1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro, <bir7@leland.Stanford.Edu> 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/config.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/security.h> 51 52 #include <linux/filter.h> 53 54 #include <asm/atomic.h> 55 #include <net/dst.h> 56 #include <net/checksum.h> 57 58 /* 59 * This structure really needs to be cleaned up. 60 * Most of it is for TCP, and not used by any of 61 * the other protocols. 62 */ 63 64 /* Define this to get the SOCK_DBG debugging facility. */ 65 #define SOCK_DEBUGGING 66 #ifdef SOCK_DEBUGGING 67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 68 printk(KERN_DEBUG msg); } while (0) 69 #else 70 #define SOCK_DEBUG(sk, msg...) do { } while (0) 71 #endif 72 73 /* This is the per-socket lock. The spinlock provides a synchronization 74 * between user contexts and software interrupt processing, whereas the 75 * mini-semaphore synchronizes multiple users amongst themselves. 76 */ 77 struct sock_iocb; 78 typedef struct { 79 spinlock_t slock; 80 struct sock_iocb *owner; 81 wait_queue_head_t wq; 82 } socket_lock_t; 83 84 #define sock_lock_init(__sk) \ 85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \ 86 (__sk)->sk_lock.owner = NULL; \ 87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \ 88 } while(0) 89 90 struct sock; 91 92 /** 93 * struct sock_common - minimal network layer representation of sockets 94 * @skc_family - network address family 95 * @skc_state - Connection state 96 * @skc_reuse - %SO_REUSEADDR setting 97 * @skc_bound_dev_if - bound device index if != 0 98 * @skc_node - main hash linkage for various protocol lookup tables 99 * @skc_bind_node - bind hash linkage for various protocol lookup tables 100 * @skc_refcnt - reference count 101 * 102 * This is the minimal network layer representation of sockets, the header 103 * for struct sock and struct tcp_tw_bucket. 104 */ 105 struct sock_common { 106 unsigned short skc_family; 107 volatile unsigned char skc_state; 108 unsigned char skc_reuse; 109 int skc_bound_dev_if; 110 struct hlist_node skc_node; 111 struct hlist_node skc_bind_node; 112 atomic_t skc_refcnt; 113 }; 114 115 /** 116 * struct sock - network layer representation of sockets 117 * @__sk_common - shared layout with tcp_tw_bucket 118 * @sk_shutdown - mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 119 * @sk_userlocks - %SO_SNDBUF and %SO_RCVBUF settings 120 * @sk_lock - synchronizer 121 * @sk_rcvbuf - size of receive buffer in bytes 122 * @sk_sleep - sock wait queue 123 * @sk_dst_cache - destination cache 124 * @sk_dst_lock - destination cache lock 125 * @sk_policy - flow policy 126 * @sk_rmem_alloc - receive queue bytes committed 127 * @sk_receive_queue - incoming packets 128 * @sk_wmem_alloc - transmit queue bytes committed 129 * @sk_write_queue - Packet sending queue 130 * @sk_omem_alloc - "o" is "option" or "other" 131 * @sk_wmem_queued - persistent queue size 132 * @sk_forward_alloc - space allocated forward 133 * @sk_allocation - allocation mode 134 * @sk_sndbuf - size of send buffer in bytes 135 * @sk_flags - %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 136 * @sk_no_check - %SO_NO_CHECK setting, wether or not checkup packets 137 * @sk_route_caps - route capabilities (e.g. %NETIF_F_TSO) 138 * @sk_lingertime - %SO_LINGER l_linger setting 139 * @sk_hashent - hash entry in several tables (e.g. tcp_ehash) 140 * @sk_backlog - always used with the per-socket spinlock held 141 * @sk_callback_lock - used with the callbacks in the end of this struct 142 * @sk_error_queue - rarely used 143 * @sk_prot - protocol handlers inside a network family 144 * @sk_err - last error 145 * @sk_err_soft - errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 146 * @sk_ack_backlog - current listen backlog 147 * @sk_max_ack_backlog - listen backlog set in listen() 148 * @sk_priority - %SO_PRIORITY setting 149 * @sk_type - socket type (%SOCK_STREAM, etc) 150 * @sk_protocol - which protocol this socket belongs in this network family 151 * @sk_peercred - %SO_PEERCRED setting 152 * @sk_rcvlowat - %SO_RCVLOWAT setting 153 * @sk_rcvtimeo - %SO_RCVTIMEO setting 154 * @sk_sndtimeo - %SO_SNDTIMEO setting 155 * @sk_filter - socket filtering instructions 156 * @sk_protinfo - private area, net family specific, when not using slab 157 * @sk_timer - sock cleanup timer 158 * @sk_stamp - time stamp of last packet received 159 * @sk_socket - Identd and reporting IO signals 160 * @sk_user_data - RPC layer private data 161 * @sk_sndmsg_page - cached page for sendmsg 162 * @sk_sndmsg_off - cached offset for sendmsg 163 * @sk_send_head - front of stuff to transmit 164 * @sk_write_pending - a write to stream socket waits to start 165 * @sk_state_change - callback to indicate change in the state of the sock 166 * @sk_data_ready - callback to indicate there is data to be processed 167 * @sk_write_space - callback to indicate there is bf sending space available 168 * @sk_error_report - callback to indicate errors (e.g. %MSG_ERRQUEUE) 169 * @sk_backlog_rcv - callback to process the backlog 170 * @sk_destruct - called at sock freeing time, i.e. when all refcnt == 0 171 */ 172 struct sock { 173 /* 174 * Now struct tcp_tw_bucket also uses sock_common, so please just 175 * don't add nothing before this first member (__sk_common) --acme 176 */ 177 struct sock_common __sk_common; 178 #define sk_family __sk_common.skc_family 179 #define sk_state __sk_common.skc_state 180 #define sk_reuse __sk_common.skc_reuse 181 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 182 #define sk_node __sk_common.skc_node 183 #define sk_bind_node __sk_common.skc_bind_node 184 #define sk_refcnt __sk_common.skc_refcnt 185 unsigned char sk_shutdown : 2, 186 sk_no_check : 2, 187 sk_userlocks : 4; 188 unsigned char sk_protocol; 189 unsigned short sk_type; 190 int sk_rcvbuf; 191 socket_lock_t sk_lock; 192 wait_queue_head_t *sk_sleep; 193 struct dst_entry *sk_dst_cache; 194 struct xfrm_policy *sk_policy[2]; 195 rwlock_t sk_dst_lock; 196 atomic_t sk_rmem_alloc; 197 atomic_t sk_wmem_alloc; 198 atomic_t sk_omem_alloc; 199 struct sk_buff_head sk_receive_queue; 200 struct sk_buff_head sk_write_queue; 201 int sk_wmem_queued; 202 int sk_forward_alloc; 203 unsigned int sk_allocation; 204 int sk_sndbuf; 205 int sk_route_caps; 206 int sk_hashent; 207 unsigned long sk_flags; 208 unsigned long sk_lingertime; 209 /* 210 * The backlog queue is special, it is always used with 211 * the per-socket spinlock held and requires low latency 212 * access. Therefore we special case it's implementation. 213 */ 214 struct { 215 struct sk_buff *head; 216 struct sk_buff *tail; 217 } sk_backlog; 218 struct sk_buff_head sk_error_queue; 219 struct proto *sk_prot; 220 rwlock_t sk_callback_lock; 221 int sk_err, 222 sk_err_soft; 223 unsigned short sk_ack_backlog; 224 unsigned short sk_max_ack_backlog; 225 __u32 sk_priority; 226 struct ucred sk_peercred; 227 int sk_rcvlowat; 228 long sk_rcvtimeo; 229 long sk_sndtimeo; 230 struct sk_filter *sk_filter; 231 void *sk_protinfo; 232 struct timer_list sk_timer; 233 struct timeval sk_stamp; 234 struct socket *sk_socket; 235 void *sk_user_data; 236 struct page *sk_sndmsg_page; 237 struct sk_buff *sk_send_head; 238 __u32 sk_sndmsg_off; 239 int sk_write_pending; 240 void *sk_security; 241 void (*sk_state_change)(struct sock *sk); 242 void (*sk_data_ready)(struct sock *sk, int bytes); 243 void (*sk_write_space)(struct sock *sk); 244 void (*sk_error_report)(struct sock *sk); 245 int (*sk_backlog_rcv)(struct sock *sk, 246 struct sk_buff *skb); 247 void (*sk_destruct)(struct sock *sk); 248 }; 249 250 /* 251 * Hashed lists helper routines 252 */ 253 static inline struct sock *__sk_head(struct hlist_head *head) 254 { 255 return hlist_entry(head->first, struct sock, sk_node); 256 } 257 258 static inline struct sock *sk_head(struct hlist_head *head) 259 { 260 return hlist_empty(head) ? NULL : __sk_head(head); 261 } 262 263 static inline struct sock *sk_next(struct sock *sk) 264 { 265 return sk->sk_node.next ? 266 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 267 } 268 269 static inline int sk_unhashed(struct sock *sk) 270 { 271 return hlist_unhashed(&sk->sk_node); 272 } 273 274 static inline int sk_hashed(struct sock *sk) 275 { 276 return sk->sk_node.pprev != NULL; 277 } 278 279 static __inline__ void sk_node_init(struct hlist_node *node) 280 { 281 node->pprev = NULL; 282 } 283 284 static __inline__ void __sk_del_node(struct sock *sk) 285 { 286 __hlist_del(&sk->sk_node); 287 } 288 289 static __inline__ int __sk_del_node_init(struct sock *sk) 290 { 291 if (sk_hashed(sk)) { 292 __sk_del_node(sk); 293 sk_node_init(&sk->sk_node); 294 return 1; 295 } 296 return 0; 297 } 298 299 /* Grab socket reference count. This operation is valid only 300 when sk is ALREADY grabbed f.e. it is found in hash table 301 or a list and the lookup is made under lock preventing hash table 302 modifications. 303 */ 304 305 static inline void sock_hold(struct sock *sk) 306 { 307 atomic_inc(&sk->sk_refcnt); 308 } 309 310 /* Ungrab socket in the context, which assumes that socket refcnt 311 cannot hit zero, f.e. it is true in context of any socketcall. 312 */ 313 static inline void __sock_put(struct sock *sk) 314 { 315 atomic_dec(&sk->sk_refcnt); 316 } 317 318 static __inline__ int sk_del_node_init(struct sock *sk) 319 { 320 int rc = __sk_del_node_init(sk); 321 322 if (rc) { 323 /* paranoid for a while -acme */ 324 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 325 __sock_put(sk); 326 } 327 return rc; 328 } 329 330 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 331 { 332 hlist_add_head(&sk->sk_node, list); 333 } 334 335 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 336 { 337 sock_hold(sk); 338 __sk_add_node(sk, list); 339 } 340 341 static __inline__ void __sk_del_bind_node(struct sock *sk) 342 { 343 __hlist_del(&sk->sk_bind_node); 344 } 345 346 static __inline__ void sk_add_bind_node(struct sock *sk, 347 struct hlist_head *list) 348 { 349 hlist_add_head(&sk->sk_bind_node, list); 350 } 351 352 #define sk_for_each(__sk, node, list) \ 353 hlist_for_each_entry(__sk, node, list, sk_node) 354 #define sk_for_each_from(__sk, node) \ 355 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 356 hlist_for_each_entry_from(__sk, node, sk_node) 357 #define sk_for_each_continue(__sk, node) \ 358 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 359 hlist_for_each_entry_continue(__sk, node, sk_node) 360 #define sk_for_each_safe(__sk, node, tmp, list) \ 361 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 362 #define sk_for_each_bound(__sk, node, list) \ 363 hlist_for_each_entry(__sk, node, list, sk_bind_node) 364 365 /* Sock flags */ 366 enum sock_flags { 367 SOCK_DEAD, 368 SOCK_DONE, 369 SOCK_URGINLINE, 370 SOCK_KEEPOPEN, 371 SOCK_LINGER, 372 SOCK_DESTROY, 373 SOCK_BROADCAST, 374 SOCK_TIMESTAMP, 375 SOCK_ZAPPED, 376 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 377 SOCK_DBG, /* %SO_DEBUG setting */ 378 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 379 SOCK_NO_LARGESEND, /* whether to sent large segments or not */ 380 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 381 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 382 }; 383 384 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 385 { 386 __set_bit(flag, &sk->sk_flags); 387 } 388 389 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 390 { 391 __clear_bit(flag, &sk->sk_flags); 392 } 393 394 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 395 { 396 return test_bit(flag, &sk->sk_flags); 397 } 398 399 static inline void sk_acceptq_removed(struct sock *sk) 400 { 401 sk->sk_ack_backlog--; 402 } 403 404 static inline void sk_acceptq_added(struct sock *sk) 405 { 406 sk->sk_ack_backlog++; 407 } 408 409 static inline int sk_acceptq_is_full(struct sock *sk) 410 { 411 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 412 } 413 414 /* 415 * Compute minimal free write space needed to queue new packets. 416 */ 417 static inline int sk_stream_min_wspace(struct sock *sk) 418 { 419 return sk->sk_wmem_queued / 2; 420 } 421 422 static inline int sk_stream_wspace(struct sock *sk) 423 { 424 return sk->sk_sndbuf - sk->sk_wmem_queued; 425 } 426 427 extern void sk_stream_write_space(struct sock *sk); 428 429 static inline int sk_stream_memory_free(struct sock *sk) 430 { 431 return sk->sk_wmem_queued < sk->sk_sndbuf; 432 } 433 434 extern void sk_stream_rfree(struct sk_buff *skb); 435 436 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 437 { 438 skb->sk = sk; 439 skb->destructor = sk_stream_rfree; 440 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 441 sk->sk_forward_alloc -= skb->truesize; 442 } 443 444 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 445 { 446 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 447 sk->sk_wmem_queued -= skb->truesize; 448 sk->sk_forward_alloc += skb->truesize; 449 __kfree_skb(skb); 450 } 451 452 /* The per-socket spinlock must be held here. */ 453 #define sk_add_backlog(__sk, __skb) \ 454 do { if (!(__sk)->sk_backlog.tail) { \ 455 (__sk)->sk_backlog.head = \ 456 (__sk)->sk_backlog.tail = (__skb); \ 457 } else { \ 458 ((__sk)->sk_backlog.tail)->next = (__skb); \ 459 (__sk)->sk_backlog.tail = (__skb); \ 460 } \ 461 (__skb)->next = NULL; \ 462 } while(0) 463 464 #define sk_wait_event(__sk, __timeo, __condition) \ 465 ({ int rc; \ 466 release_sock(__sk); \ 467 rc = __condition; \ 468 if (!rc) { \ 469 *(__timeo) = schedule_timeout(*(__timeo)); \ 470 rc = __condition; \ 471 } \ 472 lock_sock(__sk); \ 473 rc; \ 474 }) 475 476 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 477 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 478 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 479 extern int sk_stream_error(struct sock *sk, int flags, int err); 480 extern void sk_stream_kill_queues(struct sock *sk); 481 482 extern int sk_wait_data(struct sock *sk, long *timeo); 483 484 /* Networking protocol blocks we attach to sockets. 485 * socket layer -> transport layer interface 486 * transport -> network interface is defined by struct inet_proto 487 */ 488 struct proto { 489 void (*close)(struct sock *sk, 490 long timeout); 491 int (*connect)(struct sock *sk, 492 struct sockaddr *uaddr, 493 int addr_len); 494 int (*disconnect)(struct sock *sk, int flags); 495 496 struct sock * (*accept) (struct sock *sk, int flags, int *err); 497 498 int (*ioctl)(struct sock *sk, int cmd, 499 unsigned long arg); 500 int (*init)(struct sock *sk); 501 int (*destroy)(struct sock *sk); 502 void (*shutdown)(struct sock *sk, int how); 503 int (*setsockopt)(struct sock *sk, int level, 504 int optname, char __user *optval, 505 int optlen); 506 int (*getsockopt)(struct sock *sk, int level, 507 int optname, char __user *optval, 508 int __user *option); 509 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 510 struct msghdr *msg, size_t len); 511 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 512 struct msghdr *msg, 513 size_t len, int noblock, int flags, 514 int *addr_len); 515 int (*sendpage)(struct sock *sk, struct page *page, 516 int offset, size_t size, int flags); 517 int (*bind)(struct sock *sk, 518 struct sockaddr *uaddr, int addr_len); 519 520 int (*backlog_rcv) (struct sock *sk, 521 struct sk_buff *skb); 522 523 /* Keeping track of sk's, looking them up, and port selection methods. */ 524 void (*hash)(struct sock *sk); 525 void (*unhash)(struct sock *sk); 526 int (*get_port)(struct sock *sk, unsigned short snum); 527 528 /* Memory pressure */ 529 void (*enter_memory_pressure)(void); 530 atomic_t *memory_allocated; /* Current allocated memory. */ 531 atomic_t *sockets_allocated; /* Current number of sockets. */ 532 /* 533 * Pressure flag: try to collapse. 534 * Technical note: it is used by multiple contexts non atomically. 535 * All the sk_stream_mem_schedule() is of this nature: accounting 536 * is strict, actions are advisory and have some latency. 537 */ 538 int *memory_pressure; 539 int *sysctl_mem; 540 int *sysctl_wmem; 541 int *sysctl_rmem; 542 int max_header; 543 544 kmem_cache_t *slab; 545 unsigned int obj_size; 546 547 struct module *owner; 548 549 char name[32]; 550 551 struct list_head node; 552 553 struct { 554 int inuse; 555 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 556 } stats[NR_CPUS]; 557 }; 558 559 extern int proto_register(struct proto *prot, int alloc_slab); 560 extern void proto_unregister(struct proto *prot); 561 562 /* Called with local bh disabled */ 563 static __inline__ void sock_prot_inc_use(struct proto *prot) 564 { 565 prot->stats[smp_processor_id()].inuse++; 566 } 567 568 static __inline__ void sock_prot_dec_use(struct proto *prot) 569 { 570 prot->stats[smp_processor_id()].inuse--; 571 } 572 573 /* About 10 seconds */ 574 #define SOCK_DESTROY_TIME (10*HZ) 575 576 /* Sockets 0-1023 can't be bound to unless you are superuser */ 577 #define PROT_SOCK 1024 578 579 #define SHUTDOWN_MASK 3 580 #define RCV_SHUTDOWN 1 581 #define SEND_SHUTDOWN 2 582 583 #define SOCK_SNDBUF_LOCK 1 584 #define SOCK_RCVBUF_LOCK 2 585 #define SOCK_BINDADDR_LOCK 4 586 #define SOCK_BINDPORT_LOCK 8 587 588 /* sock_iocb: used to kick off async processing of socket ios */ 589 struct sock_iocb { 590 struct list_head list; 591 592 int flags; 593 int size; 594 struct socket *sock; 595 struct sock *sk; 596 struct scm_cookie *scm; 597 struct msghdr *msg, async_msg; 598 struct iovec async_iov; 599 struct kiocb *kiocb; 600 }; 601 602 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 603 { 604 return (struct sock_iocb *)iocb->private; 605 } 606 607 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 608 { 609 return si->kiocb; 610 } 611 612 struct socket_alloc { 613 struct socket socket; 614 struct inode vfs_inode; 615 }; 616 617 static inline struct socket *SOCKET_I(struct inode *inode) 618 { 619 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 620 } 621 622 static inline struct inode *SOCK_INODE(struct socket *socket) 623 { 624 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 625 } 626 627 extern void __sk_stream_mem_reclaim(struct sock *sk); 628 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 629 630 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 631 632 static inline int sk_stream_pages(int amt) 633 { 634 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 635 } 636 637 static inline void sk_stream_mem_reclaim(struct sock *sk) 638 { 639 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 640 __sk_stream_mem_reclaim(sk); 641 } 642 643 static inline void sk_stream_writequeue_purge(struct sock *sk) 644 { 645 struct sk_buff *skb; 646 647 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 648 sk_stream_free_skb(sk, skb); 649 sk_stream_mem_reclaim(sk); 650 } 651 652 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 653 { 654 return (int)skb->truesize <= sk->sk_forward_alloc || 655 sk_stream_mem_schedule(sk, skb->truesize, 1); 656 } 657 658 /* Used by processes to "lock" a socket state, so that 659 * interrupts and bottom half handlers won't change it 660 * from under us. It essentially blocks any incoming 661 * packets, so that we won't get any new data or any 662 * packets that change the state of the socket. 663 * 664 * While locked, BH processing will add new packets to 665 * the backlog queue. This queue is processed by the 666 * owner of the socket lock right before it is released. 667 * 668 * Since ~2.3.5 it is also exclusive sleep lock serializing 669 * accesses from user process context. 670 */ 671 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 672 673 extern void FASTCALL(lock_sock(struct sock *sk)); 674 extern void FASTCALL(release_sock(struct sock *sk)); 675 676 /* BH context may only use the following locking interface. */ 677 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 678 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 679 680 extern struct sock *sk_alloc(int family, int priority, 681 struct proto *prot, int zero_it); 682 extern void sk_free(struct sock *sk); 683 684 extern struct sk_buff *sock_wmalloc(struct sock *sk, 685 unsigned long size, int force, 686 int priority); 687 extern struct sk_buff *sock_rmalloc(struct sock *sk, 688 unsigned long size, int force, 689 int priority); 690 extern void sock_wfree(struct sk_buff *skb); 691 extern void sock_rfree(struct sk_buff *skb); 692 693 extern int sock_setsockopt(struct socket *sock, int level, 694 int op, char __user *optval, 695 int optlen); 696 697 extern int sock_getsockopt(struct socket *sock, int level, 698 int op, char __user *optval, 699 int __user *optlen); 700 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 701 unsigned long size, 702 int noblock, 703 int *errcode); 704 extern void *sock_kmalloc(struct sock *sk, int size, int priority); 705 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 706 extern void sk_send_sigurg(struct sock *sk); 707 708 /* 709 * Functions to fill in entries in struct proto_ops when a protocol 710 * does not implement a particular function. 711 */ 712 extern int sock_no_bind(struct socket *, 713 struct sockaddr *, int); 714 extern int sock_no_connect(struct socket *, 715 struct sockaddr *, int, int); 716 extern int sock_no_socketpair(struct socket *, 717 struct socket *); 718 extern int sock_no_accept(struct socket *, 719 struct socket *, int); 720 extern int sock_no_getname(struct socket *, 721 struct sockaddr *, int *, int); 722 extern unsigned int sock_no_poll(struct file *, struct socket *, 723 struct poll_table_struct *); 724 extern int sock_no_ioctl(struct socket *, unsigned int, 725 unsigned long); 726 extern int sock_no_listen(struct socket *, int); 727 extern int sock_no_shutdown(struct socket *, int); 728 extern int sock_no_getsockopt(struct socket *, int , int, 729 char __user *, int __user *); 730 extern int sock_no_setsockopt(struct socket *, int, int, 731 char __user *, int); 732 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 733 struct msghdr *, size_t); 734 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 735 struct msghdr *, size_t, int); 736 extern int sock_no_mmap(struct file *file, 737 struct socket *sock, 738 struct vm_area_struct *vma); 739 extern ssize_t sock_no_sendpage(struct socket *sock, 740 struct page *page, 741 int offset, size_t size, 742 int flags); 743 744 /* 745 * Functions to fill in entries in struct proto_ops when a protocol 746 * uses the inet style. 747 */ 748 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 749 char __user *optval, int __user *optlen); 750 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 751 struct msghdr *msg, size_t size, int flags); 752 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 753 char __user *optval, int optlen); 754 755 extern void sk_common_release(struct sock *sk); 756 757 /* 758 * Default socket callbacks and setup code 759 */ 760 761 /* Initialise core socket variables */ 762 extern void sock_init_data(struct socket *sock, struct sock *sk); 763 764 /** 765 * sk_filter - run a packet through a socket filter 766 * @sk: sock associated with &sk_buff 767 * @skb: buffer to filter 768 * @needlock: set to 1 if the sock is not locked by caller. 769 * 770 * Run the filter code and then cut skb->data to correct size returned by 771 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 772 * than pkt_len we keep whole skb->data. This is the socket level 773 * wrapper to sk_run_filter. It returns 0 if the packet should 774 * be accepted or -EPERM if the packet should be tossed. 775 * 776 */ 777 778 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock) 779 { 780 int err; 781 782 err = security_sock_rcv_skb(sk, skb); 783 if (err) 784 return err; 785 786 if (sk->sk_filter) { 787 struct sk_filter *filter; 788 789 if (needlock) 790 bh_lock_sock(sk); 791 792 filter = sk->sk_filter; 793 if (filter) { 794 int pkt_len = sk_run_filter(skb, filter->insns, 795 filter->len); 796 if (!pkt_len) 797 err = -EPERM; 798 else 799 skb_trim(skb, pkt_len); 800 } 801 802 if (needlock) 803 bh_unlock_sock(sk); 804 } 805 return err; 806 } 807 808 /** 809 * sk_filter_release: Release a socket filter 810 * @sk: socket 811 * @fp: filter to remove 812 * 813 * Remove a filter from a socket and release its resources. 814 */ 815 816 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 817 { 818 unsigned int size = sk_filter_len(fp); 819 820 atomic_sub(size, &sk->sk_omem_alloc); 821 822 if (atomic_dec_and_test(&fp->refcnt)) 823 kfree(fp); 824 } 825 826 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 827 { 828 atomic_inc(&fp->refcnt); 829 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 830 } 831 832 /* 833 * Socket reference counting postulates. 834 * 835 * * Each user of socket SHOULD hold a reference count. 836 * * Each access point to socket (an hash table bucket, reference from a list, 837 * running timer, skb in flight MUST hold a reference count. 838 * * When reference count hits 0, it means it will never increase back. 839 * * When reference count hits 0, it means that no references from 840 * outside exist to this socket and current process on current CPU 841 * is last user and may/should destroy this socket. 842 * * sk_free is called from any context: process, BH, IRQ. When 843 * it is called, socket has no references from outside -> sk_free 844 * may release descendant resources allocated by the socket, but 845 * to the time when it is called, socket is NOT referenced by any 846 * hash tables, lists etc. 847 * * Packets, delivered from outside (from network or from another process) 848 * and enqueued on receive/error queues SHOULD NOT grab reference count, 849 * when they sit in queue. Otherwise, packets will leak to hole, when 850 * socket is looked up by one cpu and unhasing is made by another CPU. 851 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 852 * (leak to backlog). Packet socket does all the processing inside 853 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 854 * use separate SMP lock, so that they are prone too. 855 */ 856 857 /* Ungrab socket and destroy it, if it was the last reference. */ 858 static inline void sock_put(struct sock *sk) 859 { 860 if (atomic_dec_and_test(&sk->sk_refcnt)) 861 sk_free(sk); 862 } 863 864 /* Detach socket from process context. 865 * Announce socket dead, detach it from wait queue and inode. 866 * Note that parent inode held reference count on this struct sock, 867 * we do not release it in this function, because protocol 868 * probably wants some additional cleanups or even continuing 869 * to work with this socket (TCP). 870 */ 871 static inline void sock_orphan(struct sock *sk) 872 { 873 write_lock_bh(&sk->sk_callback_lock); 874 sock_set_flag(sk, SOCK_DEAD); 875 sk->sk_socket = NULL; 876 sk->sk_sleep = NULL; 877 write_unlock_bh(&sk->sk_callback_lock); 878 } 879 880 static inline void sock_graft(struct sock *sk, struct socket *parent) 881 { 882 write_lock_bh(&sk->sk_callback_lock); 883 sk->sk_sleep = &parent->wait; 884 parent->sk = sk; 885 sk->sk_socket = parent; 886 write_unlock_bh(&sk->sk_callback_lock); 887 } 888 889 extern int sock_i_uid(struct sock *sk); 890 extern unsigned long sock_i_ino(struct sock *sk); 891 892 static inline struct dst_entry * 893 __sk_dst_get(struct sock *sk) 894 { 895 return sk->sk_dst_cache; 896 } 897 898 static inline struct dst_entry * 899 sk_dst_get(struct sock *sk) 900 { 901 struct dst_entry *dst; 902 903 read_lock(&sk->sk_dst_lock); 904 dst = sk->sk_dst_cache; 905 if (dst) 906 dst_hold(dst); 907 read_unlock(&sk->sk_dst_lock); 908 return dst; 909 } 910 911 static inline void 912 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 913 { 914 struct dst_entry *old_dst; 915 916 old_dst = sk->sk_dst_cache; 917 sk->sk_dst_cache = dst; 918 dst_release(old_dst); 919 } 920 921 static inline void 922 sk_dst_set(struct sock *sk, struct dst_entry *dst) 923 { 924 write_lock(&sk->sk_dst_lock); 925 __sk_dst_set(sk, dst); 926 write_unlock(&sk->sk_dst_lock); 927 } 928 929 static inline void 930 __sk_dst_reset(struct sock *sk) 931 { 932 struct dst_entry *old_dst; 933 934 old_dst = sk->sk_dst_cache; 935 sk->sk_dst_cache = NULL; 936 dst_release(old_dst); 937 } 938 939 static inline void 940 sk_dst_reset(struct sock *sk) 941 { 942 write_lock(&sk->sk_dst_lock); 943 __sk_dst_reset(sk); 944 write_unlock(&sk->sk_dst_lock); 945 } 946 947 static inline struct dst_entry * 948 __sk_dst_check(struct sock *sk, u32 cookie) 949 { 950 struct dst_entry *dst = sk->sk_dst_cache; 951 952 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 953 sk->sk_dst_cache = NULL; 954 dst_release(dst); 955 return NULL; 956 } 957 958 return dst; 959 } 960 961 static inline struct dst_entry * 962 sk_dst_check(struct sock *sk, u32 cookie) 963 { 964 struct dst_entry *dst = sk_dst_get(sk); 965 966 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 967 sk_dst_reset(sk); 968 dst_release(dst); 969 return NULL; 970 } 971 972 return dst; 973 } 974 975 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 976 { 977 sk->sk_wmem_queued += skb->truesize; 978 sk->sk_forward_alloc -= skb->truesize; 979 } 980 981 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 982 struct sk_buff *skb, struct page *page, 983 int off, int copy) 984 { 985 if (skb->ip_summed == CHECKSUM_NONE) { 986 int err = 0; 987 unsigned int csum = csum_and_copy_from_user(from, 988 page_address(page) + off, 989 copy, 0, &err); 990 if (err) 991 return err; 992 skb->csum = csum_block_add(skb->csum, csum, skb->len); 993 } else if (copy_from_user(page_address(page) + off, from, copy)) 994 return -EFAULT; 995 996 skb->len += copy; 997 skb->data_len += copy; 998 skb->truesize += copy; 999 sk->sk_wmem_queued += copy; 1000 sk->sk_forward_alloc -= copy; 1001 return 0; 1002 } 1003 1004 /* 1005 * Queue a received datagram if it will fit. Stream and sequenced 1006 * protocols can't normally use this as they need to fit buffers in 1007 * and play with them. 1008 * 1009 * Inlined as it's very short and called for pretty much every 1010 * packet ever received. 1011 */ 1012 1013 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1014 { 1015 sock_hold(sk); 1016 skb->sk = sk; 1017 skb->destructor = sock_wfree; 1018 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1019 } 1020 1021 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1022 { 1023 skb->sk = sk; 1024 skb->destructor = sock_rfree; 1025 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1026 } 1027 1028 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1029 unsigned long expires); 1030 1031 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1032 1033 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1034 { 1035 int err = 0; 1036 int skb_len; 1037 1038 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1039 number of warnings when compiling with -W --ANK 1040 */ 1041 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1042 (unsigned)sk->sk_rcvbuf) { 1043 err = -ENOMEM; 1044 goto out; 1045 } 1046 1047 /* It would be deadlock, if sock_queue_rcv_skb is used 1048 with socket lock! We assume that users of this 1049 function are lock free. 1050 */ 1051 err = sk_filter(sk, skb, 1); 1052 if (err) 1053 goto out; 1054 1055 skb->dev = NULL; 1056 skb_set_owner_r(skb, sk); 1057 1058 /* Cache the SKB length before we tack it onto the receive 1059 * queue. Once it is added it no longer belongs to us and 1060 * may be freed by other threads of control pulling packets 1061 * from the queue. 1062 */ 1063 skb_len = skb->len; 1064 1065 skb_queue_tail(&sk->sk_receive_queue, skb); 1066 1067 if (!sock_flag(sk, SOCK_DEAD)) 1068 sk->sk_data_ready(sk, skb_len); 1069 out: 1070 return err; 1071 } 1072 1073 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1074 { 1075 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1076 number of warnings when compiling with -W --ANK 1077 */ 1078 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1079 (unsigned)sk->sk_rcvbuf) 1080 return -ENOMEM; 1081 skb_set_owner_r(skb, sk); 1082 skb_queue_tail(&sk->sk_error_queue, skb); 1083 if (!sock_flag(sk, SOCK_DEAD)) 1084 sk->sk_data_ready(sk, skb->len); 1085 return 0; 1086 } 1087 1088 /* 1089 * Recover an error report and clear atomically 1090 */ 1091 1092 static inline int sock_error(struct sock *sk) 1093 { 1094 int err = xchg(&sk->sk_err, 0); 1095 return -err; 1096 } 1097 1098 static inline unsigned long sock_wspace(struct sock *sk) 1099 { 1100 int amt = 0; 1101 1102 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1103 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1104 if (amt < 0) 1105 amt = 0; 1106 } 1107 return amt; 1108 } 1109 1110 static inline void sk_wake_async(struct sock *sk, int how, int band) 1111 { 1112 if (sk->sk_socket && sk->sk_socket->fasync_list) 1113 sock_wake_async(sk->sk_socket, how, band); 1114 } 1115 1116 #define SOCK_MIN_SNDBUF 2048 1117 #define SOCK_MIN_RCVBUF 256 1118 1119 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1120 { 1121 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1122 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1123 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1124 } 1125 } 1126 1127 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1128 int size, int mem, int gfp) 1129 { 1130 struct sk_buff *skb = alloc_skb(size + sk->sk_prot->max_header, gfp); 1131 1132 if (skb) { 1133 skb->truesize += mem; 1134 if (sk->sk_forward_alloc >= (int)skb->truesize || 1135 sk_stream_mem_schedule(sk, skb->truesize, 0)) { 1136 skb_reserve(skb, sk->sk_prot->max_header); 1137 return skb; 1138 } 1139 __kfree_skb(skb); 1140 } else { 1141 sk->sk_prot->enter_memory_pressure(); 1142 sk_stream_moderate_sndbuf(sk); 1143 } 1144 return NULL; 1145 } 1146 1147 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1148 int size, int gfp) 1149 { 1150 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1151 } 1152 1153 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1154 { 1155 struct page *page = NULL; 1156 1157 if (sk->sk_forward_alloc >= (int)PAGE_SIZE || 1158 sk_stream_mem_schedule(sk, PAGE_SIZE, 0)) 1159 page = alloc_pages(sk->sk_allocation, 0); 1160 else { 1161 sk->sk_prot->enter_memory_pressure(); 1162 sk_stream_moderate_sndbuf(sk); 1163 } 1164 return page; 1165 } 1166 1167 #define sk_stream_for_retrans_queue(skb, sk) \ 1168 for (skb = (sk)->sk_write_queue.next; \ 1169 (skb != (sk)->sk_send_head) && \ 1170 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1171 skb = skb->next) 1172 1173 /* 1174 * Default write policy as shown to user space via poll/select/SIGIO 1175 */ 1176 static inline int sock_writeable(const struct sock *sk) 1177 { 1178 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1179 } 1180 1181 static inline int gfp_any(void) 1182 { 1183 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1184 } 1185 1186 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1187 { 1188 return noblock ? 0 : sk->sk_rcvtimeo; 1189 } 1190 1191 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1192 { 1193 return noblock ? 0 : sk->sk_sndtimeo; 1194 } 1195 1196 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1197 { 1198 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1199 } 1200 1201 /* Alas, with timeout socket operations are not restartable. 1202 * Compare this to poll(). 1203 */ 1204 static inline int sock_intr_errno(long timeo) 1205 { 1206 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1207 } 1208 1209 static __inline__ void 1210 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1211 { 1212 struct timeval *stamp = &skb->stamp; 1213 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1214 /* Race occurred between timestamp enabling and packet 1215 receiving. Fill in the current time for now. */ 1216 if (stamp->tv_sec == 0) 1217 do_gettimeofday(stamp); 1218 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1219 stamp); 1220 } else 1221 sk->sk_stamp = *stamp; 1222 } 1223 1224 /** 1225 * sk_eat_skb - Release a skb if it is no longer needed 1226 * @sk - socket to eat this skb from 1227 * @skb - socket buffer to eat 1228 * 1229 * This routine must be called with interrupts disabled or with the socket 1230 * locked so that the sk_buff queue operation is ok. 1231 */ 1232 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 1233 { 1234 __skb_unlink(skb, &sk->sk_receive_queue); 1235 __kfree_skb(skb); 1236 } 1237 1238 extern void sock_enable_timestamp(struct sock *sk); 1239 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1240 1241 /* 1242 * Enable debug/info messages 1243 */ 1244 1245 #if 0 1246 #define NETDEBUG(x) do { } while (0) 1247 #define LIMIT_NETDEBUG(x) do {} while(0) 1248 #else 1249 #define NETDEBUG(x) do { x; } while (0) 1250 #define LIMIT_NETDEBUG(x) do { if (net_ratelimit()) { x; } } while(0) 1251 #endif 1252 1253 /* 1254 * Macros for sleeping on a socket. Use them like this: 1255 * 1256 * SOCK_SLEEP_PRE(sk) 1257 * if (condition) 1258 * schedule(); 1259 * SOCK_SLEEP_POST(sk) 1260 * 1261 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1262 * and when the last use of them in DECnet has gone, I'm intending to 1263 * remove them. 1264 */ 1265 1266 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1267 DECLARE_WAITQUEUE(wait, tsk); \ 1268 tsk->state = TASK_INTERRUPTIBLE; \ 1269 add_wait_queue((sk)->sk_sleep, &wait); \ 1270 release_sock(sk); 1271 1272 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1273 remove_wait_queue((sk)->sk_sleep, &wait); \ 1274 lock_sock(sk); \ 1275 } 1276 1277 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1278 { 1279 if (valbool) 1280 sock_set_flag(sk, bit); 1281 else 1282 sock_reset_flag(sk, bit); 1283 } 1284 1285 extern __u32 sysctl_wmem_max; 1286 extern __u32 sysctl_rmem_max; 1287 1288 #ifdef CONFIG_NET 1289 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1290 #else 1291 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1292 { 1293 return -ENODEV; 1294 } 1295 #endif 1296 1297 #endif /* _SOCK_H */ 1298