1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/list.h> 44 #include <linux/timer.h> 45 #include <linux/cache.h> 46 #include <linux/module.h> 47 #include <linux/lockdep.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/mm.h> 51 #include <linux/security.h> 52 53 #include <linux/filter.h> 54 55 #include <asm/atomic.h> 56 #include <net/dst.h> 57 #include <net/checksum.h> 58 59 /* 60 * This structure really needs to be cleaned up. 61 * Most of it is for TCP, and not used by any of 62 * the other protocols. 63 */ 64 65 /* Define this to get the SOCK_DBG debugging facility. */ 66 #define SOCK_DEBUGGING 67 #ifdef SOCK_DEBUGGING 68 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 69 printk(KERN_DEBUG msg); } while (0) 70 #else 71 #define SOCK_DEBUG(sk, msg...) do { } while (0) 72 #endif 73 74 /* This is the per-socket lock. The spinlock provides a synchronization 75 * between user contexts and software interrupt processing, whereas the 76 * mini-semaphore synchronizes multiple users amongst themselves. 77 */ 78 struct sock_iocb; 79 typedef struct { 80 spinlock_t slock; 81 struct sock_iocb *owner; 82 wait_queue_head_t wq; 83 /* 84 * We express the mutex-alike socket_lock semantics 85 * to the lock validator by explicitly managing 86 * the slock as a lock variant (in addition to 87 * the slock itself): 88 */ 89 #ifdef CONFIG_DEBUG_LOCK_ALLOC 90 struct lockdep_map dep_map; 91 #endif 92 } socket_lock_t; 93 94 struct sock; 95 struct proto; 96 97 /** 98 * struct sock_common - minimal network layer representation of sockets 99 * @skc_family: network address family 100 * @skc_state: Connection state 101 * @skc_reuse: %SO_REUSEADDR setting 102 * @skc_bound_dev_if: bound device index if != 0 103 * @skc_node: main hash linkage for various protocol lookup tables 104 * @skc_bind_node: bind hash linkage for various protocol lookup tables 105 * @skc_refcnt: reference count 106 * @skc_hash: hash value used with various protocol lookup tables 107 * @skc_prot: protocol handlers inside a network family 108 * 109 * This is the minimal network layer representation of sockets, the header 110 * for struct sock and struct inet_timewait_sock. 111 */ 112 struct sock_common { 113 unsigned short skc_family; 114 volatile unsigned char skc_state; 115 unsigned char skc_reuse; 116 int skc_bound_dev_if; 117 struct hlist_node skc_node; 118 struct hlist_node skc_bind_node; 119 atomic_t skc_refcnt; 120 unsigned int skc_hash; 121 struct proto *skc_prot; 122 }; 123 124 /** 125 * struct sock - network layer representation of sockets 126 * @__sk_common: shared layout with inet_timewait_sock 127 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 128 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 129 * @sk_lock: synchronizer 130 * @sk_rcvbuf: size of receive buffer in bytes 131 * @sk_sleep: sock wait queue 132 * @sk_dst_cache: destination cache 133 * @sk_dst_lock: destination cache lock 134 * @sk_policy: flow policy 135 * @sk_rmem_alloc: receive queue bytes committed 136 * @sk_receive_queue: incoming packets 137 * @sk_wmem_alloc: transmit queue bytes committed 138 * @sk_write_queue: Packet sending queue 139 * @sk_async_wait_queue: DMA copied packets 140 * @sk_omem_alloc: "o" is "option" or "other" 141 * @sk_wmem_queued: persistent queue size 142 * @sk_forward_alloc: space allocated forward 143 * @sk_allocation: allocation mode 144 * @sk_sndbuf: size of send buffer in bytes 145 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 146 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 147 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 148 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 149 * @sk_lingertime: %SO_LINGER l_linger setting 150 * @sk_backlog: always used with the per-socket spinlock held 151 * @sk_callback_lock: used with the callbacks in the end of this struct 152 * @sk_error_queue: rarely used 153 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 154 * @sk_err: last error 155 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 156 * @sk_ack_backlog: current listen backlog 157 * @sk_max_ack_backlog: listen backlog set in listen() 158 * @sk_priority: %SO_PRIORITY setting 159 * @sk_type: socket type (%SOCK_STREAM, etc) 160 * @sk_protocol: which protocol this socket belongs in this network family 161 * @sk_peercred: %SO_PEERCRED setting 162 * @sk_rcvlowat: %SO_RCVLOWAT setting 163 * @sk_rcvtimeo: %SO_RCVTIMEO setting 164 * @sk_sndtimeo: %SO_SNDTIMEO setting 165 * @sk_filter: socket filtering instructions 166 * @sk_protinfo: private area, net family specific, when not using slab 167 * @sk_timer: sock cleanup timer 168 * @sk_stamp: time stamp of last packet received 169 * @sk_socket: Identd and reporting IO signals 170 * @sk_user_data: RPC layer private data 171 * @sk_sndmsg_page: cached page for sendmsg 172 * @sk_sndmsg_off: cached offset for sendmsg 173 * @sk_send_head: front of stuff to transmit 174 * @sk_security: used by security modules 175 * @sk_write_pending: a write to stream socket waits to start 176 * @sk_state_change: callback to indicate change in the state of the sock 177 * @sk_data_ready: callback to indicate there is data to be processed 178 * @sk_write_space: callback to indicate there is bf sending space available 179 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 180 * @sk_backlog_rcv: callback to process the backlog 181 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 182 */ 183 struct sock { 184 /* 185 * Now struct inet_timewait_sock also uses sock_common, so please just 186 * don't add nothing before this first member (__sk_common) --acme 187 */ 188 struct sock_common __sk_common; 189 #define sk_family __sk_common.skc_family 190 #define sk_state __sk_common.skc_state 191 #define sk_reuse __sk_common.skc_reuse 192 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 193 #define sk_node __sk_common.skc_node 194 #define sk_bind_node __sk_common.skc_bind_node 195 #define sk_refcnt __sk_common.skc_refcnt 196 #define sk_hash __sk_common.skc_hash 197 #define sk_prot __sk_common.skc_prot 198 unsigned char sk_shutdown : 2, 199 sk_no_check : 2, 200 sk_userlocks : 4; 201 unsigned char sk_protocol; 202 unsigned short sk_type; 203 int sk_rcvbuf; 204 socket_lock_t sk_lock; 205 /* 206 * The backlog queue is special, it is always used with 207 * the per-socket spinlock held and requires low latency 208 * access. Therefore we special case it's implementation. 209 */ 210 struct { 211 struct sk_buff *head; 212 struct sk_buff *tail; 213 } sk_backlog; 214 wait_queue_head_t *sk_sleep; 215 struct dst_entry *sk_dst_cache; 216 struct xfrm_policy *sk_policy[2]; 217 rwlock_t sk_dst_lock; 218 atomic_t sk_rmem_alloc; 219 atomic_t sk_wmem_alloc; 220 atomic_t sk_omem_alloc; 221 struct sk_buff_head sk_receive_queue; 222 struct sk_buff_head sk_write_queue; 223 struct sk_buff_head sk_async_wait_queue; 224 int sk_wmem_queued; 225 int sk_forward_alloc; 226 gfp_t sk_allocation; 227 int sk_sndbuf; 228 int sk_route_caps; 229 int sk_gso_type; 230 int sk_rcvlowat; 231 unsigned long sk_flags; 232 unsigned long sk_lingertime; 233 struct sk_buff_head sk_error_queue; 234 struct proto *sk_prot_creator; 235 rwlock_t sk_callback_lock; 236 int sk_err, 237 sk_err_soft; 238 unsigned short sk_ack_backlog; 239 unsigned short sk_max_ack_backlog; 240 __u32 sk_priority; 241 struct ucred sk_peercred; 242 long sk_rcvtimeo; 243 long sk_sndtimeo; 244 struct sk_filter *sk_filter; 245 void *sk_protinfo; 246 struct timer_list sk_timer; 247 ktime_t sk_stamp; 248 struct socket *sk_socket; 249 void *sk_user_data; 250 struct page *sk_sndmsg_page; 251 struct sk_buff *sk_send_head; 252 __u32 sk_sndmsg_off; 253 int sk_write_pending; 254 void *sk_security; 255 void (*sk_state_change)(struct sock *sk); 256 void (*sk_data_ready)(struct sock *sk, int bytes); 257 void (*sk_write_space)(struct sock *sk); 258 void (*sk_error_report)(struct sock *sk); 259 int (*sk_backlog_rcv)(struct sock *sk, 260 struct sk_buff *skb); 261 void (*sk_destruct)(struct sock *sk); 262 }; 263 264 /* 265 * Hashed lists helper routines 266 */ 267 static inline struct sock *__sk_head(const struct hlist_head *head) 268 { 269 return hlist_entry(head->first, struct sock, sk_node); 270 } 271 272 static inline struct sock *sk_head(const struct hlist_head *head) 273 { 274 return hlist_empty(head) ? NULL : __sk_head(head); 275 } 276 277 static inline struct sock *sk_next(const struct sock *sk) 278 { 279 return sk->sk_node.next ? 280 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 281 } 282 283 static inline int sk_unhashed(const struct sock *sk) 284 { 285 return hlist_unhashed(&sk->sk_node); 286 } 287 288 static inline int sk_hashed(const struct sock *sk) 289 { 290 return !sk_unhashed(sk); 291 } 292 293 static __inline__ void sk_node_init(struct hlist_node *node) 294 { 295 node->pprev = NULL; 296 } 297 298 static __inline__ void __sk_del_node(struct sock *sk) 299 { 300 __hlist_del(&sk->sk_node); 301 } 302 303 static __inline__ int __sk_del_node_init(struct sock *sk) 304 { 305 if (sk_hashed(sk)) { 306 __sk_del_node(sk); 307 sk_node_init(&sk->sk_node); 308 return 1; 309 } 310 return 0; 311 } 312 313 /* Grab socket reference count. This operation is valid only 314 when sk is ALREADY grabbed f.e. it is found in hash table 315 or a list and the lookup is made under lock preventing hash table 316 modifications. 317 */ 318 319 static inline void sock_hold(struct sock *sk) 320 { 321 atomic_inc(&sk->sk_refcnt); 322 } 323 324 /* Ungrab socket in the context, which assumes that socket refcnt 325 cannot hit zero, f.e. it is true in context of any socketcall. 326 */ 327 static inline void __sock_put(struct sock *sk) 328 { 329 atomic_dec(&sk->sk_refcnt); 330 } 331 332 static __inline__ int sk_del_node_init(struct sock *sk) 333 { 334 int rc = __sk_del_node_init(sk); 335 336 if (rc) { 337 /* paranoid for a while -acme */ 338 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 339 __sock_put(sk); 340 } 341 return rc; 342 } 343 344 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 345 { 346 hlist_add_head(&sk->sk_node, list); 347 } 348 349 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 350 { 351 sock_hold(sk); 352 __sk_add_node(sk, list); 353 } 354 355 static __inline__ void __sk_del_bind_node(struct sock *sk) 356 { 357 __hlist_del(&sk->sk_bind_node); 358 } 359 360 static __inline__ void sk_add_bind_node(struct sock *sk, 361 struct hlist_head *list) 362 { 363 hlist_add_head(&sk->sk_bind_node, list); 364 } 365 366 #define sk_for_each(__sk, node, list) \ 367 hlist_for_each_entry(__sk, node, list, sk_node) 368 #define sk_for_each_from(__sk, node) \ 369 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 370 hlist_for_each_entry_from(__sk, node, sk_node) 371 #define sk_for_each_continue(__sk, node) \ 372 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 373 hlist_for_each_entry_continue(__sk, node, sk_node) 374 #define sk_for_each_safe(__sk, node, tmp, list) \ 375 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 376 #define sk_for_each_bound(__sk, node, list) \ 377 hlist_for_each_entry(__sk, node, list, sk_bind_node) 378 379 /* Sock flags */ 380 enum sock_flags { 381 SOCK_DEAD, 382 SOCK_DONE, 383 SOCK_URGINLINE, 384 SOCK_KEEPOPEN, 385 SOCK_LINGER, 386 SOCK_DESTROY, 387 SOCK_BROADCAST, 388 SOCK_TIMESTAMP, 389 SOCK_ZAPPED, 390 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 391 SOCK_DBG, /* %SO_DEBUG setting */ 392 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 393 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 394 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 395 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 396 }; 397 398 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 399 { 400 nsk->sk_flags = osk->sk_flags; 401 } 402 403 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 404 { 405 __set_bit(flag, &sk->sk_flags); 406 } 407 408 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 409 { 410 __clear_bit(flag, &sk->sk_flags); 411 } 412 413 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 414 { 415 return test_bit(flag, &sk->sk_flags); 416 } 417 418 static inline void sk_acceptq_removed(struct sock *sk) 419 { 420 sk->sk_ack_backlog--; 421 } 422 423 static inline void sk_acceptq_added(struct sock *sk) 424 { 425 sk->sk_ack_backlog++; 426 } 427 428 static inline int sk_acceptq_is_full(struct sock *sk) 429 { 430 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 431 } 432 433 /* 434 * Compute minimal free write space needed to queue new packets. 435 */ 436 static inline int sk_stream_min_wspace(struct sock *sk) 437 { 438 return sk->sk_wmem_queued / 2; 439 } 440 441 static inline int sk_stream_wspace(struct sock *sk) 442 { 443 return sk->sk_sndbuf - sk->sk_wmem_queued; 444 } 445 446 extern void sk_stream_write_space(struct sock *sk); 447 448 static inline int sk_stream_memory_free(struct sock *sk) 449 { 450 return sk->sk_wmem_queued < sk->sk_sndbuf; 451 } 452 453 extern void sk_stream_rfree(struct sk_buff *skb); 454 455 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 456 { 457 skb->sk = sk; 458 skb->destructor = sk_stream_rfree; 459 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 460 sk->sk_forward_alloc -= skb->truesize; 461 } 462 463 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 464 { 465 skb_truesize_check(skb); 466 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 467 sk->sk_wmem_queued -= skb->truesize; 468 sk->sk_forward_alloc += skb->truesize; 469 __kfree_skb(skb); 470 } 471 472 /* The per-socket spinlock must be held here. */ 473 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 474 { 475 if (!sk->sk_backlog.tail) { 476 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 477 } else { 478 sk->sk_backlog.tail->next = skb; 479 sk->sk_backlog.tail = skb; 480 } 481 skb->next = NULL; 482 } 483 484 #define sk_wait_event(__sk, __timeo, __condition) \ 485 ({ int rc; \ 486 release_sock(__sk); \ 487 rc = __condition; \ 488 if (!rc) { \ 489 *(__timeo) = schedule_timeout(*(__timeo)); \ 490 } \ 491 lock_sock(__sk); \ 492 rc = __condition; \ 493 rc; \ 494 }) 495 496 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 497 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 498 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 499 extern int sk_stream_error(struct sock *sk, int flags, int err); 500 extern void sk_stream_kill_queues(struct sock *sk); 501 502 extern int sk_wait_data(struct sock *sk, long *timeo); 503 504 struct request_sock_ops; 505 struct timewait_sock_ops; 506 507 /* Networking protocol blocks we attach to sockets. 508 * socket layer -> transport layer interface 509 * transport -> network interface is defined by struct inet_proto 510 */ 511 struct proto { 512 void (*close)(struct sock *sk, 513 long timeout); 514 int (*connect)(struct sock *sk, 515 struct sockaddr *uaddr, 516 int addr_len); 517 int (*disconnect)(struct sock *sk, int flags); 518 519 struct sock * (*accept) (struct sock *sk, int flags, int *err); 520 521 int (*ioctl)(struct sock *sk, int cmd, 522 unsigned long arg); 523 int (*init)(struct sock *sk); 524 int (*destroy)(struct sock *sk); 525 void (*shutdown)(struct sock *sk, int how); 526 int (*setsockopt)(struct sock *sk, int level, 527 int optname, char __user *optval, 528 int optlen); 529 int (*getsockopt)(struct sock *sk, int level, 530 int optname, char __user *optval, 531 int __user *option); 532 int (*compat_setsockopt)(struct sock *sk, 533 int level, 534 int optname, char __user *optval, 535 int optlen); 536 int (*compat_getsockopt)(struct sock *sk, 537 int level, 538 int optname, char __user *optval, 539 int __user *option); 540 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 541 struct msghdr *msg, size_t len); 542 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 543 struct msghdr *msg, 544 size_t len, int noblock, int flags, 545 int *addr_len); 546 int (*sendpage)(struct sock *sk, struct page *page, 547 int offset, size_t size, int flags); 548 int (*bind)(struct sock *sk, 549 struct sockaddr *uaddr, int addr_len); 550 551 int (*backlog_rcv) (struct sock *sk, 552 struct sk_buff *skb); 553 554 /* Keeping track of sk's, looking them up, and port selection methods. */ 555 void (*hash)(struct sock *sk); 556 void (*unhash)(struct sock *sk); 557 int (*get_port)(struct sock *sk, unsigned short snum); 558 559 /* Memory pressure */ 560 void (*enter_memory_pressure)(void); 561 atomic_t *memory_allocated; /* Current allocated memory. */ 562 atomic_t *sockets_allocated; /* Current number of sockets. */ 563 /* 564 * Pressure flag: try to collapse. 565 * Technical note: it is used by multiple contexts non atomically. 566 * All the sk_stream_mem_schedule() is of this nature: accounting 567 * is strict, actions are advisory and have some latency. 568 */ 569 int *memory_pressure; 570 int *sysctl_mem; 571 int *sysctl_wmem; 572 int *sysctl_rmem; 573 int max_header; 574 575 struct kmem_cache *slab; 576 unsigned int obj_size; 577 578 atomic_t *orphan_count; 579 580 struct request_sock_ops *rsk_prot; 581 struct timewait_sock_ops *twsk_prot; 582 583 struct module *owner; 584 585 char name[32]; 586 587 struct list_head node; 588 #ifdef SOCK_REFCNT_DEBUG 589 atomic_t socks; 590 #endif 591 struct { 592 int inuse; 593 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 594 } stats[NR_CPUS]; 595 }; 596 597 extern int proto_register(struct proto *prot, int alloc_slab); 598 extern void proto_unregister(struct proto *prot); 599 600 #ifdef SOCK_REFCNT_DEBUG 601 static inline void sk_refcnt_debug_inc(struct sock *sk) 602 { 603 atomic_inc(&sk->sk_prot->socks); 604 } 605 606 static inline void sk_refcnt_debug_dec(struct sock *sk) 607 { 608 atomic_dec(&sk->sk_prot->socks); 609 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 610 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 611 } 612 613 static inline void sk_refcnt_debug_release(const struct sock *sk) 614 { 615 if (atomic_read(&sk->sk_refcnt) != 1) 616 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 617 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 618 } 619 #else /* SOCK_REFCNT_DEBUG */ 620 #define sk_refcnt_debug_inc(sk) do { } while (0) 621 #define sk_refcnt_debug_dec(sk) do { } while (0) 622 #define sk_refcnt_debug_release(sk) do { } while (0) 623 #endif /* SOCK_REFCNT_DEBUG */ 624 625 /* Called with local bh disabled */ 626 static __inline__ void sock_prot_inc_use(struct proto *prot) 627 { 628 prot->stats[smp_processor_id()].inuse++; 629 } 630 631 static __inline__ void sock_prot_dec_use(struct proto *prot) 632 { 633 prot->stats[smp_processor_id()].inuse--; 634 } 635 636 /* With per-bucket locks this operation is not-atomic, so that 637 * this version is not worse. 638 */ 639 static inline void __sk_prot_rehash(struct sock *sk) 640 { 641 sk->sk_prot->unhash(sk); 642 sk->sk_prot->hash(sk); 643 } 644 645 /* About 10 seconds */ 646 #define SOCK_DESTROY_TIME (10*HZ) 647 648 /* Sockets 0-1023 can't be bound to unless you are superuser */ 649 #define PROT_SOCK 1024 650 651 #define SHUTDOWN_MASK 3 652 #define RCV_SHUTDOWN 1 653 #define SEND_SHUTDOWN 2 654 655 #define SOCK_SNDBUF_LOCK 1 656 #define SOCK_RCVBUF_LOCK 2 657 #define SOCK_BINDADDR_LOCK 4 658 #define SOCK_BINDPORT_LOCK 8 659 660 /* sock_iocb: used to kick off async processing of socket ios */ 661 struct sock_iocb { 662 struct list_head list; 663 664 int flags; 665 int size; 666 struct socket *sock; 667 struct sock *sk; 668 struct scm_cookie *scm; 669 struct msghdr *msg, async_msg; 670 struct kiocb *kiocb; 671 }; 672 673 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 674 { 675 return (struct sock_iocb *)iocb->private; 676 } 677 678 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 679 { 680 return si->kiocb; 681 } 682 683 struct socket_alloc { 684 struct socket socket; 685 struct inode vfs_inode; 686 }; 687 688 static inline struct socket *SOCKET_I(struct inode *inode) 689 { 690 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 691 } 692 693 static inline struct inode *SOCK_INODE(struct socket *socket) 694 { 695 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 696 } 697 698 extern void __sk_stream_mem_reclaim(struct sock *sk); 699 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 700 701 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 702 703 static inline int sk_stream_pages(int amt) 704 { 705 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 706 } 707 708 static inline void sk_stream_mem_reclaim(struct sock *sk) 709 { 710 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 711 __sk_stream_mem_reclaim(sk); 712 } 713 714 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 715 { 716 return (int)skb->truesize <= sk->sk_forward_alloc || 717 sk_stream_mem_schedule(sk, skb->truesize, 1); 718 } 719 720 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 721 { 722 return size <= sk->sk_forward_alloc || 723 sk_stream_mem_schedule(sk, size, 0); 724 } 725 726 /* Used by processes to "lock" a socket state, so that 727 * interrupts and bottom half handlers won't change it 728 * from under us. It essentially blocks any incoming 729 * packets, so that we won't get any new data or any 730 * packets that change the state of the socket. 731 * 732 * While locked, BH processing will add new packets to 733 * the backlog queue. This queue is processed by the 734 * owner of the socket lock right before it is released. 735 * 736 * Since ~2.3.5 it is also exclusive sleep lock serializing 737 * accesses from user process context. 738 */ 739 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 740 741 /* 742 * Macro so as to not evaluate some arguments when 743 * lockdep is not enabled. 744 * 745 * Mark both the sk_lock and the sk_lock.slock as a 746 * per-address-family lock class. 747 */ 748 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 749 do { \ 750 sk->sk_lock.owner = NULL; \ 751 init_waitqueue_head(&sk->sk_lock.wq); \ 752 spin_lock_init(&(sk)->sk_lock.slock); \ 753 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 754 sizeof((sk)->sk_lock)); \ 755 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 756 (skey), (sname)); \ 757 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 758 } while (0) 759 760 extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass)); 761 762 static inline void lock_sock(struct sock *sk) 763 { 764 lock_sock_nested(sk, 0); 765 } 766 767 extern void FASTCALL(release_sock(struct sock *sk)); 768 769 /* BH context may only use the following locking interface. */ 770 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 771 #define bh_lock_sock_nested(__sk) \ 772 spin_lock_nested(&((__sk)->sk_lock.slock), \ 773 SINGLE_DEPTH_NESTING) 774 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 775 776 extern struct sock *sk_alloc(int family, 777 gfp_t priority, 778 struct proto *prot, int zero_it); 779 extern void sk_free(struct sock *sk); 780 extern struct sock *sk_clone(const struct sock *sk, 781 const gfp_t priority); 782 783 extern struct sk_buff *sock_wmalloc(struct sock *sk, 784 unsigned long size, int force, 785 gfp_t priority); 786 extern struct sk_buff *sock_rmalloc(struct sock *sk, 787 unsigned long size, int force, 788 gfp_t priority); 789 extern void sock_wfree(struct sk_buff *skb); 790 extern void sock_rfree(struct sk_buff *skb); 791 792 extern int sock_setsockopt(struct socket *sock, int level, 793 int op, char __user *optval, 794 int optlen); 795 796 extern int sock_getsockopt(struct socket *sock, int level, 797 int op, char __user *optval, 798 int __user *optlen); 799 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 800 unsigned long size, 801 int noblock, 802 int *errcode); 803 extern void *sock_kmalloc(struct sock *sk, int size, 804 gfp_t priority); 805 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 806 extern void sk_send_sigurg(struct sock *sk); 807 808 /* 809 * Functions to fill in entries in struct proto_ops when a protocol 810 * does not implement a particular function. 811 */ 812 extern int sock_no_bind(struct socket *, 813 struct sockaddr *, int); 814 extern int sock_no_connect(struct socket *, 815 struct sockaddr *, int, int); 816 extern int sock_no_socketpair(struct socket *, 817 struct socket *); 818 extern int sock_no_accept(struct socket *, 819 struct socket *, int); 820 extern int sock_no_getname(struct socket *, 821 struct sockaddr *, int *, int); 822 extern unsigned int sock_no_poll(struct file *, struct socket *, 823 struct poll_table_struct *); 824 extern int sock_no_ioctl(struct socket *, unsigned int, 825 unsigned long); 826 extern int sock_no_listen(struct socket *, int); 827 extern int sock_no_shutdown(struct socket *, int); 828 extern int sock_no_getsockopt(struct socket *, int , int, 829 char __user *, int __user *); 830 extern int sock_no_setsockopt(struct socket *, int, int, 831 char __user *, int); 832 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 833 struct msghdr *, size_t); 834 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 835 struct msghdr *, size_t, int); 836 extern int sock_no_mmap(struct file *file, 837 struct socket *sock, 838 struct vm_area_struct *vma); 839 extern ssize_t sock_no_sendpage(struct socket *sock, 840 struct page *page, 841 int offset, size_t size, 842 int flags); 843 844 /* 845 * Functions to fill in entries in struct proto_ops when a protocol 846 * uses the inet style. 847 */ 848 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 849 char __user *optval, int __user *optlen); 850 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 851 struct msghdr *msg, size_t size, int flags); 852 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 853 char __user *optval, int optlen); 854 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 855 int optname, char __user *optval, int __user *optlen); 856 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 857 int optname, char __user *optval, int optlen); 858 859 extern void sk_common_release(struct sock *sk); 860 861 /* 862 * Default socket callbacks and setup code 863 */ 864 865 /* Initialise core socket variables */ 866 extern void sock_init_data(struct socket *sock, struct sock *sk); 867 868 /** 869 * sk_filter - run a packet through a socket filter 870 * @sk: sock associated with &sk_buff 871 * @skb: buffer to filter 872 * @needlock: set to 1 if the sock is not locked by caller. 873 * 874 * Run the filter code and then cut skb->data to correct size returned by 875 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 876 * than pkt_len we keep whole skb->data. This is the socket level 877 * wrapper to sk_run_filter. It returns 0 if the packet should 878 * be accepted or -EPERM if the packet should be tossed. 879 * 880 */ 881 882 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 883 { 884 int err; 885 struct sk_filter *filter; 886 887 err = security_sock_rcv_skb(sk, skb); 888 if (err) 889 return err; 890 891 rcu_read_lock_bh(); 892 filter = sk->sk_filter; 893 if (filter) { 894 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 895 filter->len); 896 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; 897 } 898 rcu_read_unlock_bh(); 899 900 return err; 901 } 902 903 /** 904 * sk_filter_rcu_free: Free a socket filter 905 * @rcu: rcu_head that contains the sk_filter to free 906 */ 907 static inline void sk_filter_rcu_free(struct rcu_head *rcu) 908 { 909 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); 910 kfree(fp); 911 } 912 913 /** 914 * sk_filter_release: Release a socket filter 915 * @sk: socket 916 * @fp: filter to remove 917 * 918 * Remove a filter from a socket and release its resources. 919 */ 920 921 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 922 { 923 unsigned int size = sk_filter_len(fp); 924 925 atomic_sub(size, &sk->sk_omem_alloc); 926 927 if (atomic_dec_and_test(&fp->refcnt)) 928 call_rcu_bh(&fp->rcu, sk_filter_rcu_free); 929 } 930 931 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 932 { 933 atomic_inc(&fp->refcnt); 934 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 935 } 936 937 /* 938 * Socket reference counting postulates. 939 * 940 * * Each user of socket SHOULD hold a reference count. 941 * * Each access point to socket (an hash table bucket, reference from a list, 942 * running timer, skb in flight MUST hold a reference count. 943 * * When reference count hits 0, it means it will never increase back. 944 * * When reference count hits 0, it means that no references from 945 * outside exist to this socket and current process on current CPU 946 * is last user and may/should destroy this socket. 947 * * sk_free is called from any context: process, BH, IRQ. When 948 * it is called, socket has no references from outside -> sk_free 949 * may release descendant resources allocated by the socket, but 950 * to the time when it is called, socket is NOT referenced by any 951 * hash tables, lists etc. 952 * * Packets, delivered from outside (from network or from another process) 953 * and enqueued on receive/error queues SHOULD NOT grab reference count, 954 * when they sit in queue. Otherwise, packets will leak to hole, when 955 * socket is looked up by one cpu and unhasing is made by another CPU. 956 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 957 * (leak to backlog). Packet socket does all the processing inside 958 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 959 * use separate SMP lock, so that they are prone too. 960 */ 961 962 /* Ungrab socket and destroy it, if it was the last reference. */ 963 static inline void sock_put(struct sock *sk) 964 { 965 if (atomic_dec_and_test(&sk->sk_refcnt)) 966 sk_free(sk); 967 } 968 969 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 970 const int nested); 971 972 /* Detach socket from process context. 973 * Announce socket dead, detach it from wait queue and inode. 974 * Note that parent inode held reference count on this struct sock, 975 * we do not release it in this function, because protocol 976 * probably wants some additional cleanups or even continuing 977 * to work with this socket (TCP). 978 */ 979 static inline void sock_orphan(struct sock *sk) 980 { 981 write_lock_bh(&sk->sk_callback_lock); 982 sock_set_flag(sk, SOCK_DEAD); 983 sk->sk_socket = NULL; 984 sk->sk_sleep = NULL; 985 write_unlock_bh(&sk->sk_callback_lock); 986 } 987 988 static inline void sock_graft(struct sock *sk, struct socket *parent) 989 { 990 write_lock_bh(&sk->sk_callback_lock); 991 sk->sk_sleep = &parent->wait; 992 parent->sk = sk; 993 sk->sk_socket = parent; 994 security_sock_graft(sk, parent); 995 write_unlock_bh(&sk->sk_callback_lock); 996 } 997 998 static inline void sock_copy(struct sock *nsk, const struct sock *osk) 999 { 1000 #ifdef CONFIG_SECURITY_NETWORK 1001 void *sptr = nsk->sk_security; 1002 #endif 1003 1004 memcpy(nsk, osk, osk->sk_prot->obj_size); 1005 #ifdef CONFIG_SECURITY_NETWORK 1006 nsk->sk_security = sptr; 1007 security_sk_clone(osk, nsk); 1008 #endif 1009 } 1010 1011 extern int sock_i_uid(struct sock *sk); 1012 extern unsigned long sock_i_ino(struct sock *sk); 1013 1014 static inline struct dst_entry * 1015 __sk_dst_get(struct sock *sk) 1016 { 1017 return sk->sk_dst_cache; 1018 } 1019 1020 static inline struct dst_entry * 1021 sk_dst_get(struct sock *sk) 1022 { 1023 struct dst_entry *dst; 1024 1025 read_lock(&sk->sk_dst_lock); 1026 dst = sk->sk_dst_cache; 1027 if (dst) 1028 dst_hold(dst); 1029 read_unlock(&sk->sk_dst_lock); 1030 return dst; 1031 } 1032 1033 static inline void 1034 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1035 { 1036 struct dst_entry *old_dst; 1037 1038 old_dst = sk->sk_dst_cache; 1039 sk->sk_dst_cache = dst; 1040 dst_release(old_dst); 1041 } 1042 1043 static inline void 1044 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1045 { 1046 write_lock(&sk->sk_dst_lock); 1047 __sk_dst_set(sk, dst); 1048 write_unlock(&sk->sk_dst_lock); 1049 } 1050 1051 static inline void 1052 __sk_dst_reset(struct sock *sk) 1053 { 1054 struct dst_entry *old_dst; 1055 1056 old_dst = sk->sk_dst_cache; 1057 sk->sk_dst_cache = NULL; 1058 dst_release(old_dst); 1059 } 1060 1061 static inline void 1062 sk_dst_reset(struct sock *sk) 1063 { 1064 write_lock(&sk->sk_dst_lock); 1065 __sk_dst_reset(sk); 1066 write_unlock(&sk->sk_dst_lock); 1067 } 1068 1069 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1070 1071 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1072 1073 static inline int sk_can_gso(const struct sock *sk) 1074 { 1075 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1076 } 1077 1078 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1079 1080 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1081 { 1082 sk->sk_wmem_queued += skb->truesize; 1083 sk->sk_forward_alloc -= skb->truesize; 1084 } 1085 1086 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1087 struct sk_buff *skb, struct page *page, 1088 int off, int copy) 1089 { 1090 if (skb->ip_summed == CHECKSUM_NONE) { 1091 int err = 0; 1092 __wsum csum = csum_and_copy_from_user(from, 1093 page_address(page) + off, 1094 copy, 0, &err); 1095 if (err) 1096 return err; 1097 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1098 } else if (copy_from_user(page_address(page) + off, from, copy)) 1099 return -EFAULT; 1100 1101 skb->len += copy; 1102 skb->data_len += copy; 1103 skb->truesize += copy; 1104 sk->sk_wmem_queued += copy; 1105 sk->sk_forward_alloc -= copy; 1106 return 0; 1107 } 1108 1109 /* 1110 * Queue a received datagram if it will fit. Stream and sequenced 1111 * protocols can't normally use this as they need to fit buffers in 1112 * and play with them. 1113 * 1114 * Inlined as it's very short and called for pretty much every 1115 * packet ever received. 1116 */ 1117 1118 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1119 { 1120 sock_hold(sk); 1121 skb->sk = sk; 1122 skb->destructor = sock_wfree; 1123 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1124 } 1125 1126 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1127 { 1128 skb->sk = sk; 1129 skb->destructor = sock_rfree; 1130 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1131 } 1132 1133 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1134 unsigned long expires); 1135 1136 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1137 1138 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1139 1140 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1141 { 1142 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1143 number of warnings when compiling with -W --ANK 1144 */ 1145 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1146 (unsigned)sk->sk_rcvbuf) 1147 return -ENOMEM; 1148 skb_set_owner_r(skb, sk); 1149 skb_queue_tail(&sk->sk_error_queue, skb); 1150 if (!sock_flag(sk, SOCK_DEAD)) 1151 sk->sk_data_ready(sk, skb->len); 1152 return 0; 1153 } 1154 1155 /* 1156 * Recover an error report and clear atomically 1157 */ 1158 1159 static inline int sock_error(struct sock *sk) 1160 { 1161 int err; 1162 if (likely(!sk->sk_err)) 1163 return 0; 1164 err = xchg(&sk->sk_err, 0); 1165 return -err; 1166 } 1167 1168 static inline unsigned long sock_wspace(struct sock *sk) 1169 { 1170 int amt = 0; 1171 1172 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1173 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1174 if (amt < 0) 1175 amt = 0; 1176 } 1177 return amt; 1178 } 1179 1180 static inline void sk_wake_async(struct sock *sk, int how, int band) 1181 { 1182 if (sk->sk_socket && sk->sk_socket->fasync_list) 1183 sock_wake_async(sk->sk_socket, how, band); 1184 } 1185 1186 #define SOCK_MIN_SNDBUF 2048 1187 #define SOCK_MIN_RCVBUF 256 1188 1189 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1190 { 1191 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1192 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1193 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1194 } 1195 } 1196 1197 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1198 int size, int mem, 1199 gfp_t gfp) 1200 { 1201 struct sk_buff *skb; 1202 int hdr_len; 1203 1204 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1205 skb = alloc_skb_fclone(size + hdr_len, gfp); 1206 if (skb) { 1207 skb->truesize += mem; 1208 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1209 skb_reserve(skb, hdr_len); 1210 return skb; 1211 } 1212 __kfree_skb(skb); 1213 } else { 1214 sk->sk_prot->enter_memory_pressure(); 1215 sk_stream_moderate_sndbuf(sk); 1216 } 1217 return NULL; 1218 } 1219 1220 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1221 int size, 1222 gfp_t gfp) 1223 { 1224 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1225 } 1226 1227 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1228 { 1229 struct page *page = NULL; 1230 1231 page = alloc_pages(sk->sk_allocation, 0); 1232 if (!page) { 1233 sk->sk_prot->enter_memory_pressure(); 1234 sk_stream_moderate_sndbuf(sk); 1235 } 1236 return page; 1237 } 1238 1239 /* 1240 * Default write policy as shown to user space via poll/select/SIGIO 1241 */ 1242 static inline int sock_writeable(const struct sock *sk) 1243 { 1244 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1245 } 1246 1247 static inline gfp_t gfp_any(void) 1248 { 1249 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL; 1250 } 1251 1252 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1253 { 1254 return noblock ? 0 : sk->sk_rcvtimeo; 1255 } 1256 1257 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1258 { 1259 return noblock ? 0 : sk->sk_sndtimeo; 1260 } 1261 1262 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1263 { 1264 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1265 } 1266 1267 /* Alas, with timeout socket operations are not restartable. 1268 * Compare this to poll(). 1269 */ 1270 static inline int sock_intr_errno(long timeo) 1271 { 1272 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1273 } 1274 1275 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 1276 struct sk_buff *skb); 1277 1278 static __inline__ void 1279 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1280 { 1281 ktime_t kt = skb->tstamp; 1282 1283 if (sock_flag(sk, SOCK_RCVTSTAMP)) 1284 __sock_recv_timestamp(msg, sk, skb); 1285 else 1286 sk->sk_stamp = kt; 1287 } 1288 1289 /** 1290 * sk_eat_skb - Release a skb if it is no longer needed 1291 * @sk: socket to eat this skb from 1292 * @skb: socket buffer to eat 1293 * @copied_early: flag indicating whether DMA operations copied this data early 1294 * 1295 * This routine must be called with interrupts disabled or with the socket 1296 * locked so that the sk_buff queue operation is ok. 1297 */ 1298 #ifdef CONFIG_NET_DMA 1299 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1300 { 1301 __skb_unlink(skb, &sk->sk_receive_queue); 1302 if (!copied_early) 1303 __kfree_skb(skb); 1304 else 1305 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1306 } 1307 #else 1308 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1309 { 1310 __skb_unlink(skb, &sk->sk_receive_queue); 1311 __kfree_skb(skb); 1312 } 1313 #endif 1314 1315 extern void sock_enable_timestamp(struct sock *sk); 1316 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1317 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 1318 1319 /* 1320 * Enable debug/info messages 1321 */ 1322 extern int net_msg_warn; 1323 #define NETDEBUG(fmt, args...) \ 1324 do { if (net_msg_warn) printk(fmt,##args); } while (0) 1325 1326 #define LIMIT_NETDEBUG(fmt, args...) \ 1327 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 1328 1329 /* 1330 * Macros for sleeping on a socket. Use them like this: 1331 * 1332 * SOCK_SLEEP_PRE(sk) 1333 * if (condition) 1334 * schedule(); 1335 * SOCK_SLEEP_POST(sk) 1336 * 1337 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1338 * and when the last use of them in DECnet has gone, I'm intending to 1339 * remove them. 1340 */ 1341 1342 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1343 DECLARE_WAITQUEUE(wait, tsk); \ 1344 tsk->state = TASK_INTERRUPTIBLE; \ 1345 add_wait_queue((sk)->sk_sleep, &wait); \ 1346 release_sock(sk); 1347 1348 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1349 remove_wait_queue((sk)->sk_sleep, &wait); \ 1350 lock_sock(sk); \ 1351 } 1352 1353 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1354 { 1355 if (valbool) 1356 sock_set_flag(sk, bit); 1357 else 1358 sock_reset_flag(sk, bit); 1359 } 1360 1361 extern __u32 sysctl_wmem_max; 1362 extern __u32 sysctl_rmem_max; 1363 1364 extern void sk_init(void); 1365 1366 #ifdef CONFIG_SYSCTL 1367 extern struct ctl_table core_table[]; 1368 #endif 1369 1370 extern int sysctl_optmem_max; 1371 1372 extern __u32 sysctl_wmem_default; 1373 extern __u32 sysctl_rmem_default; 1374 1375 #endif /* _SOCK_H */ 1376