1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_RMAP_H 3 #define _LINUX_RMAP_H 4 /* 5 * Declarations for Reverse Mapping functions in mm/rmap.c 6 */ 7 8 #include <linux/list.h> 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/rwsem.h> 12 #include <linux/memcontrol.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> 15 #include <linux/memremap.h> 16 17 /* 18 * The anon_vma heads a list of private "related" vmas, to scan if 19 * an anonymous page pointing to this anon_vma needs to be unmapped: 20 * the vmas on the list will be related by forking, or by splitting. 21 * 22 * Since vmas come and go as they are split and merged (particularly 23 * in mprotect), the mapping field of an anonymous page cannot point 24 * directly to a vma: instead it points to an anon_vma, on whose list 25 * the related vmas can be easily linked or unlinked. 26 * 27 * After unlinking the last vma on the list, we must garbage collect 28 * the anon_vma object itself: we're guaranteed no page can be 29 * pointing to this anon_vma once its vma list is empty. 30 */ 31 struct anon_vma { 32 struct anon_vma *root; /* Root of this anon_vma tree */ 33 struct rw_semaphore rwsem; /* W: modification, R: walking the list */ 34 /* 35 * The refcount is taken on an anon_vma when there is no 36 * guarantee that the vma of page tables will exist for 37 * the duration of the operation. A caller that takes 38 * the reference is responsible for clearing up the 39 * anon_vma if they are the last user on release 40 */ 41 atomic_t refcount; 42 43 /* 44 * Count of child anon_vmas. Equals to the count of all anon_vmas that 45 * have ->parent pointing to this one, including itself. 46 * 47 * This counter is used for making decision about reusing anon_vma 48 * instead of forking new one. See comments in function anon_vma_clone. 49 */ 50 unsigned long num_children; 51 /* Count of VMAs whose ->anon_vma pointer points to this object. */ 52 unsigned long num_active_vmas; 53 54 struct anon_vma *parent; /* Parent of this anon_vma */ 55 56 /* 57 * NOTE: the LSB of the rb_root.rb_node is set by 58 * mm_take_all_locks() _after_ taking the above lock. So the 59 * rb_root must only be read/written after taking the above lock 60 * to be sure to see a valid next pointer. The LSB bit itself 61 * is serialized by a system wide lock only visible to 62 * mm_take_all_locks() (mm_all_locks_mutex). 63 */ 64 65 /* Interval tree of private "related" vmas */ 66 struct rb_root_cached rb_root; 67 }; 68 69 /* 70 * The copy-on-write semantics of fork mean that an anon_vma 71 * can become associated with multiple processes. Furthermore, 72 * each child process will have its own anon_vma, where new 73 * pages for that process are instantiated. 74 * 75 * This structure allows us to find the anon_vmas associated 76 * with a VMA, or the VMAs associated with an anon_vma. 77 * The "same_vma" list contains the anon_vma_chains linking 78 * all the anon_vmas associated with this VMA. 79 * The "rb" field indexes on an interval tree the anon_vma_chains 80 * which link all the VMAs associated with this anon_vma. 81 */ 82 struct anon_vma_chain { 83 struct vm_area_struct *vma; 84 struct anon_vma *anon_vma; 85 struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ 86 struct rb_node rb; /* locked by anon_vma->rwsem */ 87 unsigned long rb_subtree_last; 88 #ifdef CONFIG_DEBUG_VM_RB 89 unsigned long cached_vma_start, cached_vma_last; 90 #endif 91 }; 92 93 enum ttu_flags { 94 TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ 95 TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ 96 TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ 97 TTU_IGNORE_HWPOISON = 0x20, /* corrupted page is recoverable */ 98 TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible 99 * and caller guarantees they will 100 * do a final flush if necessary */ 101 TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: 102 * caller holds it */ 103 }; 104 105 #ifdef CONFIG_MMU 106 static inline void get_anon_vma(struct anon_vma *anon_vma) 107 { 108 atomic_inc(&anon_vma->refcount); 109 } 110 111 void __put_anon_vma(struct anon_vma *anon_vma); 112 113 static inline void put_anon_vma(struct anon_vma *anon_vma) 114 { 115 if (atomic_dec_and_test(&anon_vma->refcount)) 116 __put_anon_vma(anon_vma); 117 } 118 119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma) 120 { 121 down_write(&anon_vma->root->rwsem); 122 } 123 124 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) 125 { 126 up_write(&anon_vma->root->rwsem); 127 } 128 129 static inline void anon_vma_lock_read(struct anon_vma *anon_vma) 130 { 131 down_read(&anon_vma->root->rwsem); 132 } 133 134 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma) 135 { 136 return down_read_trylock(&anon_vma->root->rwsem); 137 } 138 139 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) 140 { 141 up_read(&anon_vma->root->rwsem); 142 } 143 144 145 /* 146 * anon_vma helper functions. 147 */ 148 void anon_vma_init(void); /* create anon_vma_cachep */ 149 int __anon_vma_prepare(struct vm_area_struct *); 150 void unlink_anon_vmas(struct vm_area_struct *); 151 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); 152 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); 153 154 static inline int anon_vma_prepare(struct vm_area_struct *vma) 155 { 156 if (likely(vma->anon_vma)) 157 return 0; 158 159 return __anon_vma_prepare(vma); 160 } 161 162 static inline void anon_vma_merge(struct vm_area_struct *vma, 163 struct vm_area_struct *next) 164 { 165 VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); 166 unlink_anon_vmas(next); 167 } 168 169 struct anon_vma *page_get_anon_vma(struct page *page); 170 171 /* RMAP flags, currently only relevant for some anon rmap operations. */ 172 typedef int __bitwise rmap_t; 173 174 /* 175 * No special request: if the page is a subpage of a compound page, it is 176 * mapped via a PTE. The mapped (sub)page is possibly shared between processes. 177 */ 178 #define RMAP_NONE ((__force rmap_t)0) 179 180 /* The (sub)page is exclusive to a single process. */ 181 #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0)) 182 183 /* 184 * The compound page is not mapped via PTEs, but instead via a single PMD and 185 * should be accounted accordingly. 186 */ 187 #define RMAP_COMPOUND ((__force rmap_t)BIT(1)) 188 189 /* 190 * rmap interfaces called when adding or removing pte of page 191 */ 192 void page_move_anon_rmap(struct page *, struct vm_area_struct *); 193 void page_add_anon_rmap(struct page *, struct vm_area_struct *, 194 unsigned long address, rmap_t flags); 195 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, 196 unsigned long address); 197 void page_add_file_rmap(struct page *, struct vm_area_struct *, 198 bool compound); 199 void page_remove_rmap(struct page *, struct vm_area_struct *, 200 bool compound); 201 202 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, 203 unsigned long address, rmap_t flags); 204 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *, 205 unsigned long address); 206 207 static inline void __page_dup_rmap(struct page *page, bool compound) 208 { 209 atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount); 210 } 211 212 static inline void page_dup_file_rmap(struct page *page, bool compound) 213 { 214 __page_dup_rmap(page, compound); 215 } 216 217 /** 218 * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped 219 * anonymous page 220 * @page: the page to duplicate the mapping for 221 * @compound: the page is mapped as compound or as a small page 222 * @vma: the source vma 223 * 224 * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq. 225 * 226 * Duplicating the mapping can only fail if the page may be pinned; device 227 * private pages cannot get pinned and consequently this function cannot fail. 228 * 229 * If duplicating the mapping succeeds, the page has to be mapped R/O into 230 * the parent and the child. It must *not* get mapped writable after this call. 231 * 232 * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise. 233 */ 234 static inline int page_try_dup_anon_rmap(struct page *page, bool compound, 235 struct vm_area_struct *vma) 236 { 237 VM_BUG_ON_PAGE(!PageAnon(page), page); 238 239 /* 240 * No need to check+clear for already shared pages, including KSM 241 * pages. 242 */ 243 if (!PageAnonExclusive(page)) 244 goto dup; 245 246 /* 247 * If this page may have been pinned by the parent process, 248 * don't allow to duplicate the mapping but instead require to e.g., 249 * copy the page immediately for the child so that we'll always 250 * guarantee the pinned page won't be randomly replaced in the 251 * future on write faults. 252 */ 253 if (likely(!is_device_private_page(page) && 254 unlikely(page_needs_cow_for_dma(vma, page)))) 255 return -EBUSY; 256 257 ClearPageAnonExclusive(page); 258 /* 259 * It's okay to share the anon page between both processes, mapping 260 * the page R/O into both processes. 261 */ 262 dup: 263 __page_dup_rmap(page, compound); 264 return 0; 265 } 266 267 /** 268 * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly 269 * shared to prepare for KSM or temporary unmapping 270 * @page: the exclusive anonymous page to try marking possibly shared 271 * 272 * The caller needs to hold the PT lock and has to have the page table entry 273 * cleared/invalidated+flushed, to properly sync against GUP-fast. 274 * 275 * This is similar to page_try_dup_anon_rmap(), however, not used during fork() 276 * to duplicate a mapping, but instead to prepare for KSM or temporarily 277 * unmapping a page (swap, migration) via page_remove_rmap(). 278 * 279 * Marking the page shared can only fail if the page may be pinned; device 280 * private pages cannot get pinned and consequently this function cannot fail. 281 * 282 * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY 283 * otherwise. 284 */ 285 static inline int page_try_share_anon_rmap(struct page *page) 286 { 287 VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page); 288 289 /* See page_try_dup_anon_rmap(). */ 290 if (likely(!is_device_private_page(page) && 291 unlikely(page_maybe_dma_pinned(page)))) 292 return -EBUSY; 293 294 ClearPageAnonExclusive(page); 295 return 0; 296 } 297 298 /* 299 * Called from mm/vmscan.c to handle paging out 300 */ 301 int folio_referenced(struct folio *, int is_locked, 302 struct mem_cgroup *memcg, unsigned long *vm_flags); 303 304 void try_to_migrate(struct folio *folio, enum ttu_flags flags); 305 void try_to_unmap(struct folio *, enum ttu_flags flags); 306 307 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 308 unsigned long end, struct page **pages, 309 void *arg); 310 311 /* Avoid racy checks */ 312 #define PVMW_SYNC (1 << 0) 313 /* Look for migration entries rather than present PTEs */ 314 #define PVMW_MIGRATION (1 << 1) 315 316 struct page_vma_mapped_walk { 317 unsigned long pfn; 318 unsigned long nr_pages; 319 pgoff_t pgoff; 320 struct vm_area_struct *vma; 321 unsigned long address; 322 pmd_t *pmd; 323 pte_t *pte; 324 spinlock_t *ptl; 325 unsigned int flags; 326 }; 327 328 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \ 329 struct page_vma_mapped_walk name = { \ 330 .pfn = page_to_pfn(_page), \ 331 .nr_pages = compound_nr(_page), \ 332 .pgoff = page_to_pgoff(_page), \ 333 .vma = _vma, \ 334 .address = _address, \ 335 .flags = _flags, \ 336 } 337 338 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \ 339 struct page_vma_mapped_walk name = { \ 340 .pfn = folio_pfn(_folio), \ 341 .nr_pages = folio_nr_pages(_folio), \ 342 .pgoff = folio_pgoff(_folio), \ 343 .vma = _vma, \ 344 .address = _address, \ 345 .flags = _flags, \ 346 } 347 348 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) 349 { 350 /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ 351 if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma)) 352 pte_unmap(pvmw->pte); 353 if (pvmw->ptl) 354 spin_unlock(pvmw->ptl); 355 } 356 357 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); 358 359 /* 360 * Used by swapoff to help locate where page is expected in vma. 361 */ 362 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); 363 364 /* 365 * Cleans the PTEs of shared mappings. 366 * (and since clean PTEs should also be readonly, write protects them too) 367 * 368 * returns the number of cleaned PTEs. 369 */ 370 int folio_mkclean(struct folio *); 371 372 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 373 struct vm_area_struct *vma); 374 375 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked); 376 377 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); 378 379 /* 380 * rmap_walk_control: To control rmap traversing for specific needs 381 * 382 * arg: passed to rmap_one() and invalid_vma() 383 * try_lock: bail out if the rmap lock is contended 384 * contended: indicate the rmap traversal bailed out due to lock contention 385 * rmap_one: executed on each vma where page is mapped 386 * done: for checking traversing termination condition 387 * anon_lock: for getting anon_lock by optimized way rather than default 388 * invalid_vma: for skipping uninterested vma 389 */ 390 struct rmap_walk_control { 391 void *arg; 392 bool try_lock; 393 bool contended; 394 /* 395 * Return false if page table scanning in rmap_walk should be stopped. 396 * Otherwise, return true. 397 */ 398 bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma, 399 unsigned long addr, void *arg); 400 int (*done)(struct folio *folio); 401 struct anon_vma *(*anon_lock)(struct folio *folio, 402 struct rmap_walk_control *rwc); 403 bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); 404 }; 405 406 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc); 407 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc); 408 409 /* 410 * Called by memory-failure.c to kill processes. 411 */ 412 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 413 struct rmap_walk_control *rwc); 414 void page_unlock_anon_vma_read(struct anon_vma *anon_vma); 415 416 #else /* !CONFIG_MMU */ 417 418 #define anon_vma_init() do {} while (0) 419 #define anon_vma_prepare(vma) (0) 420 #define anon_vma_link(vma) do {} while (0) 421 422 static inline int folio_referenced(struct folio *folio, int is_locked, 423 struct mem_cgroup *memcg, 424 unsigned long *vm_flags) 425 { 426 *vm_flags = 0; 427 return 0; 428 } 429 430 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags) 431 { 432 } 433 434 static inline int folio_mkclean(struct folio *folio) 435 { 436 return 0; 437 } 438 #endif /* CONFIG_MMU */ 439 440 static inline int page_mkclean(struct page *page) 441 { 442 return folio_mkclean(page_folio(page)); 443 } 444 #endif /* _LINUX_RMAP_H */ 445