1 #ifndef _LINUX_PTRACE_H 2 #define _LINUX_PTRACE_H 3 4 #include <linux/compiler.h> /* For unlikely. */ 5 #include <linux/sched.h> /* For struct task_struct. */ 6 #include <linux/err.h> /* for IS_ERR_VALUE */ 7 #include <linux/bug.h> /* For BUG_ON. */ 8 #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ 9 #include <uapi/linux/ptrace.h> 10 11 /* 12 * Ptrace flags 13 * 14 * The owner ship rules for task->ptrace which holds the ptrace 15 * flags is simple. When a task is running it owns it's task->ptrace 16 * flags. When the a task is stopped the ptracer owns task->ptrace. 17 */ 18 19 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 20 #define PT_PTRACED 0x00000001 21 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 22 #define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */ 23 24 #define PT_OPT_FLAG_SHIFT 3 25 /* PT_TRACE_* event enable flags */ 26 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) 27 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) 28 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 29 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 30 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 31 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 32 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 33 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 34 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) 35 36 #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) 37 38 /* single stepping state bits (used on ARM and PA-RISC) */ 39 #define PT_SINGLESTEP_BIT 31 40 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 41 #define PT_BLOCKSTEP_BIT 30 42 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 43 44 extern long arch_ptrace(struct task_struct *child, long request, 45 unsigned long addr, unsigned long data); 46 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 47 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 48 extern void ptrace_disable(struct task_struct *); 49 extern int ptrace_request(struct task_struct *child, long request, 50 unsigned long addr, unsigned long data); 51 extern void ptrace_notify(int exit_code); 52 extern void __ptrace_link(struct task_struct *child, 53 struct task_struct *new_parent); 54 extern void __ptrace_unlink(struct task_struct *child); 55 extern void exit_ptrace(struct task_struct *tracer); 56 #define PTRACE_MODE_READ 0x01 57 #define PTRACE_MODE_ATTACH 0x02 58 #define PTRACE_MODE_NOAUDIT 0x04 59 /* Returns true on success, false on denial. */ 60 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 61 62 static inline int ptrace_reparented(struct task_struct *child) 63 { 64 return !same_thread_group(child->real_parent, child->parent); 65 } 66 67 static inline void ptrace_unlink(struct task_struct *child) 68 { 69 if (unlikely(child->ptrace)) 70 __ptrace_unlink(child); 71 } 72 73 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 74 unsigned long data); 75 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 76 unsigned long data); 77 78 /** 79 * ptrace_parent - return the task that is tracing the given task 80 * @task: task to consider 81 * 82 * Returns %NULL if no one is tracing @task, or the &struct task_struct 83 * pointer to its tracer. 84 * 85 * Must called under rcu_read_lock(). The pointer returned might be kept 86 * live only by RCU. During exec, this may be called with task_lock() held 87 * on @task, still held from when check_unsafe_exec() was called. 88 */ 89 static inline struct task_struct *ptrace_parent(struct task_struct *task) 90 { 91 if (unlikely(task->ptrace)) 92 return rcu_dereference(task->parent); 93 return NULL; 94 } 95 96 /** 97 * ptrace_event_enabled - test whether a ptrace event is enabled 98 * @task: ptracee of interest 99 * @event: %PTRACE_EVENT_* to test 100 * 101 * Test whether @event is enabled for ptracee @task. 102 * 103 * Returns %true if @event is enabled, %false otherwise. 104 */ 105 static inline bool ptrace_event_enabled(struct task_struct *task, int event) 106 { 107 return task->ptrace & PT_EVENT_FLAG(event); 108 } 109 110 /** 111 * ptrace_event - possibly stop for a ptrace event notification 112 * @event: %PTRACE_EVENT_* value to report 113 * @message: value for %PTRACE_GETEVENTMSG to return 114 * 115 * Check whether @event is enabled and, if so, report @event and @message 116 * to the ptrace parent. 117 * 118 * Called without locks. 119 */ 120 static inline void ptrace_event(int event, unsigned long message) 121 { 122 if (unlikely(ptrace_event_enabled(current, event))) { 123 current->ptrace_message = message; 124 ptrace_notify((event << 8) | SIGTRAP); 125 } else if (event == PTRACE_EVENT_EXEC) { 126 /* legacy EXEC report via SIGTRAP */ 127 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) 128 send_sig(SIGTRAP, current, 0); 129 } 130 } 131 132 /** 133 * ptrace_event_pid - possibly stop for a ptrace event notification 134 * @event: %PTRACE_EVENT_* value to report 135 * @pid: process identifier for %PTRACE_GETEVENTMSG to return 136 * 137 * Check whether @event is enabled and, if so, report @event and @pid 138 * to the ptrace parent. @pid is reported as the pid_t seen from the 139 * the ptrace parent's pid namespace. 140 * 141 * Called without locks. 142 */ 143 static inline void ptrace_event_pid(int event, struct pid *pid) 144 { 145 /* 146 * FIXME: There's a potential race if a ptracer in a different pid 147 * namespace than parent attaches between computing message below and 148 * when we acquire tasklist_lock in ptrace_stop(). If this happens, 149 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. 150 */ 151 unsigned long message = 0; 152 struct pid_namespace *ns; 153 154 rcu_read_lock(); 155 ns = task_active_pid_ns(rcu_dereference(current->parent)); 156 if (ns) 157 message = pid_nr_ns(pid, ns); 158 rcu_read_unlock(); 159 160 ptrace_event(event, message); 161 } 162 163 /** 164 * ptrace_init_task - initialize ptrace state for a new child 165 * @child: new child task 166 * @ptrace: true if child should be ptrace'd by parent's tracer 167 * 168 * This is called immediately after adding @child to its parent's children 169 * list. @ptrace is false in the normal case, and true to ptrace @child. 170 * 171 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 172 */ 173 static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 174 { 175 INIT_LIST_HEAD(&child->ptrace_entry); 176 INIT_LIST_HEAD(&child->ptraced); 177 child->jobctl = 0; 178 child->ptrace = 0; 179 child->parent = child->real_parent; 180 181 if (unlikely(ptrace) && current->ptrace) { 182 child->ptrace = current->ptrace; 183 __ptrace_link(child, current->parent); 184 185 if (child->ptrace & PT_SEIZED) 186 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 187 else 188 sigaddset(&child->pending.signal, SIGSTOP); 189 190 set_tsk_thread_flag(child, TIF_SIGPENDING); 191 } 192 } 193 194 /** 195 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 196 * @task: task in %EXIT_DEAD state 197 * 198 * Called with write_lock(&tasklist_lock) held. 199 */ 200 static inline void ptrace_release_task(struct task_struct *task) 201 { 202 BUG_ON(!list_empty(&task->ptraced)); 203 ptrace_unlink(task); 204 BUG_ON(!list_empty(&task->ptrace_entry)); 205 } 206 207 #ifndef force_successful_syscall_return 208 /* 209 * System call handlers that, upon successful completion, need to return a 210 * negative value should call force_successful_syscall_return() right before 211 * returning. On architectures where the syscall convention provides for a 212 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 213 * others), this macro can be used to ensure that the error flag will not get 214 * set. On architectures which do not support a separate error flag, the macro 215 * is a no-op and the spurious error condition needs to be filtered out by some 216 * other means (e.g., in user-level, by passing an extra argument to the 217 * syscall handler, or something along those lines). 218 */ 219 #define force_successful_syscall_return() do { } while (0) 220 #endif 221 222 #ifndef is_syscall_success 223 /* 224 * On most systems we can tell if a syscall is a success based on if the retval 225 * is an error value. On some systems like ia64 and powerpc they have different 226 * indicators of success/failure and must define their own. 227 */ 228 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 229 #endif 230 231 /* 232 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 233 * 234 * These do-nothing inlines are used when the arch does not 235 * implement single-step. The kerneldoc comments are here 236 * to document the interface for all arch definitions. 237 */ 238 239 #ifndef arch_has_single_step 240 /** 241 * arch_has_single_step - does this CPU support user-mode single-step? 242 * 243 * If this is defined, then there must be function declarations or 244 * inlines for user_enable_single_step() and user_disable_single_step(). 245 * arch_has_single_step() should evaluate to nonzero iff the machine 246 * supports instruction single-step for user mode. 247 * It can be a constant or it can test a CPU feature bit. 248 */ 249 #define arch_has_single_step() (0) 250 251 /** 252 * user_enable_single_step - single-step in user-mode task 253 * @task: either current or a task stopped in %TASK_TRACED 254 * 255 * This can only be called when arch_has_single_step() has returned nonzero. 256 * Set @task so that when it returns to user mode, it will trap after the 257 * next single instruction executes. If arch_has_block_step() is defined, 258 * this must clear the effects of user_enable_block_step() too. 259 */ 260 static inline void user_enable_single_step(struct task_struct *task) 261 { 262 BUG(); /* This can never be called. */ 263 } 264 265 /** 266 * user_disable_single_step - cancel user-mode single-step 267 * @task: either current or a task stopped in %TASK_TRACED 268 * 269 * Clear @task of the effects of user_enable_single_step() and 270 * user_enable_block_step(). This can be called whether or not either 271 * of those was ever called on @task, and even if arch_has_single_step() 272 * returned zero. 273 */ 274 static inline void user_disable_single_step(struct task_struct *task) 275 { 276 } 277 #else 278 extern void user_enable_single_step(struct task_struct *); 279 extern void user_disable_single_step(struct task_struct *); 280 #endif /* arch_has_single_step */ 281 282 #ifndef arch_has_block_step 283 /** 284 * arch_has_block_step - does this CPU support user-mode block-step? 285 * 286 * If this is defined, then there must be a function declaration or inline 287 * for user_enable_block_step(), and arch_has_single_step() must be defined 288 * too. arch_has_block_step() should evaluate to nonzero iff the machine 289 * supports step-until-branch for user mode. It can be a constant or it 290 * can test a CPU feature bit. 291 */ 292 #define arch_has_block_step() (0) 293 294 /** 295 * user_enable_block_step - step until branch in user-mode task 296 * @task: either current or a task stopped in %TASK_TRACED 297 * 298 * This can only be called when arch_has_block_step() has returned nonzero, 299 * and will never be called when single-instruction stepping is being used. 300 * Set @task so that when it returns to user mode, it will trap after the 301 * next branch or trap taken. 302 */ 303 static inline void user_enable_block_step(struct task_struct *task) 304 { 305 BUG(); /* This can never be called. */ 306 } 307 #else 308 extern void user_enable_block_step(struct task_struct *); 309 #endif /* arch_has_block_step */ 310 311 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO 312 extern void user_single_step_siginfo(struct task_struct *tsk, 313 struct pt_regs *regs, siginfo_t *info); 314 #else 315 static inline void user_single_step_siginfo(struct task_struct *tsk, 316 struct pt_regs *regs, siginfo_t *info) 317 { 318 memset(info, 0, sizeof(*info)); 319 info->si_signo = SIGTRAP; 320 } 321 #endif 322 323 #ifndef arch_ptrace_stop_needed 324 /** 325 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 326 * @code: current->exit_code value ptrace will stop with 327 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 328 * 329 * This is called with the siglock held, to decide whether or not it's 330 * necessary to release the siglock and call arch_ptrace_stop() with the 331 * same @code and @info arguments. It can be defined to a constant if 332 * arch_ptrace_stop() is never required, or always is. On machines where 333 * this makes sense, it should be defined to a quick test to optimize out 334 * calling arch_ptrace_stop() when it would be superfluous. For example, 335 * if the thread has not been back to user mode since the last stop, the 336 * thread state might indicate that nothing needs to be done. 337 * 338 * This is guaranteed to be invoked once before a task stops for ptrace and 339 * may include arch-specific operations necessary prior to a ptrace stop. 340 */ 341 #define arch_ptrace_stop_needed(code, info) (0) 342 #endif 343 344 #ifndef arch_ptrace_stop 345 /** 346 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 347 * @code: current->exit_code value ptrace will stop with 348 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 349 * 350 * This is called with no locks held when arch_ptrace_stop_needed() has 351 * just returned nonzero. It is allowed to block, e.g. for user memory 352 * access. The arch can have machine-specific work to be done before 353 * ptrace stops. On ia64, register backing store gets written back to user 354 * memory here. Since this can be costly (requires dropping the siglock), 355 * we only do it when the arch requires it for this particular stop, as 356 * indicated by arch_ptrace_stop_needed(). 357 */ 358 #define arch_ptrace_stop(code, info) do { } while (0) 359 #endif 360 361 #ifndef current_pt_regs 362 #define current_pt_regs() task_pt_regs(current) 363 #endif 364 365 #ifndef ptrace_signal_deliver 366 #define ptrace_signal_deliver() ((void)0) 367 #endif 368 369 /* 370 * unlike current_pt_regs(), this one is equal to task_pt_regs(current) 371 * on *all* architectures; the only reason to have a per-arch definition 372 * is optimisation. 373 */ 374 #ifndef signal_pt_regs 375 #define signal_pt_regs() task_pt_regs(current) 376 #endif 377 378 #ifndef current_user_stack_pointer 379 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) 380 #endif 381 382 extern int task_current_syscall(struct task_struct *target, long *callno, 383 unsigned long args[6], unsigned int maxargs, 384 unsigned long *sp, unsigned long *pc); 385 386 #endif 387