xref: /openbmc/linux/include/net/ipv6.h (revision b7034146756b9e91cc059b19df7fe4defd4d7de7)
1 /*
2  *	Linux INET6 implementation
3  *
4  *	Authors:
5  *	Pedro Roque		<roque@di.fc.ul.pt>
6  *
7  *	This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #ifndef _NET_IPV6_H
14 #define _NET_IPV6_H
15 
16 #include <linux/ipv6.h>
17 #include <linux/hardirq.h>
18 #include <linux/jhash.h>
19 #include <linux/refcount.h>
20 #include <net/if_inet6.h>
21 #include <net/ndisc.h>
22 #include <net/flow.h>
23 #include <net/flow_dissector.h>
24 #include <net/snmp.h>
25 #include <net/netns/hash.h>
26 
27 #define SIN6_LEN_RFC2133	24
28 
29 #define IPV6_MAXPLEN		65535
30 
31 /*
32  *	NextHeader field of IPv6 header
33  */
34 
35 #define NEXTHDR_HOP		0	/* Hop-by-hop option header. */
36 #define NEXTHDR_TCP		6	/* TCP segment. */
37 #define NEXTHDR_UDP		17	/* UDP message. */
38 #define NEXTHDR_IPV6		41	/* IPv6 in IPv6 */
39 #define NEXTHDR_ROUTING		43	/* Routing header. */
40 #define NEXTHDR_FRAGMENT	44	/* Fragmentation/reassembly header. */
41 #define NEXTHDR_GRE		47	/* GRE header. */
42 #define NEXTHDR_ESP		50	/* Encapsulating security payload. */
43 #define NEXTHDR_AUTH		51	/* Authentication header. */
44 #define NEXTHDR_ICMP		58	/* ICMP for IPv6. */
45 #define NEXTHDR_NONE		59	/* No next header */
46 #define NEXTHDR_DEST		60	/* Destination options header. */
47 #define NEXTHDR_SCTP		132	/* SCTP message. */
48 #define NEXTHDR_MOBILITY	135	/* Mobility header. */
49 
50 #define NEXTHDR_MAX		255
51 
52 #define IPV6_DEFAULT_HOPLIMIT   64
53 #define IPV6_DEFAULT_MCASTHOPS	1
54 
55 /* Limits on Hop-by-Hop and Destination options.
56  *
57  * Per RFC8200 there is no limit on the maximum number or lengths of options in
58  * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59  * We allow configurable limits in order to mitigate potential denial of
60  * service attacks.
61  *
62  * There are three limits that may be set:
63  *   - Limit the number of options in a Hop-by-Hop or Destination options
64  *     extension header
65  *   - Limit the byte length of a Hop-by-Hop or Destination options extension
66  *     header
67  *   - Disallow unknown options
68  *
69  * The limits are expressed in corresponding sysctls:
70  *
71  * ipv6.sysctl.max_dst_opts_cnt
72  * ipv6.sysctl.max_hbh_opts_cnt
73  * ipv6.sysctl.max_dst_opts_len
74  * ipv6.sysctl.max_hbh_opts_len
75  *
76  * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77  * options or Hop-by-Hop options. If the number is less than zero then unknown
78  * TLVs are disallowed and the number of known options that are allowed is the
79  * absolute value. Setting the value to INT_MAX indicates no limit.
80  *
81  * max_*_opts_len is the length limit in bytes of a Destination or
82  * Hop-by-Hop options extension header. Setting the value to INT_MAX
83  * indicates no length limit.
84  *
85  * If a limit is exceeded when processing an extension header the packet is
86  * silently discarded.
87  */
88 
89 /* Default limits for Hop-by-Hop and Destination options */
90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT	 8
91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT	 8
92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN	 INT_MAX /* No limit */
93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN	 INT_MAX /* No limit */
94 
95 /*
96  *	Addr type
97  *
98  *	type	-	unicast | multicast
99  *	scope	-	local	| site	    | global
100  *	v4	-	compat
101  *	v4mapped
102  *	any
103  *	loopback
104  */
105 
106 #define IPV6_ADDR_ANY		0x0000U
107 
108 #define IPV6_ADDR_UNICAST	0x0001U
109 #define IPV6_ADDR_MULTICAST	0x0002U
110 
111 #define IPV6_ADDR_LOOPBACK	0x0010U
112 #define IPV6_ADDR_LINKLOCAL	0x0020U
113 #define IPV6_ADDR_SITELOCAL	0x0040U
114 
115 #define IPV6_ADDR_COMPATv4	0x0080U
116 
117 #define IPV6_ADDR_SCOPE_MASK	0x00f0U
118 
119 #define IPV6_ADDR_MAPPED	0x1000U
120 
121 /*
122  *	Addr scopes
123  */
124 #define IPV6_ADDR_MC_SCOPE(a)	\
125 	((a)->s6_addr[1] & 0x0f)	/* nonstandard */
126 #define __IPV6_ADDR_SCOPE_INVALID	-1
127 #define IPV6_ADDR_SCOPE_NODELOCAL	0x01
128 #define IPV6_ADDR_SCOPE_LINKLOCAL	0x02
129 #define IPV6_ADDR_SCOPE_SITELOCAL	0x05
130 #define IPV6_ADDR_SCOPE_ORGLOCAL	0x08
131 #define IPV6_ADDR_SCOPE_GLOBAL		0x0e
132 
133 /*
134  *	Addr flags
135  */
136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a)	\
137 	((a)->s6_addr[1] & 0x10)
138 #define IPV6_ADDR_MC_FLAG_PREFIX(a)	\
139 	((a)->s6_addr[1] & 0x20)
140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a)	\
141 	((a)->s6_addr[1] & 0x40)
142 
143 /*
144  *	fragmentation header
145  */
146 
147 struct frag_hdr {
148 	__u8	nexthdr;
149 	__u8	reserved;
150 	__be16	frag_off;
151 	__be32	identification;
152 };
153 
154 #define	IP6_MF		0x0001
155 #define	IP6_OFFSET	0xFFF8
156 
157 struct ip6_fraglist_iter {
158 	struct ipv6hdr	*tmp_hdr;
159 	struct sk_buff	*frag;
160 	int		offset;
161 	unsigned int	hlen;
162 	__be32		frag_id;
163 	u8		nexthdr;
164 };
165 
166 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
167 		      u8 nexthdr, __be32 frag_id,
168 		      struct ip6_fraglist_iter *iter);
169 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
170 
171 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
172 {
173 	struct sk_buff *skb = iter->frag;
174 
175 	iter->frag = skb->next;
176 	skb_mark_not_on_list(skb);
177 
178 	return skb;
179 }
180 
181 struct ip6_frag_state {
182 	u8		*prevhdr;
183 	unsigned int	hlen;
184 	unsigned int	mtu;
185 	unsigned int	left;
186 	int		offset;
187 	int		ptr;
188 	int		hroom;
189 	int		troom;
190 	__be32		frag_id;
191 	u8		nexthdr;
192 };
193 
194 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
195 		   unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
196 		   u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
197 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
198 			      struct ip6_frag_state *state);
199 
200 #define IP6_REPLY_MARK(net, mark) \
201 	((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
202 
203 #include <net/sock.h>
204 
205 /* sysctls */
206 extern int sysctl_mld_max_msf;
207 extern int sysctl_mld_qrv;
208 
209 #define _DEVINC(net, statname, mod, idev, field)			\
210 ({									\
211 	struct inet6_dev *_idev = (idev);				\
212 	if (likely(_idev != NULL))					\
213 		mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
214 	mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
215 })
216 
217 /* per device counters are atomic_long_t */
218 #define _DEVINCATOMIC(net, statname, mod, idev, field)			\
219 ({									\
220 	struct inet6_dev *_idev = (idev);				\
221 	if (likely(_idev != NULL))					\
222 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
223 	mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
224 })
225 
226 /* per device and per net counters are atomic_long_t */
227 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field)		\
228 ({									\
229 	struct inet6_dev *_idev = (idev);				\
230 	if (likely(_idev != NULL))					\
231 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
232 	SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
233 })
234 
235 #define _DEVADD(net, statname, mod, idev, field, val)			\
236 ({									\
237 	struct inet6_dev *_idev = (idev);				\
238 	if (likely(_idev != NULL))					\
239 		mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
240 	mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
241 })
242 
243 #define _DEVUPD(net, statname, mod, idev, field, val)			\
244 ({									\
245 	struct inet6_dev *_idev = (idev);				\
246 	if (likely(_idev != NULL))					\
247 		mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
248 	mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
249 })
250 
251 /* MIBs */
252 
253 #define IP6_INC_STATS(net, idev,field)		\
254 		_DEVINC(net, ipv6, , idev, field)
255 #define __IP6_INC_STATS(net, idev,field)	\
256 		_DEVINC(net, ipv6, __, idev, field)
257 #define IP6_ADD_STATS(net, idev,field,val)	\
258 		_DEVADD(net, ipv6, , idev, field, val)
259 #define __IP6_ADD_STATS(net, idev,field,val)	\
260 		_DEVADD(net, ipv6, __, idev, field, val)
261 #define IP6_UPD_PO_STATS(net, idev,field,val)   \
262 		_DEVUPD(net, ipv6, , idev, field, val)
263 #define __IP6_UPD_PO_STATS(net, idev,field,val)   \
264 		_DEVUPD(net, ipv6, __, idev, field, val)
265 #define ICMP6_INC_STATS(net, idev, field)	\
266 		_DEVINCATOMIC(net, icmpv6, , idev, field)
267 #define __ICMP6_INC_STATS(net, idev, field)	\
268 		_DEVINCATOMIC(net, icmpv6, __, idev, field)
269 
270 #define ICMP6MSGOUT_INC_STATS(net, idev, field)		\
271 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
272 #define ICMP6MSGIN_INC_STATS(net, idev, field)	\
273 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
274 
275 struct ip6_ra_chain {
276 	struct ip6_ra_chain	*next;
277 	struct sock		*sk;
278 	int			sel;
279 	void			(*destructor)(struct sock *);
280 };
281 
282 extern struct ip6_ra_chain	*ip6_ra_chain;
283 extern rwlock_t ip6_ra_lock;
284 
285 /*
286    This structure is prepared by protocol, when parsing
287    ancillary data and passed to IPv6.
288  */
289 
290 struct ipv6_txoptions {
291 	refcount_t		refcnt;
292 	/* Length of this structure */
293 	int			tot_len;
294 
295 	/* length of extension headers   */
296 
297 	__u16			opt_flen;	/* after fragment hdr */
298 	__u16			opt_nflen;	/* before fragment hdr */
299 
300 	struct ipv6_opt_hdr	*hopopt;
301 	struct ipv6_opt_hdr	*dst0opt;
302 	struct ipv6_rt_hdr	*srcrt;	/* Routing Header */
303 	struct ipv6_opt_hdr	*dst1opt;
304 	struct rcu_head		rcu;
305 	/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
306 };
307 
308 struct ip6_flowlabel {
309 	struct ip6_flowlabel __rcu *next;
310 	__be32			label;
311 	atomic_t		users;
312 	struct in6_addr		dst;
313 	struct ipv6_txoptions	*opt;
314 	unsigned long		linger;
315 	struct rcu_head		rcu;
316 	u8			share;
317 	union {
318 		struct pid *pid;
319 		kuid_t uid;
320 	} owner;
321 	unsigned long		lastuse;
322 	unsigned long		expires;
323 	struct net		*fl_net;
324 };
325 
326 #define IPV6_FLOWINFO_MASK		cpu_to_be32(0x0FFFFFFF)
327 #define IPV6_FLOWLABEL_MASK		cpu_to_be32(0x000FFFFF)
328 #define IPV6_FLOWLABEL_STATELESS_FLAG	cpu_to_be32(0x00080000)
329 
330 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
331 #define IPV6_TCLASS_SHIFT	20
332 
333 struct ipv6_fl_socklist {
334 	struct ipv6_fl_socklist	__rcu	*next;
335 	struct ip6_flowlabel		*fl;
336 	struct rcu_head			rcu;
337 };
338 
339 struct ipcm6_cookie {
340 	struct sockcm_cookie sockc;
341 	__s16 hlimit;
342 	__s16 tclass;
343 	__s8  dontfrag;
344 	struct ipv6_txoptions *opt;
345 	__u16 gso_size;
346 };
347 
348 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
349 {
350 	*ipc6 = (struct ipcm6_cookie) {
351 		.hlimit = -1,
352 		.tclass = -1,
353 		.dontfrag = -1,
354 	};
355 }
356 
357 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
358 				 const struct ipv6_pinfo *np)
359 {
360 	*ipc6 = (struct ipcm6_cookie) {
361 		.hlimit = -1,
362 		.tclass = np->tclass,
363 		.dontfrag = np->dontfrag,
364 	};
365 }
366 
367 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
368 {
369 	struct ipv6_txoptions *opt;
370 
371 	rcu_read_lock();
372 	opt = rcu_dereference(np->opt);
373 	if (opt) {
374 		if (!refcount_inc_not_zero(&opt->refcnt))
375 			opt = NULL;
376 		else
377 			opt = rcu_pointer_handoff(opt);
378 	}
379 	rcu_read_unlock();
380 	return opt;
381 }
382 
383 static inline void txopt_put(struct ipv6_txoptions *opt)
384 {
385 	if (opt && refcount_dec_and_test(&opt->refcnt))
386 		kfree_rcu(opt, rcu);
387 }
388 
389 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
390 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
391 					 struct ip6_flowlabel *fl,
392 					 struct ipv6_txoptions *fopt);
393 void fl6_free_socklist(struct sock *sk);
394 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
395 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
396 			   int flags);
397 int ip6_flowlabel_init(void);
398 void ip6_flowlabel_cleanup(void);
399 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
400 
401 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
402 {
403 	if (fl)
404 		atomic_dec(&fl->users);
405 }
406 
407 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
408 
409 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
410 				struct icmp6hdr *thdr, int len);
411 
412 int ip6_ra_control(struct sock *sk, int sel);
413 
414 int ipv6_parse_hopopts(struct sk_buff *skb);
415 
416 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
417 					struct ipv6_txoptions *opt);
418 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
419 					  struct ipv6_txoptions *opt,
420 					  int newtype,
421 					  struct ipv6_opt_hdr *newopt);
422 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
423 					  struct ipv6_txoptions *opt);
424 
425 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
426 		       const struct inet6_skb_parm *opt);
427 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
428 					   struct ipv6_txoptions *opt);
429 
430 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
431 {
432 	/* If forwarding is enabled, RA are not accepted unless the special
433 	 * hybrid mode (accept_ra=2) is enabled.
434 	 */
435 	return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
436 	    idev->cnf.accept_ra;
437 }
438 
439 #define IPV6_FRAG_HIGH_THRESH	(4 * 1024*1024)	/* 4194304 */
440 #define IPV6_FRAG_LOW_THRESH	(3 * 1024*1024)	/* 3145728 */
441 #define IPV6_FRAG_TIMEOUT	(60 * HZ)	/* 60 seconds */
442 
443 int __ipv6_addr_type(const struct in6_addr *addr);
444 static inline int ipv6_addr_type(const struct in6_addr *addr)
445 {
446 	return __ipv6_addr_type(addr) & 0xffff;
447 }
448 
449 static inline int ipv6_addr_scope(const struct in6_addr *addr)
450 {
451 	return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
452 }
453 
454 static inline int __ipv6_addr_src_scope(int type)
455 {
456 	return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
457 }
458 
459 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
460 {
461 	return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
462 }
463 
464 static inline bool __ipv6_addr_needs_scope_id(int type)
465 {
466 	return type & IPV6_ADDR_LINKLOCAL ||
467 	       (type & IPV6_ADDR_MULTICAST &&
468 		(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
469 }
470 
471 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
472 {
473 	return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
474 }
475 
476 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
477 {
478 	return memcmp(a1, a2, sizeof(struct in6_addr));
479 }
480 
481 static inline bool
482 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
483 		     const struct in6_addr *a2)
484 {
485 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
486 	const unsigned long *ul1 = (const unsigned long *)a1;
487 	const unsigned long *ulm = (const unsigned long *)m;
488 	const unsigned long *ul2 = (const unsigned long *)a2;
489 
490 	return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
491 		  ((ul1[1] ^ ul2[1]) & ulm[1]));
492 #else
493 	return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
494 		  ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
495 		  ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
496 		  ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
497 #endif
498 }
499 
500 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
501 				    const struct in6_addr *addr,
502 				    int plen)
503 {
504 	/* caller must guarantee 0 <= plen <= 128 */
505 	int o = plen >> 3,
506 	    b = plen & 0x7;
507 
508 	memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
509 	memcpy(pfx->s6_addr, addr, o);
510 	if (b != 0)
511 		pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
512 }
513 
514 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
515 					 const struct in6_addr *pfx,
516 					 int plen)
517 {
518 	/* caller must guarantee 0 <= plen <= 128 */
519 	int o = plen >> 3,
520 	    b = plen & 0x7;
521 
522 	memcpy(addr->s6_addr, pfx, o);
523 	if (b != 0) {
524 		addr->s6_addr[o] &= ~(0xff00 >> b);
525 		addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
526 	}
527 }
528 
529 static inline void __ipv6_addr_set_half(__be32 *addr,
530 					__be32 wh, __be32 wl)
531 {
532 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
533 #if defined(__BIG_ENDIAN)
534 	if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
535 		*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
536 		return;
537 	}
538 #elif defined(__LITTLE_ENDIAN)
539 	if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
540 		*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
541 		return;
542 	}
543 #endif
544 #endif
545 	addr[0] = wh;
546 	addr[1] = wl;
547 }
548 
549 static inline void ipv6_addr_set(struct in6_addr *addr,
550 				     __be32 w1, __be32 w2,
551 				     __be32 w3, __be32 w4)
552 {
553 	__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
554 	__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
555 }
556 
557 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
558 				   const struct in6_addr *a2)
559 {
560 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
561 	const unsigned long *ul1 = (const unsigned long *)a1;
562 	const unsigned long *ul2 = (const unsigned long *)a2;
563 
564 	return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
565 #else
566 	return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
567 		(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
568 		(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
569 		(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
570 #endif
571 }
572 
573 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
574 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
575 					      const __be64 *a2,
576 					      unsigned int len)
577 {
578 	if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
579 		return false;
580 	return true;
581 }
582 
583 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
584 				     const struct in6_addr *addr2,
585 				     unsigned int prefixlen)
586 {
587 	const __be64 *a1 = (const __be64 *)addr1;
588 	const __be64 *a2 = (const __be64 *)addr2;
589 
590 	if (prefixlen >= 64) {
591 		if (a1[0] ^ a2[0])
592 			return false;
593 		return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
594 	}
595 	return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
596 }
597 #else
598 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
599 				     const struct in6_addr *addr2,
600 				     unsigned int prefixlen)
601 {
602 	const __be32 *a1 = addr1->s6_addr32;
603 	const __be32 *a2 = addr2->s6_addr32;
604 	unsigned int pdw, pbi;
605 
606 	/* check complete u32 in prefix */
607 	pdw = prefixlen >> 5;
608 	if (pdw && memcmp(a1, a2, pdw << 2))
609 		return false;
610 
611 	/* check incomplete u32 in prefix */
612 	pbi = prefixlen & 0x1f;
613 	if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
614 		return false;
615 
616 	return true;
617 }
618 #endif
619 
620 static inline bool ipv6_addr_any(const struct in6_addr *a)
621 {
622 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
623 	const unsigned long *ul = (const unsigned long *)a;
624 
625 	return (ul[0] | ul[1]) == 0UL;
626 #else
627 	return (a->s6_addr32[0] | a->s6_addr32[1] |
628 		a->s6_addr32[2] | a->s6_addr32[3]) == 0;
629 #endif
630 }
631 
632 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
633 {
634 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
635 	const unsigned long *ul = (const unsigned long *)a;
636 	unsigned long x = ul[0] ^ ul[1];
637 
638 	return (u32)(x ^ (x >> 32));
639 #else
640 	return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
641 			     a->s6_addr32[2] ^ a->s6_addr32[3]);
642 #endif
643 }
644 
645 /* more secured version of ipv6_addr_hash() */
646 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
647 {
648 	u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
649 
650 	return jhash_3words(v,
651 			    (__force u32)a->s6_addr32[2],
652 			    (__force u32)a->s6_addr32[3],
653 			    initval);
654 }
655 
656 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
657 {
658 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
659 	const __be64 *be = (const __be64 *)a;
660 
661 	return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
662 #else
663 	return (a->s6_addr32[0] | a->s6_addr32[1] |
664 		a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
665 #endif
666 }
667 
668 /*
669  * Note that we must __force cast these to unsigned long to make sparse happy,
670  * since all of the endian-annotated types are fixed size regardless of arch.
671  */
672 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
673 {
674 	return (
675 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
676 		*(unsigned long *)a |
677 #else
678 		(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
679 #endif
680 		(__force unsigned long)(a->s6_addr32[2] ^
681 					cpu_to_be32(0x0000ffff))) == 0UL;
682 }
683 
684 static inline u32 ipv6_portaddr_hash(const struct net *net,
685 				     const struct in6_addr *addr6,
686 				     unsigned int port)
687 {
688 	unsigned int hash, mix = net_hash_mix(net);
689 
690 	if (ipv6_addr_any(addr6))
691 		hash = jhash_1word(0, mix);
692 	else if (ipv6_addr_v4mapped(addr6))
693 		hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
694 	else
695 		hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
696 
697 	return hash ^ port;
698 }
699 
700 /*
701  * Check for a RFC 4843 ORCHID address
702  * (Overlay Routable Cryptographic Hash Identifiers)
703  */
704 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
705 {
706 	return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
707 }
708 
709 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
710 {
711 	return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
712 }
713 
714 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
715 					  struct in6_addr *v4mapped)
716 {
717 	ipv6_addr_set(v4mapped,
718 			0, 0,
719 			htonl(0x0000FFFF),
720 			addr);
721 }
722 
723 /*
724  * find the first different bit between two addresses
725  * length of address must be a multiple of 32bits
726  */
727 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
728 {
729 	const __be32 *a1 = token1, *a2 = token2;
730 	int i;
731 
732 	addrlen >>= 2;
733 
734 	for (i = 0; i < addrlen; i++) {
735 		__be32 xb = a1[i] ^ a2[i];
736 		if (xb)
737 			return i * 32 + 31 - __fls(ntohl(xb));
738 	}
739 
740 	/*
741 	 *	we should *never* get to this point since that
742 	 *	would mean the addrs are equal
743 	 *
744 	 *	However, we do get to it 8) And exacly, when
745 	 *	addresses are equal 8)
746 	 *
747 	 *	ip route add 1111::/128 via ...
748 	 *	ip route add 1111::/64 via ...
749 	 *	and we are here.
750 	 *
751 	 *	Ideally, this function should stop comparison
752 	 *	at prefix length. It does not, but it is still OK,
753 	 *	if returned value is greater than prefix length.
754 	 *					--ANK (980803)
755 	 */
756 	return addrlen << 5;
757 }
758 
759 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
760 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
761 {
762 	const __be64 *a1 = token1, *a2 = token2;
763 	int i;
764 
765 	addrlen >>= 3;
766 
767 	for (i = 0; i < addrlen; i++) {
768 		__be64 xb = a1[i] ^ a2[i];
769 		if (xb)
770 			return i * 64 + 63 - __fls(be64_to_cpu(xb));
771 	}
772 
773 	return addrlen << 6;
774 }
775 #endif
776 
777 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
778 {
779 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
780 	if (__builtin_constant_p(addrlen) && !(addrlen & 7))
781 		return __ipv6_addr_diff64(token1, token2, addrlen);
782 #endif
783 	return __ipv6_addr_diff32(token1, token2, addrlen);
784 }
785 
786 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
787 {
788 	return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
789 }
790 
791 __be32 ipv6_select_ident(struct net *net,
792 			 const struct in6_addr *daddr,
793 			 const struct in6_addr *saddr);
794 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
795 
796 int ip6_dst_hoplimit(struct dst_entry *dst);
797 
798 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
799 				      struct dst_entry *dst)
800 {
801 	int hlimit;
802 
803 	if (ipv6_addr_is_multicast(&fl6->daddr))
804 		hlimit = np->mcast_hops;
805 	else
806 		hlimit = np->hop_limit;
807 	if (hlimit < 0)
808 		hlimit = ip6_dst_hoplimit(dst);
809 	return hlimit;
810 }
811 
812 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
813  * Equivalent to :	flow->v6addrs.src = iph->saddr;
814  *			flow->v6addrs.dst = iph->daddr;
815  */
816 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
817 					    const struct ipv6hdr *iph)
818 {
819 	BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
820 		     offsetof(typeof(flow->addrs), v6addrs.src) +
821 		     sizeof(flow->addrs.v6addrs.src));
822 	memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
823 	flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
824 }
825 
826 #if IS_ENABLED(CONFIG_IPV6)
827 
828 static inline bool ipv6_can_nonlocal_bind(struct net *net,
829 					  struct inet_sock *inet)
830 {
831 	return net->ipv6.sysctl.ip_nonlocal_bind ||
832 		inet->freebind || inet->transparent;
833 }
834 
835 /* Sysctl settings for net ipv6.auto_flowlabels */
836 #define IP6_AUTO_FLOW_LABEL_OFF		0
837 #define IP6_AUTO_FLOW_LABEL_OPTOUT	1
838 #define IP6_AUTO_FLOW_LABEL_OPTIN	2
839 #define IP6_AUTO_FLOW_LABEL_FORCED	3
840 
841 #define IP6_AUTO_FLOW_LABEL_MAX		IP6_AUTO_FLOW_LABEL_FORCED
842 
843 #define IP6_DEFAULT_AUTO_FLOW_LABELS	IP6_AUTO_FLOW_LABEL_OPTOUT
844 
845 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
846 					__be32 flowlabel, bool autolabel,
847 					struct flowi6 *fl6)
848 {
849 	u32 hash;
850 
851 	/* @flowlabel may include more than a flow label, eg, the traffic class.
852 	 * Here we want only the flow label value.
853 	 */
854 	flowlabel &= IPV6_FLOWLABEL_MASK;
855 
856 	if (flowlabel ||
857 	    net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
858 	    (!autolabel &&
859 	     net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
860 		return flowlabel;
861 
862 	hash = skb_get_hash_flowi6(skb, fl6);
863 
864 	/* Since this is being sent on the wire obfuscate hash a bit
865 	 * to minimize possbility that any useful information to an
866 	 * attacker is leaked. Only lower 20 bits are relevant.
867 	 */
868 	hash = rol32(hash, 16);
869 
870 	flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
871 
872 	if (net->ipv6.sysctl.flowlabel_state_ranges)
873 		flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
874 
875 	return flowlabel;
876 }
877 
878 static inline int ip6_default_np_autolabel(struct net *net)
879 {
880 	switch (net->ipv6.sysctl.auto_flowlabels) {
881 	case IP6_AUTO_FLOW_LABEL_OFF:
882 	case IP6_AUTO_FLOW_LABEL_OPTIN:
883 	default:
884 		return 0;
885 	case IP6_AUTO_FLOW_LABEL_OPTOUT:
886 	case IP6_AUTO_FLOW_LABEL_FORCED:
887 		return 1;
888 	}
889 }
890 #else
891 static inline void ip6_set_txhash(struct sock *sk) { }
892 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
893 					__be32 flowlabel, bool autolabel,
894 					struct flowi6 *fl6)
895 {
896 	return flowlabel;
897 }
898 static inline int ip6_default_np_autolabel(struct net *net)
899 {
900 	return 0;
901 }
902 #endif
903 
904 #if IS_ENABLED(CONFIG_IPV6)
905 static inline int ip6_multipath_hash_policy(const struct net *net)
906 {
907 	return net->ipv6.sysctl.multipath_hash_policy;
908 }
909 #else
910 static inline int ip6_multipath_hash_policy(const struct net *net)
911 {
912 	return 0;
913 }
914 #endif
915 
916 /*
917  *	Header manipulation
918  */
919 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
920 				__be32 flowlabel)
921 {
922 	*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
923 }
924 
925 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
926 {
927 	return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
928 }
929 
930 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
931 {
932 	return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
933 }
934 
935 static inline u8 ip6_tclass(__be32 flowinfo)
936 {
937 	return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
938 }
939 
940 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
941 {
942 	return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
943 }
944 
945 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
946 {
947 	return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
948 }
949 
950 /*
951  *	Prototypes exported by ipv6
952  */
953 
954 /*
955  *	rcv function (called from netdevice level)
956  */
957 
958 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
959 	     struct packet_type *pt, struct net_device *orig_dev);
960 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
961 		   struct net_device *orig_dev);
962 
963 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
964 
965 /*
966  *	upper-layer output functions
967  */
968 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
969 	     __u32 mark, struct ipv6_txoptions *opt, int tclass);
970 
971 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
972 
973 int ip6_append_data(struct sock *sk,
974 		    int getfrag(void *from, char *to, int offset, int len,
975 				int odd, struct sk_buff *skb),
976 		    void *from, int length, int transhdrlen,
977 		    struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
978 		    struct rt6_info *rt, unsigned int flags);
979 
980 int ip6_push_pending_frames(struct sock *sk);
981 
982 void ip6_flush_pending_frames(struct sock *sk);
983 
984 int ip6_send_skb(struct sk_buff *skb);
985 
986 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
987 			       struct inet_cork_full *cork,
988 			       struct inet6_cork *v6_cork);
989 struct sk_buff *ip6_make_skb(struct sock *sk,
990 			     int getfrag(void *from, char *to, int offset,
991 					 int len, int odd, struct sk_buff *skb),
992 			     void *from, int length, int transhdrlen,
993 			     struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
994 			     struct rt6_info *rt, unsigned int flags,
995 			     struct inet_cork_full *cork);
996 
997 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
998 {
999 	return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1000 			      &inet6_sk(sk)->cork);
1001 }
1002 
1003 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1004 		   struct flowi6 *fl6);
1005 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
1006 				      const struct in6_addr *final_dst);
1007 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1008 					 const struct in6_addr *final_dst,
1009 					 bool connected);
1010 struct dst_entry *ip6_blackhole_route(struct net *net,
1011 				      struct dst_entry *orig_dst);
1012 
1013 /*
1014  *	skb processing functions
1015  */
1016 
1017 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1018 int ip6_forward(struct sk_buff *skb);
1019 int ip6_input(struct sk_buff *skb);
1020 int ip6_mc_input(struct sk_buff *skb);
1021 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1022 			      bool have_final);
1023 
1024 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1025 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1026 
1027 /*
1028  *	Extension header (options) processing
1029  */
1030 
1031 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1032 			  u8 *proto, struct in6_addr **daddr_p,
1033 			  struct in6_addr *saddr);
1034 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1035 			 u8 *proto);
1036 
1037 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1038 		     __be16 *frag_offp);
1039 
1040 bool ipv6_ext_hdr(u8 nexthdr);
1041 
1042 enum {
1043 	IP6_FH_F_FRAG		= (1 << 0),
1044 	IP6_FH_F_AUTH		= (1 << 1),
1045 	IP6_FH_F_SKIP_RH	= (1 << 2),
1046 };
1047 
1048 /* find specified header and get offset to it */
1049 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1050 		  unsigned short *fragoff, int *fragflg);
1051 
1052 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1053 
1054 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1055 				const struct ipv6_txoptions *opt,
1056 				struct in6_addr *orig);
1057 
1058 /*
1059  *	socket options (ipv6_sockglue.c)
1060  */
1061 
1062 int ipv6_setsockopt(struct sock *sk, int level, int optname,
1063 		    char __user *optval, unsigned int optlen);
1064 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1065 		    char __user *optval, int __user *optlen);
1066 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
1067 			   char __user *optval, unsigned int optlen);
1068 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
1069 			   char __user *optval, int __user *optlen);
1070 
1071 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1072 			   int addr_len);
1073 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1074 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1075 				 int addr_len);
1076 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1077 void ip6_datagram_release_cb(struct sock *sk);
1078 
1079 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1080 		    int *addr_len);
1081 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1082 		     int *addr_len);
1083 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1084 		     u32 info, u8 *payload);
1085 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1086 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1087 
1088 int inet6_release(struct socket *sock);
1089 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1090 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1091 		  int peer);
1092 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1093 
1094 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1095 			      struct sock *sk);
1096 
1097 /*
1098  * reassembly.c
1099  */
1100 extern const struct proto_ops inet6_stream_ops;
1101 extern const struct proto_ops inet6_dgram_ops;
1102 extern const struct proto_ops inet6_sockraw_ops;
1103 
1104 struct group_source_req;
1105 struct group_filter;
1106 
1107 int ip6_mc_source(int add, int omode, struct sock *sk,
1108 		  struct group_source_req *pgsr);
1109 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
1110 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1111 		  struct group_filter __user *optval, int __user *optlen);
1112 
1113 #ifdef CONFIG_PROC_FS
1114 int ac6_proc_init(struct net *net);
1115 void ac6_proc_exit(struct net *net);
1116 int raw6_proc_init(void);
1117 void raw6_proc_exit(void);
1118 int tcp6_proc_init(struct net *net);
1119 void tcp6_proc_exit(struct net *net);
1120 int udp6_proc_init(struct net *net);
1121 void udp6_proc_exit(struct net *net);
1122 int udplite6_proc_init(void);
1123 void udplite6_proc_exit(void);
1124 int ipv6_misc_proc_init(void);
1125 void ipv6_misc_proc_exit(void);
1126 int snmp6_register_dev(struct inet6_dev *idev);
1127 int snmp6_unregister_dev(struct inet6_dev *idev);
1128 
1129 #else
1130 static inline int ac6_proc_init(struct net *net) { return 0; }
1131 static inline void ac6_proc_exit(struct net *net) { }
1132 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1133 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1134 #endif
1135 
1136 #ifdef CONFIG_SYSCTL
1137 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1138 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1139 int ipv6_sysctl_register(void);
1140 void ipv6_sysctl_unregister(void);
1141 #endif
1142 
1143 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1144 		      const struct in6_addr *addr);
1145 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1146 			  const struct in6_addr *addr, unsigned int mode);
1147 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1148 		      const struct in6_addr *addr);
1149 #endif /* _NET_IPV6_H */
1150