844 }
1845 
1846 /* Insert new before skb on the write queue of sk.  */
1847 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1848 						  struct sk_buff *skb,
1849 						  struct sock *sk)
1850 {
1851 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1852 }
1853 
1854 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1855 {
1856 	tcp_skb_tsorted_anchor_cleanup(skb);
1857 	__skb_unlink(skb, &sk->sk_write_queue);
1858 }
1859 
1860 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1861 
1862 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1863 {
1864 	tcp_skb_tsorted_anchor_cleanup(skb);
1865 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1866 }
1867 
1868 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1869 {
1870 	list_del(&skb->tcp_tsorted_anchor);
1871 	tcp_rtx_queue_unlink(skb, sk);
1872 	sk_wmem_free_skb(sk, skb);
1873 }
1874 
1875 static inline void tcp_push_pending_frames(struct sock *sk)
1876 {
1877 	if (tcp_send_head(sk)) {
1878 		struct tcp_sock *tp = tcp_sk(sk);
1879 
1880 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1881 	}
1882 }
1883 
1884 /* Start sequence of the skb just after the highest skb with SACKed
1885  * bit, valid only if sacked_out > 0 or when the caller has ensured
1886  * validity by itself.
1887  */
1888 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1889 {
1890 	if (!tp->sacked_out)
1891 		return tp->snd_una;
1892 
1893 	if (tp->highest_sack == NULL)
1894 		return tp->snd_nxt;
1895 
1896 	return TCP_SKB_CB(tp->highest_sack)->seq;
1897 }
1898 
1899 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1900 {
1901 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1902 }
1903 
1904 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1905 {
1906 	return tcp_sk(sk)->highest_sack;
1907 }
1908 
1909 static inline void tcp_highest_sack_reset(struct sock *sk)
1910 {
1911 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1912 }
1913 
1914 /* Called when old skb is about to be deleted and replaced by new skb */
1915 static inline void tcp_highest_sack_replace(struct sock *sk,
1916 					    struct sk_buff *old,
1917 					    struct sk_buff *new)
1918 {
1919 	if (old == tcp_highest_sack(sk))
1920 		tcp_sk(sk)->highest_sack = new;
1921 }
1922 
1923 /* This helper checks if socket has IP_TRANSPARENT set */
1924 static inline bool inet_sk_transparent(const struct sock *sk)
1925 {
1926 	switch (sk->sk_state) {
1927 	case TCP_TIME_WAIT:
1928 		return inet_twsk(sk)->tw_transparent;
1929 	case TCP_NEW_SYN_RECV:
1930 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1931 	}
1932 	return inet_sk(sk)->transparent;
1933 }
1934 
1935 /* Determines whether this is a thin stream (which may suffer from
1936  * increased latency). Used to trigger latency-reducing mechanisms.
1937  */
1938 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1939 {
1940 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1941 }
1942 
1943 /* /proc */
1944 enum tcp_seq_states {
1945 	TCP_SEQ_STATE_LISTENING,
1946 	TCP_SEQ_STATE_ESTABLISHED,
1947 };
1948 
1949 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1950 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1951 void tcp_seq_stop(struct seq_file *seq, void *v);
1952 
1953 struct tcp_seq_afinfo {
1954 	sa_family_t			family;
1955 };
1956 
1957 struct tcp_iter_state {
1958 	struct seq_net_private	p;
1959 	enum tcp_seq_states	state;
1960 	struct sock		*syn_wait_sk;
1961 	int			bucket, offset, sbucket, num;
1962 	loff_t			last_pos;
1963 };
1964 
1965 extern struct request_sock_ops tcp_request_sock_ops;
1966 extern struct request_sock_ops tcp6_request_sock_ops;
1967 
1968 void tcp_v4_destroy_sock(struct sock *sk);
1969 
1970 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1971 				netdev_features_t features);
1972 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1973 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1974 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1975 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1976 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1977 int tcp_gro_complete(struct sk_buff *skb);
1978 
1979 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1980 
1981 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1982 {
1983 	struct net *net = sock_net((struct sock *)tp);
1984 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1985 }
1986 
1987 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1988 
1989 #ifdef CONFIG_PROC_FS
1990 int tcp4_proc_init(void);
1991 void tcp4_proc_exit(void);
1992 #endif
1993 
1994 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1995 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1996 		     const struct tcp_request_sock_ops *af_ops,
1997 		     struct sock *sk, struct sk_buff *skb);
1998 
1999 /* TCP af-specific functions */
2000 struct tcp_sock_af_ops {
2001 #ifdef CONFIG_TCP_MD5SIG
2002 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2003 						const struct sock *addr_sk);
2004 	int		(*calc_md5_hash)(char *location,
2005 					 const struct tcp_md5sig_key *md5,
2006 					 const struct sock *sk,
2007 					 const struct sk_buff *skb);
2008 	int		(*md5_parse)(struct sock *sk,
2009 				     int optname,
2010 				     sockptr_t optval,
2011 				     int optlen);
2012 #endif
2013 };
2014 
2015 struct tcp_request_sock_ops {
2016 	u16 mss_clamp;
2017 #ifdef CONFIG_TCP_MD5SIG
2018 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2019 						 const struct sock *addr_sk);
2020 	int		(*calc_md5_hash) (char *location,
2021 					  const struct tcp_md5sig_key *md5,
2022 					  const struct sock *sk,
2023 					  const struct sk_buff *skb);
2024 #endif
2025 #ifdef CONFIG_SYN_COOKIES
2026 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2027 				 __u16 *mss);
2028 #endif
2029 	struct dst_entry *(*route_req)(const struct sock *sk,
2030 				       struct sk_buff *skb,
2031 				       struct flowi *fl,
2032 				       struct request_sock *req);
2033 	u32 (*init_seq)(const struct sk_buff *skb);
2034 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2035 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2036 			   struct flowi *fl, struct request_sock *req,
2037 			   struct tcp_fastopen_cookie *foc,
2038 			   enum tcp_synack_type synack_type,
2039 			   struct sk_buff *syn_skb);
2040 };
2041 
2042 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2043 #if IS_ENABLED(CONFIG_IPV6)
2044 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2045 #endif
2046 
2047 #ifdef CONFIG_SYN_COOKIES
2048 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2049 					 const struct sock *sk, struct sk_buff *skb,
2050 					 __u16 *mss)
2051 {
2052 	tcp_synq_overflow(sk);
2053 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2054 	return ops->cookie_init_seq(skb, mss);
2055 }
2056 #else
2057 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2058 					 const struct sock *sk, struct sk_buff *skb,
2059 					 __u16 *mss)
2060 {
2061 	return 0;
2062 }
2063 #endif
2064 
2065 int tcpv4_offload_init(void);
2066 
2067 void tcp_v4_init(void);
2068 void tcp_init(void);
2069 
2070 /* tcp_recovery.c */
2071 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2072 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2073 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2074 				u32 reo_wnd);
2075 extern bool tcp_rack_mark_lost(struct sock *sk);
2076 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2077 			     u64 xmit_time);
2078 extern void tcp_rack_reo_timeout(struct sock *sk);
2079 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2080 
2081 /* At how many usecs into the future should the RTO fire? */
2082 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2083 {
2084 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2085 	u32 rto = inet_csk(sk)->icsk_rto;
2086 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2087 
2088 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2089 }
2090 
2091 /*
2092  * Save and compile IPv4 options, return a pointer to it
2093  */
2094 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2095 							 struct sk_buff *skb)
2096 {
2097 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2098 	struct ip_options_rcu *dopt = NULL;
2099 
2100 	if (opt->optlen) {
2101 		int opt_size = sizeof(*dopt) + opt->optlen;
2102 
2103 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2104 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2105 			kfree(dopt);
2106 			dopt = NULL;
2107 		}
2108 	}
2109 	return dopt;
2110 }
2111 
2112 /* locally generated TCP pure ACKs have skb->truesize == 2
2113  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2114  * This is much faster than dissecting the packet to find out.
2115  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2116  */
2117 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2118 {
2119 	return skb->truesize == 2;
2120 }
2121 
2122 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2123 {
2124 	skb->truesize = 2;
2125 }
2126 
2127 static inline int tcp_inq(struct sock *sk)
2128 {
2129 	struct tcp_sock *tp = tcp_sk(sk);
2130 	int answ;
2131 
2132 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2133 		answ = 0;
2134 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2135 		   !tp->urg_data ||
2136 		   before(tp->urg_seq, tp->copied_seq) ||
2137 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2138 
2139 		answ = tp->rcv_nxt - tp->copied_seq;
2140 
2141 		/* Subtract 1, if FIN was received */
2142 		if (answ && sock_flag(sk, SOCK_DONE))
2143 			answ--;
2144 	} else {
2145 		answ = tp->urg_seq - tp->copied_seq;
2146 	}
2147 
2148 	return answ;
2149 }
2150 
2151 int tcp_peek_len(struct socket *sock);
2152 
2153 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2154 {
2155 	u16 segs_in;
2156 
2157 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2158 	tp->segs_in += segs_in;
2159 	if (skb->len > tcp_hdrlen(skb))
2160 		tp->data_segs_in += segs_in;
2161 }
2162 
2163 /*
2164  * TCP listen path runs lockless.
2165  * We forced "struct sock" to be const qualified to make sure
2166  * we don't modify one of its field by mistake.
2167  * Here, we increment sk_drops which is an atomic_t, so we can safely
2168  * make sock writable again.
2169  */
2170 static inline void tcp_listendrop(const struct sock *sk)
2171 {
2172 	atomic_inc(&((struct sock *)sk)->sk_drops);
2173 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2174 }
2175 
2176 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2177 
2178 /*
2179  * Interface for adding Upper Level Protocols over TCP
2180  */
2181 
2182 #define TCP_ULP_NAME_MAX	16
2183 #define TCP_ULP_MAX		128
2184 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2185 
2186 struct tcp_ulp_ops {
2187 	struct list_head	list;
2188 
2189 	/* initialize ulp */
2190 	int (*init)(struct sock *sk);
2191 	/* update ulp */
2192 	void (*update)(struct sock *sk, struct proto *p,
2193 		       void (*write_space)(struct sock *sk));
2194 	/* cleanup ulp */
2195 	void (*release)(struct sock *sk);
2196 	/* diagnostic */
2197 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2198 	size_t (*get_info_size)(const struct sock *sk);
2199 	/* clone ulp */
2200 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2201 		      const gfp_t priority);
2202 
2203 	char		name[TCP_ULP_NAME_MAX];
2204 	struct module	*owner;
2205 };
2206 int tcp_register_ulp(struct tcp_ulp_ops *type);
2207 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2208 int tcp_set_ulp(struct sock *sk, const char *name);
2209 void tcp_get_available_ulp(char *buf, size_t len);
2210 void tcp_cleanup_ulp(struct sock *sk);
2211 void tcp_update_ulp(struct sock *sk, struct proto *p,
2212 		    void (*write_space)(struct sock *sk));
2213 
2214 #define MODULE_ALIAS_TCP_ULP(name)				\
2215 	__MODULE_INFO(alias, alias_userspace, name);		\
2216 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2217 
2218 #ifdef CONFIG_NET_SOCK_MSG
2219 struct sk_msg;
2220 struct sk_psock;
2221 
2222 #ifdef CONFIG_BPF_SYSCALL
2223 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2224 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2225 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2226 #endif /* CONFIG_BPF_SYSCALL */
2227 
2228 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2229 			  int flags);
2230 #endif /* CONFIG_NET_SOCK_MSG */
2231 
2232 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2233 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2234 {
2235 }
2236 #endif
2237 
2238 #ifdef CONFIG_CGROUP_BPF
2239 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2240 				      struct sk_buff *skb,
2241 				      unsigned int end_offset)
2242 {
2243 	skops->skb = skb;
2244 	skops->skb_data_end = skb->data + end_offset;
2245 }
2246 #else
2247 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2248 				      struct sk_buff *skb,
2249 				      unsigned int end_offset)
2250 {
2251 }
2252 #endif
2253 
2254 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2255  * is < 0, then the BPF op failed (for example if the loaded BPF
2256  * program does not support the chosen operation or there is no BPF
2257  * program loaded).
2258  */
2259 #ifdef CONFIG_BPF
2260 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2261 {
2262 	struct bpf_sock_ops_kern sock_ops;
2263 	int ret;
2264 
2265 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2266 	if (sk_fullsock(sk)) {
2267 		sock_ops.is_fullsock = 1;
2268 		sock_owned_by_me(sk);
2269 	}
2270 
2271 	sock_ops.sk = sk;
2272 	sock_ops.op = op;
2273 	if (nargs > 0)
2274 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2275 
2276 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2277 	if (ret == 0)
2278 		ret = sock_ops.reply;
2279 	else
2280 		ret = -1;
2281 	return ret;
2282 }
2283 
2284 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2285 {
2286 	u32 args[2] = {arg1, arg2};
2287 
2288 	return tcp_call_bpf(sk, op, 2, args);
2289 }
2290 
2291 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2292 				    u32 arg3)
2293 {
2294 	u32 args[3] = {arg1, arg2, arg3};
2295 
2296 	return tcp_call_bpf(sk, op, 3, args);
2297 }
2298 
2299 #else
2300 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2301 {
2302 	return -EPERM;
2303 }
2304 
2305 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2306 {
2307 	return -EPERM;
2308 }
2309 
2310 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2311 				    u32 arg3)
2312 {
2313 	return -EPERM;
2314 }
2315 
2316 #endif
2317 
2318 static inline u32 tcp_timeout_init(struct sock *sk)
2319 {
2320 	int timeout;
2321 
2322 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2323 
2324 	if (timeout <= 0)
2325 		timeout = TCP_TIMEOUT_INIT;
2326 	return timeout;
2327 }
2328 
2329 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2330 {
2331 	int rwnd;
2332 
2333 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2334 
2335 	if (rwnd < 0)
2336 		rwnd = 0;
2337 	return rwnd;
2338 }
2339 
2340 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2341 {
2342 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2343 }
2344 
2345 static inline void tcp_bpf_rtt(struct sock *sk)
2346 {
2347 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2348 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2349 }
2350 
2351 #if IS_ENABLED(CONFIG_SMC)
2352 extern struct static_key_false tcp_have_smc;
2353 #endif
2354 
2355 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2356 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2357 			     void (*cad)(struct sock *sk, u32 ack_seq));
2358 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2359 void clean_acked_data_flush(void);
2360 #endif
2361 
2362 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2363 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2364 				    const struct tcp_sock *tp)
2365 {
2366 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2367 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2368 }
2369 
2370 /* Compute Earliest Departure Time for some control packets
2371  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2372  */
2373 static inline u64 tcp_transmit_time(const struct sock *sk)
2374 {
2375 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2376 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2377 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2378 
2379 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2380 	}
2381 	return 0;
2382 }
2383 
2384 #endif	/* _TCP_H */
2385