xref: /openbmc/linux/include/linux/rmap.h (revision c1601ea9a65133685c4ddaf3d3640d905e9405c8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16 
17 /*
18  * The anon_vma heads a list of private "related" vmas, to scan if
19  * an anonymous page pointing to this anon_vma needs to be unmapped:
20  * the vmas on the list will be related by forking, or by splitting.
21  *
22  * Since vmas come and go as they are split and merged (particularly
23  * in mprotect), the mapping field of an anonymous page cannot point
24  * directly to a vma: instead it points to an anon_vma, on whose list
25  * the related vmas can be easily linked or unlinked.
26  *
27  * After unlinking the last vma on the list, we must garbage collect
28  * the anon_vma object itself: we're guaranteed no page can be
29  * pointing to this anon_vma once its vma list is empty.
30  */
31 struct anon_vma {
32 	struct anon_vma *root;		/* Root of this anon_vma tree */
33 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
34 	/*
35 	 * The refcount is taken on an anon_vma when there is no
36 	 * guarantee that the vma of page tables will exist for
37 	 * the duration of the operation. A caller that takes
38 	 * the reference is responsible for clearing up the
39 	 * anon_vma if they are the last user on release
40 	 */
41 	atomic_t refcount;
42 
43 	/*
44 	 * Count of child anon_vmas and VMAs which points to this anon_vma.
45 	 *
46 	 * This counter is used for making decision about reusing anon_vma
47 	 * instead of forking new one. See comments in function anon_vma_clone.
48 	 */
49 	unsigned degree;
50 
51 	struct anon_vma *parent;	/* Parent of this anon_vma */
52 
53 	/*
54 	 * NOTE: the LSB of the rb_root.rb_node is set by
55 	 * mm_take_all_locks() _after_ taking the above lock. So the
56 	 * rb_root must only be read/written after taking the above lock
57 	 * to be sure to see a valid next pointer. The LSB bit itself
58 	 * is serialized by a system wide lock only visible to
59 	 * mm_take_all_locks() (mm_all_locks_mutex).
60 	 */
61 
62 	/* Interval tree of private "related" vmas */
63 	struct rb_root_cached rb_root;
64 };
65 
66 /*
67  * The copy-on-write semantics of fork mean that an anon_vma
68  * can become associated with multiple processes. Furthermore,
69  * each child process will have its own anon_vma, where new
70  * pages for that process are instantiated.
71  *
72  * This structure allows us to find the anon_vmas associated
73  * with a VMA, or the VMAs associated with an anon_vma.
74  * The "same_vma" list contains the anon_vma_chains linking
75  * all the anon_vmas associated with this VMA.
76  * The "rb" field indexes on an interval tree the anon_vma_chains
77  * which link all the VMAs associated with this anon_vma.
78  */
79 struct anon_vma_chain {
80 	struct vm_area_struct *vma;
81 	struct anon_vma *anon_vma;
82 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
83 	struct rb_node rb;			/* locked by anon_vma->rwsem */
84 	unsigned long rb_subtree_last;
85 #ifdef CONFIG_DEBUG_VM_RB
86 	unsigned long cached_vma_start, cached_vma_last;
87 #endif
88 };
89 
90 enum ttu_flags {
91 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
92 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
93 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
94 	TTU_IGNORE_HWPOISON	= 0x20,	/* corrupted page is recoverable */
95 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
96 					 * and caller guarantees they will
97 					 * do a final flush if necessary */
98 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
99 					 * caller holds it */
100 };
101 
102 #ifdef CONFIG_MMU
103 static inline void get_anon_vma(struct anon_vma *anon_vma)
104 {
105 	atomic_inc(&anon_vma->refcount);
106 }
107 
108 void __put_anon_vma(struct anon_vma *anon_vma);
109 
110 static inline void put_anon_vma(struct anon_vma *anon_vma)
111 {
112 	if (atomic_dec_and_test(&anon_vma->refcount))
113 		__put_anon_vma(anon_vma);
114 }
115 
116 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
117 {
118 	down_write(&anon_vma->root->rwsem);
119 }
120 
121 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
122 {
123 	up_write(&anon_vma->root->rwsem);
124 }
125 
126 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
127 {
128 	down_read(&anon_vma->root->rwsem);
129 }
130 
131 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
132 {
133 	return down_read_trylock(&anon_vma->root->rwsem);
134 }
135 
136 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
137 {
138 	up_read(&anon_vma->root->rwsem);
139 }
140 
141 
142 /*
143  * anon_vma helper functions.
144  */
145 void anon_vma_init(void);	/* create anon_vma_cachep */
146 int  __anon_vma_prepare(struct vm_area_struct *);
147 void unlink_anon_vmas(struct vm_area_struct *);
148 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
149 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
150 
151 static inline int anon_vma_prepare(struct vm_area_struct *vma)
152 {
153 	if (likely(vma->anon_vma))
154 		return 0;
155 
156 	return __anon_vma_prepare(vma);
157 }
158 
159 static inline void anon_vma_merge(struct vm_area_struct *vma,
160 				  struct vm_area_struct *next)
161 {
162 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
163 	unlink_anon_vmas(next);
164 }
165 
166 struct anon_vma *page_get_anon_vma(struct page *page);
167 
168 /* RMAP flags, currently only relevant for some anon rmap operations. */
169 typedef int __bitwise rmap_t;
170 
171 /*
172  * No special request: if the page is a subpage of a compound page, it is
173  * mapped via a PTE. The mapped (sub)page is possibly shared between processes.
174  */
175 #define RMAP_NONE		((__force rmap_t)0)
176 
177 /* The (sub)page is exclusive to a single process. */
178 #define RMAP_EXCLUSIVE		((__force rmap_t)BIT(0))
179 
180 /*
181  * The compound page is not mapped via PTEs, but instead via a single PMD and
182  * should be accounted accordingly.
183  */
184 #define RMAP_COMPOUND		((__force rmap_t)BIT(1))
185 
186 /*
187  * rmap interfaces called when adding or removing pte of page
188  */
189 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
190 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
191 		unsigned long address, rmap_t flags);
192 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
193 		unsigned long address);
194 void page_add_file_rmap(struct page *, struct vm_area_struct *,
195 		bool compound);
196 void page_remove_rmap(struct page *, struct vm_area_struct *,
197 		bool compound);
198 
199 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
200 		unsigned long address, rmap_t flags);
201 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
202 		unsigned long address);
203 
204 static inline void __page_dup_rmap(struct page *page, bool compound)
205 {
206 	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
207 }
208 
209 static inline void page_dup_file_rmap(struct page *page, bool compound)
210 {
211 	__page_dup_rmap(page, compound);
212 }
213 
214 /**
215  * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped
216  *			    anonymous page
217  * @page: the page to duplicate the mapping for
218  * @compound: the page is mapped as compound or as a small page
219  * @vma: the source vma
220  *
221  * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq.
222  *
223  * Duplicating the mapping can only fail if the page may be pinned; device
224  * private pages cannot get pinned and consequently this function cannot fail.
225  *
226  * If duplicating the mapping succeeds, the page has to be mapped R/O into
227  * the parent and the child. It must *not* get mapped writable after this call.
228  *
229  * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
230  */
231 static inline int page_try_dup_anon_rmap(struct page *page, bool compound,
232 					 struct vm_area_struct *vma)
233 {
234 	VM_BUG_ON_PAGE(!PageAnon(page), page);
235 
236 	/*
237 	 * No need to check+clear for already shared pages, including KSM
238 	 * pages.
239 	 */
240 	if (!PageAnonExclusive(page))
241 		goto dup;
242 
243 	/*
244 	 * If this page may have been pinned by the parent process,
245 	 * don't allow to duplicate the mapping but instead require to e.g.,
246 	 * copy the page immediately for the child so that we'll always
247 	 * guarantee the pinned page won't be randomly replaced in the
248 	 * future on write faults.
249 	 */
250 	if (likely(!is_device_private_page(page) &&
251 	    unlikely(page_needs_cow_for_dma(vma, page))))
252 		return -EBUSY;
253 
254 	ClearPageAnonExclusive(page);
255 	/*
256 	 * It's okay to share the anon page between both processes, mapping
257 	 * the page R/O into both processes.
258 	 */
259 dup:
260 	__page_dup_rmap(page, compound);
261 	return 0;
262 }
263 
264 /**
265  * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly
266  *			      shared to prepare for KSM or temporary unmapping
267  * @page: the exclusive anonymous page to try marking possibly shared
268  *
269  * The caller needs to hold the PT lock and has to have the page table entry
270  * cleared/invalidated+flushed, to properly sync against GUP-fast.
271  *
272  * This is similar to page_try_dup_anon_rmap(), however, not used during fork()
273  * to duplicate a mapping, but instead to prepare for KSM or temporarily
274  * unmapping a page (swap, migration) via page_remove_rmap().
275  *
276  * Marking the page shared can only fail if the page may be pinned; device
277  * private pages cannot get pinned and consequently this function cannot fail.
278  *
279  * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY
280  * otherwise.
281  */
282 static inline int page_try_share_anon_rmap(struct page *page)
283 {
284 	VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page);
285 
286 	/* See page_try_dup_anon_rmap(). */
287 	if (likely(!is_device_private_page(page) &&
288 	    unlikely(page_maybe_dma_pinned(page))))
289 		return -EBUSY;
290 
291 	ClearPageAnonExclusive(page);
292 	return 0;
293 }
294 
295 /*
296  * Called from mm/vmscan.c to handle paging out
297  */
298 int folio_referenced(struct folio *, int is_locked,
299 			struct mem_cgroup *memcg, unsigned long *vm_flags);
300 
301 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
302 void try_to_unmap(struct folio *, enum ttu_flags flags);
303 
304 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
305 				unsigned long end, struct page **pages,
306 				void *arg);
307 
308 /* Avoid racy checks */
309 #define PVMW_SYNC		(1 << 0)
310 /* Look for migration entries rather than present PTEs */
311 #define PVMW_MIGRATION		(1 << 1)
312 
313 struct page_vma_mapped_walk {
314 	unsigned long pfn;
315 	unsigned long nr_pages;
316 	pgoff_t pgoff;
317 	struct vm_area_struct *vma;
318 	unsigned long address;
319 	pmd_t *pmd;
320 	pte_t *pte;
321 	spinlock_t *ptl;
322 	unsigned int flags;
323 };
324 
325 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags)	\
326 	struct page_vma_mapped_walk name = {				\
327 		.pfn = page_to_pfn(_page),				\
328 		.nr_pages = compound_nr(page),				\
329 		.pgoff = page_to_pgoff(page),				\
330 		.vma = _vma,						\
331 		.address = _address,					\
332 		.flags = _flags,					\
333 	}
334 
335 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
336 	struct page_vma_mapped_walk name = {				\
337 		.pfn = folio_pfn(_folio),				\
338 		.nr_pages = folio_nr_pages(_folio),			\
339 		.pgoff = folio_pgoff(_folio),				\
340 		.vma = _vma,						\
341 		.address = _address,					\
342 		.flags = _flags,					\
343 	}
344 
345 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
346 {
347 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
348 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
349 		pte_unmap(pvmw->pte);
350 	if (pvmw->ptl)
351 		spin_unlock(pvmw->ptl);
352 }
353 
354 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
355 
356 /*
357  * Used by swapoff to help locate where page is expected in vma.
358  */
359 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
360 
361 /*
362  * Cleans the PTEs of shared mappings.
363  * (and since clean PTEs should also be readonly, write protects them too)
364  *
365  * returns the number of cleaned PTEs.
366  */
367 int folio_mkclean(struct folio *);
368 
369 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
370 		      struct vm_area_struct *vma);
371 
372 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
373 
374 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
375 
376 /*
377  * rmap_walk_control: To control rmap traversing for specific needs
378  *
379  * arg: passed to rmap_one() and invalid_vma()
380  * try_lock: bail out if the rmap lock is contended
381  * contended: indicate the rmap traversal bailed out due to lock contention
382  * rmap_one: executed on each vma where page is mapped
383  * done: for checking traversing termination condition
384  * anon_lock: for getting anon_lock by optimized way rather than default
385  * invalid_vma: for skipping uninterested vma
386  */
387 struct rmap_walk_control {
388 	void *arg;
389 	bool try_lock;
390 	bool contended;
391 	/*
392 	 * Return false if page table scanning in rmap_walk should be stopped.
393 	 * Otherwise, return true.
394 	 */
395 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
396 					unsigned long addr, void *arg);
397 	int (*done)(struct folio *folio);
398 	struct anon_vma *(*anon_lock)(struct folio *folio,
399 				      struct rmap_walk_control *rwc);
400 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
401 };
402 
403 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
404 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
405 
406 /*
407  * Called by memory-failure.c to kill processes.
408  */
409 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
410 					  struct rmap_walk_control *rwc);
411 void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
412 
413 #else	/* !CONFIG_MMU */
414 
415 #define anon_vma_init()		do {} while (0)
416 #define anon_vma_prepare(vma)	(0)
417 #define anon_vma_link(vma)	do {} while (0)
418 
419 static inline int folio_referenced(struct folio *folio, int is_locked,
420 				  struct mem_cgroup *memcg,
421 				  unsigned long *vm_flags)
422 {
423 	*vm_flags = 0;
424 	return 0;
425 }
426 
427 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
428 {
429 }
430 
431 static inline int folio_mkclean(struct folio *folio)
432 {
433 	return 0;
434 }
435 #endif	/* CONFIG_MMU */
436 
437 static inline int page_mkclean(struct page *page)
438 {
439 	return folio_mkclean(page_folio(page));
440 }
441 #endif	/* _LINUX_RMAP_H */
442