xref: /openbmc/linux/include/linux/rmap.h (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 #ifndef _LINUX_RMAP_H
2 #define _LINUX_RMAP_H
3 /*
4  * Declarations for Reverse Mapping functions in mm/rmap.c
5  */
6 
7 #include <linux/list.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/rwsem.h>
11 #include <linux/memcontrol.h>
12 
13 /*
14  * The anon_vma heads a list of private "related" vmas, to scan if
15  * an anonymous page pointing to this anon_vma needs to be unmapped:
16  * the vmas on the list will be related by forking, or by splitting.
17  *
18  * Since vmas come and go as they are split and merged (particularly
19  * in mprotect), the mapping field of an anonymous page cannot point
20  * directly to a vma: instead it points to an anon_vma, on whose list
21  * the related vmas can be easily linked or unlinked.
22  *
23  * After unlinking the last vma on the list, we must garbage collect
24  * the anon_vma object itself: we're guaranteed no page can be
25  * pointing to this anon_vma once its vma list is empty.
26  */
27 struct anon_vma {
28 	struct anon_vma *root;		/* Root of this anon_vma tree */
29 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
30 	/*
31 	 * The refcount is taken on an anon_vma when there is no
32 	 * guarantee that the vma of page tables will exist for
33 	 * the duration of the operation. A caller that takes
34 	 * the reference is responsible for clearing up the
35 	 * anon_vma if they are the last user on release
36 	 */
37 	atomic_t refcount;
38 
39 	/*
40 	 * NOTE: the LSB of the rb_root.rb_node is set by
41 	 * mm_take_all_locks() _after_ taking the above lock. So the
42 	 * rb_root must only be read/written after taking the above lock
43 	 * to be sure to see a valid next pointer. The LSB bit itself
44 	 * is serialized by a system wide lock only visible to
45 	 * mm_take_all_locks() (mm_all_locks_mutex).
46 	 */
47 	struct rb_root rb_root;	/* Interval tree of private "related" vmas */
48 };
49 
50 /*
51  * The copy-on-write semantics of fork mean that an anon_vma
52  * can become associated with multiple processes. Furthermore,
53  * each child process will have its own anon_vma, where new
54  * pages for that process are instantiated.
55  *
56  * This structure allows us to find the anon_vmas associated
57  * with a VMA, or the VMAs associated with an anon_vma.
58  * The "same_vma" list contains the anon_vma_chains linking
59  * all the anon_vmas associated with this VMA.
60  * The "rb" field indexes on an interval tree the anon_vma_chains
61  * which link all the VMAs associated with this anon_vma.
62  */
63 struct anon_vma_chain {
64 	struct vm_area_struct *vma;
65 	struct anon_vma *anon_vma;
66 	struct list_head same_vma;   /* locked by mmap_sem & page_table_lock */
67 	struct rb_node rb;			/* locked by anon_vma->rwsem */
68 	unsigned long rb_subtree_last;
69 #ifdef CONFIG_DEBUG_VM_RB
70 	unsigned long cached_vma_start, cached_vma_last;
71 #endif
72 };
73 
74 enum ttu_flags {
75 	TTU_UNMAP = 1,			/* unmap mode */
76 	TTU_MIGRATION = 2,		/* migration mode */
77 	TTU_MUNLOCK = 4,		/* munlock mode */
78 
79 	TTU_IGNORE_MLOCK = (1 << 8),	/* ignore mlock */
80 	TTU_IGNORE_ACCESS = (1 << 9),	/* don't age */
81 	TTU_IGNORE_HWPOISON = (1 << 10),/* corrupted page is recoverable */
82 };
83 
84 #ifdef CONFIG_MMU
85 static inline void get_anon_vma(struct anon_vma *anon_vma)
86 {
87 	atomic_inc(&anon_vma->refcount);
88 }
89 
90 void __put_anon_vma(struct anon_vma *anon_vma);
91 
92 static inline void put_anon_vma(struct anon_vma *anon_vma)
93 {
94 	if (atomic_dec_and_test(&anon_vma->refcount))
95 		__put_anon_vma(anon_vma);
96 }
97 
98 static inline struct anon_vma *page_anon_vma(struct page *page)
99 {
100 	if (((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) !=
101 					    PAGE_MAPPING_ANON)
102 		return NULL;
103 	return page_rmapping(page);
104 }
105 
106 static inline void vma_lock_anon_vma(struct vm_area_struct *vma)
107 {
108 	struct anon_vma *anon_vma = vma->anon_vma;
109 	if (anon_vma)
110 		down_write(&anon_vma->root->rwsem);
111 }
112 
113 static inline void vma_unlock_anon_vma(struct vm_area_struct *vma)
114 {
115 	struct anon_vma *anon_vma = vma->anon_vma;
116 	if (anon_vma)
117 		up_write(&anon_vma->root->rwsem);
118 }
119 
120 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
121 {
122 	down_write(&anon_vma->root->rwsem);
123 }
124 
125 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
126 {
127 	up_write(&anon_vma->root->rwsem);
128 }
129 
130 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
131 {
132 	down_read(&anon_vma->root->rwsem);
133 }
134 
135 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
136 {
137 	up_read(&anon_vma->root->rwsem);
138 }
139 
140 
141 /*
142  * anon_vma helper functions.
143  */
144 void anon_vma_init(void);	/* create anon_vma_cachep */
145 int  anon_vma_prepare(struct vm_area_struct *);
146 void unlink_anon_vmas(struct vm_area_struct *);
147 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
148 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
149 
150 static inline void anon_vma_merge(struct vm_area_struct *vma,
151 				  struct vm_area_struct *next)
152 {
153 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
154 	unlink_anon_vmas(next);
155 }
156 
157 struct anon_vma *page_get_anon_vma(struct page *page);
158 
159 /*
160  * rmap interfaces called when adding or removing pte of page
161  */
162 void page_move_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
163 void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
164 void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
165 			   unsigned long, int);
166 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
167 void page_add_file_rmap(struct page *);
168 void page_remove_rmap(struct page *);
169 
170 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
171 			    unsigned long);
172 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
173 				unsigned long);
174 
175 static inline void page_dup_rmap(struct page *page)
176 {
177 	atomic_inc(&page->_mapcount);
178 }
179 
180 /*
181  * Called from mm/vmscan.c to handle paging out
182  */
183 int page_referenced(struct page *, int is_locked,
184 			struct mem_cgroup *memcg, unsigned long *vm_flags);
185 
186 #define TTU_ACTION(x) ((x) & TTU_ACTION_MASK)
187 
188 int try_to_unmap(struct page *, enum ttu_flags flags);
189 
190 /*
191  * Called from mm/filemap_xip.c to unmap empty zero page
192  */
193 pte_t *__page_check_address(struct page *, struct mm_struct *,
194 				unsigned long, spinlock_t **, int);
195 
196 static inline pte_t *page_check_address(struct page *page, struct mm_struct *mm,
197 					unsigned long address,
198 					spinlock_t **ptlp, int sync)
199 {
200 	pte_t *ptep;
201 
202 	__cond_lock(*ptlp, ptep = __page_check_address(page, mm, address,
203 						       ptlp, sync));
204 	return ptep;
205 }
206 
207 /*
208  * Used by swapoff to help locate where page is expected in vma.
209  */
210 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
211 
212 /*
213  * Cleans the PTEs of shared mappings.
214  * (and since clean PTEs should also be readonly, write protects them too)
215  *
216  * returns the number of cleaned PTEs.
217  */
218 int page_mkclean(struct page *);
219 
220 /*
221  * called in munlock()/munmap() path to check for other vmas holding
222  * the page mlocked.
223  */
224 int try_to_munlock(struct page *);
225 
226 /*
227  * Called by memory-failure.c to kill processes.
228  */
229 struct anon_vma *page_lock_anon_vma_read(struct page *page);
230 void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
231 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
232 
233 /*
234  * rmap_walk_control: To control rmap traversing for specific needs
235  *
236  * arg: passed to rmap_one() and invalid_vma()
237  * rmap_one: executed on each vma where page is mapped
238  * done: for checking traversing termination condition
239  * file_nonlinear: for handling file nonlinear mapping
240  * anon_lock: for getting anon_lock by optimized way rather than default
241  * invalid_vma: for skipping uninterested vma
242  */
243 struct rmap_walk_control {
244 	void *arg;
245 	int (*rmap_one)(struct page *page, struct vm_area_struct *vma,
246 					unsigned long addr, void *arg);
247 	int (*done)(struct page *page);
248 	int (*file_nonlinear)(struct page *, struct address_space *, void *arg);
249 	struct anon_vma *(*anon_lock)(struct page *page);
250 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
251 };
252 
253 int rmap_walk(struct page *page, struct rmap_walk_control *rwc);
254 
255 #else	/* !CONFIG_MMU */
256 
257 #define anon_vma_init()		do {} while (0)
258 #define anon_vma_prepare(vma)	(0)
259 #define anon_vma_link(vma)	do {} while (0)
260 
261 static inline int page_referenced(struct page *page, int is_locked,
262 				  struct mem_cgroup *memcg,
263 				  unsigned long *vm_flags)
264 {
265 	*vm_flags = 0;
266 	return 0;
267 }
268 
269 #define try_to_unmap(page, refs) SWAP_FAIL
270 
271 static inline int page_mkclean(struct page *page)
272 {
273 	return 0;
274 }
275 
276 
277 #endif	/* CONFIG_MMU */
278 
279 /*
280  * Return values of try_to_unmap
281  */
282 #define SWAP_SUCCESS	0
283 #define SWAP_AGAIN	1
284 #define SWAP_FAIL	2
285 #define SWAP_MLOCK	3
286 
287 #endif	/* _LINUX_RMAP_H */
288