xref: /openbmc/linux/include/linux/rmap.h (revision f2d8b6917f3bcfb3190eb80567fea71a9b59dbd3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 
16 /*
17  * The anon_vma heads a list of private "related" vmas, to scan if
18  * an anonymous page pointing to this anon_vma needs to be unmapped:
19  * the vmas on the list will be related by forking, or by splitting.
20  *
21  * Since vmas come and go as they are split and merged (particularly
22  * in mprotect), the mapping field of an anonymous page cannot point
23  * directly to a vma: instead it points to an anon_vma, on whose list
24  * the related vmas can be easily linked or unlinked.
25  *
26  * After unlinking the last vma on the list, we must garbage collect
27  * the anon_vma object itself: we're guaranteed no page can be
28  * pointing to this anon_vma once its vma list is empty.
29  */
30 struct anon_vma {
31 	struct anon_vma *root;		/* Root of this anon_vma tree */
32 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
33 	/*
34 	 * The refcount is taken on an anon_vma when there is no
35 	 * guarantee that the vma of page tables will exist for
36 	 * the duration of the operation. A caller that takes
37 	 * the reference is responsible for clearing up the
38 	 * anon_vma if they are the last user on release
39 	 */
40 	atomic_t refcount;
41 
42 	/*
43 	 * Count of child anon_vmas and VMAs which points to this anon_vma.
44 	 *
45 	 * This counter is used for making decision about reusing anon_vma
46 	 * instead of forking new one. See comments in function anon_vma_clone.
47 	 */
48 	unsigned degree;
49 
50 	struct anon_vma *parent;	/* Parent of this anon_vma */
51 
52 	/*
53 	 * NOTE: the LSB of the rb_root.rb_node is set by
54 	 * mm_take_all_locks() _after_ taking the above lock. So the
55 	 * rb_root must only be read/written after taking the above lock
56 	 * to be sure to see a valid next pointer. The LSB bit itself
57 	 * is serialized by a system wide lock only visible to
58 	 * mm_take_all_locks() (mm_all_locks_mutex).
59 	 */
60 
61 	/* Interval tree of private "related" vmas */
62 	struct rb_root_cached rb_root;
63 };
64 
65 /*
66  * The copy-on-write semantics of fork mean that an anon_vma
67  * can become associated with multiple processes. Furthermore,
68  * each child process will have its own anon_vma, where new
69  * pages for that process are instantiated.
70  *
71  * This structure allows us to find the anon_vmas associated
72  * with a VMA, or the VMAs associated with an anon_vma.
73  * The "same_vma" list contains the anon_vma_chains linking
74  * all the anon_vmas associated with this VMA.
75  * The "rb" field indexes on an interval tree the anon_vma_chains
76  * which link all the VMAs associated with this anon_vma.
77  */
78 struct anon_vma_chain {
79 	struct vm_area_struct *vma;
80 	struct anon_vma *anon_vma;
81 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
82 	struct rb_node rb;			/* locked by anon_vma->rwsem */
83 	unsigned long rb_subtree_last;
84 #ifdef CONFIG_DEBUG_VM_RB
85 	unsigned long cached_vma_start, cached_vma_last;
86 #endif
87 };
88 
89 enum ttu_flags {
90 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
91 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
92 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
93 	TTU_IGNORE_HWPOISON	= 0x20,	/* corrupted page is recoverable */
94 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
95 					 * and caller guarantees they will
96 					 * do a final flush if necessary */
97 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
98 					 * caller holds it */
99 };
100 
101 #ifdef CONFIG_MMU
102 static inline void get_anon_vma(struct anon_vma *anon_vma)
103 {
104 	atomic_inc(&anon_vma->refcount);
105 }
106 
107 void __put_anon_vma(struct anon_vma *anon_vma);
108 
109 static inline void put_anon_vma(struct anon_vma *anon_vma)
110 {
111 	if (atomic_dec_and_test(&anon_vma->refcount))
112 		__put_anon_vma(anon_vma);
113 }
114 
115 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
116 {
117 	down_write(&anon_vma->root->rwsem);
118 }
119 
120 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
121 {
122 	up_write(&anon_vma->root->rwsem);
123 }
124 
125 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
126 {
127 	down_read(&anon_vma->root->rwsem);
128 }
129 
130 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
131 {
132 	up_read(&anon_vma->root->rwsem);
133 }
134 
135 
136 /*
137  * anon_vma helper functions.
138  */
139 void anon_vma_init(void);	/* create anon_vma_cachep */
140 int  __anon_vma_prepare(struct vm_area_struct *);
141 void unlink_anon_vmas(struct vm_area_struct *);
142 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
143 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
144 
145 static inline int anon_vma_prepare(struct vm_area_struct *vma)
146 {
147 	if (likely(vma->anon_vma))
148 		return 0;
149 
150 	return __anon_vma_prepare(vma);
151 }
152 
153 static inline void anon_vma_merge(struct vm_area_struct *vma,
154 				  struct vm_area_struct *next)
155 {
156 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
157 	unlink_anon_vmas(next);
158 }
159 
160 struct anon_vma *page_get_anon_vma(struct page *page);
161 
162 /* bitflags for do_page_add_anon_rmap() */
163 #define RMAP_EXCLUSIVE 0x01
164 #define RMAP_COMPOUND 0x02
165 
166 /*
167  * rmap interfaces called when adding or removing pte of page
168  */
169 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
170 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
171 		unsigned long address, bool compound);
172 void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
173 		unsigned long address, int flags);
174 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
175 		unsigned long address, bool compound);
176 void page_add_file_rmap(struct page *, struct vm_area_struct *,
177 		bool compound);
178 void page_remove_rmap(struct page *, struct vm_area_struct *,
179 		bool compound);
180 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
181 		unsigned long address);
182 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
183 		unsigned long address);
184 
185 static inline void page_dup_rmap(struct page *page, bool compound)
186 {
187 	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
188 }
189 
190 /*
191  * Called from mm/vmscan.c to handle paging out
192  */
193 int folio_referenced(struct folio *, int is_locked,
194 			struct mem_cgroup *memcg, unsigned long *vm_flags);
195 
196 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
197 void try_to_unmap(struct folio *, enum ttu_flags flags);
198 
199 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
200 				unsigned long end, struct page **pages,
201 				void *arg);
202 
203 /* Avoid racy checks */
204 #define PVMW_SYNC		(1 << 0)
205 /* Look for migration entries rather than present PTEs */
206 #define PVMW_MIGRATION		(1 << 1)
207 
208 struct page_vma_mapped_walk {
209 	unsigned long pfn;
210 	unsigned long nr_pages;
211 	pgoff_t pgoff;
212 	struct vm_area_struct *vma;
213 	unsigned long address;
214 	pmd_t *pmd;
215 	pte_t *pte;
216 	spinlock_t *ptl;
217 	unsigned int flags;
218 };
219 
220 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags)	\
221 	struct page_vma_mapped_walk name = {				\
222 		.pfn = page_to_pfn(_page),				\
223 		.nr_pages = compound_nr(page),				\
224 		.pgoff = page_to_pgoff(page),				\
225 		.vma = _vma,						\
226 		.address = _address,					\
227 		.flags = _flags,					\
228 	}
229 
230 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
231 	struct page_vma_mapped_walk name = {				\
232 		.pfn = folio_pfn(_folio),				\
233 		.nr_pages = folio_nr_pages(_folio),			\
234 		.pgoff = folio_pgoff(_folio),				\
235 		.vma = _vma,						\
236 		.address = _address,					\
237 		.flags = _flags,					\
238 	}
239 
240 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
241 {
242 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
243 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
244 		pte_unmap(pvmw->pte);
245 	if (pvmw->ptl)
246 		spin_unlock(pvmw->ptl);
247 }
248 
249 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
250 
251 /*
252  * Used by swapoff to help locate where page is expected in vma.
253  */
254 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
255 
256 /*
257  * Cleans the PTEs of shared mappings.
258  * (and since clean PTEs should also be readonly, write protects them too)
259  *
260  * returns the number of cleaned PTEs.
261  */
262 int folio_mkclean(struct folio *);
263 
264 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
265 
266 /*
267  * Called by memory-failure.c to kill processes.
268  */
269 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio);
270 void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
271 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
272 
273 /*
274  * rmap_walk_control: To control rmap traversing for specific needs
275  *
276  * arg: passed to rmap_one() and invalid_vma()
277  * rmap_one: executed on each vma where page is mapped
278  * done: for checking traversing termination condition
279  * anon_lock: for getting anon_lock by optimized way rather than default
280  * invalid_vma: for skipping uninterested vma
281  */
282 struct rmap_walk_control {
283 	void *arg;
284 	/*
285 	 * Return false if page table scanning in rmap_walk should be stopped.
286 	 * Otherwise, return true.
287 	 */
288 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
289 					unsigned long addr, void *arg);
290 	int (*done)(struct folio *folio);
291 	struct anon_vma *(*anon_lock)(struct folio *folio);
292 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
293 };
294 
295 void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc);
296 void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc);
297 
298 #else	/* !CONFIG_MMU */
299 
300 #define anon_vma_init()		do {} while (0)
301 #define anon_vma_prepare(vma)	(0)
302 #define anon_vma_link(vma)	do {} while (0)
303 
304 static inline int folio_referenced(struct folio *folio, int is_locked,
305 				  struct mem_cgroup *memcg,
306 				  unsigned long *vm_flags)
307 {
308 	*vm_flags = 0;
309 	return 0;
310 }
311 
312 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
313 {
314 }
315 
316 static inline int folio_mkclean(struct folio *folio)
317 {
318 	return 0;
319 }
320 #endif	/* CONFIG_MMU */
321 
322 static inline int page_mkclean(struct page *page)
323 {
324 	return folio_mkclean(page_folio(page));
325 }
326 #endif	/* _LINUX_RMAP_H */
327