xref: /openbmc/linux/include/net/tcp.h (revision 46d3ceabd8d98ed0ad10f20c595ca784e34786c5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND	10
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		512
72 
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75 
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING	127
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* urg_data states */
83 #define TCP_URG_VALID	0x0100
84 #define TCP_URG_NOTYET	0x0200
85 #define TCP_URG_READ	0x0400
86 
87 #define TCP_RETR1	3	/*
88 				 * This is how many retries it does before it
89 				 * tries to figure out if the gateway is
90 				 * down. Minimal RFC value is 3; it corresponds
91 				 * to ~3sec-8min depending on RTO.
92 				 */
93 
94 #define TCP_RETR2	15	/*
95 				 * This should take at least
96 				 * 90 minutes to time out.
97 				 * RFC1122 says that the limit is 100 sec.
98 				 * 15 is ~13-30min depending on RTO.
99 				 */
100 
101 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
102 				 * connection: ~180sec is RFC minimum	*/
103 
104 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
105 				 * connection: ~180sec is RFC minimum	*/
106 
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 				  * state, about 60 seconds	*/
109 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
110                                  /* BSD style FIN_WAIT2 deadlock breaker.
111 				  * It used to be 3min, new value is 60sec,
112 				  * to combine FIN-WAIT-2 timeout with
113 				  * TIME-WAIT timer.
114 				  */
115 
116 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN	((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN	4U
122 #define TCP_ATO_MIN	4U
123 #endif
124 #define TCP_RTO_MAX	((unsigned)(120*HZ))
125 #define TCP_RTO_MIN	((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
128 						 * used as a fallback RTO for the
129 						 * initial data transmission if no
130 						 * valid RTT sample has been acquired,
131 						 * most likely due to retrans in 3WHS.
132 						 */
133 
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 					                 * for local resources.
136 					                 */
137 
138 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
139 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
140 #define TCP_KEEPALIVE_INTVL	(75*HZ)
141 
142 #define MAX_TCP_KEEPIDLE	32767
143 #define MAX_TCP_KEEPINTVL	32767
144 #define MAX_TCP_KEEPCNT		127
145 #define MAX_TCP_SYNCNT		127
146 
147 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
148 
149 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
151 					 * after this time. It should be equal
152 					 * (or greater than) TCP_TIMEWAIT_LEN
153 					 * to provide reliability equal to one
154 					 * provided by timewait state.
155 					 */
156 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
157 					 * timestamps. It must be less than
158 					 * minimal timewait lifetime.
159 					 */
160 /*
161  *	TCP option
162  */
163 
164 #define TCPOPT_NOP		1	/* Padding */
165 #define TCPOPT_EOL		0	/* End of options */
166 #define TCPOPT_MSS		2	/* Segment size negotiating */
167 #define TCPOPT_WINDOW		3	/* Window scaling */
168 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
169 #define TCPOPT_SACK             5       /* SACK Block */
170 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
173 
174 /*
175  *     TCP option lengths
176  */
177 
178 #define TCPOLEN_MSS            4
179 #define TCPOLEN_WINDOW         3
180 #define TCPOLEN_SACK_PERM      2
181 #define TCPOLEN_TIMESTAMP      10
182 #define TCPOLEN_MD5SIG         18
183 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
184 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
185 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
186 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
187 
188 /* But this is what stacks really send out. */
189 #define TCPOLEN_TSTAMP_ALIGNED		12
190 #define TCPOLEN_WSCALE_ALIGNED		4
191 #define TCPOLEN_SACKPERM_ALIGNED	4
192 #define TCPOLEN_SACK_BASE		2
193 #define TCPOLEN_SACK_BASE_ALIGNED	4
194 #define TCPOLEN_SACK_PERBLOCK		8
195 #define TCPOLEN_MD5SIG_ALIGNED		20
196 #define TCPOLEN_MSS_ALIGNED		4
197 
198 /* Flags in tp->nonagle */
199 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
200 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
201 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
202 
203 /* TCP thin-stream limits */
204 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
205 
206 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
207 #define TCP_INIT_CWND		10
208 
209 extern struct inet_timewait_death_row tcp_death_row;
210 
211 /* sysctl variables for tcp */
212 extern int sysctl_tcp_timestamps;
213 extern int sysctl_tcp_window_scaling;
214 extern int sysctl_tcp_sack;
215 extern int sysctl_tcp_fin_timeout;
216 extern int sysctl_tcp_keepalive_time;
217 extern int sysctl_tcp_keepalive_probes;
218 extern int sysctl_tcp_keepalive_intvl;
219 extern int sysctl_tcp_syn_retries;
220 extern int sysctl_tcp_synack_retries;
221 extern int sysctl_tcp_retries1;
222 extern int sysctl_tcp_retries2;
223 extern int sysctl_tcp_orphan_retries;
224 extern int sysctl_tcp_syncookies;
225 extern int sysctl_tcp_retrans_collapse;
226 extern int sysctl_tcp_stdurg;
227 extern int sysctl_tcp_rfc1337;
228 extern int sysctl_tcp_abort_on_overflow;
229 extern int sysctl_tcp_max_orphans;
230 extern int sysctl_tcp_fack;
231 extern int sysctl_tcp_reordering;
232 extern int sysctl_tcp_ecn;
233 extern int sysctl_tcp_dsack;
234 extern int sysctl_tcp_wmem[3];
235 extern int sysctl_tcp_rmem[3];
236 extern int sysctl_tcp_app_win;
237 extern int sysctl_tcp_adv_win_scale;
238 extern int sysctl_tcp_tw_reuse;
239 extern int sysctl_tcp_frto;
240 extern int sysctl_tcp_frto_response;
241 extern int sysctl_tcp_low_latency;
242 extern int sysctl_tcp_dma_copybreak;
243 extern int sysctl_tcp_nometrics_save;
244 extern int sysctl_tcp_moderate_rcvbuf;
245 extern int sysctl_tcp_tso_win_divisor;
246 extern int sysctl_tcp_abc;
247 extern int sysctl_tcp_mtu_probing;
248 extern int sysctl_tcp_base_mss;
249 extern int sysctl_tcp_workaround_signed_windows;
250 extern int sysctl_tcp_slow_start_after_idle;
251 extern int sysctl_tcp_max_ssthresh;
252 extern int sysctl_tcp_cookie_size;
253 extern int sysctl_tcp_thin_linear_timeouts;
254 extern int sysctl_tcp_thin_dupack;
255 extern int sysctl_tcp_early_retrans;
256 extern int sysctl_tcp_limit_output_bytes;
257 
258 extern atomic_long_t tcp_memory_allocated;
259 extern struct percpu_counter tcp_sockets_allocated;
260 extern int tcp_memory_pressure;
261 
262 /*
263  * The next routines deal with comparing 32 bit unsigned ints
264  * and worry about wraparound (automatic with unsigned arithmetic).
265  */
266 
267 static inline bool before(__u32 seq1, __u32 seq2)
268 {
269         return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) 	before(seq1, seq2)
272 
273 /* is s2<=s1<=s3 ? */
274 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 	return seq3 - seq2 >= seq1 - seq2;
277 }
278 
279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 		return true;
284 	return false;
285 }
286 
287 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
288 {
289 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
290 	int orphans = percpu_counter_read_positive(ocp);
291 
292 	if (orphans << shift > sysctl_tcp_max_orphans) {
293 		orphans = percpu_counter_sum_positive(ocp);
294 		if (orphans << shift > sysctl_tcp_max_orphans)
295 			return true;
296 	}
297 	return false;
298 }
299 
300 extern bool tcp_check_oom(struct sock *sk, int shift);
301 
302 /* syncookies: remember time of last synqueue overflow */
303 static inline void tcp_synq_overflow(struct sock *sk)
304 {
305 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
306 }
307 
308 /* syncookies: no recent synqueue overflow on this listening socket? */
309 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
310 {
311 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
312 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
313 }
314 
315 extern struct proto tcp_prot;
316 
317 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
318 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
319 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
320 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
321 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
322 
323 extern void tcp_init_mem(struct net *net);
324 
325 extern void tcp_tasklet_init(void);
326 
327 extern void tcp_v4_err(struct sk_buff *skb, u32);
328 
329 extern void tcp_shutdown (struct sock *sk, int how);
330 
331 extern void tcp_v4_early_demux(struct sk_buff *skb);
332 extern int tcp_v4_rcv(struct sk_buff *skb);
333 
334 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk);
335 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
336 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
337 		       size_t size);
338 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
339 			size_t size, int flags);
340 extern void tcp_release_cb(struct sock *sk);
341 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
343 				 const struct tcphdr *th, unsigned int len);
344 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
345 			       const struct tcphdr *th, unsigned int len);
346 extern void tcp_rcv_space_adjust(struct sock *sk);
347 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
348 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 extern void tcp_twsk_destructor(struct sock *sk);
350 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			       struct pipe_inode_info *pipe, size_t len,
352 			       unsigned int flags);
353 
354 static inline void tcp_dec_quickack_mode(struct sock *sk,
355 					 const unsigned int pkts)
356 {
357 	struct inet_connection_sock *icsk = inet_csk(sk);
358 
359 	if (icsk->icsk_ack.quick) {
360 		if (pkts >= icsk->icsk_ack.quick) {
361 			icsk->icsk_ack.quick = 0;
362 			/* Leaving quickack mode we deflate ATO. */
363 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
364 		} else
365 			icsk->icsk_ack.quick -= pkts;
366 	}
367 }
368 
369 #define	TCP_ECN_OK		1
370 #define	TCP_ECN_QUEUE_CWR	2
371 #define	TCP_ECN_DEMAND_CWR	4
372 #define	TCP_ECN_SEEN		8
373 
374 enum tcp_tw_status {
375 	TCP_TW_SUCCESS = 0,
376 	TCP_TW_RST = 1,
377 	TCP_TW_ACK = 2,
378 	TCP_TW_SYN = 3
379 };
380 
381 
382 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
383 						     struct sk_buff *skb,
384 						     const struct tcphdr *th);
385 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
386 				   struct request_sock *req,
387 				   struct request_sock **prev);
388 extern int tcp_child_process(struct sock *parent, struct sock *child,
389 			     struct sk_buff *skb);
390 extern bool tcp_use_frto(struct sock *sk);
391 extern void tcp_enter_frto(struct sock *sk);
392 extern void tcp_enter_loss(struct sock *sk, int how);
393 extern void tcp_clear_retrans(struct tcp_sock *tp);
394 extern void tcp_update_metrics(struct sock *sk);
395 extern void tcp_init_metrics(struct sock *sk);
396 extern void tcp_metrics_init(void);
397 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
398 extern bool tcp_remember_stamp(struct sock *sk);
399 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
400 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
401 extern void tcp_disable_fack(struct tcp_sock *tp);
402 extern void tcp_close(struct sock *sk, long timeout);
403 extern void tcp_init_sock(struct sock *sk);
404 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
405 			     struct poll_table_struct *wait);
406 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
407 			  char __user *optval, int __user *optlen);
408 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
409 			  char __user *optval, unsigned int optlen);
410 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
411 				 char __user *optval, int __user *optlen);
412 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
413 				 char __user *optval, unsigned int optlen);
414 extern void tcp_set_keepalive(struct sock *sk, int val);
415 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
416 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
417 		       size_t len, int nonblock, int flags, int *addr_len);
418 extern void tcp_parse_options(const struct sk_buff *skb,
419 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
420 			      int estab);
421 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
422 
423 /*
424  *	TCP v4 functions exported for the inet6 API
425  */
426 
427 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
428 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
429 extern struct sock * tcp_create_openreq_child(struct sock *sk,
430 					      struct request_sock *req,
431 					      struct sk_buff *skb);
432 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
433 					  struct request_sock *req,
434 					  struct dst_entry *dst);
435 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
436 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
437 			  int addr_len);
438 extern int tcp_connect(struct sock *sk);
439 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
440 					struct request_sock *req,
441 					struct request_values *rvp);
442 extern int tcp_disconnect(struct sock *sk, int flags);
443 
444 void tcp_connect_init(struct sock *sk);
445 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
446 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
447 
448 /* From syncookies.c */
449 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
450 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
451 				    struct ip_options *opt);
452 #ifdef CONFIG_SYN_COOKIES
453 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
454 				     __u16 *mss);
455 #else
456 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
457 					    struct sk_buff *skb,
458 					    __u16 *mss)
459 {
460 	return 0;
461 }
462 #endif
463 
464 extern __u32 cookie_init_timestamp(struct request_sock *req);
465 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
466 
467 /* From net/ipv6/syncookies.c */
468 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
469 #ifdef CONFIG_SYN_COOKIES
470 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
471 				     __u16 *mss);
472 #else
473 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
474 					    struct sk_buff *skb,
475 					    __u16 *mss)
476 {
477 	return 0;
478 }
479 #endif
480 /* tcp_output.c */
481 
482 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
483 				      int nonagle);
484 extern bool tcp_may_send_now(struct sock *sk);
485 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
486 extern void tcp_retransmit_timer(struct sock *sk);
487 extern void tcp_xmit_retransmit_queue(struct sock *);
488 extern void tcp_simple_retransmit(struct sock *);
489 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
490 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
491 
492 extern void tcp_send_probe0(struct sock *);
493 extern void tcp_send_partial(struct sock *);
494 extern int tcp_write_wakeup(struct sock *);
495 extern void tcp_send_fin(struct sock *sk);
496 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
497 extern int tcp_send_synack(struct sock *);
498 extern bool tcp_syn_flood_action(struct sock *sk,
499 				 const struct sk_buff *skb,
500 				 const char *proto);
501 extern void tcp_push_one(struct sock *, unsigned int mss_now);
502 extern void tcp_send_ack(struct sock *sk);
503 extern void tcp_send_delayed_ack(struct sock *sk);
504 
505 /* tcp_input.c */
506 extern void tcp_cwnd_application_limited(struct sock *sk);
507 extern void tcp_resume_early_retransmit(struct sock *sk);
508 extern void tcp_rearm_rto(struct sock *sk);
509 
510 /* tcp_timer.c */
511 extern void tcp_init_xmit_timers(struct sock *);
512 static inline void tcp_clear_xmit_timers(struct sock *sk)
513 {
514 	inet_csk_clear_xmit_timers(sk);
515 }
516 
517 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
518 extern unsigned int tcp_current_mss(struct sock *sk);
519 
520 /* Bound MSS / TSO packet size with the half of the window */
521 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
522 {
523 	int cutoff;
524 
525 	/* When peer uses tiny windows, there is no use in packetizing
526 	 * to sub-MSS pieces for the sake of SWS or making sure there
527 	 * are enough packets in the pipe for fast recovery.
528 	 *
529 	 * On the other hand, for extremely large MSS devices, handling
530 	 * smaller than MSS windows in this way does make sense.
531 	 */
532 	if (tp->max_window >= 512)
533 		cutoff = (tp->max_window >> 1);
534 	else
535 		cutoff = tp->max_window;
536 
537 	if (cutoff && pktsize > cutoff)
538 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
539 	else
540 		return pktsize;
541 }
542 
543 /* tcp.c */
544 extern void tcp_get_info(const struct sock *, struct tcp_info *);
545 
546 /* Read 'sendfile()'-style from a TCP socket */
547 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
548 				unsigned int, size_t);
549 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
550 			 sk_read_actor_t recv_actor);
551 
552 extern void tcp_initialize_rcv_mss(struct sock *sk);
553 
554 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
555 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
556 extern void tcp_mtup_init(struct sock *sk);
557 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
558 
559 static inline void tcp_bound_rto(const struct sock *sk)
560 {
561 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
562 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
563 }
564 
565 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
566 {
567 	return (tp->srtt >> 3) + tp->rttvar;
568 }
569 
570 extern void tcp_set_rto(struct sock *sk);
571 
572 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
573 {
574 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
575 			       ntohl(TCP_FLAG_ACK) |
576 			       snd_wnd);
577 }
578 
579 static inline void tcp_fast_path_on(struct tcp_sock *tp)
580 {
581 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
582 }
583 
584 static inline void tcp_fast_path_check(struct sock *sk)
585 {
586 	struct tcp_sock *tp = tcp_sk(sk);
587 
588 	if (skb_queue_empty(&tp->out_of_order_queue) &&
589 	    tp->rcv_wnd &&
590 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
591 	    !tp->urg_data)
592 		tcp_fast_path_on(tp);
593 }
594 
595 /* Compute the actual rto_min value */
596 static inline u32 tcp_rto_min(struct sock *sk)
597 {
598 	const struct dst_entry *dst = __sk_dst_get(sk);
599 	u32 rto_min = TCP_RTO_MIN;
600 
601 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
602 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
603 	return rto_min;
604 }
605 
606 /* Compute the actual receive window we are currently advertising.
607  * Rcv_nxt can be after the window if our peer push more data
608  * than the offered window.
609  */
610 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
611 {
612 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
613 
614 	if (win < 0)
615 		win = 0;
616 	return (u32) win;
617 }
618 
619 /* Choose a new window, without checks for shrinking, and without
620  * scaling applied to the result.  The caller does these things
621  * if necessary.  This is a "raw" window selection.
622  */
623 extern u32 __tcp_select_window(struct sock *sk);
624 
625 void tcp_send_window_probe(struct sock *sk);
626 
627 /* TCP timestamps are only 32-bits, this causes a slight
628  * complication on 64-bit systems since we store a snapshot
629  * of jiffies in the buffer control blocks below.  We decided
630  * to use only the low 32-bits of jiffies and hide the ugly
631  * casts with the following macro.
632  */
633 #define tcp_time_stamp		((__u32)(jiffies))
634 
635 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
636 
637 #define TCPHDR_FIN 0x01
638 #define TCPHDR_SYN 0x02
639 #define TCPHDR_RST 0x04
640 #define TCPHDR_PSH 0x08
641 #define TCPHDR_ACK 0x10
642 #define TCPHDR_URG 0x20
643 #define TCPHDR_ECE 0x40
644 #define TCPHDR_CWR 0x80
645 
646 /* This is what the send packet queuing engine uses to pass
647  * TCP per-packet control information to the transmission code.
648  * We also store the host-order sequence numbers in here too.
649  * This is 44 bytes if IPV6 is enabled.
650  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
651  */
652 struct tcp_skb_cb {
653 	union {
654 		struct inet_skb_parm	h4;
655 #if IS_ENABLED(CONFIG_IPV6)
656 		struct inet6_skb_parm	h6;
657 #endif
658 	} header;	/* For incoming frames		*/
659 	__u32		seq;		/* Starting sequence number	*/
660 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
661 	__u32		when;		/* used to compute rtt's	*/
662 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
663 
664 	__u8		sacked;		/* State flags for SACK/FACK.	*/
665 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
666 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
667 #define TCPCB_LOST		0x04	/* SKB is lost			*/
668 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
669 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
670 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
671 
672 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
673 	/* 1 byte hole */
674 	__u32		ack_seq;	/* Sequence number ACK'd	*/
675 };
676 
677 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
678 
679 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
680  *
681  * If we receive a SYN packet with these bits set, it means a network is
682  * playing bad games with TOS bits. In order to avoid possible false congestion
683  * notifications, we disable TCP ECN negociation.
684  */
685 static inline void
686 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb)
687 {
688 	const struct tcphdr *th = tcp_hdr(skb);
689 
690 	if (sysctl_tcp_ecn && th->ece && th->cwr &&
691 	    INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
692 		inet_rsk(req)->ecn_ok = 1;
693 }
694 
695 /* Due to TSO, an SKB can be composed of multiple actual
696  * packets.  To keep these tracked properly, we use this.
697  */
698 static inline int tcp_skb_pcount(const struct sk_buff *skb)
699 {
700 	return skb_shinfo(skb)->gso_segs;
701 }
702 
703 /* This is valid iff tcp_skb_pcount() > 1. */
704 static inline int tcp_skb_mss(const struct sk_buff *skb)
705 {
706 	return skb_shinfo(skb)->gso_size;
707 }
708 
709 /* Events passed to congestion control interface */
710 enum tcp_ca_event {
711 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
712 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
713 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
714 	CA_EVENT_FRTO,		/* fast recovery timeout */
715 	CA_EVENT_LOSS,		/* loss timeout */
716 	CA_EVENT_FAST_ACK,	/* in sequence ack */
717 	CA_EVENT_SLOW_ACK,	/* other ack */
718 };
719 
720 /*
721  * Interface for adding new TCP congestion control handlers
722  */
723 #define TCP_CA_NAME_MAX	16
724 #define TCP_CA_MAX	128
725 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
726 
727 #define TCP_CONG_NON_RESTRICTED 0x1
728 #define TCP_CONG_RTT_STAMP	0x2
729 
730 struct tcp_congestion_ops {
731 	struct list_head	list;
732 	unsigned long flags;
733 
734 	/* initialize private data (optional) */
735 	void (*init)(struct sock *sk);
736 	/* cleanup private data  (optional) */
737 	void (*release)(struct sock *sk);
738 
739 	/* return slow start threshold (required) */
740 	u32 (*ssthresh)(struct sock *sk);
741 	/* lower bound for congestion window (optional) */
742 	u32 (*min_cwnd)(const struct sock *sk);
743 	/* do new cwnd calculation (required) */
744 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
745 	/* call before changing ca_state (optional) */
746 	void (*set_state)(struct sock *sk, u8 new_state);
747 	/* call when cwnd event occurs (optional) */
748 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
749 	/* new value of cwnd after loss (optional) */
750 	u32  (*undo_cwnd)(struct sock *sk);
751 	/* hook for packet ack accounting (optional) */
752 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
753 	/* get info for inet_diag (optional) */
754 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
755 
756 	char 		name[TCP_CA_NAME_MAX];
757 	struct module 	*owner;
758 };
759 
760 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
761 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
762 
763 extern void tcp_init_congestion_control(struct sock *sk);
764 extern void tcp_cleanup_congestion_control(struct sock *sk);
765 extern int tcp_set_default_congestion_control(const char *name);
766 extern void tcp_get_default_congestion_control(char *name);
767 extern void tcp_get_available_congestion_control(char *buf, size_t len);
768 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
769 extern int tcp_set_allowed_congestion_control(char *allowed);
770 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
771 extern void tcp_slow_start(struct tcp_sock *tp);
772 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
773 
774 extern struct tcp_congestion_ops tcp_init_congestion_ops;
775 extern u32 tcp_reno_ssthresh(struct sock *sk);
776 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
777 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
778 extern struct tcp_congestion_ops tcp_reno;
779 
780 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
781 {
782 	struct inet_connection_sock *icsk = inet_csk(sk);
783 
784 	if (icsk->icsk_ca_ops->set_state)
785 		icsk->icsk_ca_ops->set_state(sk, ca_state);
786 	icsk->icsk_ca_state = ca_state;
787 }
788 
789 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
790 {
791 	const struct inet_connection_sock *icsk = inet_csk(sk);
792 
793 	if (icsk->icsk_ca_ops->cwnd_event)
794 		icsk->icsk_ca_ops->cwnd_event(sk, event);
795 }
796 
797 /* These functions determine how the current flow behaves in respect of SACK
798  * handling. SACK is negotiated with the peer, and therefore it can vary
799  * between different flows.
800  *
801  * tcp_is_sack - SACK enabled
802  * tcp_is_reno - No SACK
803  * tcp_is_fack - FACK enabled, implies SACK enabled
804  */
805 static inline int tcp_is_sack(const struct tcp_sock *tp)
806 {
807 	return tp->rx_opt.sack_ok;
808 }
809 
810 static inline bool tcp_is_reno(const struct tcp_sock *tp)
811 {
812 	return !tcp_is_sack(tp);
813 }
814 
815 static inline bool tcp_is_fack(const struct tcp_sock *tp)
816 {
817 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
818 }
819 
820 static inline void tcp_enable_fack(struct tcp_sock *tp)
821 {
822 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
823 }
824 
825 /* TCP early-retransmit (ER) is similar to but more conservative than
826  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
827  */
828 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
829 {
830 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
831 		!sysctl_tcp_thin_dupack && sysctl_tcp_reordering == 3;
832 	tp->early_retrans_delayed = 0;
833 }
834 
835 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
836 {
837 	tp->do_early_retrans = 0;
838 }
839 
840 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
841 {
842 	return tp->sacked_out + tp->lost_out;
843 }
844 
845 /* This determines how many packets are "in the network" to the best
846  * of our knowledge.  In many cases it is conservative, but where
847  * detailed information is available from the receiver (via SACK
848  * blocks etc.) we can make more aggressive calculations.
849  *
850  * Use this for decisions involving congestion control, use just
851  * tp->packets_out to determine if the send queue is empty or not.
852  *
853  * Read this equation as:
854  *
855  *	"Packets sent once on transmission queue" MINUS
856  *	"Packets left network, but not honestly ACKed yet" PLUS
857  *	"Packets fast retransmitted"
858  */
859 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
860 {
861 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
862 }
863 
864 #define TCP_INFINITE_SSTHRESH	0x7fffffff
865 
866 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
867 {
868 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
869 }
870 
871 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
872  * The exception is rate halving phase, when cwnd is decreasing towards
873  * ssthresh.
874  */
875 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
876 {
877 	const struct tcp_sock *tp = tcp_sk(sk);
878 
879 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
880 		return tp->snd_ssthresh;
881 	else
882 		return max(tp->snd_ssthresh,
883 			   ((tp->snd_cwnd >> 1) +
884 			    (tp->snd_cwnd >> 2)));
885 }
886 
887 /* Use define here intentionally to get WARN_ON location shown at the caller */
888 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
889 
890 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
891 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
892 
893 /* The maximum number of MSS of available cwnd for which TSO defers
894  * sending if not using sysctl_tcp_tso_win_divisor.
895  */
896 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
897 {
898 	return 3;
899 }
900 
901 /* Slow start with delack produces 3 packets of burst, so that
902  * it is safe "de facto".  This will be the default - same as
903  * the default reordering threshold - but if reordering increases,
904  * we must be able to allow cwnd to burst at least this much in order
905  * to not pull it back when holes are filled.
906  */
907 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
908 {
909 	return tp->reordering;
910 }
911 
912 /* Returns end sequence number of the receiver's advertised window */
913 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
914 {
915 	return tp->snd_una + tp->snd_wnd;
916 }
917 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
918 
919 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
920 				       const struct sk_buff *skb)
921 {
922 	if (skb->len < mss)
923 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
924 }
925 
926 static inline void tcp_check_probe_timer(struct sock *sk)
927 {
928 	const struct tcp_sock *tp = tcp_sk(sk);
929 	const struct inet_connection_sock *icsk = inet_csk(sk);
930 
931 	if (!tp->packets_out && !icsk->icsk_pending)
932 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
933 					  icsk->icsk_rto, TCP_RTO_MAX);
934 }
935 
936 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
937 {
938 	tp->snd_wl1 = seq;
939 }
940 
941 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
942 {
943 	tp->snd_wl1 = seq;
944 }
945 
946 /*
947  * Calculate(/check) TCP checksum
948  */
949 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
950 				   __be32 daddr, __wsum base)
951 {
952 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
953 }
954 
955 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
956 {
957 	return __skb_checksum_complete(skb);
958 }
959 
960 static inline bool tcp_checksum_complete(struct sk_buff *skb)
961 {
962 	return !skb_csum_unnecessary(skb) &&
963 		__tcp_checksum_complete(skb);
964 }
965 
966 /* Prequeue for VJ style copy to user, combined with checksumming. */
967 
968 static inline void tcp_prequeue_init(struct tcp_sock *tp)
969 {
970 	tp->ucopy.task = NULL;
971 	tp->ucopy.len = 0;
972 	tp->ucopy.memory = 0;
973 	skb_queue_head_init(&tp->ucopy.prequeue);
974 #ifdef CONFIG_NET_DMA
975 	tp->ucopy.dma_chan = NULL;
976 	tp->ucopy.wakeup = 0;
977 	tp->ucopy.pinned_list = NULL;
978 	tp->ucopy.dma_cookie = 0;
979 #endif
980 }
981 
982 /* Packet is added to VJ-style prequeue for processing in process
983  * context, if a reader task is waiting. Apparently, this exciting
984  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
985  * failed somewhere. Latency? Burstiness? Well, at least now we will
986  * see, why it failed. 8)8)				  --ANK
987  *
988  * NOTE: is this not too big to inline?
989  */
990 static inline bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
991 {
992 	struct tcp_sock *tp = tcp_sk(sk);
993 
994 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
995 		return false;
996 
997 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
998 	tp->ucopy.memory += skb->truesize;
999 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1000 		struct sk_buff *skb1;
1001 
1002 		BUG_ON(sock_owned_by_user(sk));
1003 
1004 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1005 			sk_backlog_rcv(sk, skb1);
1006 			NET_INC_STATS_BH(sock_net(sk),
1007 					 LINUX_MIB_TCPPREQUEUEDROPPED);
1008 		}
1009 
1010 		tp->ucopy.memory = 0;
1011 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1012 		wake_up_interruptible_sync_poll(sk_sleep(sk),
1013 					   POLLIN | POLLRDNORM | POLLRDBAND);
1014 		if (!inet_csk_ack_scheduled(sk))
1015 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1016 						  (3 * tcp_rto_min(sk)) / 4,
1017 						  TCP_RTO_MAX);
1018 	}
1019 	return true;
1020 }
1021 
1022 
1023 #undef STATE_TRACE
1024 
1025 #ifdef STATE_TRACE
1026 static const char *statename[]={
1027 	"Unused","Established","Syn Sent","Syn Recv",
1028 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1029 	"Close Wait","Last ACK","Listen","Closing"
1030 };
1031 #endif
1032 extern void tcp_set_state(struct sock *sk, int state);
1033 
1034 extern void tcp_done(struct sock *sk);
1035 
1036 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1037 {
1038 	rx_opt->dsack = 0;
1039 	rx_opt->num_sacks = 0;
1040 }
1041 
1042 /* Determine a window scaling and initial window to offer. */
1043 extern void tcp_select_initial_window(int __space, __u32 mss,
1044 				      __u32 *rcv_wnd, __u32 *window_clamp,
1045 				      int wscale_ok, __u8 *rcv_wscale,
1046 				      __u32 init_rcv_wnd);
1047 
1048 static inline int tcp_win_from_space(int space)
1049 {
1050 	return sysctl_tcp_adv_win_scale<=0 ?
1051 		(space>>(-sysctl_tcp_adv_win_scale)) :
1052 		space - (space>>sysctl_tcp_adv_win_scale);
1053 }
1054 
1055 /* Note: caller must be prepared to deal with negative returns */
1056 static inline int tcp_space(const struct sock *sk)
1057 {
1058 	return tcp_win_from_space(sk->sk_rcvbuf -
1059 				  atomic_read(&sk->sk_rmem_alloc));
1060 }
1061 
1062 static inline int tcp_full_space(const struct sock *sk)
1063 {
1064 	return tcp_win_from_space(sk->sk_rcvbuf);
1065 }
1066 
1067 static inline void tcp_openreq_init(struct request_sock *req,
1068 				    struct tcp_options_received *rx_opt,
1069 				    struct sk_buff *skb)
1070 {
1071 	struct inet_request_sock *ireq = inet_rsk(req);
1072 
1073 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1074 	req->cookie_ts = 0;
1075 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1076 	req->mss = rx_opt->mss_clamp;
1077 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1078 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1079 	ireq->sack_ok = rx_opt->sack_ok;
1080 	ireq->snd_wscale = rx_opt->snd_wscale;
1081 	ireq->wscale_ok = rx_opt->wscale_ok;
1082 	ireq->acked = 0;
1083 	ireq->ecn_ok = 0;
1084 	ireq->rmt_port = tcp_hdr(skb)->source;
1085 	ireq->loc_port = tcp_hdr(skb)->dest;
1086 }
1087 
1088 extern void tcp_enter_memory_pressure(struct sock *sk);
1089 
1090 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1091 {
1092 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1093 }
1094 
1095 static inline int keepalive_time_when(const struct tcp_sock *tp)
1096 {
1097 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1098 }
1099 
1100 static inline int keepalive_probes(const struct tcp_sock *tp)
1101 {
1102 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1103 }
1104 
1105 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1106 {
1107 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1108 
1109 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1110 			  tcp_time_stamp - tp->rcv_tstamp);
1111 }
1112 
1113 static inline int tcp_fin_time(const struct sock *sk)
1114 {
1115 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1116 	const int rto = inet_csk(sk)->icsk_rto;
1117 
1118 	if (fin_timeout < (rto << 2) - (rto >> 1))
1119 		fin_timeout = (rto << 2) - (rto >> 1);
1120 
1121 	return fin_timeout;
1122 }
1123 
1124 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1125 				  int paws_win)
1126 {
1127 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1128 		return true;
1129 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1130 		return true;
1131 	/*
1132 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1133 	 * then following tcp messages have valid values. Ignore 0 value,
1134 	 * or else 'negative' tsval might forbid us to accept their packets.
1135 	 */
1136 	if (!rx_opt->ts_recent)
1137 		return true;
1138 	return false;
1139 }
1140 
1141 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1142 				   int rst)
1143 {
1144 	if (tcp_paws_check(rx_opt, 0))
1145 		return false;
1146 
1147 	/* RST segments are not recommended to carry timestamp,
1148 	   and, if they do, it is recommended to ignore PAWS because
1149 	   "their cleanup function should take precedence over timestamps."
1150 	   Certainly, it is mistake. It is necessary to understand the reasons
1151 	   of this constraint to relax it: if peer reboots, clock may go
1152 	   out-of-sync and half-open connections will not be reset.
1153 	   Actually, the problem would be not existing if all
1154 	   the implementations followed draft about maintaining clock
1155 	   via reboots. Linux-2.2 DOES NOT!
1156 
1157 	   However, we can relax time bounds for RST segments to MSL.
1158 	 */
1159 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1160 		return false;
1161 	return true;
1162 }
1163 
1164 static inline void tcp_mib_init(struct net *net)
1165 {
1166 	/* See RFC 2012 */
1167 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1168 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1169 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1170 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1171 }
1172 
1173 /* from STCP */
1174 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1175 {
1176 	tp->lost_skb_hint = NULL;
1177 	tp->scoreboard_skb_hint = NULL;
1178 }
1179 
1180 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1181 {
1182 	tcp_clear_retrans_hints_partial(tp);
1183 	tp->retransmit_skb_hint = NULL;
1184 }
1185 
1186 /* MD5 Signature */
1187 struct crypto_hash;
1188 
1189 union tcp_md5_addr {
1190 	struct in_addr  a4;
1191 #if IS_ENABLED(CONFIG_IPV6)
1192 	struct in6_addr	a6;
1193 #endif
1194 };
1195 
1196 /* - key database */
1197 struct tcp_md5sig_key {
1198 	struct hlist_node	node;
1199 	u8			keylen;
1200 	u8			family; /* AF_INET or AF_INET6 */
1201 	union tcp_md5_addr	addr;
1202 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1203 	struct rcu_head		rcu;
1204 };
1205 
1206 /* - sock block */
1207 struct tcp_md5sig_info {
1208 	struct hlist_head	head;
1209 	struct rcu_head		rcu;
1210 };
1211 
1212 /* - pseudo header */
1213 struct tcp4_pseudohdr {
1214 	__be32		saddr;
1215 	__be32		daddr;
1216 	__u8		pad;
1217 	__u8		protocol;
1218 	__be16		len;
1219 };
1220 
1221 struct tcp6_pseudohdr {
1222 	struct in6_addr	saddr;
1223 	struct in6_addr daddr;
1224 	__be32		len;
1225 	__be32		protocol;	/* including padding */
1226 };
1227 
1228 union tcp_md5sum_block {
1229 	struct tcp4_pseudohdr ip4;
1230 #if IS_ENABLED(CONFIG_IPV6)
1231 	struct tcp6_pseudohdr ip6;
1232 #endif
1233 };
1234 
1235 /* - pool: digest algorithm, hash description and scratch buffer */
1236 struct tcp_md5sig_pool {
1237 	struct hash_desc	md5_desc;
1238 	union tcp_md5sum_block	md5_blk;
1239 };
1240 
1241 /* - functions */
1242 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1243 			       const struct sock *sk,
1244 			       const struct request_sock *req,
1245 			       const struct sk_buff *skb);
1246 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1247 			  int family, const u8 *newkey,
1248 			  u8 newkeylen, gfp_t gfp);
1249 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1250 			  int family);
1251 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1252 					 struct sock *addr_sk);
1253 
1254 #ifdef CONFIG_TCP_MD5SIG
1255 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1256 			const union tcp_md5_addr *addr, int family);
1257 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1258 #else
1259 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1260 					 const union tcp_md5_addr *addr,
1261 					 int family)
1262 {
1263 	return NULL;
1264 }
1265 #define tcp_twsk_md5_key(twsk)	NULL
1266 #endif
1267 
1268 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1269 extern void tcp_free_md5sig_pool(void);
1270 
1271 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1272 extern void tcp_put_md5sig_pool(void);
1273 
1274 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1275 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1276 				 unsigned int header_len);
1277 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1278 			    const struct tcp_md5sig_key *key);
1279 
1280 /* write queue abstraction */
1281 static inline void tcp_write_queue_purge(struct sock *sk)
1282 {
1283 	struct sk_buff *skb;
1284 
1285 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1286 		sk_wmem_free_skb(sk, skb);
1287 	sk_mem_reclaim(sk);
1288 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1289 }
1290 
1291 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1292 {
1293 	return skb_peek(&sk->sk_write_queue);
1294 }
1295 
1296 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1297 {
1298 	return skb_peek_tail(&sk->sk_write_queue);
1299 }
1300 
1301 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1302 						   const struct sk_buff *skb)
1303 {
1304 	return skb_queue_next(&sk->sk_write_queue, skb);
1305 }
1306 
1307 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1308 						   const struct sk_buff *skb)
1309 {
1310 	return skb_queue_prev(&sk->sk_write_queue, skb);
1311 }
1312 
1313 #define tcp_for_write_queue(skb, sk)					\
1314 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1315 
1316 #define tcp_for_write_queue_from(skb, sk)				\
1317 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1318 
1319 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1320 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1321 
1322 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1323 {
1324 	return sk->sk_send_head;
1325 }
1326 
1327 static inline bool tcp_skb_is_last(const struct sock *sk,
1328 				   const struct sk_buff *skb)
1329 {
1330 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1331 }
1332 
1333 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1334 {
1335 	if (tcp_skb_is_last(sk, skb))
1336 		sk->sk_send_head = NULL;
1337 	else
1338 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1339 }
1340 
1341 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1342 {
1343 	if (sk->sk_send_head == skb_unlinked)
1344 		sk->sk_send_head = NULL;
1345 }
1346 
1347 static inline void tcp_init_send_head(struct sock *sk)
1348 {
1349 	sk->sk_send_head = NULL;
1350 }
1351 
1352 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1353 {
1354 	__skb_queue_tail(&sk->sk_write_queue, skb);
1355 }
1356 
1357 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1358 {
1359 	__tcp_add_write_queue_tail(sk, skb);
1360 
1361 	/* Queue it, remembering where we must start sending. */
1362 	if (sk->sk_send_head == NULL) {
1363 		sk->sk_send_head = skb;
1364 
1365 		if (tcp_sk(sk)->highest_sack == NULL)
1366 			tcp_sk(sk)->highest_sack = skb;
1367 	}
1368 }
1369 
1370 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1371 {
1372 	__skb_queue_head(&sk->sk_write_queue, skb);
1373 }
1374 
1375 /* Insert buff after skb on the write queue of sk.  */
1376 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1377 						struct sk_buff *buff,
1378 						struct sock *sk)
1379 {
1380 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1381 }
1382 
1383 /* Insert new before skb on the write queue of sk.  */
1384 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1385 						  struct sk_buff *skb,
1386 						  struct sock *sk)
1387 {
1388 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1389 
1390 	if (sk->sk_send_head == skb)
1391 		sk->sk_send_head = new;
1392 }
1393 
1394 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1395 {
1396 	__skb_unlink(skb, &sk->sk_write_queue);
1397 }
1398 
1399 static inline bool tcp_write_queue_empty(struct sock *sk)
1400 {
1401 	return skb_queue_empty(&sk->sk_write_queue);
1402 }
1403 
1404 static inline void tcp_push_pending_frames(struct sock *sk)
1405 {
1406 	if (tcp_send_head(sk)) {
1407 		struct tcp_sock *tp = tcp_sk(sk);
1408 
1409 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1410 	}
1411 }
1412 
1413 /* Start sequence of the skb just after the highest skb with SACKed
1414  * bit, valid only if sacked_out > 0 or when the caller has ensured
1415  * validity by itself.
1416  */
1417 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1418 {
1419 	if (!tp->sacked_out)
1420 		return tp->snd_una;
1421 
1422 	if (tp->highest_sack == NULL)
1423 		return tp->snd_nxt;
1424 
1425 	return TCP_SKB_CB(tp->highest_sack)->seq;
1426 }
1427 
1428 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1429 {
1430 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1431 						tcp_write_queue_next(sk, skb);
1432 }
1433 
1434 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1435 {
1436 	return tcp_sk(sk)->highest_sack;
1437 }
1438 
1439 static inline void tcp_highest_sack_reset(struct sock *sk)
1440 {
1441 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1442 }
1443 
1444 /* Called when old skb is about to be deleted (to be combined with new skb) */
1445 static inline void tcp_highest_sack_combine(struct sock *sk,
1446 					    struct sk_buff *old,
1447 					    struct sk_buff *new)
1448 {
1449 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1450 		tcp_sk(sk)->highest_sack = new;
1451 }
1452 
1453 /* Determines whether this is a thin stream (which may suffer from
1454  * increased latency). Used to trigger latency-reducing mechanisms.
1455  */
1456 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1457 {
1458 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1459 }
1460 
1461 /* /proc */
1462 enum tcp_seq_states {
1463 	TCP_SEQ_STATE_LISTENING,
1464 	TCP_SEQ_STATE_OPENREQ,
1465 	TCP_SEQ_STATE_ESTABLISHED,
1466 	TCP_SEQ_STATE_TIME_WAIT,
1467 };
1468 
1469 int tcp_seq_open(struct inode *inode, struct file *file);
1470 
1471 struct tcp_seq_afinfo {
1472 	char				*name;
1473 	sa_family_t			family;
1474 	const struct file_operations	*seq_fops;
1475 	struct seq_operations		seq_ops;
1476 };
1477 
1478 struct tcp_iter_state {
1479 	struct seq_net_private	p;
1480 	sa_family_t		family;
1481 	enum tcp_seq_states	state;
1482 	struct sock		*syn_wait_sk;
1483 	int			bucket, offset, sbucket, num, uid;
1484 	loff_t			last_pos;
1485 };
1486 
1487 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1488 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1489 
1490 extern struct request_sock_ops tcp_request_sock_ops;
1491 extern struct request_sock_ops tcp6_request_sock_ops;
1492 
1493 extern void tcp_v4_destroy_sock(struct sock *sk);
1494 
1495 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1496 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1497 				       netdev_features_t features);
1498 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1499 					struct sk_buff *skb);
1500 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1501 					 struct sk_buff *skb);
1502 extern int tcp_gro_complete(struct sk_buff *skb);
1503 extern int tcp4_gro_complete(struct sk_buff *skb);
1504 
1505 #ifdef CONFIG_PROC_FS
1506 extern int tcp4_proc_init(void);
1507 extern void tcp4_proc_exit(void);
1508 #endif
1509 
1510 /* TCP af-specific functions */
1511 struct tcp_sock_af_ops {
1512 #ifdef CONFIG_TCP_MD5SIG
1513 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1514 						struct sock *addr_sk);
1515 	int			(*calc_md5_hash) (char *location,
1516 						  struct tcp_md5sig_key *md5,
1517 						  const struct sock *sk,
1518 						  const struct request_sock *req,
1519 						  const struct sk_buff *skb);
1520 	int			(*md5_parse) (struct sock *sk,
1521 					      char __user *optval,
1522 					      int optlen);
1523 #endif
1524 };
1525 
1526 struct tcp_request_sock_ops {
1527 #ifdef CONFIG_TCP_MD5SIG
1528 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1529 						struct request_sock *req);
1530 	int			(*calc_md5_hash) (char *location,
1531 						  struct tcp_md5sig_key *md5,
1532 						  const struct sock *sk,
1533 						  const struct request_sock *req,
1534 						  const struct sk_buff *skb);
1535 #endif
1536 };
1537 
1538 /* Using SHA1 for now, define some constants.
1539  */
1540 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1541 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1542 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1543 
1544 extern int tcp_cookie_generator(u32 *bakery);
1545 
1546 /**
1547  *	struct tcp_cookie_values - each socket needs extra space for the
1548  *	cookies, together with (optional) space for any SYN data.
1549  *
1550  *	A tcp_sock contains a pointer to the current value, and this is
1551  *	cloned to the tcp_timewait_sock.
1552  *
1553  * @cookie_pair:	variable data from the option exchange.
1554  *
1555  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1556  *			indicates default (sysctl_tcp_cookie_size).
1557  *			After cookie sent, remembers size of cookie.
1558  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1559  *
1560  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1561  *			constant payload is specified (@s_data_constant),
1562  *			holds its length instead.
1563  *			Range 0 to TCP_MSS_DESIRED.
1564  *
1565  * @s_data_payload:	constant data that is to be included in the
1566  *			payload of SYN or SYNACK segments when the
1567  *			cookie option is present.
1568  */
1569 struct tcp_cookie_values {
1570 	struct kref	kref;
1571 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1572 	u8		cookie_pair_size;
1573 	u8		cookie_desired;
1574 	u16		s_data_desired:11,
1575 			s_data_constant:1,
1576 			s_data_in:1,
1577 			s_data_out:1,
1578 			s_data_unused:2;
1579 	u8		s_data_payload[0];
1580 };
1581 
1582 static inline void tcp_cookie_values_release(struct kref *kref)
1583 {
1584 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1585 }
1586 
1587 /* The length of constant payload data.  Note that s_data_desired is
1588  * overloaded, depending on s_data_constant: either the length of constant
1589  * data (returned here) or the limit on variable data.
1590  */
1591 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1592 {
1593 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1594 		? tp->cookie_values->s_data_desired
1595 		: 0;
1596 }
1597 
1598 /**
1599  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1600  *
1601  *	As tcp_request_sock has already been extended in other places, the
1602  *	only remaining method is to pass stack values along as function
1603  *	parameters.  These parameters are not needed after sending SYNACK.
1604  *
1605  * @cookie_bakery:	cryptographic secret and message workspace.
1606  *
1607  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1608  *			struct tcp_options_received (above).
1609  */
1610 struct tcp_extend_values {
1611 	struct request_values		rv;
1612 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1613 	u8				cookie_plus:6,
1614 					cookie_out_never:1,
1615 					cookie_in_always:1;
1616 };
1617 
1618 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1619 {
1620 	return (struct tcp_extend_values *)rvp;
1621 }
1622 
1623 extern void tcp_v4_init(void);
1624 extern void tcp_init(void);
1625 
1626 #endif	/* _TCP_H */
1627