1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_RMAP_H 3 #define _LINUX_RMAP_H 4 /* 5 * Declarations for Reverse Mapping functions in mm/rmap.c 6 */ 7 8 #include <linux/list.h> 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/rwsem.h> 12 #include <linux/memcontrol.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> 15 #include <linux/memremap.h> 16 17 /* 18 * The anon_vma heads a list of private "related" vmas, to scan if 19 * an anonymous page pointing to this anon_vma needs to be unmapped: 20 * the vmas on the list will be related by forking, or by splitting. 21 * 22 * Since vmas come and go as they are split and merged (particularly 23 * in mprotect), the mapping field of an anonymous page cannot point 24 * directly to a vma: instead it points to an anon_vma, on whose list 25 * the related vmas can be easily linked or unlinked. 26 * 27 * After unlinking the last vma on the list, we must garbage collect 28 * the anon_vma object itself: we're guaranteed no page can be 29 * pointing to this anon_vma once its vma list is empty. 30 */ 31 struct anon_vma { 32 struct anon_vma *root; /* Root of this anon_vma tree */ 33 struct rw_semaphore rwsem; /* W: modification, R: walking the list */ 34 /* 35 * The refcount is taken on an anon_vma when there is no 36 * guarantee that the vma of page tables will exist for 37 * the duration of the operation. A caller that takes 38 * the reference is responsible for clearing up the 39 * anon_vma if they are the last user on release 40 */ 41 atomic_t refcount; 42 43 /* 44 * Count of child anon_vmas. Equals to the count of all anon_vmas that 45 * have ->parent pointing to this one, including itself. 46 * 47 * This counter is used for making decision about reusing anon_vma 48 * instead of forking new one. See comments in function anon_vma_clone. 49 */ 50 unsigned long num_children; 51 /* Count of VMAs whose ->anon_vma pointer points to this object. */ 52 unsigned long num_active_vmas; 53 54 struct anon_vma *parent; /* Parent of this anon_vma */ 55 56 /* 57 * NOTE: the LSB of the rb_root.rb_node is set by 58 * mm_take_all_locks() _after_ taking the above lock. So the 59 * rb_root must only be read/written after taking the above lock 60 * to be sure to see a valid next pointer. The LSB bit itself 61 * is serialized by a system wide lock only visible to 62 * mm_take_all_locks() (mm_all_locks_mutex). 63 */ 64 65 /* Interval tree of private "related" vmas */ 66 struct rb_root_cached rb_root; 67 }; 68 69 /* 70 * The copy-on-write semantics of fork mean that an anon_vma 71 * can become associated with multiple processes. Furthermore, 72 * each child process will have its own anon_vma, where new 73 * pages for that process are instantiated. 74 * 75 * This structure allows us to find the anon_vmas associated 76 * with a VMA, or the VMAs associated with an anon_vma. 77 * The "same_vma" list contains the anon_vma_chains linking 78 * all the anon_vmas associated with this VMA. 79 * The "rb" field indexes on an interval tree the anon_vma_chains 80 * which link all the VMAs associated with this anon_vma. 81 */ 82 struct anon_vma_chain { 83 struct vm_area_struct *vma; 84 struct anon_vma *anon_vma; 85 struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ 86 struct rb_node rb; /* locked by anon_vma->rwsem */ 87 unsigned long rb_subtree_last; 88 #ifdef CONFIG_DEBUG_VM_RB 89 unsigned long cached_vma_start, cached_vma_last; 90 #endif 91 }; 92 93 enum ttu_flags { 94 TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ 95 TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ 96 TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ 97 TTU_HWPOISON = 0x20, /* do convert pte to hwpoison entry */ 98 TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible 99 * and caller guarantees they will 100 * do a final flush if necessary */ 101 TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: 102 * caller holds it */ 103 }; 104 105 #ifdef CONFIG_MMU 106 static inline void get_anon_vma(struct anon_vma *anon_vma) 107 { 108 atomic_inc(&anon_vma->refcount); 109 } 110 111 void __put_anon_vma(struct anon_vma *anon_vma); 112 113 static inline void put_anon_vma(struct anon_vma *anon_vma) 114 { 115 if (atomic_dec_and_test(&anon_vma->refcount)) 116 __put_anon_vma(anon_vma); 117 } 118 119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma) 120 { 121 down_write(&anon_vma->root->rwsem); 122 } 123 124 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) 125 { 126 up_write(&anon_vma->root->rwsem); 127 } 128 129 static inline void anon_vma_lock_read(struct anon_vma *anon_vma) 130 { 131 down_read(&anon_vma->root->rwsem); 132 } 133 134 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma) 135 { 136 return down_read_trylock(&anon_vma->root->rwsem); 137 } 138 139 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) 140 { 141 up_read(&anon_vma->root->rwsem); 142 } 143 144 145 /* 146 * anon_vma helper functions. 147 */ 148 void anon_vma_init(void); /* create anon_vma_cachep */ 149 int __anon_vma_prepare(struct vm_area_struct *); 150 void unlink_anon_vmas(struct vm_area_struct *); 151 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); 152 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); 153 154 static inline int anon_vma_prepare(struct vm_area_struct *vma) 155 { 156 if (likely(vma->anon_vma)) 157 return 0; 158 159 return __anon_vma_prepare(vma); 160 } 161 162 static inline void anon_vma_merge(struct vm_area_struct *vma, 163 struct vm_area_struct *next) 164 { 165 VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); 166 unlink_anon_vmas(next); 167 } 168 169 struct anon_vma *folio_get_anon_vma(struct folio *folio); 170 171 /* RMAP flags, currently only relevant for some anon rmap operations. */ 172 typedef int __bitwise rmap_t; 173 174 /* 175 * No special request: if the page is a subpage of a compound page, it is 176 * mapped via a PTE. The mapped (sub)page is possibly shared between processes. 177 */ 178 #define RMAP_NONE ((__force rmap_t)0) 179 180 /* The (sub)page is exclusive to a single process. */ 181 #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0)) 182 183 /* 184 * The compound page is not mapped via PTEs, but instead via a single PMD and 185 * should be accounted accordingly. 186 */ 187 #define RMAP_COMPOUND ((__force rmap_t)BIT(1)) 188 189 /* 190 * rmap interfaces called when adding or removing pte of page 191 */ 192 void page_move_anon_rmap(struct page *, struct vm_area_struct *); 193 void page_add_anon_rmap(struct page *, struct vm_area_struct *, 194 unsigned long address, rmap_t flags); 195 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, 196 unsigned long address); 197 void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *, 198 unsigned long address); 199 void page_add_file_rmap(struct page *, struct vm_area_struct *, 200 bool compound); 201 void folio_add_file_rmap_range(struct folio *, struct page *, unsigned int nr, 202 struct vm_area_struct *, bool compound); 203 void page_remove_rmap(struct page *, struct vm_area_struct *, 204 bool compound); 205 206 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, 207 unsigned long address, rmap_t flags); 208 void hugepage_add_new_anon_rmap(struct folio *, struct vm_area_struct *, 209 unsigned long address); 210 211 static inline void __page_dup_rmap(struct page *page, bool compound) 212 { 213 if (compound) { 214 struct folio *folio = (struct folio *)page; 215 216 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 217 atomic_inc(&folio->_entire_mapcount); 218 } else { 219 atomic_inc(&page->_mapcount); 220 } 221 } 222 223 static inline void page_dup_file_rmap(struct page *page, bool compound) 224 { 225 __page_dup_rmap(page, compound); 226 } 227 228 /** 229 * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped 230 * anonymous page 231 * @page: the page to duplicate the mapping for 232 * @compound: the page is mapped as compound or as a small page 233 * @vma: the source vma 234 * 235 * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq. 236 * 237 * Duplicating the mapping can only fail if the page may be pinned; device 238 * private pages cannot get pinned and consequently this function cannot fail. 239 * 240 * If duplicating the mapping succeeds, the page has to be mapped R/O into 241 * the parent and the child. It must *not* get mapped writable after this call. 242 * 243 * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise. 244 */ 245 static inline int page_try_dup_anon_rmap(struct page *page, bool compound, 246 struct vm_area_struct *vma) 247 { 248 VM_BUG_ON_PAGE(!PageAnon(page), page); 249 250 /* 251 * No need to check+clear for already shared pages, including KSM 252 * pages. 253 */ 254 if (!PageAnonExclusive(page)) 255 goto dup; 256 257 /* 258 * If this page may have been pinned by the parent process, 259 * don't allow to duplicate the mapping but instead require to e.g., 260 * copy the page immediately for the child so that we'll always 261 * guarantee the pinned page won't be randomly replaced in the 262 * future on write faults. 263 */ 264 if (likely(!is_device_private_page(page) && 265 unlikely(page_needs_cow_for_dma(vma, page)))) 266 return -EBUSY; 267 268 ClearPageAnonExclusive(page); 269 /* 270 * It's okay to share the anon page between both processes, mapping 271 * the page R/O into both processes. 272 */ 273 dup: 274 __page_dup_rmap(page, compound); 275 return 0; 276 } 277 278 /** 279 * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly 280 * shared to prepare for KSM or temporary unmapping 281 * @page: the exclusive anonymous page to try marking possibly shared 282 * 283 * The caller needs to hold the PT lock and has to have the page table entry 284 * cleared/invalidated. 285 * 286 * This is similar to page_try_dup_anon_rmap(), however, not used during fork() 287 * to duplicate a mapping, but instead to prepare for KSM or temporarily 288 * unmapping a page (swap, migration) via page_remove_rmap(). 289 * 290 * Marking the page shared can only fail if the page may be pinned; device 291 * private pages cannot get pinned and consequently this function cannot fail. 292 * 293 * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY 294 * otherwise. 295 */ 296 static inline int page_try_share_anon_rmap(struct page *page) 297 { 298 VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page); 299 300 /* device private pages cannot get pinned via GUP. */ 301 if (unlikely(is_device_private_page(page))) { 302 ClearPageAnonExclusive(page); 303 return 0; 304 } 305 306 /* 307 * We have to make sure that when we clear PageAnonExclusive, that 308 * the page is not pinned and that concurrent GUP-fast won't succeed in 309 * concurrently pinning the page. 310 * 311 * Conceptually, PageAnonExclusive clearing consists of: 312 * (A1) Clear PTE 313 * (A2) Check if the page is pinned; back off if so. 314 * (A3) Clear PageAnonExclusive 315 * (A4) Restore PTE (optional, but certainly not writable) 316 * 317 * When clearing PageAnonExclusive, we cannot possibly map the page 318 * writable again, because anon pages that may be shared must never 319 * be writable. So in any case, if the PTE was writable it cannot 320 * be writable anymore afterwards and there would be a PTE change. Only 321 * if the PTE wasn't writable, there might not be a PTE change. 322 * 323 * Conceptually, GUP-fast pinning of an anon page consists of: 324 * (B1) Read the PTE 325 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so. 326 * (B3) Pin the mapped page 327 * (B4) Check if the PTE changed by re-reading it; back off if so. 328 * (B5) If the original PTE is not writable, check if 329 * PageAnonExclusive is not set; back off if so. 330 * 331 * If the PTE was writable, we only have to make sure that GUP-fast 332 * observes a PTE change and properly backs off. 333 * 334 * If the PTE was not writable, we have to make sure that GUP-fast either 335 * detects a (temporary) PTE change or that PageAnonExclusive is cleared 336 * and properly backs off. 337 * 338 * Consequently, when clearing PageAnonExclusive(), we have to make 339 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory 340 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4) 341 * and (B5) happen in the right memory order. 342 * 343 * We assume that there might not be a memory barrier after 344 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4), 345 * so we use explicit ones here. 346 */ 347 348 /* Paired with the memory barrier in try_grab_folio(). */ 349 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 350 smp_mb(); 351 352 if (unlikely(page_maybe_dma_pinned(page))) 353 return -EBUSY; 354 ClearPageAnonExclusive(page); 355 356 /* 357 * This is conceptually a smp_wmb() paired with the smp_rmb() in 358 * gup_must_unshare(). 359 */ 360 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 361 smp_mb__after_atomic(); 362 return 0; 363 } 364 365 /* 366 * Called from mm/vmscan.c to handle paging out 367 */ 368 int folio_referenced(struct folio *, int is_locked, 369 struct mem_cgroup *memcg, unsigned long *vm_flags); 370 371 void try_to_migrate(struct folio *folio, enum ttu_flags flags); 372 void try_to_unmap(struct folio *, enum ttu_flags flags); 373 374 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 375 unsigned long end, struct page **pages, 376 void *arg); 377 378 /* Avoid racy checks */ 379 #define PVMW_SYNC (1 << 0) 380 /* Look for migration entries rather than present PTEs */ 381 #define PVMW_MIGRATION (1 << 1) 382 383 struct page_vma_mapped_walk { 384 unsigned long pfn; 385 unsigned long nr_pages; 386 pgoff_t pgoff; 387 struct vm_area_struct *vma; 388 unsigned long address; 389 pmd_t *pmd; 390 pte_t *pte; 391 spinlock_t *ptl; 392 unsigned int flags; 393 }; 394 395 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \ 396 struct page_vma_mapped_walk name = { \ 397 .pfn = page_to_pfn(_page), \ 398 .nr_pages = compound_nr(_page), \ 399 .pgoff = page_to_pgoff(_page), \ 400 .vma = _vma, \ 401 .address = _address, \ 402 .flags = _flags, \ 403 } 404 405 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \ 406 struct page_vma_mapped_walk name = { \ 407 .pfn = folio_pfn(_folio), \ 408 .nr_pages = folio_nr_pages(_folio), \ 409 .pgoff = folio_pgoff(_folio), \ 410 .vma = _vma, \ 411 .address = _address, \ 412 .flags = _flags, \ 413 } 414 415 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) 416 { 417 /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ 418 if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma)) 419 pte_unmap(pvmw->pte); 420 if (pvmw->ptl) 421 spin_unlock(pvmw->ptl); 422 } 423 424 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); 425 426 /* 427 * Used by swapoff to help locate where page is expected in vma. 428 */ 429 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); 430 431 /* 432 * Cleans the PTEs of shared mappings. 433 * (and since clean PTEs should also be readonly, write protects them too) 434 * 435 * returns the number of cleaned PTEs. 436 */ 437 int folio_mkclean(struct folio *); 438 439 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 440 struct vm_area_struct *vma); 441 442 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked); 443 444 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); 445 446 /* 447 * rmap_walk_control: To control rmap traversing for specific needs 448 * 449 * arg: passed to rmap_one() and invalid_vma() 450 * try_lock: bail out if the rmap lock is contended 451 * contended: indicate the rmap traversal bailed out due to lock contention 452 * rmap_one: executed on each vma where page is mapped 453 * done: for checking traversing termination condition 454 * anon_lock: for getting anon_lock by optimized way rather than default 455 * invalid_vma: for skipping uninterested vma 456 */ 457 struct rmap_walk_control { 458 void *arg; 459 bool try_lock; 460 bool contended; 461 /* 462 * Return false if page table scanning in rmap_walk should be stopped. 463 * Otherwise, return true. 464 */ 465 bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma, 466 unsigned long addr, void *arg); 467 int (*done)(struct folio *folio); 468 struct anon_vma *(*anon_lock)(struct folio *folio, 469 struct rmap_walk_control *rwc); 470 bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); 471 }; 472 473 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc); 474 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc); 475 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 476 struct rmap_walk_control *rwc); 477 478 #else /* !CONFIG_MMU */ 479 480 #define anon_vma_init() do {} while (0) 481 #define anon_vma_prepare(vma) (0) 482 483 static inline int folio_referenced(struct folio *folio, int is_locked, 484 struct mem_cgroup *memcg, 485 unsigned long *vm_flags) 486 { 487 *vm_flags = 0; 488 return 0; 489 } 490 491 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags) 492 { 493 } 494 495 static inline int folio_mkclean(struct folio *folio) 496 { 497 return 0; 498 } 499 #endif /* CONFIG_MMU */ 500 501 static inline int page_mkclean(struct page *page) 502 { 503 return folio_mkclean(page_folio(page)); 504 } 505 #endif /* _LINUX_RMAP_H */ 506