1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/config.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/security.h> 51 52 #include <linux/filter.h> 53 54 #include <asm/atomic.h> 55 #include <net/dst.h> 56 #include <net/checksum.h> 57 58 /* 59 * This structure really needs to be cleaned up. 60 * Most of it is for TCP, and not used by any of 61 * the other protocols. 62 */ 63 64 /* Define this to get the SOCK_DBG debugging facility. */ 65 #define SOCK_DEBUGGING 66 #ifdef SOCK_DEBUGGING 67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 68 printk(KERN_DEBUG msg); } while (0) 69 #else 70 #define SOCK_DEBUG(sk, msg...) do { } while (0) 71 #endif 72 73 /* This is the per-socket lock. The spinlock provides a synchronization 74 * between user contexts and software interrupt processing, whereas the 75 * mini-semaphore synchronizes multiple users amongst themselves. 76 */ 77 struct sock_iocb; 78 typedef struct { 79 spinlock_t slock; 80 struct sock_iocb *owner; 81 wait_queue_head_t wq; 82 } socket_lock_t; 83 84 #define sock_lock_init(__sk) \ 85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \ 86 (__sk)->sk_lock.owner = NULL; \ 87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \ 88 } while(0) 89 90 struct sock; 91 struct proto; 92 93 /** 94 * struct sock_common - minimal network layer representation of sockets 95 * @skc_family: network address family 96 * @skc_state: Connection state 97 * @skc_reuse: %SO_REUSEADDR setting 98 * @skc_bound_dev_if: bound device index if != 0 99 * @skc_node: main hash linkage for various protocol lookup tables 100 * @skc_bind_node: bind hash linkage for various protocol lookup tables 101 * @skc_refcnt: reference count 102 * @skc_hash: hash value used with various protocol lookup tables 103 * @skc_prot: protocol handlers inside a network family 104 * 105 * This is the minimal network layer representation of sockets, the header 106 * for struct sock and struct inet_timewait_sock. 107 */ 108 struct sock_common { 109 unsigned short skc_family; 110 volatile unsigned char skc_state; 111 unsigned char skc_reuse; 112 int skc_bound_dev_if; 113 struct hlist_node skc_node; 114 struct hlist_node skc_bind_node; 115 atomic_t skc_refcnt; 116 unsigned int skc_hash; 117 struct proto *skc_prot; 118 }; 119 120 /** 121 * struct sock - network layer representation of sockets 122 * @__sk_common: shared layout with inet_timewait_sock 123 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 124 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 125 * @sk_lock: synchronizer 126 * @sk_rcvbuf: size of receive buffer in bytes 127 * @sk_sleep: sock wait queue 128 * @sk_dst_cache: destination cache 129 * @sk_dst_lock: destination cache lock 130 * @sk_policy: flow policy 131 * @sk_rmem_alloc: receive queue bytes committed 132 * @sk_receive_queue: incoming packets 133 * @sk_wmem_alloc: transmit queue bytes committed 134 * @sk_write_queue: Packet sending queue 135 * @sk_async_wait_queue: DMA copied packets 136 * @sk_omem_alloc: "o" is "option" or "other" 137 * @sk_wmem_queued: persistent queue size 138 * @sk_forward_alloc: space allocated forward 139 * @sk_allocation: allocation mode 140 * @sk_sndbuf: size of send buffer in bytes 141 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 142 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 143 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 144 * @sk_lingertime: %SO_LINGER l_linger setting 145 * @sk_backlog: always used with the per-socket spinlock held 146 * @sk_callback_lock: used with the callbacks in the end of this struct 147 * @sk_error_queue: rarely used 148 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 149 * @sk_err: last error 150 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 151 * @sk_ack_backlog: current listen backlog 152 * @sk_max_ack_backlog: listen backlog set in listen() 153 * @sk_priority: %SO_PRIORITY setting 154 * @sk_type: socket type (%SOCK_STREAM, etc) 155 * @sk_protocol: which protocol this socket belongs in this network family 156 * @sk_peercred: %SO_PEERCRED setting 157 * @sk_rcvlowat: %SO_RCVLOWAT setting 158 * @sk_rcvtimeo: %SO_RCVTIMEO setting 159 * @sk_sndtimeo: %SO_SNDTIMEO setting 160 * @sk_filter: socket filtering instructions 161 * @sk_protinfo: private area, net family specific, when not using slab 162 * @sk_timer: sock cleanup timer 163 * @sk_stamp: time stamp of last packet received 164 * @sk_socket: Identd and reporting IO signals 165 * @sk_user_data: RPC layer private data 166 * @sk_sndmsg_page: cached page for sendmsg 167 * @sk_sndmsg_off: cached offset for sendmsg 168 * @sk_send_head: front of stuff to transmit 169 * @sk_security: used by security modules 170 * @sk_write_pending: a write to stream socket waits to start 171 * @sk_state_change: callback to indicate change in the state of the sock 172 * @sk_data_ready: callback to indicate there is data to be processed 173 * @sk_write_space: callback to indicate there is bf sending space available 174 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 175 * @sk_backlog_rcv: callback to process the backlog 176 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 177 */ 178 struct sock { 179 /* 180 * Now struct inet_timewait_sock also uses sock_common, so please just 181 * don't add nothing before this first member (__sk_common) --acme 182 */ 183 struct sock_common __sk_common; 184 #define sk_family __sk_common.skc_family 185 #define sk_state __sk_common.skc_state 186 #define sk_reuse __sk_common.skc_reuse 187 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 188 #define sk_node __sk_common.skc_node 189 #define sk_bind_node __sk_common.skc_bind_node 190 #define sk_refcnt __sk_common.skc_refcnt 191 #define sk_hash __sk_common.skc_hash 192 #define sk_prot __sk_common.skc_prot 193 unsigned char sk_shutdown : 2, 194 sk_no_check : 2, 195 sk_userlocks : 4; 196 unsigned char sk_protocol; 197 unsigned short sk_type; 198 int sk_rcvbuf; 199 socket_lock_t sk_lock; 200 wait_queue_head_t *sk_sleep; 201 struct dst_entry *sk_dst_cache; 202 struct xfrm_policy *sk_policy[2]; 203 rwlock_t sk_dst_lock; 204 atomic_t sk_rmem_alloc; 205 atomic_t sk_wmem_alloc; 206 atomic_t sk_omem_alloc; 207 struct sk_buff_head sk_receive_queue; 208 struct sk_buff_head sk_write_queue; 209 struct sk_buff_head sk_async_wait_queue; 210 int sk_wmem_queued; 211 int sk_forward_alloc; 212 gfp_t sk_allocation; 213 int sk_sndbuf; 214 int sk_route_caps; 215 int sk_rcvlowat; 216 unsigned long sk_flags; 217 unsigned long sk_lingertime; 218 /* 219 * The backlog queue is special, it is always used with 220 * the per-socket spinlock held and requires low latency 221 * access. Therefore we special case it's implementation. 222 */ 223 struct { 224 struct sk_buff *head; 225 struct sk_buff *tail; 226 } sk_backlog; 227 struct sk_buff_head sk_error_queue; 228 struct proto *sk_prot_creator; 229 rwlock_t sk_callback_lock; 230 int sk_err, 231 sk_err_soft; 232 unsigned short sk_ack_backlog; 233 unsigned short sk_max_ack_backlog; 234 __u32 sk_priority; 235 struct ucred sk_peercred; 236 long sk_rcvtimeo; 237 long sk_sndtimeo; 238 struct sk_filter *sk_filter; 239 void *sk_protinfo; 240 struct timer_list sk_timer; 241 struct timeval sk_stamp; 242 struct socket *sk_socket; 243 void *sk_user_data; 244 struct page *sk_sndmsg_page; 245 struct sk_buff *sk_send_head; 246 __u32 sk_sndmsg_off; 247 int sk_write_pending; 248 void *sk_security; 249 void (*sk_state_change)(struct sock *sk); 250 void (*sk_data_ready)(struct sock *sk, int bytes); 251 void (*sk_write_space)(struct sock *sk); 252 void (*sk_error_report)(struct sock *sk); 253 int (*sk_backlog_rcv)(struct sock *sk, 254 struct sk_buff *skb); 255 void (*sk_destruct)(struct sock *sk); 256 }; 257 258 /* 259 * Hashed lists helper routines 260 */ 261 static inline struct sock *__sk_head(const struct hlist_head *head) 262 { 263 return hlist_entry(head->first, struct sock, sk_node); 264 } 265 266 static inline struct sock *sk_head(const struct hlist_head *head) 267 { 268 return hlist_empty(head) ? NULL : __sk_head(head); 269 } 270 271 static inline struct sock *sk_next(const struct sock *sk) 272 { 273 return sk->sk_node.next ? 274 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 275 } 276 277 static inline int sk_unhashed(const struct sock *sk) 278 { 279 return hlist_unhashed(&sk->sk_node); 280 } 281 282 static inline int sk_hashed(const struct sock *sk) 283 { 284 return !sk_unhashed(sk); 285 } 286 287 static __inline__ void sk_node_init(struct hlist_node *node) 288 { 289 node->pprev = NULL; 290 } 291 292 static __inline__ void __sk_del_node(struct sock *sk) 293 { 294 __hlist_del(&sk->sk_node); 295 } 296 297 static __inline__ int __sk_del_node_init(struct sock *sk) 298 { 299 if (sk_hashed(sk)) { 300 __sk_del_node(sk); 301 sk_node_init(&sk->sk_node); 302 return 1; 303 } 304 return 0; 305 } 306 307 /* Grab socket reference count. This operation is valid only 308 when sk is ALREADY grabbed f.e. it is found in hash table 309 or a list and the lookup is made under lock preventing hash table 310 modifications. 311 */ 312 313 static inline void sock_hold(struct sock *sk) 314 { 315 atomic_inc(&sk->sk_refcnt); 316 } 317 318 /* Ungrab socket in the context, which assumes that socket refcnt 319 cannot hit zero, f.e. it is true in context of any socketcall. 320 */ 321 static inline void __sock_put(struct sock *sk) 322 { 323 atomic_dec(&sk->sk_refcnt); 324 } 325 326 static __inline__ int sk_del_node_init(struct sock *sk) 327 { 328 int rc = __sk_del_node_init(sk); 329 330 if (rc) { 331 /* paranoid for a while -acme */ 332 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 333 __sock_put(sk); 334 } 335 return rc; 336 } 337 338 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 339 { 340 hlist_add_head(&sk->sk_node, list); 341 } 342 343 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 344 { 345 sock_hold(sk); 346 __sk_add_node(sk, list); 347 } 348 349 static __inline__ void __sk_del_bind_node(struct sock *sk) 350 { 351 __hlist_del(&sk->sk_bind_node); 352 } 353 354 static __inline__ void sk_add_bind_node(struct sock *sk, 355 struct hlist_head *list) 356 { 357 hlist_add_head(&sk->sk_bind_node, list); 358 } 359 360 #define sk_for_each(__sk, node, list) \ 361 hlist_for_each_entry(__sk, node, list, sk_node) 362 #define sk_for_each_from(__sk, node) \ 363 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 364 hlist_for_each_entry_from(__sk, node, sk_node) 365 #define sk_for_each_continue(__sk, node) \ 366 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 367 hlist_for_each_entry_continue(__sk, node, sk_node) 368 #define sk_for_each_safe(__sk, node, tmp, list) \ 369 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 370 #define sk_for_each_bound(__sk, node, list) \ 371 hlist_for_each_entry(__sk, node, list, sk_bind_node) 372 373 /* Sock flags */ 374 enum sock_flags { 375 SOCK_DEAD, 376 SOCK_DONE, 377 SOCK_URGINLINE, 378 SOCK_KEEPOPEN, 379 SOCK_LINGER, 380 SOCK_DESTROY, 381 SOCK_BROADCAST, 382 SOCK_TIMESTAMP, 383 SOCK_ZAPPED, 384 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 385 SOCK_DBG, /* %SO_DEBUG setting */ 386 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 387 SOCK_NO_LARGESEND, /* whether to sent large segments or not */ 388 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 389 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 390 }; 391 392 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 393 { 394 nsk->sk_flags = osk->sk_flags; 395 } 396 397 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 398 { 399 __set_bit(flag, &sk->sk_flags); 400 } 401 402 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 403 { 404 __clear_bit(flag, &sk->sk_flags); 405 } 406 407 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 408 { 409 return test_bit(flag, &sk->sk_flags); 410 } 411 412 static inline void sk_acceptq_removed(struct sock *sk) 413 { 414 sk->sk_ack_backlog--; 415 } 416 417 static inline void sk_acceptq_added(struct sock *sk) 418 { 419 sk->sk_ack_backlog++; 420 } 421 422 static inline int sk_acceptq_is_full(struct sock *sk) 423 { 424 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 425 } 426 427 /* 428 * Compute minimal free write space needed to queue new packets. 429 */ 430 static inline int sk_stream_min_wspace(struct sock *sk) 431 { 432 return sk->sk_wmem_queued / 2; 433 } 434 435 static inline int sk_stream_wspace(struct sock *sk) 436 { 437 return sk->sk_sndbuf - sk->sk_wmem_queued; 438 } 439 440 extern void sk_stream_write_space(struct sock *sk); 441 442 static inline int sk_stream_memory_free(struct sock *sk) 443 { 444 return sk->sk_wmem_queued < sk->sk_sndbuf; 445 } 446 447 extern void sk_stream_rfree(struct sk_buff *skb); 448 449 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 450 { 451 skb->sk = sk; 452 skb->destructor = sk_stream_rfree; 453 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 454 sk->sk_forward_alloc -= skb->truesize; 455 } 456 457 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 458 { 459 skb_truesize_check(skb); 460 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 461 sk->sk_wmem_queued -= skb->truesize; 462 sk->sk_forward_alloc += skb->truesize; 463 __kfree_skb(skb); 464 } 465 466 /* The per-socket spinlock must be held here. */ 467 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 468 { 469 if (!sk->sk_backlog.tail) { 470 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 471 } else { 472 sk->sk_backlog.tail->next = skb; 473 sk->sk_backlog.tail = skb; 474 } 475 skb->next = NULL; 476 } 477 478 #define sk_wait_event(__sk, __timeo, __condition) \ 479 ({ int rc; \ 480 release_sock(__sk); \ 481 rc = __condition; \ 482 if (!rc) { \ 483 *(__timeo) = schedule_timeout(*(__timeo)); \ 484 } \ 485 lock_sock(__sk); \ 486 rc = __condition; \ 487 rc; \ 488 }) 489 490 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 491 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 492 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 493 extern int sk_stream_error(struct sock *sk, int flags, int err); 494 extern void sk_stream_kill_queues(struct sock *sk); 495 496 extern int sk_wait_data(struct sock *sk, long *timeo); 497 498 struct request_sock_ops; 499 struct timewait_sock_ops; 500 501 /* Networking protocol blocks we attach to sockets. 502 * socket layer -> transport layer interface 503 * transport -> network interface is defined by struct inet_proto 504 */ 505 struct proto { 506 void (*close)(struct sock *sk, 507 long timeout); 508 int (*connect)(struct sock *sk, 509 struct sockaddr *uaddr, 510 int addr_len); 511 int (*disconnect)(struct sock *sk, int flags); 512 513 struct sock * (*accept) (struct sock *sk, int flags, int *err); 514 515 int (*ioctl)(struct sock *sk, int cmd, 516 unsigned long arg); 517 int (*init)(struct sock *sk); 518 int (*destroy)(struct sock *sk); 519 void (*shutdown)(struct sock *sk, int how); 520 int (*setsockopt)(struct sock *sk, int level, 521 int optname, char __user *optval, 522 int optlen); 523 int (*getsockopt)(struct sock *sk, int level, 524 int optname, char __user *optval, 525 int __user *option); 526 int (*compat_setsockopt)(struct sock *sk, 527 int level, 528 int optname, char __user *optval, 529 int optlen); 530 int (*compat_getsockopt)(struct sock *sk, 531 int level, 532 int optname, char __user *optval, 533 int __user *option); 534 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 535 struct msghdr *msg, size_t len); 536 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 537 struct msghdr *msg, 538 size_t len, int noblock, int flags, 539 int *addr_len); 540 int (*sendpage)(struct sock *sk, struct page *page, 541 int offset, size_t size, int flags); 542 int (*bind)(struct sock *sk, 543 struct sockaddr *uaddr, int addr_len); 544 545 int (*backlog_rcv) (struct sock *sk, 546 struct sk_buff *skb); 547 548 /* Keeping track of sk's, looking them up, and port selection methods. */ 549 void (*hash)(struct sock *sk); 550 void (*unhash)(struct sock *sk); 551 int (*get_port)(struct sock *sk, unsigned short snum); 552 553 /* Memory pressure */ 554 void (*enter_memory_pressure)(void); 555 atomic_t *memory_allocated; /* Current allocated memory. */ 556 atomic_t *sockets_allocated; /* Current number of sockets. */ 557 /* 558 * Pressure flag: try to collapse. 559 * Technical note: it is used by multiple contexts non atomically. 560 * All the sk_stream_mem_schedule() is of this nature: accounting 561 * is strict, actions are advisory and have some latency. 562 */ 563 int *memory_pressure; 564 int *sysctl_mem; 565 int *sysctl_wmem; 566 int *sysctl_rmem; 567 int max_header; 568 569 kmem_cache_t *slab; 570 unsigned int obj_size; 571 572 atomic_t *orphan_count; 573 574 struct request_sock_ops *rsk_prot; 575 struct timewait_sock_ops *twsk_prot; 576 577 struct module *owner; 578 579 char name[32]; 580 581 struct list_head node; 582 #ifdef SOCK_REFCNT_DEBUG 583 atomic_t socks; 584 #endif 585 struct { 586 int inuse; 587 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 588 } stats[NR_CPUS]; 589 }; 590 591 extern int proto_register(struct proto *prot, int alloc_slab); 592 extern void proto_unregister(struct proto *prot); 593 594 #ifdef SOCK_REFCNT_DEBUG 595 static inline void sk_refcnt_debug_inc(struct sock *sk) 596 { 597 atomic_inc(&sk->sk_prot->socks); 598 } 599 600 static inline void sk_refcnt_debug_dec(struct sock *sk) 601 { 602 atomic_dec(&sk->sk_prot->socks); 603 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 604 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 605 } 606 607 static inline void sk_refcnt_debug_release(const struct sock *sk) 608 { 609 if (atomic_read(&sk->sk_refcnt) != 1) 610 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 611 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 612 } 613 #else /* SOCK_REFCNT_DEBUG */ 614 #define sk_refcnt_debug_inc(sk) do { } while (0) 615 #define sk_refcnt_debug_dec(sk) do { } while (0) 616 #define sk_refcnt_debug_release(sk) do { } while (0) 617 #endif /* SOCK_REFCNT_DEBUG */ 618 619 /* Called with local bh disabled */ 620 static __inline__ void sock_prot_inc_use(struct proto *prot) 621 { 622 prot->stats[smp_processor_id()].inuse++; 623 } 624 625 static __inline__ void sock_prot_dec_use(struct proto *prot) 626 { 627 prot->stats[smp_processor_id()].inuse--; 628 } 629 630 /* With per-bucket locks this operation is not-atomic, so that 631 * this version is not worse. 632 */ 633 static inline void __sk_prot_rehash(struct sock *sk) 634 { 635 sk->sk_prot->unhash(sk); 636 sk->sk_prot->hash(sk); 637 } 638 639 /* About 10 seconds */ 640 #define SOCK_DESTROY_TIME (10*HZ) 641 642 /* Sockets 0-1023 can't be bound to unless you are superuser */ 643 #define PROT_SOCK 1024 644 645 #define SHUTDOWN_MASK 3 646 #define RCV_SHUTDOWN 1 647 #define SEND_SHUTDOWN 2 648 649 #define SOCK_SNDBUF_LOCK 1 650 #define SOCK_RCVBUF_LOCK 2 651 #define SOCK_BINDADDR_LOCK 4 652 #define SOCK_BINDPORT_LOCK 8 653 654 /* sock_iocb: used to kick off async processing of socket ios */ 655 struct sock_iocb { 656 struct list_head list; 657 658 int flags; 659 int size; 660 struct socket *sock; 661 struct sock *sk; 662 struct scm_cookie *scm; 663 struct msghdr *msg, async_msg; 664 struct iovec async_iov; 665 struct kiocb *kiocb; 666 }; 667 668 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 669 { 670 return (struct sock_iocb *)iocb->private; 671 } 672 673 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 674 { 675 return si->kiocb; 676 } 677 678 struct socket_alloc { 679 struct socket socket; 680 struct inode vfs_inode; 681 }; 682 683 static inline struct socket *SOCKET_I(struct inode *inode) 684 { 685 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 686 } 687 688 static inline struct inode *SOCK_INODE(struct socket *socket) 689 { 690 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 691 } 692 693 extern void __sk_stream_mem_reclaim(struct sock *sk); 694 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 695 696 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 697 698 static inline int sk_stream_pages(int amt) 699 { 700 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 701 } 702 703 static inline void sk_stream_mem_reclaim(struct sock *sk) 704 { 705 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 706 __sk_stream_mem_reclaim(sk); 707 } 708 709 static inline void sk_stream_writequeue_purge(struct sock *sk) 710 { 711 struct sk_buff *skb; 712 713 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 714 sk_stream_free_skb(sk, skb); 715 sk_stream_mem_reclaim(sk); 716 } 717 718 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 719 { 720 return (int)skb->truesize <= sk->sk_forward_alloc || 721 sk_stream_mem_schedule(sk, skb->truesize, 1); 722 } 723 724 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 725 { 726 return size <= sk->sk_forward_alloc || 727 sk_stream_mem_schedule(sk, size, 0); 728 } 729 730 /* Used by processes to "lock" a socket state, so that 731 * interrupts and bottom half handlers won't change it 732 * from under us. It essentially blocks any incoming 733 * packets, so that we won't get any new data or any 734 * packets that change the state of the socket. 735 * 736 * While locked, BH processing will add new packets to 737 * the backlog queue. This queue is processed by the 738 * owner of the socket lock right before it is released. 739 * 740 * Since ~2.3.5 it is also exclusive sleep lock serializing 741 * accesses from user process context. 742 */ 743 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 744 745 extern void FASTCALL(lock_sock(struct sock *sk)); 746 extern void FASTCALL(release_sock(struct sock *sk)); 747 748 /* BH context may only use the following locking interface. */ 749 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 750 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 751 752 extern struct sock *sk_alloc(int family, 753 gfp_t priority, 754 struct proto *prot, int zero_it); 755 extern void sk_free(struct sock *sk); 756 extern struct sock *sk_clone(const struct sock *sk, 757 const gfp_t priority); 758 759 extern struct sk_buff *sock_wmalloc(struct sock *sk, 760 unsigned long size, int force, 761 gfp_t priority); 762 extern struct sk_buff *sock_rmalloc(struct sock *sk, 763 unsigned long size, int force, 764 gfp_t priority); 765 extern void sock_wfree(struct sk_buff *skb); 766 extern void sock_rfree(struct sk_buff *skb); 767 768 extern int sock_setsockopt(struct socket *sock, int level, 769 int op, char __user *optval, 770 int optlen); 771 772 extern int sock_getsockopt(struct socket *sock, int level, 773 int op, char __user *optval, 774 int __user *optlen); 775 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 776 unsigned long size, 777 int noblock, 778 int *errcode); 779 extern void *sock_kmalloc(struct sock *sk, int size, 780 gfp_t priority); 781 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 782 extern void sk_send_sigurg(struct sock *sk); 783 784 /* 785 * Functions to fill in entries in struct proto_ops when a protocol 786 * does not implement a particular function. 787 */ 788 extern int sock_no_bind(struct socket *, 789 struct sockaddr *, int); 790 extern int sock_no_connect(struct socket *, 791 struct sockaddr *, int, int); 792 extern int sock_no_socketpair(struct socket *, 793 struct socket *); 794 extern int sock_no_accept(struct socket *, 795 struct socket *, int); 796 extern int sock_no_getname(struct socket *, 797 struct sockaddr *, int *, int); 798 extern unsigned int sock_no_poll(struct file *, struct socket *, 799 struct poll_table_struct *); 800 extern int sock_no_ioctl(struct socket *, unsigned int, 801 unsigned long); 802 extern int sock_no_listen(struct socket *, int); 803 extern int sock_no_shutdown(struct socket *, int); 804 extern int sock_no_getsockopt(struct socket *, int , int, 805 char __user *, int __user *); 806 extern int sock_no_setsockopt(struct socket *, int, int, 807 char __user *, int); 808 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 809 struct msghdr *, size_t); 810 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 811 struct msghdr *, size_t, int); 812 extern int sock_no_mmap(struct file *file, 813 struct socket *sock, 814 struct vm_area_struct *vma); 815 extern ssize_t sock_no_sendpage(struct socket *sock, 816 struct page *page, 817 int offset, size_t size, 818 int flags); 819 820 /* 821 * Functions to fill in entries in struct proto_ops when a protocol 822 * uses the inet style. 823 */ 824 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 825 char __user *optval, int __user *optlen); 826 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 827 struct msghdr *msg, size_t size, int flags); 828 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 829 char __user *optval, int optlen); 830 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 831 int optname, char __user *optval, int __user *optlen); 832 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 833 int optname, char __user *optval, int optlen); 834 835 extern void sk_common_release(struct sock *sk); 836 837 /* 838 * Default socket callbacks and setup code 839 */ 840 841 /* Initialise core socket variables */ 842 extern void sock_init_data(struct socket *sock, struct sock *sk); 843 844 /** 845 * sk_filter - run a packet through a socket filter 846 * @sk: sock associated with &sk_buff 847 * @skb: buffer to filter 848 * @needlock: set to 1 if the sock is not locked by caller. 849 * 850 * Run the filter code and then cut skb->data to correct size returned by 851 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 852 * than pkt_len we keep whole skb->data. This is the socket level 853 * wrapper to sk_run_filter. It returns 0 if the packet should 854 * be accepted or -EPERM if the packet should be tossed. 855 * 856 */ 857 858 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock) 859 { 860 int err; 861 862 err = security_sock_rcv_skb(sk, skb); 863 if (err) 864 return err; 865 866 if (sk->sk_filter) { 867 struct sk_filter *filter; 868 869 if (needlock) 870 bh_lock_sock(sk); 871 872 filter = sk->sk_filter; 873 if (filter) { 874 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 875 filter->len); 876 if (!pkt_len) 877 err = -EPERM; 878 else 879 skb_trim(skb, pkt_len); 880 } 881 882 if (needlock) 883 bh_unlock_sock(sk); 884 } 885 return err; 886 } 887 888 /** 889 * sk_filter_release: Release a socket filter 890 * @sk: socket 891 * @fp: filter to remove 892 * 893 * Remove a filter from a socket and release its resources. 894 */ 895 896 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 897 { 898 unsigned int size = sk_filter_len(fp); 899 900 atomic_sub(size, &sk->sk_omem_alloc); 901 902 if (atomic_dec_and_test(&fp->refcnt)) 903 kfree(fp); 904 } 905 906 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 907 { 908 atomic_inc(&fp->refcnt); 909 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 910 } 911 912 /* 913 * Socket reference counting postulates. 914 * 915 * * Each user of socket SHOULD hold a reference count. 916 * * Each access point to socket (an hash table bucket, reference from a list, 917 * running timer, skb in flight MUST hold a reference count. 918 * * When reference count hits 0, it means it will never increase back. 919 * * When reference count hits 0, it means that no references from 920 * outside exist to this socket and current process on current CPU 921 * is last user and may/should destroy this socket. 922 * * sk_free is called from any context: process, BH, IRQ. When 923 * it is called, socket has no references from outside -> sk_free 924 * may release descendant resources allocated by the socket, but 925 * to the time when it is called, socket is NOT referenced by any 926 * hash tables, lists etc. 927 * * Packets, delivered from outside (from network or from another process) 928 * and enqueued on receive/error queues SHOULD NOT grab reference count, 929 * when they sit in queue. Otherwise, packets will leak to hole, when 930 * socket is looked up by one cpu and unhasing is made by another CPU. 931 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 932 * (leak to backlog). Packet socket does all the processing inside 933 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 934 * use separate SMP lock, so that they are prone too. 935 */ 936 937 /* Ungrab socket and destroy it, if it was the last reference. */ 938 static inline void sock_put(struct sock *sk) 939 { 940 if (atomic_dec_and_test(&sk->sk_refcnt)) 941 sk_free(sk); 942 } 943 944 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb); 945 946 /* Detach socket from process context. 947 * Announce socket dead, detach it from wait queue and inode. 948 * Note that parent inode held reference count on this struct sock, 949 * we do not release it in this function, because protocol 950 * probably wants some additional cleanups or even continuing 951 * to work with this socket (TCP). 952 */ 953 static inline void sock_orphan(struct sock *sk) 954 { 955 write_lock_bh(&sk->sk_callback_lock); 956 sock_set_flag(sk, SOCK_DEAD); 957 sk->sk_socket = NULL; 958 sk->sk_sleep = NULL; 959 write_unlock_bh(&sk->sk_callback_lock); 960 } 961 962 static inline void sock_graft(struct sock *sk, struct socket *parent) 963 { 964 write_lock_bh(&sk->sk_callback_lock); 965 sk->sk_sleep = &parent->wait; 966 parent->sk = sk; 967 sk->sk_socket = parent; 968 write_unlock_bh(&sk->sk_callback_lock); 969 } 970 971 extern int sock_i_uid(struct sock *sk); 972 extern unsigned long sock_i_ino(struct sock *sk); 973 974 static inline struct dst_entry * 975 __sk_dst_get(struct sock *sk) 976 { 977 return sk->sk_dst_cache; 978 } 979 980 static inline struct dst_entry * 981 sk_dst_get(struct sock *sk) 982 { 983 struct dst_entry *dst; 984 985 read_lock(&sk->sk_dst_lock); 986 dst = sk->sk_dst_cache; 987 if (dst) 988 dst_hold(dst); 989 read_unlock(&sk->sk_dst_lock); 990 return dst; 991 } 992 993 static inline void 994 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 995 { 996 struct dst_entry *old_dst; 997 998 old_dst = sk->sk_dst_cache; 999 sk->sk_dst_cache = dst; 1000 dst_release(old_dst); 1001 } 1002 1003 static inline void 1004 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1005 { 1006 write_lock(&sk->sk_dst_lock); 1007 __sk_dst_set(sk, dst); 1008 write_unlock(&sk->sk_dst_lock); 1009 } 1010 1011 static inline void 1012 __sk_dst_reset(struct sock *sk) 1013 { 1014 struct dst_entry *old_dst; 1015 1016 old_dst = sk->sk_dst_cache; 1017 sk->sk_dst_cache = NULL; 1018 dst_release(old_dst); 1019 } 1020 1021 static inline void 1022 sk_dst_reset(struct sock *sk) 1023 { 1024 write_lock(&sk->sk_dst_lock); 1025 __sk_dst_reset(sk); 1026 write_unlock(&sk->sk_dst_lock); 1027 } 1028 1029 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1030 1031 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1032 1033 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1034 { 1035 __sk_dst_set(sk, dst); 1036 sk->sk_route_caps = dst->dev->features; 1037 if (sk->sk_route_caps & NETIF_F_TSO) { 1038 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len) 1039 sk->sk_route_caps &= ~NETIF_F_TSO; 1040 } 1041 } 1042 1043 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1044 { 1045 sk->sk_wmem_queued += skb->truesize; 1046 sk->sk_forward_alloc -= skb->truesize; 1047 } 1048 1049 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1050 struct sk_buff *skb, struct page *page, 1051 int off, int copy) 1052 { 1053 if (skb->ip_summed == CHECKSUM_NONE) { 1054 int err = 0; 1055 unsigned int csum = csum_and_copy_from_user(from, 1056 page_address(page) + off, 1057 copy, 0, &err); 1058 if (err) 1059 return err; 1060 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1061 } else if (copy_from_user(page_address(page) + off, from, copy)) 1062 return -EFAULT; 1063 1064 skb->len += copy; 1065 skb->data_len += copy; 1066 skb->truesize += copy; 1067 sk->sk_wmem_queued += copy; 1068 sk->sk_forward_alloc -= copy; 1069 return 0; 1070 } 1071 1072 /* 1073 * Queue a received datagram if it will fit. Stream and sequenced 1074 * protocols can't normally use this as they need to fit buffers in 1075 * and play with them. 1076 * 1077 * Inlined as it's very short and called for pretty much every 1078 * packet ever received. 1079 */ 1080 1081 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1082 { 1083 sock_hold(sk); 1084 skb->sk = sk; 1085 skb->destructor = sock_wfree; 1086 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1087 } 1088 1089 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1090 { 1091 skb->sk = sk; 1092 skb->destructor = sock_rfree; 1093 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1094 } 1095 1096 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1097 unsigned long expires); 1098 1099 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1100 1101 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1102 1103 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1104 { 1105 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1106 number of warnings when compiling with -W --ANK 1107 */ 1108 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1109 (unsigned)sk->sk_rcvbuf) 1110 return -ENOMEM; 1111 skb_set_owner_r(skb, sk); 1112 skb_queue_tail(&sk->sk_error_queue, skb); 1113 if (!sock_flag(sk, SOCK_DEAD)) 1114 sk->sk_data_ready(sk, skb->len); 1115 return 0; 1116 } 1117 1118 /* 1119 * Recover an error report and clear atomically 1120 */ 1121 1122 static inline int sock_error(struct sock *sk) 1123 { 1124 int err; 1125 if (likely(!sk->sk_err)) 1126 return 0; 1127 err = xchg(&sk->sk_err, 0); 1128 return -err; 1129 } 1130 1131 static inline unsigned long sock_wspace(struct sock *sk) 1132 { 1133 int amt = 0; 1134 1135 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1136 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1137 if (amt < 0) 1138 amt = 0; 1139 } 1140 return amt; 1141 } 1142 1143 static inline void sk_wake_async(struct sock *sk, int how, int band) 1144 { 1145 if (sk->sk_socket && sk->sk_socket->fasync_list) 1146 sock_wake_async(sk->sk_socket, how, band); 1147 } 1148 1149 #define SOCK_MIN_SNDBUF 2048 1150 #define SOCK_MIN_RCVBUF 256 1151 1152 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1153 { 1154 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1155 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1156 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1157 } 1158 } 1159 1160 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1161 int size, int mem, 1162 gfp_t gfp) 1163 { 1164 struct sk_buff *skb; 1165 int hdr_len; 1166 1167 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1168 skb = alloc_skb_fclone(size + hdr_len, gfp); 1169 if (skb) { 1170 skb->truesize += mem; 1171 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1172 skb_reserve(skb, hdr_len); 1173 return skb; 1174 } 1175 __kfree_skb(skb); 1176 } else { 1177 sk->sk_prot->enter_memory_pressure(); 1178 sk_stream_moderate_sndbuf(sk); 1179 } 1180 return NULL; 1181 } 1182 1183 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1184 int size, 1185 gfp_t gfp) 1186 { 1187 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1188 } 1189 1190 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1191 { 1192 struct page *page = NULL; 1193 1194 page = alloc_pages(sk->sk_allocation, 0); 1195 if (!page) { 1196 sk->sk_prot->enter_memory_pressure(); 1197 sk_stream_moderate_sndbuf(sk); 1198 } 1199 return page; 1200 } 1201 1202 #define sk_stream_for_retrans_queue(skb, sk) \ 1203 for (skb = (sk)->sk_write_queue.next; \ 1204 (skb != (sk)->sk_send_head) && \ 1205 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1206 skb = skb->next) 1207 1208 /*from STCP for fast SACK Process*/ 1209 #define sk_stream_for_retrans_queue_from(skb, sk) \ 1210 for (; (skb != (sk)->sk_send_head) && \ 1211 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1212 skb = skb->next) 1213 1214 /* 1215 * Default write policy as shown to user space via poll/select/SIGIO 1216 */ 1217 static inline int sock_writeable(const struct sock *sk) 1218 { 1219 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1220 } 1221 1222 static inline gfp_t gfp_any(void) 1223 { 1224 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1225 } 1226 1227 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1228 { 1229 return noblock ? 0 : sk->sk_rcvtimeo; 1230 } 1231 1232 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1233 { 1234 return noblock ? 0 : sk->sk_sndtimeo; 1235 } 1236 1237 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1238 { 1239 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1240 } 1241 1242 /* Alas, with timeout socket operations are not restartable. 1243 * Compare this to poll(). 1244 */ 1245 static inline int sock_intr_errno(long timeo) 1246 { 1247 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1248 } 1249 1250 static __inline__ void 1251 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1252 { 1253 struct timeval stamp; 1254 1255 skb_get_timestamp(skb, &stamp); 1256 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1257 /* Race occurred between timestamp enabling and packet 1258 receiving. Fill in the current time for now. */ 1259 if (stamp.tv_sec == 0) 1260 do_gettimeofday(&stamp); 1261 skb_set_timestamp(skb, &stamp); 1262 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1263 &stamp); 1264 } else 1265 sk->sk_stamp = stamp; 1266 } 1267 1268 /** 1269 * sk_eat_skb - Release a skb if it is no longer needed 1270 * @sk: socket to eat this skb from 1271 * @skb: socket buffer to eat 1272 * 1273 * This routine must be called with interrupts disabled or with the socket 1274 * locked so that the sk_buff queue operation is ok. 1275 */ 1276 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 1277 { 1278 __skb_unlink(skb, &sk->sk_receive_queue); 1279 __kfree_skb(skb); 1280 } 1281 1282 extern void sock_enable_timestamp(struct sock *sk); 1283 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1284 1285 /* 1286 * Enable debug/info messages 1287 */ 1288 1289 #ifdef CONFIG_NETDEBUG 1290 #define NETDEBUG(fmt, args...) printk(fmt,##args) 1291 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0) 1292 #else 1293 #define NETDEBUG(fmt, args...) do { } while (0) 1294 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0) 1295 #endif 1296 1297 /* 1298 * Macros for sleeping on a socket. Use them like this: 1299 * 1300 * SOCK_SLEEP_PRE(sk) 1301 * if (condition) 1302 * schedule(); 1303 * SOCK_SLEEP_POST(sk) 1304 * 1305 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1306 * and when the last use of them in DECnet has gone, I'm intending to 1307 * remove them. 1308 */ 1309 1310 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1311 DECLARE_WAITQUEUE(wait, tsk); \ 1312 tsk->state = TASK_INTERRUPTIBLE; \ 1313 add_wait_queue((sk)->sk_sleep, &wait); \ 1314 release_sock(sk); 1315 1316 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1317 remove_wait_queue((sk)->sk_sleep, &wait); \ 1318 lock_sock(sk); \ 1319 } 1320 1321 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1322 { 1323 if (valbool) 1324 sock_set_flag(sk, bit); 1325 else 1326 sock_reset_flag(sk, bit); 1327 } 1328 1329 extern __u32 sysctl_wmem_max; 1330 extern __u32 sysctl_rmem_max; 1331 1332 #ifdef CONFIG_NET 1333 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1334 #else 1335 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1336 { 1337 return -ENODEV; 1338 } 1339 #endif 1340 1341 extern void sk_init(void); 1342 1343 #ifdef CONFIG_SYSCTL 1344 extern struct ctl_table core_table[]; 1345 #endif 1346 1347 extern int sysctl_optmem_max; 1348 1349 extern __u32 sysctl_wmem_default; 1350 extern __u32 sysctl_rmem_default; 1351 1352 #endif /* _SOCK_H */ 1353