xref: /openbmc/linux/include/linux/rbtree.h (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3   Red Black Trees
4   (C) 1999  Andrea Arcangeli <andrea@suse.de>
5 
6 
7   linux/include/linux/rbtree.h
8 
9   To use rbtrees you'll have to implement your own insert and search cores.
10   This will avoid us to use callbacks and to drop drammatically performances.
11   I know it's not the cleaner way,  but in C (not in C++) to get
12   performances and genericity...
13 
14   See Documentation/core-api/rbtree.rst for documentation and samples.
15 */
16 
17 #ifndef	_LINUX_RBTREE_H
18 #define	_LINUX_RBTREE_H
19 
20 #include <linux/kernel.h>
21 #include <linux/stddef.h>
22 #include <linux/rcupdate.h>
23 
24 struct rb_node {
25 	unsigned long  __rb_parent_color;
26 	struct rb_node *rb_right;
27 	struct rb_node *rb_left;
28 } __attribute__((aligned(sizeof(long))));
29     /* The alignment might seem pointless, but allegedly CRIS needs it */
30 
31 struct rb_root {
32 	struct rb_node *rb_node;
33 };
34 
35 #define rb_parent(r)   ((struct rb_node *)((r)->__rb_parent_color & ~3))
36 
37 #define RB_ROOT	(struct rb_root) { NULL, }
38 #define	rb_entry(ptr, type, member) container_of(ptr, type, member)
39 
40 #define RB_EMPTY_ROOT(root)  (READ_ONCE((root)->rb_node) == NULL)
41 
42 /* 'empty' nodes are nodes that are known not to be inserted in an rbtree */
43 #define RB_EMPTY_NODE(node)  \
44 	((node)->__rb_parent_color == (unsigned long)(node))
45 #define RB_CLEAR_NODE(node)  \
46 	((node)->__rb_parent_color = (unsigned long)(node))
47 
48 
49 extern void rb_insert_color(struct rb_node *, struct rb_root *);
50 extern void rb_erase(struct rb_node *, struct rb_root *);
51 
52 
53 /* Find logical next and previous nodes in a tree */
54 extern struct rb_node *rb_next(const struct rb_node *);
55 extern struct rb_node *rb_prev(const struct rb_node *);
56 extern struct rb_node *rb_first(const struct rb_root *);
57 extern struct rb_node *rb_last(const struct rb_root *);
58 
59 /* Postorder iteration - always visit the parent after its children */
60 extern struct rb_node *rb_first_postorder(const struct rb_root *);
61 extern struct rb_node *rb_next_postorder(const struct rb_node *);
62 
63 /* Fast replacement of a single node without remove/rebalance/add/rebalance */
64 extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
65 			    struct rb_root *root);
66 extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
67 				struct rb_root *root);
68 
69 static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
70 				struct rb_node **rb_link)
71 {
72 	node->__rb_parent_color = (unsigned long)parent;
73 	node->rb_left = node->rb_right = NULL;
74 
75 	*rb_link = node;
76 }
77 
78 static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent,
79 				    struct rb_node **rb_link)
80 {
81 	node->__rb_parent_color = (unsigned long)parent;
82 	node->rb_left = node->rb_right = NULL;
83 
84 	rcu_assign_pointer(*rb_link, node);
85 }
86 
87 #define rb_entry_safe(ptr, type, member) \
88 	({ typeof(ptr) ____ptr = (ptr); \
89 	   ____ptr ? rb_entry(____ptr, type, member) : NULL; \
90 	})
91 
92 /**
93  * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
94  * given type allowing the backing memory of @pos to be invalidated
95  *
96  * @pos:	the 'type *' to use as a loop cursor.
97  * @n:		another 'type *' to use as temporary storage
98  * @root:	'rb_root *' of the rbtree.
99  * @field:	the name of the rb_node field within 'type'.
100  *
101  * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
102  * list_for_each_entry_safe() and allows the iteration to continue independent
103  * of changes to @pos by the body of the loop.
104  *
105  * Note, however, that it cannot handle other modifications that re-order the
106  * rbtree it is iterating over. This includes calling rb_erase() on @pos, as
107  * rb_erase() may rebalance the tree, causing us to miss some nodes.
108  */
109 #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
110 	for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
111 	     pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
112 			typeof(*pos), field); 1; }); \
113 	     pos = n)
114 
115 /*
116  * Leftmost-cached rbtrees.
117  *
118  * We do not cache the rightmost node based on footprint
119  * size vs number of potential users that could benefit
120  * from O(1) rb_last(). Just not worth it, users that want
121  * this feature can always implement the logic explicitly.
122  * Furthermore, users that want to cache both pointers may
123  * find it a bit asymmetric, but that's ok.
124  */
125 struct rb_root_cached {
126 	struct rb_root rb_root;
127 	struct rb_node *rb_leftmost;
128 };
129 
130 #define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL }
131 
132 /* Same as rb_first(), but O(1) */
133 #define rb_first_cached(root) (root)->rb_leftmost
134 
135 static inline void rb_insert_color_cached(struct rb_node *node,
136 					  struct rb_root_cached *root,
137 					  bool leftmost)
138 {
139 	if (leftmost)
140 		root->rb_leftmost = node;
141 	rb_insert_color(node, &root->rb_root);
142 }
143 
144 
145 static inline struct rb_node *
146 rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
147 {
148 	struct rb_node *leftmost = NULL;
149 
150 	if (root->rb_leftmost == node)
151 		leftmost = root->rb_leftmost = rb_next(node);
152 
153 	rb_erase(node, &root->rb_root);
154 
155 	return leftmost;
156 }
157 
158 static inline void rb_replace_node_cached(struct rb_node *victim,
159 					  struct rb_node *new,
160 					  struct rb_root_cached *root)
161 {
162 	if (root->rb_leftmost == victim)
163 		root->rb_leftmost = new;
164 	rb_replace_node(victim, new, &root->rb_root);
165 }
166 
167 /*
168  * The below helper functions use 2 operators with 3 different
169  * calling conventions. The operators are related like:
170  *
171  *	comp(a->key,b) < 0  := less(a,b)
172  *	comp(a->key,b) > 0  := less(b,a)
173  *	comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
174  *
175  * If these operators define a partial order on the elements we make no
176  * guarantee on which of the elements matching the key is found. See
177  * rb_find().
178  *
179  * The reason for this is to allow the find() interface without requiring an
180  * on-stack dummy object, which might not be feasible due to object size.
181  */
182 
183 /**
184  * rb_add_cached() - insert @node into the leftmost cached tree @tree
185  * @node: node to insert
186  * @tree: leftmost cached tree to insert @node into
187  * @less: operator defining the (partial) node order
188  *
189  * Returns @node when it is the new leftmost, or NULL.
190  */
191 static __always_inline struct rb_node *
192 rb_add_cached(struct rb_node *node, struct rb_root_cached *tree,
193 	      bool (*less)(struct rb_node *, const struct rb_node *))
194 {
195 	struct rb_node **link = &tree->rb_root.rb_node;
196 	struct rb_node *parent = NULL;
197 	bool leftmost = true;
198 
199 	while (*link) {
200 		parent = *link;
201 		if (less(node, parent)) {
202 			link = &parent->rb_left;
203 		} else {
204 			link = &parent->rb_right;
205 			leftmost = false;
206 		}
207 	}
208 
209 	rb_link_node(node, parent, link);
210 	rb_insert_color_cached(node, tree, leftmost);
211 
212 	return leftmost ? node : NULL;
213 }
214 
215 /**
216  * rb_add() - insert @node into @tree
217  * @node: node to insert
218  * @tree: tree to insert @node into
219  * @less: operator defining the (partial) node order
220  */
221 static __always_inline void
222 rb_add(struct rb_node *node, struct rb_root *tree,
223        bool (*less)(struct rb_node *, const struct rb_node *))
224 {
225 	struct rb_node **link = &tree->rb_node;
226 	struct rb_node *parent = NULL;
227 
228 	while (*link) {
229 		parent = *link;
230 		if (less(node, parent))
231 			link = &parent->rb_left;
232 		else
233 			link = &parent->rb_right;
234 	}
235 
236 	rb_link_node(node, parent, link);
237 	rb_insert_color(node, tree);
238 }
239 
240 /**
241  * rb_find_add() - find equivalent @node in @tree, or add @node
242  * @node: node to look-for / insert
243  * @tree: tree to search / modify
244  * @cmp: operator defining the node order
245  *
246  * Returns the rb_node matching @node, or NULL when no match is found and @node
247  * is inserted.
248  */
249 static __always_inline struct rb_node *
250 rb_find_add(struct rb_node *node, struct rb_root *tree,
251 	    int (*cmp)(struct rb_node *, const struct rb_node *))
252 {
253 	struct rb_node **link = &tree->rb_node;
254 	struct rb_node *parent = NULL;
255 	int c;
256 
257 	while (*link) {
258 		parent = *link;
259 		c = cmp(node, parent);
260 
261 		if (c < 0)
262 			link = &parent->rb_left;
263 		else if (c > 0)
264 			link = &parent->rb_right;
265 		else
266 			return parent;
267 	}
268 
269 	rb_link_node(node, parent, link);
270 	rb_insert_color(node, tree);
271 	return NULL;
272 }
273 
274 /**
275  * rb_find() - find @key in tree @tree
276  * @key: key to match
277  * @tree: tree to search
278  * @cmp: operator defining the node order
279  *
280  * Returns the rb_node matching @key or NULL.
281  */
282 static __always_inline struct rb_node *
283 rb_find(const void *key, const struct rb_root *tree,
284 	int (*cmp)(const void *key, const struct rb_node *))
285 {
286 	struct rb_node *node = tree->rb_node;
287 
288 	while (node) {
289 		int c = cmp(key, node);
290 
291 		if (c < 0)
292 			node = node->rb_left;
293 		else if (c > 0)
294 			node = node->rb_right;
295 		else
296 			return node;
297 	}
298 
299 	return NULL;
300 }
301 
302 /**
303  * rb_find_first() - find the first @key in @tree
304  * @key: key to match
305  * @tree: tree to search
306  * @cmp: operator defining node order
307  *
308  * Returns the leftmost node matching @key, or NULL.
309  */
310 static __always_inline struct rb_node *
311 rb_find_first(const void *key, const struct rb_root *tree,
312 	      int (*cmp)(const void *key, const struct rb_node *))
313 {
314 	struct rb_node *node = tree->rb_node;
315 	struct rb_node *match = NULL;
316 
317 	while (node) {
318 		int c = cmp(key, node);
319 
320 		if (c <= 0) {
321 			if (!c)
322 				match = node;
323 			node = node->rb_left;
324 		} else if (c > 0) {
325 			node = node->rb_right;
326 		}
327 	}
328 
329 	return match;
330 }
331 
332 /**
333  * rb_next_match() - find the next @key in @tree
334  * @key: key to match
335  * @tree: tree to search
336  * @cmp: operator defining node order
337  *
338  * Returns the next node matching @key, or NULL.
339  */
340 static __always_inline struct rb_node *
341 rb_next_match(const void *key, struct rb_node *node,
342 	      int (*cmp)(const void *key, const struct rb_node *))
343 {
344 	node = rb_next(node);
345 	if (node && cmp(key, node))
346 		node = NULL;
347 	return node;
348 }
349 
350 /**
351  * rb_for_each() - iterates a subtree matching @key
352  * @node: iterator
353  * @key: key to match
354  * @tree: tree to search
355  * @cmp: operator defining node order
356  */
357 #define rb_for_each(node, key, tree, cmp) \
358 	for ((node) = rb_find_first((key), (tree), (cmp)); \
359 	     (node); (node) = rb_next_match((key), (node), (cmp)))
360 
361 #endif	/* _LINUX_RBTREE_H */
362