xref: /openbmc/linux/include/net/sock.h (revision b9f40e21ef4298650ab33e35740fa85bd57706d5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <linux/net_tstamp.h>
71 
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 	return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89  * This structure really needs to be cleaned up.
90  * Most of it is for TCP, and not used by any of
91  * the other protocols.
92  */
93 
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 					printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106 
107 /* This is the per-socket lock.  The spinlock provides a synchronization
108  * between user contexts and software interrupt processing, whereas the
109  * mini-semaphore synchronizes multiple users amongst themselves.
110  */
111 typedef struct {
112 	spinlock_t		slock;
113 	int			owned;
114 	wait_queue_head_t	wq;
115 	/*
116 	 * We express the mutex-alike socket_lock semantics
117 	 * to the lock validator by explicitly managing
118 	 * the slock as a lock variant (in addition to
119 	 * the slock itself):
120 	 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 	struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125 
126 struct sock;
127 struct proto;
128 struct net;
129 
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132 
133 /**
134  *	struct sock_common - minimal network layer representation of sockets
135  *	@skc_daddr: Foreign IPv4 addr
136  *	@skc_rcv_saddr: Bound local IPv4 addr
137  *	@skc_hash: hash value used with various protocol lookup tables
138  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139  *	@skc_dport: placeholder for inet_dport/tw_dport
140  *	@skc_num: placeholder for inet_num/tw_num
141  *	@skc_family: network address family
142  *	@skc_state: Connection state
143  *	@skc_reuse: %SO_REUSEADDR setting
144  *	@skc_reuseport: %SO_REUSEPORT setting
145  *	@skc_bound_dev_if: bound device index if != 0
146  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148  *	@skc_prot: protocol handlers inside a network family
149  *	@skc_net: reference to the network namespace of this socket
150  *	@skc_node: main hash linkage for various protocol lookup tables
151  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152  *	@skc_tx_queue_mapping: tx queue number for this connection
153  *	@skc_refcnt: reference count
154  *
155  *	This is the minimal network layer representation of sockets, the header
156  *	for struct sock and struct inet_timewait_sock.
157  */
158 struct sock_common {
159 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 	 * address on 64bit arches : cf INET_MATCH()
161 	 */
162 	union {
163 		__addrpair	skc_addrpair;
164 		struct {
165 			__be32	skc_daddr;
166 			__be32	skc_rcv_saddr;
167 		};
168 	};
169 	union  {
170 		unsigned int	skc_hash;
171 		__u16		skc_u16hashes[2];
172 	};
173 	/* skc_dport && skc_num must be grouped as well */
174 	union {
175 		__portpair	skc_portpair;
176 		struct {
177 			__be16	skc_dport;
178 			__u16	skc_num;
179 		};
180 	};
181 
182 	unsigned short		skc_family;
183 	volatile unsigned char	skc_state;
184 	unsigned char		skc_reuse:4;
185 	unsigned char		skc_reuseport:1;
186 	unsigned char		skc_ipv6only:1;
187 	int			skc_bound_dev_if;
188 	union {
189 		struct hlist_node	skc_bind_node;
190 		struct hlist_nulls_node skc_portaddr_node;
191 	};
192 	struct proto		*skc_prot;
193 #ifdef CONFIG_NET_NS
194 	struct net	 	*skc_net;
195 #endif
196 
197 #if IS_ENABLED(CONFIG_IPV6)
198 	struct in6_addr		skc_v6_daddr;
199 	struct in6_addr		skc_v6_rcv_saddr;
200 #endif
201 
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	int			skc_tx_queue_mapping;
214 	atomic_t		skc_refcnt;
215 	/* private: */
216 	int                     skc_dontcopy_end[0];
217 	/* public: */
218 };
219 
220 struct cg_proto;
221 /**
222   *	struct sock - network layer representation of sockets
223   *	@__sk_common: shared layout with inet_timewait_sock
224   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226   *	@sk_lock:	synchronizer
227   *	@sk_rcvbuf: size of receive buffer in bytes
228   *	@sk_wq: sock wait queue and async head
229   *	@sk_rx_dst: receive input route used by early demux
230   *	@sk_dst_cache: destination cache
231   *	@sk_dst_lock: destination cache lock
232   *	@sk_policy: flow policy
233   *	@sk_receive_queue: incoming packets
234   *	@sk_wmem_alloc: transmit queue bytes committed
235   *	@sk_write_queue: Packet sending queue
236   *	@sk_async_wait_queue: DMA copied packets
237   *	@sk_omem_alloc: "o" is "option" or "other"
238   *	@sk_wmem_queued: persistent queue size
239   *	@sk_forward_alloc: space allocated forward
240   *	@sk_napi_id: id of the last napi context to receive data for sk
241   *	@sk_ll_usec: usecs to busypoll when there is no data
242   *	@sk_allocation: allocation mode
243   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
244   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
245   *	@sk_sndbuf: size of send buffer in bytes
246   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
247   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
248   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
249   *	@sk_no_check_rx: allow zero checksum in RX packets
250   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
251   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
252   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
253   *	@sk_gso_max_size: Maximum GSO segment size to build
254   *	@sk_gso_max_segs: Maximum number of GSO segments
255   *	@sk_lingertime: %SO_LINGER l_linger setting
256   *	@sk_backlog: always used with the per-socket spinlock held
257   *	@sk_callback_lock: used with the callbacks in the end of this struct
258   *	@sk_error_queue: rarely used
259   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
260   *			  IPV6_ADDRFORM for instance)
261   *	@sk_err: last error
262   *	@sk_err_soft: errors that don't cause failure but are the cause of a
263   *		      persistent failure not just 'timed out'
264   *	@sk_drops: raw/udp drops counter
265   *	@sk_ack_backlog: current listen backlog
266   *	@sk_max_ack_backlog: listen backlog set in listen()
267   *	@sk_priority: %SO_PRIORITY setting
268   *	@sk_cgrp_prioidx: socket group's priority map index
269   *	@sk_type: socket type (%SOCK_STREAM, etc)
270   *	@sk_protocol: which protocol this socket belongs in this network family
271   *	@sk_peer_pid: &struct pid for this socket's peer
272   *	@sk_peer_cred: %SO_PEERCRED setting
273   *	@sk_rcvlowat: %SO_RCVLOWAT setting
274   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
275   *	@sk_sndtimeo: %SO_SNDTIMEO setting
276   *	@sk_rxhash: flow hash received from netif layer
277   *	@sk_txhash: computed flow hash for use on transmit
278   *	@sk_filter: socket filtering instructions
279   *	@sk_protinfo: private area, net family specific, when not using slab
280   *	@sk_timer: sock cleanup timer
281   *	@sk_stamp: time stamp of last packet received
282   *	@sk_tsflags: SO_TIMESTAMPING socket options
283   *	@sk_socket: Identd and reporting IO signals
284   *	@sk_user_data: RPC layer private data
285   *	@sk_frag: cached page frag
286   *	@sk_peek_off: current peek_offset value
287   *	@sk_send_head: front of stuff to transmit
288   *	@sk_security: used by security modules
289   *	@sk_mark: generic packet mark
290   *	@sk_classid: this socket's cgroup classid
291   *	@sk_cgrp: this socket's cgroup-specific proto data
292   *	@sk_write_pending: a write to stream socket waits to start
293   *	@sk_state_change: callback to indicate change in the state of the sock
294   *	@sk_data_ready: callback to indicate there is data to be processed
295   *	@sk_write_space: callback to indicate there is bf sending space available
296   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
297   *	@sk_backlog_rcv: callback to process the backlog
298   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
299  */
300 struct sock {
301 	/*
302 	 * Now struct inet_timewait_sock also uses sock_common, so please just
303 	 * don't add nothing before this first member (__sk_common) --acme
304 	 */
305 	struct sock_common	__sk_common;
306 #define sk_node			__sk_common.skc_node
307 #define sk_nulls_node		__sk_common.skc_nulls_node
308 #define sk_refcnt		__sk_common.skc_refcnt
309 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
310 
311 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
312 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
313 #define sk_hash			__sk_common.skc_hash
314 #define sk_portpair		__sk_common.skc_portpair
315 #define sk_num			__sk_common.skc_num
316 #define sk_dport		__sk_common.skc_dport
317 #define sk_addrpair		__sk_common.skc_addrpair
318 #define sk_daddr		__sk_common.skc_daddr
319 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
320 #define sk_family		__sk_common.skc_family
321 #define sk_state		__sk_common.skc_state
322 #define sk_reuse		__sk_common.skc_reuse
323 #define sk_reuseport		__sk_common.skc_reuseport
324 #define sk_ipv6only		__sk_common.skc_ipv6only
325 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
326 #define sk_bind_node		__sk_common.skc_bind_node
327 #define sk_prot			__sk_common.skc_prot
328 #define sk_net			__sk_common.skc_net
329 #define sk_v6_daddr		__sk_common.skc_v6_daddr
330 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
331 
332 	socket_lock_t		sk_lock;
333 	struct sk_buff_head	sk_receive_queue;
334 	/*
335 	 * The backlog queue is special, it is always used with
336 	 * the per-socket spinlock held and requires low latency
337 	 * access. Therefore we special case it's implementation.
338 	 * Note : rmem_alloc is in this structure to fill a hole
339 	 * on 64bit arches, not because its logically part of
340 	 * backlog.
341 	 */
342 	struct {
343 		atomic_t	rmem_alloc;
344 		int		len;
345 		struct sk_buff	*head;
346 		struct sk_buff	*tail;
347 	} sk_backlog;
348 #define sk_rmem_alloc sk_backlog.rmem_alloc
349 	int			sk_forward_alloc;
350 #ifdef CONFIG_RPS
351 	__u32			sk_rxhash;
352 #endif
353 	__u32			sk_txhash;
354 #ifdef CONFIG_NET_RX_BUSY_POLL
355 	unsigned int		sk_napi_id;
356 	unsigned int		sk_ll_usec;
357 #endif
358 	atomic_t		sk_drops;
359 	int			sk_rcvbuf;
360 
361 	struct sk_filter __rcu	*sk_filter;
362 	struct socket_wq __rcu	*sk_wq;
363 
364 #ifdef CONFIG_NET_DMA
365 	struct sk_buff_head	sk_async_wait_queue;
366 #endif
367 
368 #ifdef CONFIG_XFRM
369 	struct xfrm_policy	*sk_policy[2];
370 #endif
371 	unsigned long 		sk_flags;
372 	struct dst_entry	*sk_rx_dst;
373 	struct dst_entry __rcu	*sk_dst_cache;
374 	spinlock_t		sk_dst_lock;
375 	atomic_t		sk_wmem_alloc;
376 	atomic_t		sk_omem_alloc;
377 	int			sk_sndbuf;
378 	struct sk_buff_head	sk_write_queue;
379 	kmemcheck_bitfield_begin(flags);
380 	unsigned int		sk_shutdown  : 2,
381 				sk_no_check_tx : 1,
382 				sk_no_check_rx : 1,
383 				sk_userlocks : 4,
384 				sk_protocol  : 8,
385 				sk_type      : 16;
386 	kmemcheck_bitfield_end(flags);
387 	int			sk_wmem_queued;
388 	gfp_t			sk_allocation;
389 	u32			sk_pacing_rate; /* bytes per second */
390 	u32			sk_max_pacing_rate;
391 	netdev_features_t	sk_route_caps;
392 	netdev_features_t	sk_route_nocaps;
393 	int			sk_gso_type;
394 	unsigned int		sk_gso_max_size;
395 	u16			sk_gso_max_segs;
396 	int			sk_rcvlowat;
397 	unsigned long	        sk_lingertime;
398 	struct sk_buff_head	sk_error_queue;
399 	struct proto		*sk_prot_creator;
400 	rwlock_t		sk_callback_lock;
401 	int			sk_err,
402 				sk_err_soft;
403 	unsigned short		sk_ack_backlog;
404 	unsigned short		sk_max_ack_backlog;
405 	__u32			sk_priority;
406 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
407 	__u32			sk_cgrp_prioidx;
408 #endif
409 	struct pid		*sk_peer_pid;
410 	const struct cred	*sk_peer_cred;
411 	long			sk_rcvtimeo;
412 	long			sk_sndtimeo;
413 	void			*sk_protinfo;
414 	struct timer_list	sk_timer;
415 	ktime_t			sk_stamp;
416 	u16			sk_tsflags;
417 	struct socket		*sk_socket;
418 	void			*sk_user_data;
419 	struct page_frag	sk_frag;
420 	struct sk_buff		*sk_send_head;
421 	__s32			sk_peek_off;
422 	int			sk_write_pending;
423 #ifdef CONFIG_SECURITY
424 	void			*sk_security;
425 #endif
426 	__u32			sk_mark;
427 	u32			sk_classid;
428 	struct cg_proto		*sk_cgrp;
429 	void			(*sk_state_change)(struct sock *sk);
430 	void			(*sk_data_ready)(struct sock *sk);
431 	void			(*sk_write_space)(struct sock *sk);
432 	void			(*sk_error_report)(struct sock *sk);
433 	int			(*sk_backlog_rcv)(struct sock *sk,
434 						  struct sk_buff *skb);
435 	void                    (*sk_destruct)(struct sock *sk);
436 };
437 
438 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
439 
440 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
441 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
442 
443 /*
444  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
445  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
446  * on a socket means that the socket will reuse everybody else's port
447  * without looking at the other's sk_reuse value.
448  */
449 
450 #define SK_NO_REUSE	0
451 #define SK_CAN_REUSE	1
452 #define SK_FORCE_REUSE	2
453 
454 static inline int sk_peek_offset(struct sock *sk, int flags)
455 {
456 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
457 		return sk->sk_peek_off;
458 	else
459 		return 0;
460 }
461 
462 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
463 {
464 	if (sk->sk_peek_off >= 0) {
465 		if (sk->sk_peek_off >= val)
466 			sk->sk_peek_off -= val;
467 		else
468 			sk->sk_peek_off = 0;
469 	}
470 }
471 
472 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
473 {
474 	if (sk->sk_peek_off >= 0)
475 		sk->sk_peek_off += val;
476 }
477 
478 /*
479  * Hashed lists helper routines
480  */
481 static inline struct sock *sk_entry(const struct hlist_node *node)
482 {
483 	return hlist_entry(node, struct sock, sk_node);
484 }
485 
486 static inline struct sock *__sk_head(const struct hlist_head *head)
487 {
488 	return hlist_entry(head->first, struct sock, sk_node);
489 }
490 
491 static inline struct sock *sk_head(const struct hlist_head *head)
492 {
493 	return hlist_empty(head) ? NULL : __sk_head(head);
494 }
495 
496 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
497 {
498 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
499 }
500 
501 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
502 {
503 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
504 }
505 
506 static inline struct sock *sk_next(const struct sock *sk)
507 {
508 	return sk->sk_node.next ?
509 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
510 }
511 
512 static inline struct sock *sk_nulls_next(const struct sock *sk)
513 {
514 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
515 		hlist_nulls_entry(sk->sk_nulls_node.next,
516 				  struct sock, sk_nulls_node) :
517 		NULL;
518 }
519 
520 static inline bool sk_unhashed(const struct sock *sk)
521 {
522 	return hlist_unhashed(&sk->sk_node);
523 }
524 
525 static inline bool sk_hashed(const struct sock *sk)
526 {
527 	return !sk_unhashed(sk);
528 }
529 
530 static inline void sk_node_init(struct hlist_node *node)
531 {
532 	node->pprev = NULL;
533 }
534 
535 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
536 {
537 	node->pprev = NULL;
538 }
539 
540 static inline void __sk_del_node(struct sock *sk)
541 {
542 	__hlist_del(&sk->sk_node);
543 }
544 
545 /* NB: equivalent to hlist_del_init_rcu */
546 static inline bool __sk_del_node_init(struct sock *sk)
547 {
548 	if (sk_hashed(sk)) {
549 		__sk_del_node(sk);
550 		sk_node_init(&sk->sk_node);
551 		return true;
552 	}
553 	return false;
554 }
555 
556 /* Grab socket reference count. This operation is valid only
557    when sk is ALREADY grabbed f.e. it is found in hash table
558    or a list and the lookup is made under lock preventing hash table
559    modifications.
560  */
561 
562 static inline void sock_hold(struct sock *sk)
563 {
564 	atomic_inc(&sk->sk_refcnt);
565 }
566 
567 /* Ungrab socket in the context, which assumes that socket refcnt
568    cannot hit zero, f.e. it is true in context of any socketcall.
569  */
570 static inline void __sock_put(struct sock *sk)
571 {
572 	atomic_dec(&sk->sk_refcnt);
573 }
574 
575 static inline bool sk_del_node_init(struct sock *sk)
576 {
577 	bool rc = __sk_del_node_init(sk);
578 
579 	if (rc) {
580 		/* paranoid for a while -acme */
581 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
582 		__sock_put(sk);
583 	}
584 	return rc;
585 }
586 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
587 
588 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
589 {
590 	if (sk_hashed(sk)) {
591 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
592 		return true;
593 	}
594 	return false;
595 }
596 
597 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
598 {
599 	bool rc = __sk_nulls_del_node_init_rcu(sk);
600 
601 	if (rc) {
602 		/* paranoid for a while -acme */
603 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
604 		__sock_put(sk);
605 	}
606 	return rc;
607 }
608 
609 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
610 {
611 	hlist_add_head(&sk->sk_node, list);
612 }
613 
614 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
615 {
616 	sock_hold(sk);
617 	__sk_add_node(sk, list);
618 }
619 
620 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
621 {
622 	sock_hold(sk);
623 	hlist_add_head_rcu(&sk->sk_node, list);
624 }
625 
626 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
627 {
628 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
629 }
630 
631 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
632 {
633 	sock_hold(sk);
634 	__sk_nulls_add_node_rcu(sk, list);
635 }
636 
637 static inline void __sk_del_bind_node(struct sock *sk)
638 {
639 	__hlist_del(&sk->sk_bind_node);
640 }
641 
642 static inline void sk_add_bind_node(struct sock *sk,
643 					struct hlist_head *list)
644 {
645 	hlist_add_head(&sk->sk_bind_node, list);
646 }
647 
648 #define sk_for_each(__sk, list) \
649 	hlist_for_each_entry(__sk, list, sk_node)
650 #define sk_for_each_rcu(__sk, list) \
651 	hlist_for_each_entry_rcu(__sk, list, sk_node)
652 #define sk_nulls_for_each(__sk, node, list) \
653 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
654 #define sk_nulls_for_each_rcu(__sk, node, list) \
655 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
656 #define sk_for_each_from(__sk) \
657 	hlist_for_each_entry_from(__sk, sk_node)
658 #define sk_nulls_for_each_from(__sk, node) \
659 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
660 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
661 #define sk_for_each_safe(__sk, tmp, list) \
662 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
663 #define sk_for_each_bound(__sk, list) \
664 	hlist_for_each_entry(__sk, list, sk_bind_node)
665 
666 /**
667  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
668  * @tpos:	the type * to use as a loop cursor.
669  * @pos:	the &struct hlist_node to use as a loop cursor.
670  * @head:	the head for your list.
671  * @offset:	offset of hlist_node within the struct.
672  *
673  */
674 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
675 	for (pos = (head)->first;					       \
676 	     (!is_a_nulls(pos)) &&					       \
677 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
678 	     pos = pos->next)
679 
680 static inline struct user_namespace *sk_user_ns(struct sock *sk)
681 {
682 	/* Careful only use this in a context where these parameters
683 	 * can not change and must all be valid, such as recvmsg from
684 	 * userspace.
685 	 */
686 	return sk->sk_socket->file->f_cred->user_ns;
687 }
688 
689 /* Sock flags */
690 enum sock_flags {
691 	SOCK_DEAD,
692 	SOCK_DONE,
693 	SOCK_URGINLINE,
694 	SOCK_KEEPOPEN,
695 	SOCK_LINGER,
696 	SOCK_DESTROY,
697 	SOCK_BROADCAST,
698 	SOCK_TIMESTAMP,
699 	SOCK_ZAPPED,
700 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
701 	SOCK_DBG, /* %SO_DEBUG setting */
702 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
703 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
704 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
705 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
706 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
707 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
708 	SOCK_FASYNC, /* fasync() active */
709 	SOCK_RXQ_OVFL,
710 	SOCK_ZEROCOPY, /* buffers from userspace */
711 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
712 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
713 		     * Will use last 4 bytes of packet sent from
714 		     * user-space instead.
715 		     */
716 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
717 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
718 };
719 
720 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
721 {
722 	nsk->sk_flags = osk->sk_flags;
723 }
724 
725 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
726 {
727 	__set_bit(flag, &sk->sk_flags);
728 }
729 
730 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
731 {
732 	__clear_bit(flag, &sk->sk_flags);
733 }
734 
735 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
736 {
737 	return test_bit(flag, &sk->sk_flags);
738 }
739 
740 #ifdef CONFIG_NET
741 extern struct static_key memalloc_socks;
742 static inline int sk_memalloc_socks(void)
743 {
744 	return static_key_false(&memalloc_socks);
745 }
746 #else
747 
748 static inline int sk_memalloc_socks(void)
749 {
750 	return 0;
751 }
752 
753 #endif
754 
755 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
756 {
757 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
758 }
759 
760 static inline void sk_acceptq_removed(struct sock *sk)
761 {
762 	sk->sk_ack_backlog--;
763 }
764 
765 static inline void sk_acceptq_added(struct sock *sk)
766 {
767 	sk->sk_ack_backlog++;
768 }
769 
770 static inline bool sk_acceptq_is_full(const struct sock *sk)
771 {
772 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
773 }
774 
775 /*
776  * Compute minimal free write space needed to queue new packets.
777  */
778 static inline int sk_stream_min_wspace(const struct sock *sk)
779 {
780 	return sk->sk_wmem_queued >> 1;
781 }
782 
783 static inline int sk_stream_wspace(const struct sock *sk)
784 {
785 	return sk->sk_sndbuf - sk->sk_wmem_queued;
786 }
787 
788 void sk_stream_write_space(struct sock *sk);
789 
790 /* OOB backlog add */
791 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
792 {
793 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
794 	skb_dst_force(skb);
795 
796 	if (!sk->sk_backlog.tail)
797 		sk->sk_backlog.head = skb;
798 	else
799 		sk->sk_backlog.tail->next = skb;
800 
801 	sk->sk_backlog.tail = skb;
802 	skb->next = NULL;
803 }
804 
805 /*
806  * Take into account size of receive queue and backlog queue
807  * Do not take into account this skb truesize,
808  * to allow even a single big packet to come.
809  */
810 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
811 {
812 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
813 
814 	return qsize > limit;
815 }
816 
817 /* The per-socket spinlock must be held here. */
818 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
819 					      unsigned int limit)
820 {
821 	if (sk_rcvqueues_full(sk, limit))
822 		return -ENOBUFS;
823 
824 	__sk_add_backlog(sk, skb);
825 	sk->sk_backlog.len += skb->truesize;
826 	return 0;
827 }
828 
829 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
830 
831 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
832 {
833 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
834 		return __sk_backlog_rcv(sk, skb);
835 
836 	return sk->sk_backlog_rcv(sk, skb);
837 }
838 
839 static inline void sock_rps_record_flow_hash(__u32 hash)
840 {
841 #ifdef CONFIG_RPS
842 	struct rps_sock_flow_table *sock_flow_table;
843 
844 	rcu_read_lock();
845 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
846 	rps_record_sock_flow(sock_flow_table, hash);
847 	rcu_read_unlock();
848 #endif
849 }
850 
851 static inline void sock_rps_reset_flow_hash(__u32 hash)
852 {
853 #ifdef CONFIG_RPS
854 	struct rps_sock_flow_table *sock_flow_table;
855 
856 	rcu_read_lock();
857 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
858 	rps_reset_sock_flow(sock_flow_table, hash);
859 	rcu_read_unlock();
860 #endif
861 }
862 
863 static inline void sock_rps_record_flow(const struct sock *sk)
864 {
865 #ifdef CONFIG_RPS
866 	sock_rps_record_flow_hash(sk->sk_rxhash);
867 #endif
868 }
869 
870 static inline void sock_rps_reset_flow(const struct sock *sk)
871 {
872 #ifdef CONFIG_RPS
873 	sock_rps_reset_flow_hash(sk->sk_rxhash);
874 #endif
875 }
876 
877 static inline void sock_rps_save_rxhash(struct sock *sk,
878 					const struct sk_buff *skb)
879 {
880 #ifdef CONFIG_RPS
881 	if (unlikely(sk->sk_rxhash != skb->hash)) {
882 		sock_rps_reset_flow(sk);
883 		sk->sk_rxhash = skb->hash;
884 	}
885 #endif
886 }
887 
888 static inline void sock_rps_reset_rxhash(struct sock *sk)
889 {
890 #ifdef CONFIG_RPS
891 	sock_rps_reset_flow(sk);
892 	sk->sk_rxhash = 0;
893 #endif
894 }
895 
896 #define sk_wait_event(__sk, __timeo, __condition)			\
897 	({	int __rc;						\
898 		release_sock(__sk);					\
899 		__rc = __condition;					\
900 		if (!__rc) {						\
901 			*(__timeo) = schedule_timeout(*(__timeo));	\
902 		}							\
903 		lock_sock(__sk);					\
904 		__rc = __condition;					\
905 		__rc;							\
906 	})
907 
908 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
909 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
910 void sk_stream_wait_close(struct sock *sk, long timeo_p);
911 int sk_stream_error(struct sock *sk, int flags, int err);
912 void sk_stream_kill_queues(struct sock *sk);
913 void sk_set_memalloc(struct sock *sk);
914 void sk_clear_memalloc(struct sock *sk);
915 
916 int sk_wait_data(struct sock *sk, long *timeo);
917 
918 struct request_sock_ops;
919 struct timewait_sock_ops;
920 struct inet_hashinfo;
921 struct raw_hashinfo;
922 struct module;
923 
924 /*
925  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
926  * un-modified. Special care is taken when initializing object to zero.
927  */
928 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
929 {
930 	if (offsetof(struct sock, sk_node.next) != 0)
931 		memset(sk, 0, offsetof(struct sock, sk_node.next));
932 	memset(&sk->sk_node.pprev, 0,
933 	       size - offsetof(struct sock, sk_node.pprev));
934 }
935 
936 /* Networking protocol blocks we attach to sockets.
937  * socket layer -> transport layer interface
938  * transport -> network interface is defined by struct inet_proto
939  */
940 struct proto {
941 	void			(*close)(struct sock *sk,
942 					long timeout);
943 	int			(*connect)(struct sock *sk,
944 					struct sockaddr *uaddr,
945 					int addr_len);
946 	int			(*disconnect)(struct sock *sk, int flags);
947 
948 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
949 
950 	int			(*ioctl)(struct sock *sk, int cmd,
951 					 unsigned long arg);
952 	int			(*init)(struct sock *sk);
953 	void			(*destroy)(struct sock *sk);
954 	void			(*shutdown)(struct sock *sk, int how);
955 	int			(*setsockopt)(struct sock *sk, int level,
956 					int optname, char __user *optval,
957 					unsigned int optlen);
958 	int			(*getsockopt)(struct sock *sk, int level,
959 					int optname, char __user *optval,
960 					int __user *option);
961 #ifdef CONFIG_COMPAT
962 	int			(*compat_setsockopt)(struct sock *sk,
963 					int level,
964 					int optname, char __user *optval,
965 					unsigned int optlen);
966 	int			(*compat_getsockopt)(struct sock *sk,
967 					int level,
968 					int optname, char __user *optval,
969 					int __user *option);
970 	int			(*compat_ioctl)(struct sock *sk,
971 					unsigned int cmd, unsigned long arg);
972 #endif
973 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
974 					   struct msghdr *msg, size_t len);
975 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
976 					   struct msghdr *msg,
977 					   size_t len, int noblock, int flags,
978 					   int *addr_len);
979 	int			(*sendpage)(struct sock *sk, struct page *page,
980 					int offset, size_t size, int flags);
981 	int			(*bind)(struct sock *sk,
982 					struct sockaddr *uaddr, int addr_len);
983 
984 	int			(*backlog_rcv) (struct sock *sk,
985 						struct sk_buff *skb);
986 
987 	void		(*release_cb)(struct sock *sk);
988 	void		(*mtu_reduced)(struct sock *sk);
989 
990 	/* Keeping track of sk's, looking them up, and port selection methods. */
991 	void			(*hash)(struct sock *sk);
992 	void			(*unhash)(struct sock *sk);
993 	void			(*rehash)(struct sock *sk);
994 	int			(*get_port)(struct sock *sk, unsigned short snum);
995 	void			(*clear_sk)(struct sock *sk, int size);
996 
997 	/* Keeping track of sockets in use */
998 #ifdef CONFIG_PROC_FS
999 	unsigned int		inuse_idx;
1000 #endif
1001 
1002 	bool			(*stream_memory_free)(const struct sock *sk);
1003 	/* Memory pressure */
1004 	void			(*enter_memory_pressure)(struct sock *sk);
1005 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1006 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1007 	/*
1008 	 * Pressure flag: try to collapse.
1009 	 * Technical note: it is used by multiple contexts non atomically.
1010 	 * All the __sk_mem_schedule() is of this nature: accounting
1011 	 * is strict, actions are advisory and have some latency.
1012 	 */
1013 	int			*memory_pressure;
1014 	long			*sysctl_mem;
1015 	int			*sysctl_wmem;
1016 	int			*sysctl_rmem;
1017 	int			max_header;
1018 	bool			no_autobind;
1019 
1020 	struct kmem_cache	*slab;
1021 	unsigned int		obj_size;
1022 	int			slab_flags;
1023 
1024 	struct percpu_counter	*orphan_count;
1025 
1026 	struct request_sock_ops	*rsk_prot;
1027 	struct timewait_sock_ops *twsk_prot;
1028 
1029 	union {
1030 		struct inet_hashinfo	*hashinfo;
1031 		struct udp_table	*udp_table;
1032 		struct raw_hashinfo	*raw_hash;
1033 	} h;
1034 
1035 	struct module		*owner;
1036 
1037 	char			name[32];
1038 
1039 	struct list_head	node;
1040 #ifdef SOCK_REFCNT_DEBUG
1041 	atomic_t		socks;
1042 #endif
1043 #ifdef CONFIG_MEMCG_KMEM
1044 	/*
1045 	 * cgroup specific init/deinit functions. Called once for all
1046 	 * protocols that implement it, from cgroups populate function.
1047 	 * This function has to setup any files the protocol want to
1048 	 * appear in the kmem cgroup filesystem.
1049 	 */
1050 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1051 					       struct cgroup_subsys *ss);
1052 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1053 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1054 #endif
1055 };
1056 
1057 /*
1058  * Bits in struct cg_proto.flags
1059  */
1060 enum cg_proto_flags {
1061 	/* Currently active and new sockets should be assigned to cgroups */
1062 	MEMCG_SOCK_ACTIVE,
1063 	/* It was ever activated; we must disarm static keys on destruction */
1064 	MEMCG_SOCK_ACTIVATED,
1065 };
1066 
1067 struct cg_proto {
1068 	struct res_counter	memory_allocated;	/* Current allocated memory. */
1069 	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
1070 	int			memory_pressure;
1071 	long			sysctl_mem[3];
1072 	unsigned long		flags;
1073 	/*
1074 	 * memcg field is used to find which memcg we belong directly
1075 	 * Each memcg struct can hold more than one cg_proto, so container_of
1076 	 * won't really cut.
1077 	 *
1078 	 * The elegant solution would be having an inverse function to
1079 	 * proto_cgroup in struct proto, but that means polluting the structure
1080 	 * for everybody, instead of just for memcg users.
1081 	 */
1082 	struct mem_cgroup	*memcg;
1083 };
1084 
1085 int proto_register(struct proto *prot, int alloc_slab);
1086 void proto_unregister(struct proto *prot);
1087 
1088 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1089 {
1090 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1091 }
1092 
1093 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1094 {
1095 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1096 }
1097 
1098 #ifdef SOCK_REFCNT_DEBUG
1099 static inline void sk_refcnt_debug_inc(struct sock *sk)
1100 {
1101 	atomic_inc(&sk->sk_prot->socks);
1102 }
1103 
1104 static inline void sk_refcnt_debug_dec(struct sock *sk)
1105 {
1106 	atomic_dec(&sk->sk_prot->socks);
1107 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1108 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1109 }
1110 
1111 static inline void sk_refcnt_debug_release(const struct sock *sk)
1112 {
1113 	if (atomic_read(&sk->sk_refcnt) != 1)
1114 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1115 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1116 }
1117 #else /* SOCK_REFCNT_DEBUG */
1118 #define sk_refcnt_debug_inc(sk) do { } while (0)
1119 #define sk_refcnt_debug_dec(sk) do { } while (0)
1120 #define sk_refcnt_debug_release(sk) do { } while (0)
1121 #endif /* SOCK_REFCNT_DEBUG */
1122 
1123 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1124 extern struct static_key memcg_socket_limit_enabled;
1125 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1126 					       struct cg_proto *cg_proto)
1127 {
1128 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1129 }
1130 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1131 #else
1132 #define mem_cgroup_sockets_enabled 0
1133 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1134 					       struct cg_proto *cg_proto)
1135 {
1136 	return NULL;
1137 }
1138 #endif
1139 
1140 static inline bool sk_stream_memory_free(const struct sock *sk)
1141 {
1142 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1143 		return false;
1144 
1145 	return sk->sk_prot->stream_memory_free ?
1146 		sk->sk_prot->stream_memory_free(sk) : true;
1147 }
1148 
1149 static inline bool sk_stream_is_writeable(const struct sock *sk)
1150 {
1151 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1152 	       sk_stream_memory_free(sk);
1153 }
1154 
1155 
1156 static inline bool sk_has_memory_pressure(const struct sock *sk)
1157 {
1158 	return sk->sk_prot->memory_pressure != NULL;
1159 }
1160 
1161 static inline bool sk_under_memory_pressure(const struct sock *sk)
1162 {
1163 	if (!sk->sk_prot->memory_pressure)
1164 		return false;
1165 
1166 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1167 		return !!sk->sk_cgrp->memory_pressure;
1168 
1169 	return !!*sk->sk_prot->memory_pressure;
1170 }
1171 
1172 static inline void sk_leave_memory_pressure(struct sock *sk)
1173 {
1174 	int *memory_pressure = sk->sk_prot->memory_pressure;
1175 
1176 	if (!memory_pressure)
1177 		return;
1178 
1179 	if (*memory_pressure)
1180 		*memory_pressure = 0;
1181 
1182 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1183 		struct cg_proto *cg_proto = sk->sk_cgrp;
1184 		struct proto *prot = sk->sk_prot;
1185 
1186 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1187 			cg_proto->memory_pressure = 0;
1188 	}
1189 
1190 }
1191 
1192 static inline void sk_enter_memory_pressure(struct sock *sk)
1193 {
1194 	if (!sk->sk_prot->enter_memory_pressure)
1195 		return;
1196 
1197 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1198 		struct cg_proto *cg_proto = sk->sk_cgrp;
1199 		struct proto *prot = sk->sk_prot;
1200 
1201 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1202 			cg_proto->memory_pressure = 1;
1203 	}
1204 
1205 	sk->sk_prot->enter_memory_pressure(sk);
1206 }
1207 
1208 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1209 {
1210 	long *prot = sk->sk_prot->sysctl_mem;
1211 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1212 		prot = sk->sk_cgrp->sysctl_mem;
1213 	return prot[index];
1214 }
1215 
1216 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1217 					      unsigned long amt,
1218 					      int *parent_status)
1219 {
1220 	struct res_counter *fail;
1221 	int ret;
1222 
1223 	ret = res_counter_charge_nofail(&prot->memory_allocated,
1224 					amt << PAGE_SHIFT, &fail);
1225 	if (ret < 0)
1226 		*parent_status = OVER_LIMIT;
1227 }
1228 
1229 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1230 					      unsigned long amt)
1231 {
1232 	res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1233 }
1234 
1235 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1236 {
1237 	u64 ret;
1238 	ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1239 	return ret >> PAGE_SHIFT;
1240 }
1241 
1242 static inline long
1243 sk_memory_allocated(const struct sock *sk)
1244 {
1245 	struct proto *prot = sk->sk_prot;
1246 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1247 		return memcg_memory_allocated_read(sk->sk_cgrp);
1248 
1249 	return atomic_long_read(prot->memory_allocated);
1250 }
1251 
1252 static inline long
1253 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1254 {
1255 	struct proto *prot = sk->sk_prot;
1256 
1257 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1258 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1259 		/* update the root cgroup regardless */
1260 		atomic_long_add_return(amt, prot->memory_allocated);
1261 		return memcg_memory_allocated_read(sk->sk_cgrp);
1262 	}
1263 
1264 	return atomic_long_add_return(amt, prot->memory_allocated);
1265 }
1266 
1267 static inline void
1268 sk_memory_allocated_sub(struct sock *sk, int amt)
1269 {
1270 	struct proto *prot = sk->sk_prot;
1271 
1272 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1273 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1274 
1275 	atomic_long_sub(amt, prot->memory_allocated);
1276 }
1277 
1278 static inline void sk_sockets_allocated_dec(struct sock *sk)
1279 {
1280 	struct proto *prot = sk->sk_prot;
1281 
1282 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1283 		struct cg_proto *cg_proto = sk->sk_cgrp;
1284 
1285 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1286 			percpu_counter_dec(&cg_proto->sockets_allocated);
1287 	}
1288 
1289 	percpu_counter_dec(prot->sockets_allocated);
1290 }
1291 
1292 static inline void sk_sockets_allocated_inc(struct sock *sk)
1293 {
1294 	struct proto *prot = sk->sk_prot;
1295 
1296 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1297 		struct cg_proto *cg_proto = sk->sk_cgrp;
1298 
1299 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1300 			percpu_counter_inc(&cg_proto->sockets_allocated);
1301 	}
1302 
1303 	percpu_counter_inc(prot->sockets_allocated);
1304 }
1305 
1306 static inline int
1307 sk_sockets_allocated_read_positive(struct sock *sk)
1308 {
1309 	struct proto *prot = sk->sk_prot;
1310 
1311 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1312 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1313 
1314 	return percpu_counter_read_positive(prot->sockets_allocated);
1315 }
1316 
1317 static inline int
1318 proto_sockets_allocated_sum_positive(struct proto *prot)
1319 {
1320 	return percpu_counter_sum_positive(prot->sockets_allocated);
1321 }
1322 
1323 static inline long
1324 proto_memory_allocated(struct proto *prot)
1325 {
1326 	return atomic_long_read(prot->memory_allocated);
1327 }
1328 
1329 static inline bool
1330 proto_memory_pressure(struct proto *prot)
1331 {
1332 	if (!prot->memory_pressure)
1333 		return false;
1334 	return !!*prot->memory_pressure;
1335 }
1336 
1337 
1338 #ifdef CONFIG_PROC_FS
1339 /* Called with local bh disabled */
1340 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1341 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1342 #else
1343 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1344 		int inc)
1345 {
1346 }
1347 #endif
1348 
1349 
1350 /* With per-bucket locks this operation is not-atomic, so that
1351  * this version is not worse.
1352  */
1353 static inline void __sk_prot_rehash(struct sock *sk)
1354 {
1355 	sk->sk_prot->unhash(sk);
1356 	sk->sk_prot->hash(sk);
1357 }
1358 
1359 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1360 
1361 /* About 10 seconds */
1362 #define SOCK_DESTROY_TIME (10*HZ)
1363 
1364 /* Sockets 0-1023 can't be bound to unless you are superuser */
1365 #define PROT_SOCK	1024
1366 
1367 #define SHUTDOWN_MASK	3
1368 #define RCV_SHUTDOWN	1
1369 #define SEND_SHUTDOWN	2
1370 
1371 #define SOCK_SNDBUF_LOCK	1
1372 #define SOCK_RCVBUF_LOCK	2
1373 #define SOCK_BINDADDR_LOCK	4
1374 #define SOCK_BINDPORT_LOCK	8
1375 
1376 /* sock_iocb: used to kick off async processing of socket ios */
1377 struct sock_iocb {
1378 	struct list_head	list;
1379 
1380 	int			flags;
1381 	int			size;
1382 	struct socket		*sock;
1383 	struct sock		*sk;
1384 	struct scm_cookie	*scm;
1385 	struct msghdr		*msg, async_msg;
1386 	struct kiocb		*kiocb;
1387 };
1388 
1389 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1390 {
1391 	return (struct sock_iocb *)iocb->private;
1392 }
1393 
1394 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1395 {
1396 	return si->kiocb;
1397 }
1398 
1399 struct socket_alloc {
1400 	struct socket socket;
1401 	struct inode vfs_inode;
1402 };
1403 
1404 static inline struct socket *SOCKET_I(struct inode *inode)
1405 {
1406 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1407 }
1408 
1409 static inline struct inode *SOCK_INODE(struct socket *socket)
1410 {
1411 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1412 }
1413 
1414 /*
1415  * Functions for memory accounting
1416  */
1417 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1418 void __sk_mem_reclaim(struct sock *sk);
1419 
1420 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1421 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1422 #define SK_MEM_SEND	0
1423 #define SK_MEM_RECV	1
1424 
1425 static inline int sk_mem_pages(int amt)
1426 {
1427 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1428 }
1429 
1430 static inline bool sk_has_account(struct sock *sk)
1431 {
1432 	/* return true if protocol supports memory accounting */
1433 	return !!sk->sk_prot->memory_allocated;
1434 }
1435 
1436 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1437 {
1438 	if (!sk_has_account(sk))
1439 		return true;
1440 	return size <= sk->sk_forward_alloc ||
1441 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1442 }
1443 
1444 static inline bool
1445 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1446 {
1447 	if (!sk_has_account(sk))
1448 		return true;
1449 	return size<= sk->sk_forward_alloc ||
1450 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1451 		skb_pfmemalloc(skb);
1452 }
1453 
1454 static inline void sk_mem_reclaim(struct sock *sk)
1455 {
1456 	if (!sk_has_account(sk))
1457 		return;
1458 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1459 		__sk_mem_reclaim(sk);
1460 }
1461 
1462 static inline void sk_mem_reclaim_partial(struct sock *sk)
1463 {
1464 	if (!sk_has_account(sk))
1465 		return;
1466 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1467 		__sk_mem_reclaim(sk);
1468 }
1469 
1470 static inline void sk_mem_charge(struct sock *sk, int size)
1471 {
1472 	if (!sk_has_account(sk))
1473 		return;
1474 	sk->sk_forward_alloc -= size;
1475 }
1476 
1477 static inline void sk_mem_uncharge(struct sock *sk, int size)
1478 {
1479 	if (!sk_has_account(sk))
1480 		return;
1481 	sk->sk_forward_alloc += size;
1482 }
1483 
1484 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1485 {
1486 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1487 	sk->sk_wmem_queued -= skb->truesize;
1488 	sk_mem_uncharge(sk, skb->truesize);
1489 	__kfree_skb(skb);
1490 }
1491 
1492 /* Used by processes to "lock" a socket state, so that
1493  * interrupts and bottom half handlers won't change it
1494  * from under us. It essentially blocks any incoming
1495  * packets, so that we won't get any new data or any
1496  * packets that change the state of the socket.
1497  *
1498  * While locked, BH processing will add new packets to
1499  * the backlog queue.  This queue is processed by the
1500  * owner of the socket lock right before it is released.
1501  *
1502  * Since ~2.3.5 it is also exclusive sleep lock serializing
1503  * accesses from user process context.
1504  */
1505 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1506 
1507 static inline void sock_release_ownership(struct sock *sk)
1508 {
1509 	sk->sk_lock.owned = 0;
1510 }
1511 
1512 /*
1513  * Macro so as to not evaluate some arguments when
1514  * lockdep is not enabled.
1515  *
1516  * Mark both the sk_lock and the sk_lock.slock as a
1517  * per-address-family lock class.
1518  */
1519 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1520 do {									\
1521 	sk->sk_lock.owned = 0;						\
1522 	init_waitqueue_head(&sk->sk_lock.wq);				\
1523 	spin_lock_init(&(sk)->sk_lock.slock);				\
1524 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1525 			sizeof((sk)->sk_lock));				\
1526 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1527 				(skey), (sname));				\
1528 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1529 } while (0)
1530 
1531 void lock_sock_nested(struct sock *sk, int subclass);
1532 
1533 static inline void lock_sock(struct sock *sk)
1534 {
1535 	lock_sock_nested(sk, 0);
1536 }
1537 
1538 void release_sock(struct sock *sk);
1539 
1540 /* BH context may only use the following locking interface. */
1541 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1542 #define bh_lock_sock_nested(__sk) \
1543 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1544 				SINGLE_DEPTH_NESTING)
1545 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1546 
1547 bool lock_sock_fast(struct sock *sk);
1548 /**
1549  * unlock_sock_fast - complement of lock_sock_fast
1550  * @sk: socket
1551  * @slow: slow mode
1552  *
1553  * fast unlock socket for user context.
1554  * If slow mode is on, we call regular release_sock()
1555  */
1556 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1557 {
1558 	if (slow)
1559 		release_sock(sk);
1560 	else
1561 		spin_unlock_bh(&sk->sk_lock.slock);
1562 }
1563 
1564 
1565 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1566 		      struct proto *prot);
1567 void sk_free(struct sock *sk);
1568 void sk_release_kernel(struct sock *sk);
1569 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1570 
1571 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1572 			     gfp_t priority);
1573 void sock_wfree(struct sk_buff *skb);
1574 void skb_orphan_partial(struct sk_buff *skb);
1575 void sock_rfree(struct sk_buff *skb);
1576 void sock_edemux(struct sk_buff *skb);
1577 
1578 int sock_setsockopt(struct socket *sock, int level, int op,
1579 		    char __user *optval, unsigned int optlen);
1580 
1581 int sock_getsockopt(struct socket *sock, int level, int op,
1582 		    char __user *optval, int __user *optlen);
1583 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1584 				    int noblock, int *errcode);
1585 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1586 				     unsigned long data_len, int noblock,
1587 				     int *errcode, int max_page_order);
1588 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1589 void sock_kfree_s(struct sock *sk, void *mem, int size);
1590 void sk_send_sigurg(struct sock *sk);
1591 
1592 /*
1593  * Functions to fill in entries in struct proto_ops when a protocol
1594  * does not implement a particular function.
1595  */
1596 int sock_no_bind(struct socket *, struct sockaddr *, int);
1597 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1598 int sock_no_socketpair(struct socket *, struct socket *);
1599 int sock_no_accept(struct socket *, struct socket *, int);
1600 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1601 unsigned int sock_no_poll(struct file *, struct socket *,
1602 			  struct poll_table_struct *);
1603 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1604 int sock_no_listen(struct socket *, int);
1605 int sock_no_shutdown(struct socket *, int);
1606 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1607 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1608 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1609 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1610 		    int);
1611 int sock_no_mmap(struct file *file, struct socket *sock,
1612 		 struct vm_area_struct *vma);
1613 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1614 			 size_t size, int flags);
1615 
1616 /*
1617  * Functions to fill in entries in struct proto_ops when a protocol
1618  * uses the inet style.
1619  */
1620 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1621 				  char __user *optval, int __user *optlen);
1622 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1623 			       struct msghdr *msg, size_t size, int flags);
1624 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1625 				  char __user *optval, unsigned int optlen);
1626 int compat_sock_common_getsockopt(struct socket *sock, int level,
1627 		int optname, char __user *optval, int __user *optlen);
1628 int compat_sock_common_setsockopt(struct socket *sock, int level,
1629 		int optname, char __user *optval, unsigned int optlen);
1630 
1631 void sk_common_release(struct sock *sk);
1632 
1633 /*
1634  *	Default socket callbacks and setup code
1635  */
1636 
1637 /* Initialise core socket variables */
1638 void sock_init_data(struct socket *sock, struct sock *sk);
1639 
1640 /*
1641  * Socket reference counting postulates.
1642  *
1643  * * Each user of socket SHOULD hold a reference count.
1644  * * Each access point to socket (an hash table bucket, reference from a list,
1645  *   running timer, skb in flight MUST hold a reference count.
1646  * * When reference count hits 0, it means it will never increase back.
1647  * * When reference count hits 0, it means that no references from
1648  *   outside exist to this socket and current process on current CPU
1649  *   is last user and may/should destroy this socket.
1650  * * sk_free is called from any context: process, BH, IRQ. When
1651  *   it is called, socket has no references from outside -> sk_free
1652  *   may release descendant resources allocated by the socket, but
1653  *   to the time when it is called, socket is NOT referenced by any
1654  *   hash tables, lists etc.
1655  * * Packets, delivered from outside (from network or from another process)
1656  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1657  *   when they sit in queue. Otherwise, packets will leak to hole, when
1658  *   socket is looked up by one cpu and unhasing is made by another CPU.
1659  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1660  *   (leak to backlog). Packet socket does all the processing inside
1661  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1662  *   use separate SMP lock, so that they are prone too.
1663  */
1664 
1665 /* Ungrab socket and destroy it, if it was the last reference. */
1666 static inline void sock_put(struct sock *sk)
1667 {
1668 	if (atomic_dec_and_test(&sk->sk_refcnt))
1669 		sk_free(sk);
1670 }
1671 /* Generic version of sock_put(), dealing with all sockets
1672  * (TCP_TIMEWAIT, ESTABLISHED...)
1673  */
1674 void sock_gen_put(struct sock *sk);
1675 
1676 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1677 
1678 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1679 {
1680 	sk->sk_tx_queue_mapping = tx_queue;
1681 }
1682 
1683 static inline void sk_tx_queue_clear(struct sock *sk)
1684 {
1685 	sk->sk_tx_queue_mapping = -1;
1686 }
1687 
1688 static inline int sk_tx_queue_get(const struct sock *sk)
1689 {
1690 	return sk ? sk->sk_tx_queue_mapping : -1;
1691 }
1692 
1693 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1694 {
1695 	sk_tx_queue_clear(sk);
1696 	sk->sk_socket = sock;
1697 }
1698 
1699 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1700 {
1701 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1702 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1703 }
1704 /* Detach socket from process context.
1705  * Announce socket dead, detach it from wait queue and inode.
1706  * Note that parent inode held reference count on this struct sock,
1707  * we do not release it in this function, because protocol
1708  * probably wants some additional cleanups or even continuing
1709  * to work with this socket (TCP).
1710  */
1711 static inline void sock_orphan(struct sock *sk)
1712 {
1713 	write_lock_bh(&sk->sk_callback_lock);
1714 	sock_set_flag(sk, SOCK_DEAD);
1715 	sk_set_socket(sk, NULL);
1716 	sk->sk_wq  = NULL;
1717 	write_unlock_bh(&sk->sk_callback_lock);
1718 }
1719 
1720 static inline void sock_graft(struct sock *sk, struct socket *parent)
1721 {
1722 	write_lock_bh(&sk->sk_callback_lock);
1723 	sk->sk_wq = parent->wq;
1724 	parent->sk = sk;
1725 	sk_set_socket(sk, parent);
1726 	security_sock_graft(sk, parent);
1727 	write_unlock_bh(&sk->sk_callback_lock);
1728 }
1729 
1730 kuid_t sock_i_uid(struct sock *sk);
1731 unsigned long sock_i_ino(struct sock *sk);
1732 
1733 static inline struct dst_entry *
1734 __sk_dst_get(struct sock *sk)
1735 {
1736 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1737 						       lockdep_is_held(&sk->sk_lock.slock));
1738 }
1739 
1740 static inline struct dst_entry *
1741 sk_dst_get(struct sock *sk)
1742 {
1743 	struct dst_entry *dst;
1744 
1745 	rcu_read_lock();
1746 	dst = rcu_dereference(sk->sk_dst_cache);
1747 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1748 		dst = NULL;
1749 	rcu_read_unlock();
1750 	return dst;
1751 }
1752 
1753 static inline void dst_negative_advice(struct sock *sk)
1754 {
1755 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1756 
1757 	if (dst && dst->ops->negative_advice) {
1758 		ndst = dst->ops->negative_advice(dst);
1759 
1760 		if (ndst != dst) {
1761 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1762 			sk_tx_queue_clear(sk);
1763 		}
1764 	}
1765 }
1766 
1767 static inline void
1768 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1769 {
1770 	struct dst_entry *old_dst;
1771 
1772 	sk_tx_queue_clear(sk);
1773 	/*
1774 	 * This can be called while sk is owned by the caller only,
1775 	 * with no state that can be checked in a rcu_dereference_check() cond
1776 	 */
1777 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1778 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1779 	dst_release(old_dst);
1780 }
1781 
1782 static inline void
1783 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1784 {
1785 	struct dst_entry *old_dst;
1786 
1787 	sk_tx_queue_clear(sk);
1788 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1789 	dst_release(old_dst);
1790 }
1791 
1792 static inline void
1793 __sk_dst_reset(struct sock *sk)
1794 {
1795 	__sk_dst_set(sk, NULL);
1796 }
1797 
1798 static inline void
1799 sk_dst_reset(struct sock *sk)
1800 {
1801 	sk_dst_set(sk, NULL);
1802 }
1803 
1804 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1805 
1806 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1807 
1808 static inline bool sk_can_gso(const struct sock *sk)
1809 {
1810 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1811 }
1812 
1813 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1814 
1815 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1816 {
1817 	sk->sk_route_nocaps |= flags;
1818 	sk->sk_route_caps &= ~flags;
1819 }
1820 
1821 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1822 					   char __user *from, char *to,
1823 					   int copy, int offset)
1824 {
1825 	if (skb->ip_summed == CHECKSUM_NONE) {
1826 		int err = 0;
1827 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1828 		if (err)
1829 			return err;
1830 		skb->csum = csum_block_add(skb->csum, csum, offset);
1831 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1832 		if (!access_ok(VERIFY_READ, from, copy) ||
1833 		    __copy_from_user_nocache(to, from, copy))
1834 			return -EFAULT;
1835 	} else if (copy_from_user(to, from, copy))
1836 		return -EFAULT;
1837 
1838 	return 0;
1839 }
1840 
1841 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1842 				       char __user *from, int copy)
1843 {
1844 	int err, offset = skb->len;
1845 
1846 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1847 				       copy, offset);
1848 	if (err)
1849 		__skb_trim(skb, offset);
1850 
1851 	return err;
1852 }
1853 
1854 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1855 					   struct sk_buff *skb,
1856 					   struct page *page,
1857 					   int off, int copy)
1858 {
1859 	int err;
1860 
1861 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1862 				       copy, skb->len);
1863 	if (err)
1864 		return err;
1865 
1866 	skb->len	     += copy;
1867 	skb->data_len	     += copy;
1868 	skb->truesize	     += copy;
1869 	sk->sk_wmem_queued   += copy;
1870 	sk_mem_charge(sk, copy);
1871 	return 0;
1872 }
1873 
1874 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1875 				   struct sk_buff *skb, struct page *page,
1876 				   int off, int copy)
1877 {
1878 	if (skb->ip_summed == CHECKSUM_NONE) {
1879 		int err = 0;
1880 		__wsum csum = csum_and_copy_from_user(from,
1881 						     page_address(page) + off,
1882 							    copy, 0, &err);
1883 		if (err)
1884 			return err;
1885 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1886 	} else if (copy_from_user(page_address(page) + off, from, copy))
1887 		return -EFAULT;
1888 
1889 	skb->len	     += copy;
1890 	skb->data_len	     += copy;
1891 	skb->truesize	     += copy;
1892 	sk->sk_wmem_queued   += copy;
1893 	sk_mem_charge(sk, copy);
1894 	return 0;
1895 }
1896 
1897 /**
1898  * sk_wmem_alloc_get - returns write allocations
1899  * @sk: socket
1900  *
1901  * Returns sk_wmem_alloc minus initial offset of one
1902  */
1903 static inline int sk_wmem_alloc_get(const struct sock *sk)
1904 {
1905 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1906 }
1907 
1908 /**
1909  * sk_rmem_alloc_get - returns read allocations
1910  * @sk: socket
1911  *
1912  * Returns sk_rmem_alloc
1913  */
1914 static inline int sk_rmem_alloc_get(const struct sock *sk)
1915 {
1916 	return atomic_read(&sk->sk_rmem_alloc);
1917 }
1918 
1919 /**
1920  * sk_has_allocations - check if allocations are outstanding
1921  * @sk: socket
1922  *
1923  * Returns true if socket has write or read allocations
1924  */
1925 static inline bool sk_has_allocations(const struct sock *sk)
1926 {
1927 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1928 }
1929 
1930 /**
1931  * wq_has_sleeper - check if there are any waiting processes
1932  * @wq: struct socket_wq
1933  *
1934  * Returns true if socket_wq has waiting processes
1935  *
1936  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1937  * barrier call. They were added due to the race found within the tcp code.
1938  *
1939  * Consider following tcp code paths:
1940  *
1941  * CPU1                  CPU2
1942  *
1943  * sys_select            receive packet
1944  *   ...                 ...
1945  *   __add_wait_queue    update tp->rcv_nxt
1946  *   ...                 ...
1947  *   tp->rcv_nxt check   sock_def_readable
1948  *   ...                 {
1949  *   schedule               rcu_read_lock();
1950  *                          wq = rcu_dereference(sk->sk_wq);
1951  *                          if (wq && waitqueue_active(&wq->wait))
1952  *                              wake_up_interruptible(&wq->wait)
1953  *                          ...
1954  *                       }
1955  *
1956  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1957  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1958  * could then endup calling schedule and sleep forever if there are no more
1959  * data on the socket.
1960  *
1961  */
1962 static inline bool wq_has_sleeper(struct socket_wq *wq)
1963 {
1964 	/* We need to be sure we are in sync with the
1965 	 * add_wait_queue modifications to the wait queue.
1966 	 *
1967 	 * This memory barrier is paired in the sock_poll_wait.
1968 	 */
1969 	smp_mb();
1970 	return wq && waitqueue_active(&wq->wait);
1971 }
1972 
1973 /**
1974  * sock_poll_wait - place memory barrier behind the poll_wait call.
1975  * @filp:           file
1976  * @wait_address:   socket wait queue
1977  * @p:              poll_table
1978  *
1979  * See the comments in the wq_has_sleeper function.
1980  */
1981 static inline void sock_poll_wait(struct file *filp,
1982 		wait_queue_head_t *wait_address, poll_table *p)
1983 {
1984 	if (!poll_does_not_wait(p) && wait_address) {
1985 		poll_wait(filp, wait_address, p);
1986 		/* We need to be sure we are in sync with the
1987 		 * socket flags modification.
1988 		 *
1989 		 * This memory barrier is paired in the wq_has_sleeper.
1990 		 */
1991 		smp_mb();
1992 	}
1993 }
1994 
1995 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1996 {
1997 	if (sk->sk_txhash) {
1998 		skb->l4_hash = 1;
1999 		skb->hash = sk->sk_txhash;
2000 	}
2001 }
2002 
2003 /*
2004  *	Queue a received datagram if it will fit. Stream and sequenced
2005  *	protocols can't normally use this as they need to fit buffers in
2006  *	and play with them.
2007  *
2008  *	Inlined as it's very short and called for pretty much every
2009  *	packet ever received.
2010  */
2011 
2012 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2013 {
2014 	skb_orphan(skb);
2015 	skb->sk = sk;
2016 	skb->destructor = sock_wfree;
2017 	skb_set_hash_from_sk(skb, sk);
2018 	/*
2019 	 * We used to take a refcount on sk, but following operation
2020 	 * is enough to guarantee sk_free() wont free this sock until
2021 	 * all in-flight packets are completed
2022 	 */
2023 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2024 }
2025 
2026 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2027 {
2028 	skb_orphan(skb);
2029 	skb->sk = sk;
2030 	skb->destructor = sock_rfree;
2031 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2032 	sk_mem_charge(sk, skb->truesize);
2033 }
2034 
2035 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2036 		    unsigned long expires);
2037 
2038 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2039 
2040 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2041 
2042 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2043 
2044 /*
2045  *	Recover an error report and clear atomically
2046  */
2047 
2048 static inline int sock_error(struct sock *sk)
2049 {
2050 	int err;
2051 	if (likely(!sk->sk_err))
2052 		return 0;
2053 	err = xchg(&sk->sk_err, 0);
2054 	return -err;
2055 }
2056 
2057 static inline unsigned long sock_wspace(struct sock *sk)
2058 {
2059 	int amt = 0;
2060 
2061 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2062 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2063 		if (amt < 0)
2064 			amt = 0;
2065 	}
2066 	return amt;
2067 }
2068 
2069 static inline void sk_wake_async(struct sock *sk, int how, int band)
2070 {
2071 	if (sock_flag(sk, SOCK_FASYNC))
2072 		sock_wake_async(sk->sk_socket, how, band);
2073 }
2074 
2075 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2076  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2077  * Note: for send buffers, TCP works better if we can build two skbs at
2078  * minimum.
2079  */
2080 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2081 
2082 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2083 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2084 
2085 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2086 {
2087 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2088 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2089 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2090 	}
2091 }
2092 
2093 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2094 
2095 /**
2096  * sk_page_frag - return an appropriate page_frag
2097  * @sk: socket
2098  *
2099  * If socket allocation mode allows current thread to sleep, it means its
2100  * safe to use the per task page_frag instead of the per socket one.
2101  */
2102 static inline struct page_frag *sk_page_frag(struct sock *sk)
2103 {
2104 	if (sk->sk_allocation & __GFP_WAIT)
2105 		return &current->task_frag;
2106 
2107 	return &sk->sk_frag;
2108 }
2109 
2110 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2111 
2112 /*
2113  *	Default write policy as shown to user space via poll/select/SIGIO
2114  */
2115 static inline bool sock_writeable(const struct sock *sk)
2116 {
2117 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2118 }
2119 
2120 static inline gfp_t gfp_any(void)
2121 {
2122 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2123 }
2124 
2125 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2126 {
2127 	return noblock ? 0 : sk->sk_rcvtimeo;
2128 }
2129 
2130 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2131 {
2132 	return noblock ? 0 : sk->sk_sndtimeo;
2133 }
2134 
2135 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2136 {
2137 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2138 }
2139 
2140 /* Alas, with timeout socket operations are not restartable.
2141  * Compare this to poll().
2142  */
2143 static inline int sock_intr_errno(long timeo)
2144 {
2145 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2146 }
2147 
2148 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2149 			   struct sk_buff *skb);
2150 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2151 			     struct sk_buff *skb);
2152 
2153 static inline void
2154 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2155 {
2156 	ktime_t kt = skb->tstamp;
2157 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2158 
2159 	/*
2160 	 * generate control messages if
2161 	 * - receive time stamping in software requested
2162 	 * - software time stamp available and wanted
2163 	 * - hardware time stamps available and wanted
2164 	 */
2165 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2166 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2167 	    (kt.tv64 &&
2168 	     (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE ||
2169 	      skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP)) ||
2170 	    (hwtstamps->hwtstamp.tv64 &&
2171 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2172 		__sock_recv_timestamp(msg, sk, skb);
2173 	else
2174 		sk->sk_stamp = kt;
2175 
2176 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2177 		__sock_recv_wifi_status(msg, sk, skb);
2178 }
2179 
2180 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2181 			      struct sk_buff *skb);
2182 
2183 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2184 					  struct sk_buff *skb)
2185 {
2186 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2187 			   (1UL << SOCK_RCVTSTAMP))
2188 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2189 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2190 
2191 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2192 		__sock_recv_ts_and_drops(msg, sk, skb);
2193 	else
2194 		sk->sk_stamp = skb->tstamp;
2195 }
2196 
2197 /**
2198  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2199  * @sk:		socket sending this packet
2200  * @tx_flags:	filled with instructions for time stamping
2201  */
2202 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2203 
2204 /**
2205  * sk_eat_skb - Release a skb if it is no longer needed
2206  * @sk: socket to eat this skb from
2207  * @skb: socket buffer to eat
2208  * @copied_early: flag indicating whether DMA operations copied this data early
2209  *
2210  * This routine must be called with interrupts disabled or with the socket
2211  * locked so that the sk_buff queue operation is ok.
2212 */
2213 #ifdef CONFIG_NET_DMA
2214 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2215 {
2216 	__skb_unlink(skb, &sk->sk_receive_queue);
2217 	if (!copied_early)
2218 		__kfree_skb(skb);
2219 	else
2220 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2221 }
2222 #else
2223 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2224 {
2225 	__skb_unlink(skb, &sk->sk_receive_queue);
2226 	__kfree_skb(skb);
2227 }
2228 #endif
2229 
2230 static inline
2231 struct net *sock_net(const struct sock *sk)
2232 {
2233 	return read_pnet(&sk->sk_net);
2234 }
2235 
2236 static inline
2237 void sock_net_set(struct sock *sk, struct net *net)
2238 {
2239 	write_pnet(&sk->sk_net, net);
2240 }
2241 
2242 /*
2243  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2244  * They should not hold a reference to a namespace in order to allow
2245  * to stop it.
2246  * Sockets after sk_change_net should be released using sk_release_kernel
2247  */
2248 static inline void sk_change_net(struct sock *sk, struct net *net)
2249 {
2250 	struct net *current_net = sock_net(sk);
2251 
2252 	if (!net_eq(current_net, net)) {
2253 		put_net(current_net);
2254 		sock_net_set(sk, hold_net(net));
2255 	}
2256 }
2257 
2258 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2259 {
2260 	if (skb->sk) {
2261 		struct sock *sk = skb->sk;
2262 
2263 		skb->destructor = NULL;
2264 		skb->sk = NULL;
2265 		return sk;
2266 	}
2267 	return NULL;
2268 }
2269 
2270 void sock_enable_timestamp(struct sock *sk, int flag);
2271 int sock_get_timestamp(struct sock *, struct timeval __user *);
2272 int sock_get_timestampns(struct sock *, struct timespec __user *);
2273 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2274 		       int type);
2275 
2276 bool sk_ns_capable(const struct sock *sk,
2277 		   struct user_namespace *user_ns, int cap);
2278 bool sk_capable(const struct sock *sk, int cap);
2279 bool sk_net_capable(const struct sock *sk, int cap);
2280 
2281 /*
2282  *	Enable debug/info messages
2283  */
2284 extern int net_msg_warn;
2285 #define NETDEBUG(fmt, args...) \
2286 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2287 
2288 #define LIMIT_NETDEBUG(fmt, args...) \
2289 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2290 
2291 extern __u32 sysctl_wmem_max;
2292 extern __u32 sysctl_rmem_max;
2293 
2294 extern int sysctl_optmem_max;
2295 
2296 extern __u32 sysctl_wmem_default;
2297 extern __u32 sysctl_rmem_default;
2298 
2299 #endif	/* _SOCK_H */
2300