1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 int skc_bound_dev_if; 188 union { 189 struct hlist_node skc_bind_node; 190 struct hlist_nulls_node skc_portaddr_node; 191 }; 192 struct proto *skc_prot; 193 #ifdef CONFIG_NET_NS 194 struct net *skc_net; 195 #endif 196 197 #if IS_ENABLED(CONFIG_IPV6) 198 struct in6_addr skc_v6_daddr; 199 struct in6_addr skc_v6_rcv_saddr; 200 #endif 201 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 int skc_tx_queue_mapping; 214 atomic_t skc_refcnt; 215 /* private: */ 216 int skc_dontcopy_end[0]; 217 /* public: */ 218 }; 219 220 struct cg_proto; 221 /** 222 * struct sock - network layer representation of sockets 223 * @__sk_common: shared layout with inet_timewait_sock 224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 226 * @sk_lock: synchronizer 227 * @sk_rcvbuf: size of receive buffer in bytes 228 * @sk_wq: sock wait queue and async head 229 * @sk_rx_dst: receive input route used by early demux 230 * @sk_dst_cache: destination cache 231 * @sk_dst_lock: destination cache lock 232 * @sk_policy: flow policy 233 * @sk_receive_queue: incoming packets 234 * @sk_wmem_alloc: transmit queue bytes committed 235 * @sk_write_queue: Packet sending queue 236 * @sk_async_wait_queue: DMA copied packets 237 * @sk_omem_alloc: "o" is "option" or "other" 238 * @sk_wmem_queued: persistent queue size 239 * @sk_forward_alloc: space allocated forward 240 * @sk_napi_id: id of the last napi context to receive data for sk 241 * @sk_ll_usec: usecs to busypoll when there is no data 242 * @sk_allocation: allocation mode 243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 245 * @sk_sndbuf: size of send buffer in bytes 246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 249 * @sk_no_check_rx: allow zero checksum in RX packets 250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 253 * @sk_gso_max_size: Maximum GSO segment size to build 254 * @sk_gso_max_segs: Maximum number of GSO segments 255 * @sk_lingertime: %SO_LINGER l_linger setting 256 * @sk_backlog: always used with the per-socket spinlock held 257 * @sk_callback_lock: used with the callbacks in the end of this struct 258 * @sk_error_queue: rarely used 259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 260 * IPV6_ADDRFORM for instance) 261 * @sk_err: last error 262 * @sk_err_soft: errors that don't cause failure but are the cause of a 263 * persistent failure not just 'timed out' 264 * @sk_drops: raw/udp drops counter 265 * @sk_ack_backlog: current listen backlog 266 * @sk_max_ack_backlog: listen backlog set in listen() 267 * @sk_priority: %SO_PRIORITY setting 268 * @sk_cgrp_prioidx: socket group's priority map index 269 * @sk_type: socket type (%SOCK_STREAM, etc) 270 * @sk_protocol: which protocol this socket belongs in this network family 271 * @sk_peer_pid: &struct pid for this socket's peer 272 * @sk_peer_cred: %SO_PEERCRED setting 273 * @sk_rcvlowat: %SO_RCVLOWAT setting 274 * @sk_rcvtimeo: %SO_RCVTIMEO setting 275 * @sk_sndtimeo: %SO_SNDTIMEO setting 276 * @sk_rxhash: flow hash received from netif layer 277 * @sk_txhash: computed flow hash for use on transmit 278 * @sk_filter: socket filtering instructions 279 * @sk_protinfo: private area, net family specific, when not using slab 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_socket: Identd and reporting IO signals 284 * @sk_user_data: RPC layer private data 285 * @sk_frag: cached page frag 286 * @sk_peek_off: current peek_offset value 287 * @sk_send_head: front of stuff to transmit 288 * @sk_security: used by security modules 289 * @sk_mark: generic packet mark 290 * @sk_classid: this socket's cgroup classid 291 * @sk_cgrp: this socket's cgroup-specific proto data 292 * @sk_write_pending: a write to stream socket waits to start 293 * @sk_state_change: callback to indicate change in the state of the sock 294 * @sk_data_ready: callback to indicate there is data to be processed 295 * @sk_write_space: callback to indicate there is bf sending space available 296 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 297 * @sk_backlog_rcv: callback to process the backlog 298 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 299 */ 300 struct sock { 301 /* 302 * Now struct inet_timewait_sock also uses sock_common, so please just 303 * don't add nothing before this first member (__sk_common) --acme 304 */ 305 struct sock_common __sk_common; 306 #define sk_node __sk_common.skc_node 307 #define sk_nulls_node __sk_common.skc_nulls_node 308 #define sk_refcnt __sk_common.skc_refcnt 309 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 310 311 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 312 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 313 #define sk_hash __sk_common.skc_hash 314 #define sk_portpair __sk_common.skc_portpair 315 #define sk_num __sk_common.skc_num 316 #define sk_dport __sk_common.skc_dport 317 #define sk_addrpair __sk_common.skc_addrpair 318 #define sk_daddr __sk_common.skc_daddr 319 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 320 #define sk_family __sk_common.skc_family 321 #define sk_state __sk_common.skc_state 322 #define sk_reuse __sk_common.skc_reuse 323 #define sk_reuseport __sk_common.skc_reuseport 324 #define sk_ipv6only __sk_common.skc_ipv6only 325 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 326 #define sk_bind_node __sk_common.skc_bind_node 327 #define sk_prot __sk_common.skc_prot 328 #define sk_net __sk_common.skc_net 329 #define sk_v6_daddr __sk_common.skc_v6_daddr 330 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 331 332 socket_lock_t sk_lock; 333 struct sk_buff_head sk_receive_queue; 334 /* 335 * The backlog queue is special, it is always used with 336 * the per-socket spinlock held and requires low latency 337 * access. Therefore we special case it's implementation. 338 * Note : rmem_alloc is in this structure to fill a hole 339 * on 64bit arches, not because its logically part of 340 * backlog. 341 */ 342 struct { 343 atomic_t rmem_alloc; 344 int len; 345 struct sk_buff *head; 346 struct sk_buff *tail; 347 } sk_backlog; 348 #define sk_rmem_alloc sk_backlog.rmem_alloc 349 int sk_forward_alloc; 350 #ifdef CONFIG_RPS 351 __u32 sk_rxhash; 352 #endif 353 __u32 sk_txhash; 354 #ifdef CONFIG_NET_RX_BUSY_POLL 355 unsigned int sk_napi_id; 356 unsigned int sk_ll_usec; 357 #endif 358 atomic_t sk_drops; 359 int sk_rcvbuf; 360 361 struct sk_filter __rcu *sk_filter; 362 struct socket_wq __rcu *sk_wq; 363 364 #ifdef CONFIG_NET_DMA 365 struct sk_buff_head sk_async_wait_queue; 366 #endif 367 368 #ifdef CONFIG_XFRM 369 struct xfrm_policy *sk_policy[2]; 370 #endif 371 unsigned long sk_flags; 372 struct dst_entry *sk_rx_dst; 373 struct dst_entry __rcu *sk_dst_cache; 374 spinlock_t sk_dst_lock; 375 atomic_t sk_wmem_alloc; 376 atomic_t sk_omem_alloc; 377 int sk_sndbuf; 378 struct sk_buff_head sk_write_queue; 379 kmemcheck_bitfield_begin(flags); 380 unsigned int sk_shutdown : 2, 381 sk_no_check_tx : 1, 382 sk_no_check_rx : 1, 383 sk_userlocks : 4, 384 sk_protocol : 8, 385 sk_type : 16; 386 kmemcheck_bitfield_end(flags); 387 int sk_wmem_queued; 388 gfp_t sk_allocation; 389 u32 sk_pacing_rate; /* bytes per second */ 390 u32 sk_max_pacing_rate; 391 netdev_features_t sk_route_caps; 392 netdev_features_t sk_route_nocaps; 393 int sk_gso_type; 394 unsigned int sk_gso_max_size; 395 u16 sk_gso_max_segs; 396 int sk_rcvlowat; 397 unsigned long sk_lingertime; 398 struct sk_buff_head sk_error_queue; 399 struct proto *sk_prot_creator; 400 rwlock_t sk_callback_lock; 401 int sk_err, 402 sk_err_soft; 403 unsigned short sk_ack_backlog; 404 unsigned short sk_max_ack_backlog; 405 __u32 sk_priority; 406 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 407 __u32 sk_cgrp_prioidx; 408 #endif 409 struct pid *sk_peer_pid; 410 const struct cred *sk_peer_cred; 411 long sk_rcvtimeo; 412 long sk_sndtimeo; 413 void *sk_protinfo; 414 struct timer_list sk_timer; 415 ktime_t sk_stamp; 416 u16 sk_tsflags; 417 struct socket *sk_socket; 418 void *sk_user_data; 419 struct page_frag sk_frag; 420 struct sk_buff *sk_send_head; 421 __s32 sk_peek_off; 422 int sk_write_pending; 423 #ifdef CONFIG_SECURITY 424 void *sk_security; 425 #endif 426 __u32 sk_mark; 427 u32 sk_classid; 428 struct cg_proto *sk_cgrp; 429 void (*sk_state_change)(struct sock *sk); 430 void (*sk_data_ready)(struct sock *sk); 431 void (*sk_write_space)(struct sock *sk); 432 void (*sk_error_report)(struct sock *sk); 433 int (*sk_backlog_rcv)(struct sock *sk, 434 struct sk_buff *skb); 435 void (*sk_destruct)(struct sock *sk); 436 }; 437 438 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 439 440 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 441 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 442 443 /* 444 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 445 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 446 * on a socket means that the socket will reuse everybody else's port 447 * without looking at the other's sk_reuse value. 448 */ 449 450 #define SK_NO_REUSE 0 451 #define SK_CAN_REUSE 1 452 #define SK_FORCE_REUSE 2 453 454 static inline int sk_peek_offset(struct sock *sk, int flags) 455 { 456 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 457 return sk->sk_peek_off; 458 else 459 return 0; 460 } 461 462 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 463 { 464 if (sk->sk_peek_off >= 0) { 465 if (sk->sk_peek_off >= val) 466 sk->sk_peek_off -= val; 467 else 468 sk->sk_peek_off = 0; 469 } 470 } 471 472 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 473 { 474 if (sk->sk_peek_off >= 0) 475 sk->sk_peek_off += val; 476 } 477 478 /* 479 * Hashed lists helper routines 480 */ 481 static inline struct sock *sk_entry(const struct hlist_node *node) 482 { 483 return hlist_entry(node, struct sock, sk_node); 484 } 485 486 static inline struct sock *__sk_head(const struct hlist_head *head) 487 { 488 return hlist_entry(head->first, struct sock, sk_node); 489 } 490 491 static inline struct sock *sk_head(const struct hlist_head *head) 492 { 493 return hlist_empty(head) ? NULL : __sk_head(head); 494 } 495 496 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 497 { 498 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 499 } 500 501 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 502 { 503 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 504 } 505 506 static inline struct sock *sk_next(const struct sock *sk) 507 { 508 return sk->sk_node.next ? 509 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 510 } 511 512 static inline struct sock *sk_nulls_next(const struct sock *sk) 513 { 514 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 515 hlist_nulls_entry(sk->sk_nulls_node.next, 516 struct sock, sk_nulls_node) : 517 NULL; 518 } 519 520 static inline bool sk_unhashed(const struct sock *sk) 521 { 522 return hlist_unhashed(&sk->sk_node); 523 } 524 525 static inline bool sk_hashed(const struct sock *sk) 526 { 527 return !sk_unhashed(sk); 528 } 529 530 static inline void sk_node_init(struct hlist_node *node) 531 { 532 node->pprev = NULL; 533 } 534 535 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 536 { 537 node->pprev = NULL; 538 } 539 540 static inline void __sk_del_node(struct sock *sk) 541 { 542 __hlist_del(&sk->sk_node); 543 } 544 545 /* NB: equivalent to hlist_del_init_rcu */ 546 static inline bool __sk_del_node_init(struct sock *sk) 547 { 548 if (sk_hashed(sk)) { 549 __sk_del_node(sk); 550 sk_node_init(&sk->sk_node); 551 return true; 552 } 553 return false; 554 } 555 556 /* Grab socket reference count. This operation is valid only 557 when sk is ALREADY grabbed f.e. it is found in hash table 558 or a list and the lookup is made under lock preventing hash table 559 modifications. 560 */ 561 562 static inline void sock_hold(struct sock *sk) 563 { 564 atomic_inc(&sk->sk_refcnt); 565 } 566 567 /* Ungrab socket in the context, which assumes that socket refcnt 568 cannot hit zero, f.e. it is true in context of any socketcall. 569 */ 570 static inline void __sock_put(struct sock *sk) 571 { 572 atomic_dec(&sk->sk_refcnt); 573 } 574 575 static inline bool sk_del_node_init(struct sock *sk) 576 { 577 bool rc = __sk_del_node_init(sk); 578 579 if (rc) { 580 /* paranoid for a while -acme */ 581 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 582 __sock_put(sk); 583 } 584 return rc; 585 } 586 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 587 588 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 589 { 590 if (sk_hashed(sk)) { 591 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 592 return true; 593 } 594 return false; 595 } 596 597 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 598 { 599 bool rc = __sk_nulls_del_node_init_rcu(sk); 600 601 if (rc) { 602 /* paranoid for a while -acme */ 603 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 604 __sock_put(sk); 605 } 606 return rc; 607 } 608 609 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 610 { 611 hlist_add_head(&sk->sk_node, list); 612 } 613 614 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 615 { 616 sock_hold(sk); 617 __sk_add_node(sk, list); 618 } 619 620 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 621 { 622 sock_hold(sk); 623 hlist_add_head_rcu(&sk->sk_node, list); 624 } 625 626 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 627 { 628 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 629 } 630 631 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 632 { 633 sock_hold(sk); 634 __sk_nulls_add_node_rcu(sk, list); 635 } 636 637 static inline void __sk_del_bind_node(struct sock *sk) 638 { 639 __hlist_del(&sk->sk_bind_node); 640 } 641 642 static inline void sk_add_bind_node(struct sock *sk, 643 struct hlist_head *list) 644 { 645 hlist_add_head(&sk->sk_bind_node, list); 646 } 647 648 #define sk_for_each(__sk, list) \ 649 hlist_for_each_entry(__sk, list, sk_node) 650 #define sk_for_each_rcu(__sk, list) \ 651 hlist_for_each_entry_rcu(__sk, list, sk_node) 652 #define sk_nulls_for_each(__sk, node, list) \ 653 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 654 #define sk_nulls_for_each_rcu(__sk, node, list) \ 655 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 656 #define sk_for_each_from(__sk) \ 657 hlist_for_each_entry_from(__sk, sk_node) 658 #define sk_nulls_for_each_from(__sk, node) \ 659 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 660 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 661 #define sk_for_each_safe(__sk, tmp, list) \ 662 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 663 #define sk_for_each_bound(__sk, list) \ 664 hlist_for_each_entry(__sk, list, sk_bind_node) 665 666 /** 667 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 668 * @tpos: the type * to use as a loop cursor. 669 * @pos: the &struct hlist_node to use as a loop cursor. 670 * @head: the head for your list. 671 * @offset: offset of hlist_node within the struct. 672 * 673 */ 674 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 675 for (pos = (head)->first; \ 676 (!is_a_nulls(pos)) && \ 677 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 678 pos = pos->next) 679 680 static inline struct user_namespace *sk_user_ns(struct sock *sk) 681 { 682 /* Careful only use this in a context where these parameters 683 * can not change and must all be valid, such as recvmsg from 684 * userspace. 685 */ 686 return sk->sk_socket->file->f_cred->user_ns; 687 } 688 689 /* Sock flags */ 690 enum sock_flags { 691 SOCK_DEAD, 692 SOCK_DONE, 693 SOCK_URGINLINE, 694 SOCK_KEEPOPEN, 695 SOCK_LINGER, 696 SOCK_DESTROY, 697 SOCK_BROADCAST, 698 SOCK_TIMESTAMP, 699 SOCK_ZAPPED, 700 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 701 SOCK_DBG, /* %SO_DEBUG setting */ 702 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 703 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 704 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 705 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 706 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 707 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 708 SOCK_FASYNC, /* fasync() active */ 709 SOCK_RXQ_OVFL, 710 SOCK_ZEROCOPY, /* buffers from userspace */ 711 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 712 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 713 * Will use last 4 bytes of packet sent from 714 * user-space instead. 715 */ 716 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 717 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 718 }; 719 720 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 721 { 722 nsk->sk_flags = osk->sk_flags; 723 } 724 725 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 726 { 727 __set_bit(flag, &sk->sk_flags); 728 } 729 730 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 731 { 732 __clear_bit(flag, &sk->sk_flags); 733 } 734 735 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 736 { 737 return test_bit(flag, &sk->sk_flags); 738 } 739 740 #ifdef CONFIG_NET 741 extern struct static_key memalloc_socks; 742 static inline int sk_memalloc_socks(void) 743 { 744 return static_key_false(&memalloc_socks); 745 } 746 #else 747 748 static inline int sk_memalloc_socks(void) 749 { 750 return 0; 751 } 752 753 #endif 754 755 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 756 { 757 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 758 } 759 760 static inline void sk_acceptq_removed(struct sock *sk) 761 { 762 sk->sk_ack_backlog--; 763 } 764 765 static inline void sk_acceptq_added(struct sock *sk) 766 { 767 sk->sk_ack_backlog++; 768 } 769 770 static inline bool sk_acceptq_is_full(const struct sock *sk) 771 { 772 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 773 } 774 775 /* 776 * Compute minimal free write space needed to queue new packets. 777 */ 778 static inline int sk_stream_min_wspace(const struct sock *sk) 779 { 780 return sk->sk_wmem_queued >> 1; 781 } 782 783 static inline int sk_stream_wspace(const struct sock *sk) 784 { 785 return sk->sk_sndbuf - sk->sk_wmem_queued; 786 } 787 788 void sk_stream_write_space(struct sock *sk); 789 790 /* OOB backlog add */ 791 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 792 { 793 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 794 skb_dst_force(skb); 795 796 if (!sk->sk_backlog.tail) 797 sk->sk_backlog.head = skb; 798 else 799 sk->sk_backlog.tail->next = skb; 800 801 sk->sk_backlog.tail = skb; 802 skb->next = NULL; 803 } 804 805 /* 806 * Take into account size of receive queue and backlog queue 807 * Do not take into account this skb truesize, 808 * to allow even a single big packet to come. 809 */ 810 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 811 { 812 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 813 814 return qsize > limit; 815 } 816 817 /* The per-socket spinlock must be held here. */ 818 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 819 unsigned int limit) 820 { 821 if (sk_rcvqueues_full(sk, limit)) 822 return -ENOBUFS; 823 824 __sk_add_backlog(sk, skb); 825 sk->sk_backlog.len += skb->truesize; 826 return 0; 827 } 828 829 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 830 831 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 832 { 833 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 834 return __sk_backlog_rcv(sk, skb); 835 836 return sk->sk_backlog_rcv(sk, skb); 837 } 838 839 static inline void sock_rps_record_flow_hash(__u32 hash) 840 { 841 #ifdef CONFIG_RPS 842 struct rps_sock_flow_table *sock_flow_table; 843 844 rcu_read_lock(); 845 sock_flow_table = rcu_dereference(rps_sock_flow_table); 846 rps_record_sock_flow(sock_flow_table, hash); 847 rcu_read_unlock(); 848 #endif 849 } 850 851 static inline void sock_rps_reset_flow_hash(__u32 hash) 852 { 853 #ifdef CONFIG_RPS 854 struct rps_sock_flow_table *sock_flow_table; 855 856 rcu_read_lock(); 857 sock_flow_table = rcu_dereference(rps_sock_flow_table); 858 rps_reset_sock_flow(sock_flow_table, hash); 859 rcu_read_unlock(); 860 #endif 861 } 862 863 static inline void sock_rps_record_flow(const struct sock *sk) 864 { 865 #ifdef CONFIG_RPS 866 sock_rps_record_flow_hash(sk->sk_rxhash); 867 #endif 868 } 869 870 static inline void sock_rps_reset_flow(const struct sock *sk) 871 { 872 #ifdef CONFIG_RPS 873 sock_rps_reset_flow_hash(sk->sk_rxhash); 874 #endif 875 } 876 877 static inline void sock_rps_save_rxhash(struct sock *sk, 878 const struct sk_buff *skb) 879 { 880 #ifdef CONFIG_RPS 881 if (unlikely(sk->sk_rxhash != skb->hash)) { 882 sock_rps_reset_flow(sk); 883 sk->sk_rxhash = skb->hash; 884 } 885 #endif 886 } 887 888 static inline void sock_rps_reset_rxhash(struct sock *sk) 889 { 890 #ifdef CONFIG_RPS 891 sock_rps_reset_flow(sk); 892 sk->sk_rxhash = 0; 893 #endif 894 } 895 896 #define sk_wait_event(__sk, __timeo, __condition) \ 897 ({ int __rc; \ 898 release_sock(__sk); \ 899 __rc = __condition; \ 900 if (!__rc) { \ 901 *(__timeo) = schedule_timeout(*(__timeo)); \ 902 } \ 903 lock_sock(__sk); \ 904 __rc = __condition; \ 905 __rc; \ 906 }) 907 908 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 909 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 910 void sk_stream_wait_close(struct sock *sk, long timeo_p); 911 int sk_stream_error(struct sock *sk, int flags, int err); 912 void sk_stream_kill_queues(struct sock *sk); 913 void sk_set_memalloc(struct sock *sk); 914 void sk_clear_memalloc(struct sock *sk); 915 916 int sk_wait_data(struct sock *sk, long *timeo); 917 918 struct request_sock_ops; 919 struct timewait_sock_ops; 920 struct inet_hashinfo; 921 struct raw_hashinfo; 922 struct module; 923 924 /* 925 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 926 * un-modified. Special care is taken when initializing object to zero. 927 */ 928 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 929 { 930 if (offsetof(struct sock, sk_node.next) != 0) 931 memset(sk, 0, offsetof(struct sock, sk_node.next)); 932 memset(&sk->sk_node.pprev, 0, 933 size - offsetof(struct sock, sk_node.pprev)); 934 } 935 936 /* Networking protocol blocks we attach to sockets. 937 * socket layer -> transport layer interface 938 * transport -> network interface is defined by struct inet_proto 939 */ 940 struct proto { 941 void (*close)(struct sock *sk, 942 long timeout); 943 int (*connect)(struct sock *sk, 944 struct sockaddr *uaddr, 945 int addr_len); 946 int (*disconnect)(struct sock *sk, int flags); 947 948 struct sock * (*accept)(struct sock *sk, int flags, int *err); 949 950 int (*ioctl)(struct sock *sk, int cmd, 951 unsigned long arg); 952 int (*init)(struct sock *sk); 953 void (*destroy)(struct sock *sk); 954 void (*shutdown)(struct sock *sk, int how); 955 int (*setsockopt)(struct sock *sk, int level, 956 int optname, char __user *optval, 957 unsigned int optlen); 958 int (*getsockopt)(struct sock *sk, int level, 959 int optname, char __user *optval, 960 int __user *option); 961 #ifdef CONFIG_COMPAT 962 int (*compat_setsockopt)(struct sock *sk, 963 int level, 964 int optname, char __user *optval, 965 unsigned int optlen); 966 int (*compat_getsockopt)(struct sock *sk, 967 int level, 968 int optname, char __user *optval, 969 int __user *option); 970 int (*compat_ioctl)(struct sock *sk, 971 unsigned int cmd, unsigned long arg); 972 #endif 973 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 974 struct msghdr *msg, size_t len); 975 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 976 struct msghdr *msg, 977 size_t len, int noblock, int flags, 978 int *addr_len); 979 int (*sendpage)(struct sock *sk, struct page *page, 980 int offset, size_t size, int flags); 981 int (*bind)(struct sock *sk, 982 struct sockaddr *uaddr, int addr_len); 983 984 int (*backlog_rcv) (struct sock *sk, 985 struct sk_buff *skb); 986 987 void (*release_cb)(struct sock *sk); 988 void (*mtu_reduced)(struct sock *sk); 989 990 /* Keeping track of sk's, looking them up, and port selection methods. */ 991 void (*hash)(struct sock *sk); 992 void (*unhash)(struct sock *sk); 993 void (*rehash)(struct sock *sk); 994 int (*get_port)(struct sock *sk, unsigned short snum); 995 void (*clear_sk)(struct sock *sk, int size); 996 997 /* Keeping track of sockets in use */ 998 #ifdef CONFIG_PROC_FS 999 unsigned int inuse_idx; 1000 #endif 1001 1002 bool (*stream_memory_free)(const struct sock *sk); 1003 /* Memory pressure */ 1004 void (*enter_memory_pressure)(struct sock *sk); 1005 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1006 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1007 /* 1008 * Pressure flag: try to collapse. 1009 * Technical note: it is used by multiple contexts non atomically. 1010 * All the __sk_mem_schedule() is of this nature: accounting 1011 * is strict, actions are advisory and have some latency. 1012 */ 1013 int *memory_pressure; 1014 long *sysctl_mem; 1015 int *sysctl_wmem; 1016 int *sysctl_rmem; 1017 int max_header; 1018 bool no_autobind; 1019 1020 struct kmem_cache *slab; 1021 unsigned int obj_size; 1022 int slab_flags; 1023 1024 struct percpu_counter *orphan_count; 1025 1026 struct request_sock_ops *rsk_prot; 1027 struct timewait_sock_ops *twsk_prot; 1028 1029 union { 1030 struct inet_hashinfo *hashinfo; 1031 struct udp_table *udp_table; 1032 struct raw_hashinfo *raw_hash; 1033 } h; 1034 1035 struct module *owner; 1036 1037 char name[32]; 1038 1039 struct list_head node; 1040 #ifdef SOCK_REFCNT_DEBUG 1041 atomic_t socks; 1042 #endif 1043 #ifdef CONFIG_MEMCG_KMEM 1044 /* 1045 * cgroup specific init/deinit functions. Called once for all 1046 * protocols that implement it, from cgroups populate function. 1047 * This function has to setup any files the protocol want to 1048 * appear in the kmem cgroup filesystem. 1049 */ 1050 int (*init_cgroup)(struct mem_cgroup *memcg, 1051 struct cgroup_subsys *ss); 1052 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1053 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1054 #endif 1055 }; 1056 1057 /* 1058 * Bits in struct cg_proto.flags 1059 */ 1060 enum cg_proto_flags { 1061 /* Currently active and new sockets should be assigned to cgroups */ 1062 MEMCG_SOCK_ACTIVE, 1063 /* It was ever activated; we must disarm static keys on destruction */ 1064 MEMCG_SOCK_ACTIVATED, 1065 }; 1066 1067 struct cg_proto { 1068 struct res_counter memory_allocated; /* Current allocated memory. */ 1069 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1070 int memory_pressure; 1071 long sysctl_mem[3]; 1072 unsigned long flags; 1073 /* 1074 * memcg field is used to find which memcg we belong directly 1075 * Each memcg struct can hold more than one cg_proto, so container_of 1076 * won't really cut. 1077 * 1078 * The elegant solution would be having an inverse function to 1079 * proto_cgroup in struct proto, but that means polluting the structure 1080 * for everybody, instead of just for memcg users. 1081 */ 1082 struct mem_cgroup *memcg; 1083 }; 1084 1085 int proto_register(struct proto *prot, int alloc_slab); 1086 void proto_unregister(struct proto *prot); 1087 1088 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1089 { 1090 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1091 } 1092 1093 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1094 { 1095 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1096 } 1097 1098 #ifdef SOCK_REFCNT_DEBUG 1099 static inline void sk_refcnt_debug_inc(struct sock *sk) 1100 { 1101 atomic_inc(&sk->sk_prot->socks); 1102 } 1103 1104 static inline void sk_refcnt_debug_dec(struct sock *sk) 1105 { 1106 atomic_dec(&sk->sk_prot->socks); 1107 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1108 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1109 } 1110 1111 static inline void sk_refcnt_debug_release(const struct sock *sk) 1112 { 1113 if (atomic_read(&sk->sk_refcnt) != 1) 1114 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1115 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1116 } 1117 #else /* SOCK_REFCNT_DEBUG */ 1118 #define sk_refcnt_debug_inc(sk) do { } while (0) 1119 #define sk_refcnt_debug_dec(sk) do { } while (0) 1120 #define sk_refcnt_debug_release(sk) do { } while (0) 1121 #endif /* SOCK_REFCNT_DEBUG */ 1122 1123 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1124 extern struct static_key memcg_socket_limit_enabled; 1125 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1126 struct cg_proto *cg_proto) 1127 { 1128 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1129 } 1130 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1131 #else 1132 #define mem_cgroup_sockets_enabled 0 1133 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1134 struct cg_proto *cg_proto) 1135 { 1136 return NULL; 1137 } 1138 #endif 1139 1140 static inline bool sk_stream_memory_free(const struct sock *sk) 1141 { 1142 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1143 return false; 1144 1145 return sk->sk_prot->stream_memory_free ? 1146 sk->sk_prot->stream_memory_free(sk) : true; 1147 } 1148 1149 static inline bool sk_stream_is_writeable(const struct sock *sk) 1150 { 1151 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1152 sk_stream_memory_free(sk); 1153 } 1154 1155 1156 static inline bool sk_has_memory_pressure(const struct sock *sk) 1157 { 1158 return sk->sk_prot->memory_pressure != NULL; 1159 } 1160 1161 static inline bool sk_under_memory_pressure(const struct sock *sk) 1162 { 1163 if (!sk->sk_prot->memory_pressure) 1164 return false; 1165 1166 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1167 return !!sk->sk_cgrp->memory_pressure; 1168 1169 return !!*sk->sk_prot->memory_pressure; 1170 } 1171 1172 static inline void sk_leave_memory_pressure(struct sock *sk) 1173 { 1174 int *memory_pressure = sk->sk_prot->memory_pressure; 1175 1176 if (!memory_pressure) 1177 return; 1178 1179 if (*memory_pressure) 1180 *memory_pressure = 0; 1181 1182 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1183 struct cg_proto *cg_proto = sk->sk_cgrp; 1184 struct proto *prot = sk->sk_prot; 1185 1186 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1187 cg_proto->memory_pressure = 0; 1188 } 1189 1190 } 1191 1192 static inline void sk_enter_memory_pressure(struct sock *sk) 1193 { 1194 if (!sk->sk_prot->enter_memory_pressure) 1195 return; 1196 1197 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1198 struct cg_proto *cg_proto = sk->sk_cgrp; 1199 struct proto *prot = sk->sk_prot; 1200 1201 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1202 cg_proto->memory_pressure = 1; 1203 } 1204 1205 sk->sk_prot->enter_memory_pressure(sk); 1206 } 1207 1208 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1209 { 1210 long *prot = sk->sk_prot->sysctl_mem; 1211 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1212 prot = sk->sk_cgrp->sysctl_mem; 1213 return prot[index]; 1214 } 1215 1216 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1217 unsigned long amt, 1218 int *parent_status) 1219 { 1220 struct res_counter *fail; 1221 int ret; 1222 1223 ret = res_counter_charge_nofail(&prot->memory_allocated, 1224 amt << PAGE_SHIFT, &fail); 1225 if (ret < 0) 1226 *parent_status = OVER_LIMIT; 1227 } 1228 1229 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1230 unsigned long amt) 1231 { 1232 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); 1233 } 1234 1235 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1236 { 1237 u64 ret; 1238 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); 1239 return ret >> PAGE_SHIFT; 1240 } 1241 1242 static inline long 1243 sk_memory_allocated(const struct sock *sk) 1244 { 1245 struct proto *prot = sk->sk_prot; 1246 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1247 return memcg_memory_allocated_read(sk->sk_cgrp); 1248 1249 return atomic_long_read(prot->memory_allocated); 1250 } 1251 1252 static inline long 1253 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1254 { 1255 struct proto *prot = sk->sk_prot; 1256 1257 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1258 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1259 /* update the root cgroup regardless */ 1260 atomic_long_add_return(amt, prot->memory_allocated); 1261 return memcg_memory_allocated_read(sk->sk_cgrp); 1262 } 1263 1264 return atomic_long_add_return(amt, prot->memory_allocated); 1265 } 1266 1267 static inline void 1268 sk_memory_allocated_sub(struct sock *sk, int amt) 1269 { 1270 struct proto *prot = sk->sk_prot; 1271 1272 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1273 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1274 1275 atomic_long_sub(amt, prot->memory_allocated); 1276 } 1277 1278 static inline void sk_sockets_allocated_dec(struct sock *sk) 1279 { 1280 struct proto *prot = sk->sk_prot; 1281 1282 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1283 struct cg_proto *cg_proto = sk->sk_cgrp; 1284 1285 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1286 percpu_counter_dec(&cg_proto->sockets_allocated); 1287 } 1288 1289 percpu_counter_dec(prot->sockets_allocated); 1290 } 1291 1292 static inline void sk_sockets_allocated_inc(struct sock *sk) 1293 { 1294 struct proto *prot = sk->sk_prot; 1295 1296 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1297 struct cg_proto *cg_proto = sk->sk_cgrp; 1298 1299 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1300 percpu_counter_inc(&cg_proto->sockets_allocated); 1301 } 1302 1303 percpu_counter_inc(prot->sockets_allocated); 1304 } 1305 1306 static inline int 1307 sk_sockets_allocated_read_positive(struct sock *sk) 1308 { 1309 struct proto *prot = sk->sk_prot; 1310 1311 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1312 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1313 1314 return percpu_counter_read_positive(prot->sockets_allocated); 1315 } 1316 1317 static inline int 1318 proto_sockets_allocated_sum_positive(struct proto *prot) 1319 { 1320 return percpu_counter_sum_positive(prot->sockets_allocated); 1321 } 1322 1323 static inline long 1324 proto_memory_allocated(struct proto *prot) 1325 { 1326 return atomic_long_read(prot->memory_allocated); 1327 } 1328 1329 static inline bool 1330 proto_memory_pressure(struct proto *prot) 1331 { 1332 if (!prot->memory_pressure) 1333 return false; 1334 return !!*prot->memory_pressure; 1335 } 1336 1337 1338 #ifdef CONFIG_PROC_FS 1339 /* Called with local bh disabled */ 1340 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1341 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1342 #else 1343 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1344 int inc) 1345 { 1346 } 1347 #endif 1348 1349 1350 /* With per-bucket locks this operation is not-atomic, so that 1351 * this version is not worse. 1352 */ 1353 static inline void __sk_prot_rehash(struct sock *sk) 1354 { 1355 sk->sk_prot->unhash(sk); 1356 sk->sk_prot->hash(sk); 1357 } 1358 1359 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1360 1361 /* About 10 seconds */ 1362 #define SOCK_DESTROY_TIME (10*HZ) 1363 1364 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1365 #define PROT_SOCK 1024 1366 1367 #define SHUTDOWN_MASK 3 1368 #define RCV_SHUTDOWN 1 1369 #define SEND_SHUTDOWN 2 1370 1371 #define SOCK_SNDBUF_LOCK 1 1372 #define SOCK_RCVBUF_LOCK 2 1373 #define SOCK_BINDADDR_LOCK 4 1374 #define SOCK_BINDPORT_LOCK 8 1375 1376 /* sock_iocb: used to kick off async processing of socket ios */ 1377 struct sock_iocb { 1378 struct list_head list; 1379 1380 int flags; 1381 int size; 1382 struct socket *sock; 1383 struct sock *sk; 1384 struct scm_cookie *scm; 1385 struct msghdr *msg, async_msg; 1386 struct kiocb *kiocb; 1387 }; 1388 1389 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1390 { 1391 return (struct sock_iocb *)iocb->private; 1392 } 1393 1394 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1395 { 1396 return si->kiocb; 1397 } 1398 1399 struct socket_alloc { 1400 struct socket socket; 1401 struct inode vfs_inode; 1402 }; 1403 1404 static inline struct socket *SOCKET_I(struct inode *inode) 1405 { 1406 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1407 } 1408 1409 static inline struct inode *SOCK_INODE(struct socket *socket) 1410 { 1411 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1412 } 1413 1414 /* 1415 * Functions for memory accounting 1416 */ 1417 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1418 void __sk_mem_reclaim(struct sock *sk); 1419 1420 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1421 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1422 #define SK_MEM_SEND 0 1423 #define SK_MEM_RECV 1 1424 1425 static inline int sk_mem_pages(int amt) 1426 { 1427 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1428 } 1429 1430 static inline bool sk_has_account(struct sock *sk) 1431 { 1432 /* return true if protocol supports memory accounting */ 1433 return !!sk->sk_prot->memory_allocated; 1434 } 1435 1436 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1437 { 1438 if (!sk_has_account(sk)) 1439 return true; 1440 return size <= sk->sk_forward_alloc || 1441 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1442 } 1443 1444 static inline bool 1445 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1446 { 1447 if (!sk_has_account(sk)) 1448 return true; 1449 return size<= sk->sk_forward_alloc || 1450 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1451 skb_pfmemalloc(skb); 1452 } 1453 1454 static inline void sk_mem_reclaim(struct sock *sk) 1455 { 1456 if (!sk_has_account(sk)) 1457 return; 1458 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1459 __sk_mem_reclaim(sk); 1460 } 1461 1462 static inline void sk_mem_reclaim_partial(struct sock *sk) 1463 { 1464 if (!sk_has_account(sk)) 1465 return; 1466 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1467 __sk_mem_reclaim(sk); 1468 } 1469 1470 static inline void sk_mem_charge(struct sock *sk, int size) 1471 { 1472 if (!sk_has_account(sk)) 1473 return; 1474 sk->sk_forward_alloc -= size; 1475 } 1476 1477 static inline void sk_mem_uncharge(struct sock *sk, int size) 1478 { 1479 if (!sk_has_account(sk)) 1480 return; 1481 sk->sk_forward_alloc += size; 1482 } 1483 1484 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1485 { 1486 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1487 sk->sk_wmem_queued -= skb->truesize; 1488 sk_mem_uncharge(sk, skb->truesize); 1489 __kfree_skb(skb); 1490 } 1491 1492 /* Used by processes to "lock" a socket state, so that 1493 * interrupts and bottom half handlers won't change it 1494 * from under us. It essentially blocks any incoming 1495 * packets, so that we won't get any new data or any 1496 * packets that change the state of the socket. 1497 * 1498 * While locked, BH processing will add new packets to 1499 * the backlog queue. This queue is processed by the 1500 * owner of the socket lock right before it is released. 1501 * 1502 * Since ~2.3.5 it is also exclusive sleep lock serializing 1503 * accesses from user process context. 1504 */ 1505 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1506 1507 static inline void sock_release_ownership(struct sock *sk) 1508 { 1509 sk->sk_lock.owned = 0; 1510 } 1511 1512 /* 1513 * Macro so as to not evaluate some arguments when 1514 * lockdep is not enabled. 1515 * 1516 * Mark both the sk_lock and the sk_lock.slock as a 1517 * per-address-family lock class. 1518 */ 1519 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1520 do { \ 1521 sk->sk_lock.owned = 0; \ 1522 init_waitqueue_head(&sk->sk_lock.wq); \ 1523 spin_lock_init(&(sk)->sk_lock.slock); \ 1524 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1525 sizeof((sk)->sk_lock)); \ 1526 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1527 (skey), (sname)); \ 1528 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1529 } while (0) 1530 1531 void lock_sock_nested(struct sock *sk, int subclass); 1532 1533 static inline void lock_sock(struct sock *sk) 1534 { 1535 lock_sock_nested(sk, 0); 1536 } 1537 1538 void release_sock(struct sock *sk); 1539 1540 /* BH context may only use the following locking interface. */ 1541 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1542 #define bh_lock_sock_nested(__sk) \ 1543 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1544 SINGLE_DEPTH_NESTING) 1545 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1546 1547 bool lock_sock_fast(struct sock *sk); 1548 /** 1549 * unlock_sock_fast - complement of lock_sock_fast 1550 * @sk: socket 1551 * @slow: slow mode 1552 * 1553 * fast unlock socket for user context. 1554 * If slow mode is on, we call regular release_sock() 1555 */ 1556 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1557 { 1558 if (slow) 1559 release_sock(sk); 1560 else 1561 spin_unlock_bh(&sk->sk_lock.slock); 1562 } 1563 1564 1565 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1566 struct proto *prot); 1567 void sk_free(struct sock *sk); 1568 void sk_release_kernel(struct sock *sk); 1569 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1570 1571 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1572 gfp_t priority); 1573 void sock_wfree(struct sk_buff *skb); 1574 void skb_orphan_partial(struct sk_buff *skb); 1575 void sock_rfree(struct sk_buff *skb); 1576 void sock_edemux(struct sk_buff *skb); 1577 1578 int sock_setsockopt(struct socket *sock, int level, int op, 1579 char __user *optval, unsigned int optlen); 1580 1581 int sock_getsockopt(struct socket *sock, int level, int op, 1582 char __user *optval, int __user *optlen); 1583 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1584 int noblock, int *errcode); 1585 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1586 unsigned long data_len, int noblock, 1587 int *errcode, int max_page_order); 1588 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1589 void sock_kfree_s(struct sock *sk, void *mem, int size); 1590 void sk_send_sigurg(struct sock *sk); 1591 1592 /* 1593 * Functions to fill in entries in struct proto_ops when a protocol 1594 * does not implement a particular function. 1595 */ 1596 int sock_no_bind(struct socket *, struct sockaddr *, int); 1597 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1598 int sock_no_socketpair(struct socket *, struct socket *); 1599 int sock_no_accept(struct socket *, struct socket *, int); 1600 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1601 unsigned int sock_no_poll(struct file *, struct socket *, 1602 struct poll_table_struct *); 1603 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1604 int sock_no_listen(struct socket *, int); 1605 int sock_no_shutdown(struct socket *, int); 1606 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1607 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1608 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1609 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1610 int); 1611 int sock_no_mmap(struct file *file, struct socket *sock, 1612 struct vm_area_struct *vma); 1613 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1614 size_t size, int flags); 1615 1616 /* 1617 * Functions to fill in entries in struct proto_ops when a protocol 1618 * uses the inet style. 1619 */ 1620 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1621 char __user *optval, int __user *optlen); 1622 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1623 struct msghdr *msg, size_t size, int flags); 1624 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1625 char __user *optval, unsigned int optlen); 1626 int compat_sock_common_getsockopt(struct socket *sock, int level, 1627 int optname, char __user *optval, int __user *optlen); 1628 int compat_sock_common_setsockopt(struct socket *sock, int level, 1629 int optname, char __user *optval, unsigned int optlen); 1630 1631 void sk_common_release(struct sock *sk); 1632 1633 /* 1634 * Default socket callbacks and setup code 1635 */ 1636 1637 /* Initialise core socket variables */ 1638 void sock_init_data(struct socket *sock, struct sock *sk); 1639 1640 /* 1641 * Socket reference counting postulates. 1642 * 1643 * * Each user of socket SHOULD hold a reference count. 1644 * * Each access point to socket (an hash table bucket, reference from a list, 1645 * running timer, skb in flight MUST hold a reference count. 1646 * * When reference count hits 0, it means it will never increase back. 1647 * * When reference count hits 0, it means that no references from 1648 * outside exist to this socket and current process on current CPU 1649 * is last user and may/should destroy this socket. 1650 * * sk_free is called from any context: process, BH, IRQ. When 1651 * it is called, socket has no references from outside -> sk_free 1652 * may release descendant resources allocated by the socket, but 1653 * to the time when it is called, socket is NOT referenced by any 1654 * hash tables, lists etc. 1655 * * Packets, delivered from outside (from network or from another process) 1656 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1657 * when they sit in queue. Otherwise, packets will leak to hole, when 1658 * socket is looked up by one cpu and unhasing is made by another CPU. 1659 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1660 * (leak to backlog). Packet socket does all the processing inside 1661 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1662 * use separate SMP lock, so that they are prone too. 1663 */ 1664 1665 /* Ungrab socket and destroy it, if it was the last reference. */ 1666 static inline void sock_put(struct sock *sk) 1667 { 1668 if (atomic_dec_and_test(&sk->sk_refcnt)) 1669 sk_free(sk); 1670 } 1671 /* Generic version of sock_put(), dealing with all sockets 1672 * (TCP_TIMEWAIT, ESTABLISHED...) 1673 */ 1674 void sock_gen_put(struct sock *sk); 1675 1676 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1677 1678 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1679 { 1680 sk->sk_tx_queue_mapping = tx_queue; 1681 } 1682 1683 static inline void sk_tx_queue_clear(struct sock *sk) 1684 { 1685 sk->sk_tx_queue_mapping = -1; 1686 } 1687 1688 static inline int sk_tx_queue_get(const struct sock *sk) 1689 { 1690 return sk ? sk->sk_tx_queue_mapping : -1; 1691 } 1692 1693 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1694 { 1695 sk_tx_queue_clear(sk); 1696 sk->sk_socket = sock; 1697 } 1698 1699 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1700 { 1701 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1702 return &rcu_dereference_raw(sk->sk_wq)->wait; 1703 } 1704 /* Detach socket from process context. 1705 * Announce socket dead, detach it from wait queue and inode. 1706 * Note that parent inode held reference count on this struct sock, 1707 * we do not release it in this function, because protocol 1708 * probably wants some additional cleanups or even continuing 1709 * to work with this socket (TCP). 1710 */ 1711 static inline void sock_orphan(struct sock *sk) 1712 { 1713 write_lock_bh(&sk->sk_callback_lock); 1714 sock_set_flag(sk, SOCK_DEAD); 1715 sk_set_socket(sk, NULL); 1716 sk->sk_wq = NULL; 1717 write_unlock_bh(&sk->sk_callback_lock); 1718 } 1719 1720 static inline void sock_graft(struct sock *sk, struct socket *parent) 1721 { 1722 write_lock_bh(&sk->sk_callback_lock); 1723 sk->sk_wq = parent->wq; 1724 parent->sk = sk; 1725 sk_set_socket(sk, parent); 1726 security_sock_graft(sk, parent); 1727 write_unlock_bh(&sk->sk_callback_lock); 1728 } 1729 1730 kuid_t sock_i_uid(struct sock *sk); 1731 unsigned long sock_i_ino(struct sock *sk); 1732 1733 static inline struct dst_entry * 1734 __sk_dst_get(struct sock *sk) 1735 { 1736 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1737 lockdep_is_held(&sk->sk_lock.slock)); 1738 } 1739 1740 static inline struct dst_entry * 1741 sk_dst_get(struct sock *sk) 1742 { 1743 struct dst_entry *dst; 1744 1745 rcu_read_lock(); 1746 dst = rcu_dereference(sk->sk_dst_cache); 1747 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1748 dst = NULL; 1749 rcu_read_unlock(); 1750 return dst; 1751 } 1752 1753 static inline void dst_negative_advice(struct sock *sk) 1754 { 1755 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1756 1757 if (dst && dst->ops->negative_advice) { 1758 ndst = dst->ops->negative_advice(dst); 1759 1760 if (ndst != dst) { 1761 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1762 sk_tx_queue_clear(sk); 1763 } 1764 } 1765 } 1766 1767 static inline void 1768 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1769 { 1770 struct dst_entry *old_dst; 1771 1772 sk_tx_queue_clear(sk); 1773 /* 1774 * This can be called while sk is owned by the caller only, 1775 * with no state that can be checked in a rcu_dereference_check() cond 1776 */ 1777 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1778 rcu_assign_pointer(sk->sk_dst_cache, dst); 1779 dst_release(old_dst); 1780 } 1781 1782 static inline void 1783 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1784 { 1785 struct dst_entry *old_dst; 1786 1787 sk_tx_queue_clear(sk); 1788 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1789 dst_release(old_dst); 1790 } 1791 1792 static inline void 1793 __sk_dst_reset(struct sock *sk) 1794 { 1795 __sk_dst_set(sk, NULL); 1796 } 1797 1798 static inline void 1799 sk_dst_reset(struct sock *sk) 1800 { 1801 sk_dst_set(sk, NULL); 1802 } 1803 1804 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1805 1806 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1807 1808 static inline bool sk_can_gso(const struct sock *sk) 1809 { 1810 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1811 } 1812 1813 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1814 1815 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1816 { 1817 sk->sk_route_nocaps |= flags; 1818 sk->sk_route_caps &= ~flags; 1819 } 1820 1821 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1822 char __user *from, char *to, 1823 int copy, int offset) 1824 { 1825 if (skb->ip_summed == CHECKSUM_NONE) { 1826 int err = 0; 1827 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1828 if (err) 1829 return err; 1830 skb->csum = csum_block_add(skb->csum, csum, offset); 1831 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1832 if (!access_ok(VERIFY_READ, from, copy) || 1833 __copy_from_user_nocache(to, from, copy)) 1834 return -EFAULT; 1835 } else if (copy_from_user(to, from, copy)) 1836 return -EFAULT; 1837 1838 return 0; 1839 } 1840 1841 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1842 char __user *from, int copy) 1843 { 1844 int err, offset = skb->len; 1845 1846 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1847 copy, offset); 1848 if (err) 1849 __skb_trim(skb, offset); 1850 1851 return err; 1852 } 1853 1854 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1855 struct sk_buff *skb, 1856 struct page *page, 1857 int off, int copy) 1858 { 1859 int err; 1860 1861 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1862 copy, skb->len); 1863 if (err) 1864 return err; 1865 1866 skb->len += copy; 1867 skb->data_len += copy; 1868 skb->truesize += copy; 1869 sk->sk_wmem_queued += copy; 1870 sk_mem_charge(sk, copy); 1871 return 0; 1872 } 1873 1874 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1875 struct sk_buff *skb, struct page *page, 1876 int off, int copy) 1877 { 1878 if (skb->ip_summed == CHECKSUM_NONE) { 1879 int err = 0; 1880 __wsum csum = csum_and_copy_from_user(from, 1881 page_address(page) + off, 1882 copy, 0, &err); 1883 if (err) 1884 return err; 1885 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1886 } else if (copy_from_user(page_address(page) + off, from, copy)) 1887 return -EFAULT; 1888 1889 skb->len += copy; 1890 skb->data_len += copy; 1891 skb->truesize += copy; 1892 sk->sk_wmem_queued += copy; 1893 sk_mem_charge(sk, copy); 1894 return 0; 1895 } 1896 1897 /** 1898 * sk_wmem_alloc_get - returns write allocations 1899 * @sk: socket 1900 * 1901 * Returns sk_wmem_alloc minus initial offset of one 1902 */ 1903 static inline int sk_wmem_alloc_get(const struct sock *sk) 1904 { 1905 return atomic_read(&sk->sk_wmem_alloc) - 1; 1906 } 1907 1908 /** 1909 * sk_rmem_alloc_get - returns read allocations 1910 * @sk: socket 1911 * 1912 * Returns sk_rmem_alloc 1913 */ 1914 static inline int sk_rmem_alloc_get(const struct sock *sk) 1915 { 1916 return atomic_read(&sk->sk_rmem_alloc); 1917 } 1918 1919 /** 1920 * sk_has_allocations - check if allocations are outstanding 1921 * @sk: socket 1922 * 1923 * Returns true if socket has write or read allocations 1924 */ 1925 static inline bool sk_has_allocations(const struct sock *sk) 1926 { 1927 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1928 } 1929 1930 /** 1931 * wq_has_sleeper - check if there are any waiting processes 1932 * @wq: struct socket_wq 1933 * 1934 * Returns true if socket_wq has waiting processes 1935 * 1936 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1937 * barrier call. They were added due to the race found within the tcp code. 1938 * 1939 * Consider following tcp code paths: 1940 * 1941 * CPU1 CPU2 1942 * 1943 * sys_select receive packet 1944 * ... ... 1945 * __add_wait_queue update tp->rcv_nxt 1946 * ... ... 1947 * tp->rcv_nxt check sock_def_readable 1948 * ... { 1949 * schedule rcu_read_lock(); 1950 * wq = rcu_dereference(sk->sk_wq); 1951 * if (wq && waitqueue_active(&wq->wait)) 1952 * wake_up_interruptible(&wq->wait) 1953 * ... 1954 * } 1955 * 1956 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1957 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1958 * could then endup calling schedule and sleep forever if there are no more 1959 * data on the socket. 1960 * 1961 */ 1962 static inline bool wq_has_sleeper(struct socket_wq *wq) 1963 { 1964 /* We need to be sure we are in sync with the 1965 * add_wait_queue modifications to the wait queue. 1966 * 1967 * This memory barrier is paired in the sock_poll_wait. 1968 */ 1969 smp_mb(); 1970 return wq && waitqueue_active(&wq->wait); 1971 } 1972 1973 /** 1974 * sock_poll_wait - place memory barrier behind the poll_wait call. 1975 * @filp: file 1976 * @wait_address: socket wait queue 1977 * @p: poll_table 1978 * 1979 * See the comments in the wq_has_sleeper function. 1980 */ 1981 static inline void sock_poll_wait(struct file *filp, 1982 wait_queue_head_t *wait_address, poll_table *p) 1983 { 1984 if (!poll_does_not_wait(p) && wait_address) { 1985 poll_wait(filp, wait_address, p); 1986 /* We need to be sure we are in sync with the 1987 * socket flags modification. 1988 * 1989 * This memory barrier is paired in the wq_has_sleeper. 1990 */ 1991 smp_mb(); 1992 } 1993 } 1994 1995 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1996 { 1997 if (sk->sk_txhash) { 1998 skb->l4_hash = 1; 1999 skb->hash = sk->sk_txhash; 2000 } 2001 } 2002 2003 /* 2004 * Queue a received datagram if it will fit. Stream and sequenced 2005 * protocols can't normally use this as they need to fit buffers in 2006 * and play with them. 2007 * 2008 * Inlined as it's very short and called for pretty much every 2009 * packet ever received. 2010 */ 2011 2012 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2013 { 2014 skb_orphan(skb); 2015 skb->sk = sk; 2016 skb->destructor = sock_wfree; 2017 skb_set_hash_from_sk(skb, sk); 2018 /* 2019 * We used to take a refcount on sk, but following operation 2020 * is enough to guarantee sk_free() wont free this sock until 2021 * all in-flight packets are completed 2022 */ 2023 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2024 } 2025 2026 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2027 { 2028 skb_orphan(skb); 2029 skb->sk = sk; 2030 skb->destructor = sock_rfree; 2031 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2032 sk_mem_charge(sk, skb->truesize); 2033 } 2034 2035 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2036 unsigned long expires); 2037 2038 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2039 2040 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2041 2042 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2043 2044 /* 2045 * Recover an error report and clear atomically 2046 */ 2047 2048 static inline int sock_error(struct sock *sk) 2049 { 2050 int err; 2051 if (likely(!sk->sk_err)) 2052 return 0; 2053 err = xchg(&sk->sk_err, 0); 2054 return -err; 2055 } 2056 2057 static inline unsigned long sock_wspace(struct sock *sk) 2058 { 2059 int amt = 0; 2060 2061 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2062 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2063 if (amt < 0) 2064 amt = 0; 2065 } 2066 return amt; 2067 } 2068 2069 static inline void sk_wake_async(struct sock *sk, int how, int band) 2070 { 2071 if (sock_flag(sk, SOCK_FASYNC)) 2072 sock_wake_async(sk->sk_socket, how, band); 2073 } 2074 2075 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2076 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2077 * Note: for send buffers, TCP works better if we can build two skbs at 2078 * minimum. 2079 */ 2080 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2081 2082 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2083 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2084 2085 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2086 { 2087 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2088 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2089 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2090 } 2091 } 2092 2093 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2094 2095 /** 2096 * sk_page_frag - return an appropriate page_frag 2097 * @sk: socket 2098 * 2099 * If socket allocation mode allows current thread to sleep, it means its 2100 * safe to use the per task page_frag instead of the per socket one. 2101 */ 2102 static inline struct page_frag *sk_page_frag(struct sock *sk) 2103 { 2104 if (sk->sk_allocation & __GFP_WAIT) 2105 return ¤t->task_frag; 2106 2107 return &sk->sk_frag; 2108 } 2109 2110 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2111 2112 /* 2113 * Default write policy as shown to user space via poll/select/SIGIO 2114 */ 2115 static inline bool sock_writeable(const struct sock *sk) 2116 { 2117 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2118 } 2119 2120 static inline gfp_t gfp_any(void) 2121 { 2122 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2123 } 2124 2125 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2126 { 2127 return noblock ? 0 : sk->sk_rcvtimeo; 2128 } 2129 2130 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2131 { 2132 return noblock ? 0 : sk->sk_sndtimeo; 2133 } 2134 2135 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2136 { 2137 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2138 } 2139 2140 /* Alas, with timeout socket operations are not restartable. 2141 * Compare this to poll(). 2142 */ 2143 static inline int sock_intr_errno(long timeo) 2144 { 2145 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2146 } 2147 2148 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2149 struct sk_buff *skb); 2150 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2151 struct sk_buff *skb); 2152 2153 static inline void 2154 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2155 { 2156 ktime_t kt = skb->tstamp; 2157 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2158 2159 /* 2160 * generate control messages if 2161 * - receive time stamping in software requested 2162 * - software time stamp available and wanted 2163 * - hardware time stamps available and wanted 2164 */ 2165 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2166 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2167 (kt.tv64 && 2168 (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE || 2169 skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP)) || 2170 (hwtstamps->hwtstamp.tv64 && 2171 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2172 __sock_recv_timestamp(msg, sk, skb); 2173 else 2174 sk->sk_stamp = kt; 2175 2176 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2177 __sock_recv_wifi_status(msg, sk, skb); 2178 } 2179 2180 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2181 struct sk_buff *skb); 2182 2183 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2184 struct sk_buff *skb) 2185 { 2186 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2187 (1UL << SOCK_RCVTSTAMP)) 2188 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2189 SOF_TIMESTAMPING_RAW_HARDWARE) 2190 2191 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2192 __sock_recv_ts_and_drops(msg, sk, skb); 2193 else 2194 sk->sk_stamp = skb->tstamp; 2195 } 2196 2197 /** 2198 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2199 * @sk: socket sending this packet 2200 * @tx_flags: filled with instructions for time stamping 2201 */ 2202 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2203 2204 /** 2205 * sk_eat_skb - Release a skb if it is no longer needed 2206 * @sk: socket to eat this skb from 2207 * @skb: socket buffer to eat 2208 * @copied_early: flag indicating whether DMA operations copied this data early 2209 * 2210 * This routine must be called with interrupts disabled or with the socket 2211 * locked so that the sk_buff queue operation is ok. 2212 */ 2213 #ifdef CONFIG_NET_DMA 2214 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2215 { 2216 __skb_unlink(skb, &sk->sk_receive_queue); 2217 if (!copied_early) 2218 __kfree_skb(skb); 2219 else 2220 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2221 } 2222 #else 2223 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2224 { 2225 __skb_unlink(skb, &sk->sk_receive_queue); 2226 __kfree_skb(skb); 2227 } 2228 #endif 2229 2230 static inline 2231 struct net *sock_net(const struct sock *sk) 2232 { 2233 return read_pnet(&sk->sk_net); 2234 } 2235 2236 static inline 2237 void sock_net_set(struct sock *sk, struct net *net) 2238 { 2239 write_pnet(&sk->sk_net, net); 2240 } 2241 2242 /* 2243 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2244 * They should not hold a reference to a namespace in order to allow 2245 * to stop it. 2246 * Sockets after sk_change_net should be released using sk_release_kernel 2247 */ 2248 static inline void sk_change_net(struct sock *sk, struct net *net) 2249 { 2250 struct net *current_net = sock_net(sk); 2251 2252 if (!net_eq(current_net, net)) { 2253 put_net(current_net); 2254 sock_net_set(sk, hold_net(net)); 2255 } 2256 } 2257 2258 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2259 { 2260 if (skb->sk) { 2261 struct sock *sk = skb->sk; 2262 2263 skb->destructor = NULL; 2264 skb->sk = NULL; 2265 return sk; 2266 } 2267 return NULL; 2268 } 2269 2270 void sock_enable_timestamp(struct sock *sk, int flag); 2271 int sock_get_timestamp(struct sock *, struct timeval __user *); 2272 int sock_get_timestampns(struct sock *, struct timespec __user *); 2273 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2274 int type); 2275 2276 bool sk_ns_capable(const struct sock *sk, 2277 struct user_namespace *user_ns, int cap); 2278 bool sk_capable(const struct sock *sk, int cap); 2279 bool sk_net_capable(const struct sock *sk, int cap); 2280 2281 /* 2282 * Enable debug/info messages 2283 */ 2284 extern int net_msg_warn; 2285 #define NETDEBUG(fmt, args...) \ 2286 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2287 2288 #define LIMIT_NETDEBUG(fmt, args...) \ 2289 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2290 2291 extern __u32 sysctl_wmem_max; 2292 extern __u32 sysctl_rmem_max; 2293 2294 extern int sysctl_optmem_max; 2295 2296 extern __u32 sysctl_wmem_default; 2297 extern __u32 sysctl_rmem_default; 2298 2299 #endif /* _SOCK_H */ 2300