1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_PREEMPT_H 3 #define __LINUX_PREEMPT_H 4 5 /* 6 * include/linux/preempt.h - macros for accessing and manipulating 7 * preempt_count (used for kernel preemption, interrupt count, etc.) 8 */ 9 10 #include <linux/linkage.h> 11 #include <linux/cleanup.h> 12 #include <linux/list.h> 13 14 /* 15 * We put the hardirq and softirq counter into the preemption 16 * counter. The bitmask has the following meaning: 17 * 18 * - bits 0-7 are the preemption count (max preemption depth: 256) 19 * - bits 8-15 are the softirq count (max # of softirqs: 256) 20 * 21 * The hardirq count could in theory be the same as the number of 22 * interrupts in the system, but we run all interrupt handlers with 23 * interrupts disabled, so we cannot have nesting interrupts. Though 24 * there are a few palaeontologic drivers which reenable interrupts in 25 * the handler, so we need more than one bit here. 26 * 27 * PREEMPT_MASK: 0x000000ff 28 * SOFTIRQ_MASK: 0x0000ff00 29 * HARDIRQ_MASK: 0x000f0000 30 * NMI_MASK: 0x00f00000 31 * PREEMPT_NEED_RESCHED: 0x80000000 32 */ 33 #define PREEMPT_BITS 8 34 #define SOFTIRQ_BITS 8 35 #define HARDIRQ_BITS 4 36 #define NMI_BITS 4 37 38 #define PREEMPT_SHIFT 0 39 #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) 40 #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) 41 #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) 42 43 #define __IRQ_MASK(x) ((1UL << (x))-1) 44 45 #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) 46 #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) 47 #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) 48 #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) 49 50 #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) 51 #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) 52 #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) 53 #define NMI_OFFSET (1UL << NMI_SHIFT) 54 55 #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) 56 57 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 58 59 /* 60 * Disable preemption until the scheduler is running -- use an unconditional 61 * value so that it also works on !PREEMPT_COUNT kernels. 62 * 63 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 64 */ 65 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 66 67 /* 68 * Initial preempt_count value; reflects the preempt_count schedule invariant 69 * which states that during context switches: 70 * 71 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 72 * 73 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 74 * Note: See finish_task_switch(). 75 */ 76 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 77 78 /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ 79 #include <asm/preempt.h> 80 81 /** 82 * interrupt_context_level - return interrupt context level 83 * 84 * Returns the current interrupt context level. 85 * 0 - normal context 86 * 1 - softirq context 87 * 2 - hardirq context 88 * 3 - NMI context 89 */ 90 static __always_inline unsigned char interrupt_context_level(void) 91 { 92 unsigned long pc = preempt_count(); 93 unsigned char level = 0; 94 95 level += !!(pc & (NMI_MASK)); 96 level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); 97 level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); 98 99 return level; 100 } 101 102 #define nmi_count() (preempt_count() & NMI_MASK) 103 #define hardirq_count() (preempt_count() & HARDIRQ_MASK) 104 #ifdef CONFIG_PREEMPT_RT 105 # define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) 106 #else 107 # define softirq_count() (preempt_count() & SOFTIRQ_MASK) 108 #endif 109 #define irq_count() (nmi_count() | hardirq_count() | softirq_count()) 110 111 /* 112 * Macros to retrieve the current execution context: 113 * 114 * in_nmi() - We're in NMI context 115 * in_hardirq() - We're in hard IRQ context 116 * in_serving_softirq() - We're in softirq context 117 * in_task() - We're in task context 118 */ 119 #define in_nmi() (nmi_count()) 120 #define in_hardirq() (hardirq_count()) 121 #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) 122 #define in_task() (!(in_nmi() | in_hardirq() | in_serving_softirq())) 123 124 /* 125 * The following macros are deprecated and should not be used in new code: 126 * in_irq() - Obsolete version of in_hardirq() 127 * in_softirq() - We have BH disabled, or are processing softirqs 128 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled 129 */ 130 #define in_irq() (hardirq_count()) 131 #define in_softirq() (softirq_count()) 132 #define in_interrupt() (irq_count()) 133 134 /* 135 * The preempt_count offset after preempt_disable(); 136 */ 137 #if defined(CONFIG_PREEMPT_COUNT) 138 # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET 139 #else 140 # define PREEMPT_DISABLE_OFFSET 0 141 #endif 142 143 /* 144 * The preempt_count offset after spin_lock() 145 */ 146 #if !defined(CONFIG_PREEMPT_RT) 147 #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET 148 #else 149 /* Locks on RT do not disable preemption */ 150 #define PREEMPT_LOCK_OFFSET 0 151 #endif 152 153 /* 154 * The preempt_count offset needed for things like: 155 * 156 * spin_lock_bh() 157 * 158 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and 159 * softirqs, such that unlock sequences of: 160 * 161 * spin_unlock(); 162 * local_bh_enable(); 163 * 164 * Work as expected. 165 */ 166 #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) 167 168 /* 169 * Are we running in atomic context? WARNING: this macro cannot 170 * always detect atomic context; in particular, it cannot know about 171 * held spinlocks in non-preemptible kernels. Thus it should not be 172 * used in the general case to determine whether sleeping is possible. 173 * Do not use in_atomic() in driver code. 174 */ 175 #define in_atomic() (preempt_count() != 0) 176 177 /* 178 * Check whether we were atomic before we did preempt_disable(): 179 * (used by the scheduler) 180 */ 181 #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) 182 183 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 184 extern void preempt_count_add(int val); 185 extern void preempt_count_sub(int val); 186 #define preempt_count_dec_and_test() \ 187 ({ preempt_count_sub(1); should_resched(0); }) 188 #else 189 #define preempt_count_add(val) __preempt_count_add(val) 190 #define preempt_count_sub(val) __preempt_count_sub(val) 191 #define preempt_count_dec_and_test() __preempt_count_dec_and_test() 192 #endif 193 194 #define __preempt_count_inc() __preempt_count_add(1) 195 #define __preempt_count_dec() __preempt_count_sub(1) 196 197 #define preempt_count_inc() preempt_count_add(1) 198 #define preempt_count_dec() preempt_count_sub(1) 199 200 #ifdef CONFIG_PREEMPT_COUNT 201 202 #define preempt_disable() \ 203 do { \ 204 preempt_count_inc(); \ 205 barrier(); \ 206 } while (0) 207 208 #define sched_preempt_enable_no_resched() \ 209 do { \ 210 barrier(); \ 211 preempt_count_dec(); \ 212 } while (0) 213 214 #define preempt_enable_no_resched() sched_preempt_enable_no_resched() 215 216 #define preemptible() (preempt_count() == 0 && !irqs_disabled()) 217 218 #ifdef CONFIG_PREEMPTION 219 #define preempt_enable() \ 220 do { \ 221 barrier(); \ 222 if (unlikely(preempt_count_dec_and_test())) \ 223 __preempt_schedule(); \ 224 } while (0) 225 226 #define preempt_enable_notrace() \ 227 do { \ 228 barrier(); \ 229 if (unlikely(__preempt_count_dec_and_test())) \ 230 __preempt_schedule_notrace(); \ 231 } while (0) 232 233 #define preempt_check_resched() \ 234 do { \ 235 if (should_resched(0)) \ 236 __preempt_schedule(); \ 237 } while (0) 238 239 #else /* !CONFIG_PREEMPTION */ 240 #define preempt_enable() \ 241 do { \ 242 barrier(); \ 243 preempt_count_dec(); \ 244 } while (0) 245 246 #define preempt_enable_notrace() \ 247 do { \ 248 barrier(); \ 249 __preempt_count_dec(); \ 250 } while (0) 251 252 #define preempt_check_resched() do { } while (0) 253 #endif /* CONFIG_PREEMPTION */ 254 255 #define preempt_disable_notrace() \ 256 do { \ 257 __preempt_count_inc(); \ 258 barrier(); \ 259 } while (0) 260 261 #define preempt_enable_no_resched_notrace() \ 262 do { \ 263 barrier(); \ 264 __preempt_count_dec(); \ 265 } while (0) 266 267 #else /* !CONFIG_PREEMPT_COUNT */ 268 269 /* 270 * Even if we don't have any preemption, we need preempt disable/enable 271 * to be barriers, so that we don't have things like get_user/put_user 272 * that can cause faults and scheduling migrate into our preempt-protected 273 * region. 274 */ 275 #define preempt_disable() barrier() 276 #define sched_preempt_enable_no_resched() barrier() 277 #define preempt_enable_no_resched() barrier() 278 #define preempt_enable() barrier() 279 #define preempt_check_resched() do { } while (0) 280 281 #define preempt_disable_notrace() barrier() 282 #define preempt_enable_no_resched_notrace() barrier() 283 #define preempt_enable_notrace() barrier() 284 #define preemptible() 0 285 286 #endif /* CONFIG_PREEMPT_COUNT */ 287 288 #ifdef MODULE 289 /* 290 * Modules have no business playing preemption tricks. 291 */ 292 #undef sched_preempt_enable_no_resched 293 #undef preempt_enable_no_resched 294 #undef preempt_enable_no_resched_notrace 295 #undef preempt_check_resched 296 #endif 297 298 #define preempt_set_need_resched() \ 299 do { \ 300 set_preempt_need_resched(); \ 301 } while (0) 302 #define preempt_fold_need_resched() \ 303 do { \ 304 if (tif_need_resched()) \ 305 set_preempt_need_resched(); \ 306 } while (0) 307 308 #ifdef CONFIG_PREEMPT_NOTIFIERS 309 310 struct preempt_notifier; 311 312 /** 313 * preempt_ops - notifiers called when a task is preempted and rescheduled 314 * @sched_in: we're about to be rescheduled: 315 * notifier: struct preempt_notifier for the task being scheduled 316 * cpu: cpu we're scheduled on 317 * @sched_out: we've just been preempted 318 * notifier: struct preempt_notifier for the task being preempted 319 * next: the task that's kicking us out 320 * 321 * Please note that sched_in and out are called under different 322 * contexts. sched_out is called with rq lock held and irq disabled 323 * while sched_in is called without rq lock and irq enabled. This 324 * difference is intentional and depended upon by its users. 325 */ 326 struct preempt_ops { 327 void (*sched_in)(struct preempt_notifier *notifier, int cpu); 328 void (*sched_out)(struct preempt_notifier *notifier, 329 struct task_struct *next); 330 }; 331 332 /** 333 * preempt_notifier - key for installing preemption notifiers 334 * @link: internal use 335 * @ops: defines the notifier functions to be called 336 * 337 * Usually used in conjunction with container_of(). 338 */ 339 struct preempt_notifier { 340 struct hlist_node link; 341 struct preempt_ops *ops; 342 }; 343 344 void preempt_notifier_inc(void); 345 void preempt_notifier_dec(void); 346 void preempt_notifier_register(struct preempt_notifier *notifier); 347 void preempt_notifier_unregister(struct preempt_notifier *notifier); 348 349 static inline void preempt_notifier_init(struct preempt_notifier *notifier, 350 struct preempt_ops *ops) 351 { 352 INIT_HLIST_NODE(¬ifier->link); 353 notifier->ops = ops; 354 } 355 356 #endif 357 358 #ifdef CONFIG_SMP 359 360 /* 361 * Migrate-Disable and why it is undesired. 362 * 363 * When a preempted task becomes elegible to run under the ideal model (IOW it 364 * becomes one of the M highest priority tasks), it might still have to wait 365 * for the preemptee's migrate_disable() section to complete. Thereby suffering 366 * a reduction in bandwidth in the exact duration of the migrate_disable() 367 * section. 368 * 369 * Per this argument, the change from preempt_disable() to migrate_disable() 370 * gets us: 371 * 372 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() 373 * it would have had to wait for the lower priority task. 374 * 375 * - a lower priority tasks; which under preempt_disable() could've instantly 376 * migrated away when another CPU becomes available, is now constrained 377 * by the ability to push the higher priority task away, which might itself be 378 * in a migrate_disable() section, reducing it's available bandwidth. 379 * 380 * IOW it trades latency / moves the interference term, but it stays in the 381 * system, and as long as it remains unbounded, the system is not fully 382 * deterministic. 383 * 384 * 385 * The reason we have it anyway. 386 * 387 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a 388 * number of primitives into becoming preemptible, they would also allow 389 * migration. This turns out to break a bunch of per-cpu usage. To this end, 390 * all these primitives employ migirate_disable() to restore this implicit 391 * assumption. 392 * 393 * This is a 'temporary' work-around at best. The correct solution is getting 394 * rid of the above assumptions and reworking the code to employ explicit 395 * per-cpu locking or short preempt-disable regions. 396 * 397 * The end goal must be to get rid of migrate_disable(), alternatively we need 398 * a schedulability theory that does not depend on abritrary migration. 399 * 400 * 401 * Notes on the implementation. 402 * 403 * The implementation is particularly tricky since existing code patterns 404 * dictate neither migrate_disable() nor migrate_enable() is allowed to block. 405 * This means that it cannot use cpus_read_lock() to serialize against hotplug, 406 * nor can it easily migrate itself into a pending affinity mask change on 407 * migrate_enable(). 408 * 409 * 410 * Note: even non-work-conserving schedulers like semi-partitioned depends on 411 * migration, so migrate_disable() is not only a problem for 412 * work-conserving schedulers. 413 * 414 */ 415 extern void migrate_disable(void); 416 extern void migrate_enable(void); 417 418 #else 419 420 static inline void migrate_disable(void) { } 421 static inline void migrate_enable(void) { } 422 423 #endif /* CONFIG_SMP */ 424 425 /** 426 * preempt_disable_nested - Disable preemption inside a normally preempt disabled section 427 * 428 * Use for code which requires preemption protection inside a critical 429 * section which has preemption disabled implicitly on non-PREEMPT_RT 430 * enabled kernels, by e.g.: 431 * - holding a spinlock/rwlock 432 * - soft interrupt context 433 * - regular interrupt handlers 434 * 435 * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft 436 * interrupt context and regular interrupt handlers are preemptible and 437 * only prevent migration. preempt_disable_nested() ensures that preemption 438 * is disabled for cases which require CPU local serialization even on 439 * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP. 440 * 441 * The use cases are code sequences which are not serialized by a 442 * particular lock instance, e.g.: 443 * - seqcount write side critical sections where the seqcount is not 444 * associated to a particular lock and therefore the automatic 445 * protection mechanism does not work. This prevents a live lock 446 * against a preempting high priority reader. 447 * - RMW per CPU variable updates like vmstat. 448 */ 449 /* Macro to avoid header recursion hell vs. lockdep */ 450 #define preempt_disable_nested() \ 451 do { \ 452 if (IS_ENABLED(CONFIG_PREEMPT_RT)) \ 453 preempt_disable(); \ 454 else \ 455 lockdep_assert_preemption_disabled(); \ 456 } while (0) 457 458 /** 459 * preempt_enable_nested - Undo the effect of preempt_disable_nested() 460 */ 461 static __always_inline void preempt_enable_nested(void) 462 { 463 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 464 preempt_enable(); 465 } 466 467 DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable()) 468 DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace()) 469 DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable()) 470 471 #endif /* __LINUX_PREEMPT_H */ 472