1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_PREEMPT_H 3 #define __LINUX_PREEMPT_H 4 5 /* 6 * include/linux/preempt.h - macros for accessing and manipulating 7 * preempt_count (used for kernel preemption, interrupt count, etc.) 8 */ 9 10 #include <linux/linkage.h> 11 #include <linux/list.h> 12 13 /* 14 * We put the hardirq and softirq counter into the preemption 15 * counter. The bitmask has the following meaning: 16 * 17 * - bits 0-7 are the preemption count (max preemption depth: 256) 18 * - bits 8-15 are the softirq count (max # of softirqs: 256) 19 * 20 * The hardirq count could in theory be the same as the number of 21 * interrupts in the system, but we run all interrupt handlers with 22 * interrupts disabled, so we cannot have nesting interrupts. Though 23 * there are a few palaeontologic drivers which reenable interrupts in 24 * the handler, so we need more than one bit here. 25 * 26 * PREEMPT_MASK: 0x000000ff 27 * SOFTIRQ_MASK: 0x0000ff00 28 * HARDIRQ_MASK: 0x000f0000 29 * NMI_MASK: 0x00f00000 30 * PREEMPT_NEED_RESCHED: 0x80000000 31 */ 32 #define PREEMPT_BITS 8 33 #define SOFTIRQ_BITS 8 34 #define HARDIRQ_BITS 4 35 #define NMI_BITS 4 36 37 #define PREEMPT_SHIFT 0 38 #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) 39 #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) 40 #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) 41 42 #define __IRQ_MASK(x) ((1UL << (x))-1) 43 44 #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) 45 #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) 46 #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) 47 #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) 48 49 #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) 50 #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) 51 #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) 52 #define NMI_OFFSET (1UL << NMI_SHIFT) 53 54 #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) 55 56 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 57 58 /* 59 * Disable preemption until the scheduler is running -- use an unconditional 60 * value so that it also works on !PREEMPT_COUNT kernels. 61 * 62 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 63 */ 64 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 65 66 /* 67 * Initial preempt_count value; reflects the preempt_count schedule invariant 68 * which states that during context switches: 69 * 70 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 71 * 72 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 73 * Note: See finish_task_switch(). 74 */ 75 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 76 77 /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ 78 #include <asm/preempt.h> 79 80 #define nmi_count() (preempt_count() & NMI_MASK) 81 #define hardirq_count() (preempt_count() & HARDIRQ_MASK) 82 #ifdef CONFIG_PREEMPT_RT 83 # define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) 84 #else 85 # define softirq_count() (preempt_count() & SOFTIRQ_MASK) 86 #endif 87 #define irq_count() (nmi_count() | hardirq_count() | softirq_count()) 88 89 /* 90 * Macros to retrieve the current execution context: 91 * 92 * in_nmi() - We're in NMI context 93 * in_hardirq() - We're in hard IRQ context 94 * in_serving_softirq() - We're in softirq context 95 * in_task() - We're in task context 96 */ 97 #define in_nmi() (nmi_count()) 98 #define in_hardirq() (hardirq_count()) 99 #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) 100 #define in_task() (!(in_nmi() | in_hardirq() | in_serving_softirq())) 101 102 /* 103 * The following macros are deprecated and should not be used in new code: 104 * in_irq() - Obsolete version of in_hardirq() 105 * in_softirq() - We have BH disabled, or are processing softirqs 106 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled 107 */ 108 #define in_irq() (hardirq_count()) 109 #define in_softirq() (softirq_count()) 110 #define in_interrupt() (irq_count()) 111 112 /* 113 * The preempt_count offset after preempt_disable(); 114 */ 115 #if defined(CONFIG_PREEMPT_COUNT) 116 # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET 117 #else 118 # define PREEMPT_DISABLE_OFFSET 0 119 #endif 120 121 /* 122 * The preempt_count offset after spin_lock() 123 */ 124 #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET 125 126 /* 127 * The preempt_count offset needed for things like: 128 * 129 * spin_lock_bh() 130 * 131 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and 132 * softirqs, such that unlock sequences of: 133 * 134 * spin_unlock(); 135 * local_bh_enable(); 136 * 137 * Work as expected. 138 */ 139 #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) 140 141 /* 142 * Are we running in atomic context? WARNING: this macro cannot 143 * always detect atomic context; in particular, it cannot know about 144 * held spinlocks in non-preemptible kernels. Thus it should not be 145 * used in the general case to determine whether sleeping is possible. 146 * Do not use in_atomic() in driver code. 147 */ 148 #define in_atomic() (preempt_count() != 0) 149 150 /* 151 * Check whether we were atomic before we did preempt_disable(): 152 * (used by the scheduler) 153 */ 154 #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) 155 156 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 157 extern void preempt_count_add(int val); 158 extern void preempt_count_sub(int val); 159 #define preempt_count_dec_and_test() \ 160 ({ preempt_count_sub(1); should_resched(0); }) 161 #else 162 #define preempt_count_add(val) __preempt_count_add(val) 163 #define preempt_count_sub(val) __preempt_count_sub(val) 164 #define preempt_count_dec_and_test() __preempt_count_dec_and_test() 165 #endif 166 167 #define __preempt_count_inc() __preempt_count_add(1) 168 #define __preempt_count_dec() __preempt_count_sub(1) 169 170 #define preempt_count_inc() preempt_count_add(1) 171 #define preempt_count_dec() preempt_count_sub(1) 172 173 #ifdef CONFIG_PREEMPT_COUNT 174 175 #define preempt_disable() \ 176 do { \ 177 preempt_count_inc(); \ 178 barrier(); \ 179 } while (0) 180 181 #define sched_preempt_enable_no_resched() \ 182 do { \ 183 barrier(); \ 184 preempt_count_dec(); \ 185 } while (0) 186 187 #define preempt_enable_no_resched() sched_preempt_enable_no_resched() 188 189 #define preemptible() (preempt_count() == 0 && !irqs_disabled()) 190 191 #ifdef CONFIG_PREEMPTION 192 #define preempt_enable() \ 193 do { \ 194 barrier(); \ 195 if (unlikely(preempt_count_dec_and_test())) \ 196 __preempt_schedule(); \ 197 } while (0) 198 199 #define preempt_enable_notrace() \ 200 do { \ 201 barrier(); \ 202 if (unlikely(__preempt_count_dec_and_test())) \ 203 __preempt_schedule_notrace(); \ 204 } while (0) 205 206 #define preempt_check_resched() \ 207 do { \ 208 if (should_resched(0)) \ 209 __preempt_schedule(); \ 210 } while (0) 211 212 #else /* !CONFIG_PREEMPTION */ 213 #define preempt_enable() \ 214 do { \ 215 barrier(); \ 216 preempt_count_dec(); \ 217 } while (0) 218 219 #define preempt_enable_notrace() \ 220 do { \ 221 barrier(); \ 222 __preempt_count_dec(); \ 223 } while (0) 224 225 #define preempt_check_resched() do { } while (0) 226 #endif /* CONFIG_PREEMPTION */ 227 228 #define preempt_disable_notrace() \ 229 do { \ 230 __preempt_count_inc(); \ 231 barrier(); \ 232 } while (0) 233 234 #define preempt_enable_no_resched_notrace() \ 235 do { \ 236 barrier(); \ 237 __preempt_count_dec(); \ 238 } while (0) 239 240 #else /* !CONFIG_PREEMPT_COUNT */ 241 242 /* 243 * Even if we don't have any preemption, we need preempt disable/enable 244 * to be barriers, so that we don't have things like get_user/put_user 245 * that can cause faults and scheduling migrate into our preempt-protected 246 * region. 247 */ 248 #define preempt_disable() barrier() 249 #define sched_preempt_enable_no_resched() barrier() 250 #define preempt_enable_no_resched() barrier() 251 #define preempt_enable() barrier() 252 #define preempt_check_resched() do { } while (0) 253 254 #define preempt_disable_notrace() barrier() 255 #define preempt_enable_no_resched_notrace() barrier() 256 #define preempt_enable_notrace() barrier() 257 #define preemptible() 0 258 259 #endif /* CONFIG_PREEMPT_COUNT */ 260 261 #ifdef MODULE 262 /* 263 * Modules have no business playing preemption tricks. 264 */ 265 #undef sched_preempt_enable_no_resched 266 #undef preempt_enable_no_resched 267 #undef preempt_enable_no_resched_notrace 268 #undef preempt_check_resched 269 #endif 270 271 #define preempt_set_need_resched() \ 272 do { \ 273 set_preempt_need_resched(); \ 274 } while (0) 275 #define preempt_fold_need_resched() \ 276 do { \ 277 if (tif_need_resched()) \ 278 set_preempt_need_resched(); \ 279 } while (0) 280 281 #ifdef CONFIG_PREEMPT_NOTIFIERS 282 283 struct preempt_notifier; 284 285 /** 286 * preempt_ops - notifiers called when a task is preempted and rescheduled 287 * @sched_in: we're about to be rescheduled: 288 * notifier: struct preempt_notifier for the task being scheduled 289 * cpu: cpu we're scheduled on 290 * @sched_out: we've just been preempted 291 * notifier: struct preempt_notifier for the task being preempted 292 * next: the task that's kicking us out 293 * 294 * Please note that sched_in and out are called under different 295 * contexts. sched_out is called with rq lock held and irq disabled 296 * while sched_in is called without rq lock and irq enabled. This 297 * difference is intentional and depended upon by its users. 298 */ 299 struct preempt_ops { 300 void (*sched_in)(struct preempt_notifier *notifier, int cpu); 301 void (*sched_out)(struct preempt_notifier *notifier, 302 struct task_struct *next); 303 }; 304 305 /** 306 * preempt_notifier - key for installing preemption notifiers 307 * @link: internal use 308 * @ops: defines the notifier functions to be called 309 * 310 * Usually used in conjunction with container_of(). 311 */ 312 struct preempt_notifier { 313 struct hlist_node link; 314 struct preempt_ops *ops; 315 }; 316 317 void preempt_notifier_inc(void); 318 void preempt_notifier_dec(void); 319 void preempt_notifier_register(struct preempt_notifier *notifier); 320 void preempt_notifier_unregister(struct preempt_notifier *notifier); 321 322 static inline void preempt_notifier_init(struct preempt_notifier *notifier, 323 struct preempt_ops *ops) 324 { 325 INIT_HLIST_NODE(¬ifier->link); 326 notifier->ops = ops; 327 } 328 329 #endif 330 331 #ifdef CONFIG_SMP 332 333 /* 334 * Migrate-Disable and why it is undesired. 335 * 336 * When a preempted task becomes elegible to run under the ideal model (IOW it 337 * becomes one of the M highest priority tasks), it might still have to wait 338 * for the preemptee's migrate_disable() section to complete. Thereby suffering 339 * a reduction in bandwidth in the exact duration of the migrate_disable() 340 * section. 341 * 342 * Per this argument, the change from preempt_disable() to migrate_disable() 343 * gets us: 344 * 345 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() 346 * it would have had to wait for the lower priority task. 347 * 348 * - a lower priority tasks; which under preempt_disable() could've instantly 349 * migrated away when another CPU becomes available, is now constrained 350 * by the ability to push the higher priority task away, which might itself be 351 * in a migrate_disable() section, reducing it's available bandwidth. 352 * 353 * IOW it trades latency / moves the interference term, but it stays in the 354 * system, and as long as it remains unbounded, the system is not fully 355 * deterministic. 356 * 357 * 358 * The reason we have it anyway. 359 * 360 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a 361 * number of primitives into becoming preemptible, they would also allow 362 * migration. This turns out to break a bunch of per-cpu usage. To this end, 363 * all these primitives employ migirate_disable() to restore this implicit 364 * assumption. 365 * 366 * This is a 'temporary' work-around at best. The correct solution is getting 367 * rid of the above assumptions and reworking the code to employ explicit 368 * per-cpu locking or short preempt-disable regions. 369 * 370 * The end goal must be to get rid of migrate_disable(), alternatively we need 371 * a schedulability theory that does not depend on abritrary migration. 372 * 373 * 374 * Notes on the implementation. 375 * 376 * The implementation is particularly tricky since existing code patterns 377 * dictate neither migrate_disable() nor migrate_enable() is allowed to block. 378 * This means that it cannot use cpus_read_lock() to serialize against hotplug, 379 * nor can it easily migrate itself into a pending affinity mask change on 380 * migrate_enable(). 381 * 382 * 383 * Note: even non-work-conserving schedulers like semi-partitioned depends on 384 * migration, so migrate_disable() is not only a problem for 385 * work-conserving schedulers. 386 * 387 */ 388 extern void migrate_disable(void); 389 extern void migrate_enable(void); 390 391 #else 392 393 static inline void migrate_disable(void) { } 394 static inline void migrate_enable(void) { } 395 396 #endif /* CONFIG_SMP */ 397 398 #endif /* __LINUX_PREEMPT_H */ 399