1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 54 * in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of install_new_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_ADDRESS_SPACE_NUM 84 #define KVM_ADDRESS_SPACE_NUM 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 100 /* 101 * error pfns indicate that the gfn is in slot but faild to 102 * translate it to pfn on host. 103 */ 104 static inline bool is_error_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_MASK); 107 } 108 109 /* 110 * error_noslot pfns indicate that the gfn can not be 111 * translated to pfn - it is not in slot or failed to 112 * translate it to pfn. 113 */ 114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 115 { 116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 117 } 118 119 /* noslot pfn indicates that the gfn is not in slot. */ 120 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 121 { 122 return pfn == KVM_PFN_NOSLOT; 123 } 124 125 /* 126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 127 * provide own defines and kvm_is_error_hva 128 */ 129 #ifndef KVM_HVA_ERR_BAD 130 131 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 132 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 133 134 static inline bool kvm_is_error_hva(unsigned long addr) 135 { 136 return addr >= PAGE_OFFSET; 137 } 138 139 #endif 140 141 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 142 143 static inline bool is_error_page(struct page *page) 144 { 145 return IS_ERR(page); 146 } 147 148 #define KVM_REQUEST_MASK GENMASK(7,0) 149 #define KVM_REQUEST_NO_WAKEUP BIT(8) 150 #define KVM_REQUEST_WAIT BIT(9) 151 #define KVM_REQUEST_NO_ACTION BIT(10) 152 /* 153 * Architecture-independent vcpu->requests bit members 154 * Bits 3-7 are reserved for more arch-independent bits. 155 */ 156 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 157 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 158 #define KVM_REQ_UNBLOCK 2 159 #define KVM_REQUEST_ARCH_BASE 8 160 161 /* 162 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 163 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 164 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 165 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 166 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 167 * guarantee the vCPU received an IPI and has actually exited guest mode. 168 */ 169 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 170 171 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 172 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 173 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 174 }) 175 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 176 177 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 178 unsigned long *vcpu_bitmap); 179 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 180 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 181 struct kvm_vcpu *except); 182 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 183 unsigned long *vcpu_bitmap); 184 185 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 186 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 187 188 extern struct mutex kvm_lock; 189 extern struct list_head vm_list; 190 191 struct kvm_io_range { 192 gpa_t addr; 193 int len; 194 struct kvm_io_device *dev; 195 }; 196 197 #define NR_IOBUS_DEVS 1000 198 199 struct kvm_io_bus { 200 int dev_count; 201 int ioeventfd_count; 202 struct kvm_io_range range[]; 203 }; 204 205 enum kvm_bus { 206 KVM_MMIO_BUS, 207 KVM_PIO_BUS, 208 KVM_VIRTIO_CCW_NOTIFY_BUS, 209 KVM_FAST_MMIO_BUS, 210 KVM_NR_BUSES 211 }; 212 213 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 214 int len, const void *val); 215 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 216 gpa_t addr, int len, const void *val, long cookie); 217 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 218 int len, void *val); 219 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 220 int len, struct kvm_io_device *dev); 221 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 222 struct kvm_io_device *dev); 223 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 224 gpa_t addr); 225 226 #ifdef CONFIG_KVM_ASYNC_PF 227 struct kvm_async_pf { 228 struct work_struct work; 229 struct list_head link; 230 struct list_head queue; 231 struct kvm_vcpu *vcpu; 232 struct mm_struct *mm; 233 gpa_t cr2_or_gpa; 234 unsigned long addr; 235 struct kvm_arch_async_pf arch; 236 bool wakeup_all; 237 bool notpresent_injected; 238 }; 239 240 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 241 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 242 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 243 unsigned long hva, struct kvm_arch_async_pf *arch); 244 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 245 #endif 246 247 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 248 struct kvm_gfn_range { 249 struct kvm_memory_slot *slot; 250 gfn_t start; 251 gfn_t end; 252 pte_t pte; 253 bool may_block; 254 }; 255 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 256 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 257 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 258 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 259 #endif 260 261 enum { 262 OUTSIDE_GUEST_MODE, 263 IN_GUEST_MODE, 264 EXITING_GUEST_MODE, 265 READING_SHADOW_PAGE_TABLES, 266 }; 267 268 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 269 270 struct kvm_host_map { 271 /* 272 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 273 * a 'struct page' for it. When using mem= kernel parameter some memory 274 * can be used as guest memory but they are not managed by host 275 * kernel). 276 * If 'pfn' is not managed by the host kernel, this field is 277 * initialized to KVM_UNMAPPED_PAGE. 278 */ 279 struct page *page; 280 void *hva; 281 kvm_pfn_t pfn; 282 kvm_pfn_t gfn; 283 }; 284 285 /* 286 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 287 * directly to check for that. 288 */ 289 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 290 { 291 return !!map->hva; 292 } 293 294 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 295 { 296 return single_task_running() && !need_resched() && ktime_before(cur, stop); 297 } 298 299 /* 300 * Sometimes a large or cross-page mmio needs to be broken up into separate 301 * exits for userspace servicing. 302 */ 303 struct kvm_mmio_fragment { 304 gpa_t gpa; 305 void *data; 306 unsigned len; 307 }; 308 309 struct kvm_vcpu { 310 struct kvm *kvm; 311 #ifdef CONFIG_PREEMPT_NOTIFIERS 312 struct preempt_notifier preempt_notifier; 313 #endif 314 int cpu; 315 int vcpu_id; /* id given by userspace at creation */ 316 int vcpu_idx; /* index in kvm->vcpus array */ 317 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 318 #ifdef CONFIG_PROVE_RCU 319 int srcu_depth; 320 #endif 321 int mode; 322 u64 requests; 323 unsigned long guest_debug; 324 325 struct mutex mutex; 326 struct kvm_run *run; 327 328 #ifndef __KVM_HAVE_ARCH_WQP 329 struct rcuwait wait; 330 #endif 331 struct pid __rcu *pid; 332 int sigset_active; 333 sigset_t sigset; 334 unsigned int halt_poll_ns; 335 bool valid_wakeup; 336 337 #ifdef CONFIG_HAS_IOMEM 338 int mmio_needed; 339 int mmio_read_completed; 340 int mmio_is_write; 341 int mmio_cur_fragment; 342 int mmio_nr_fragments; 343 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 344 #endif 345 346 #ifdef CONFIG_KVM_ASYNC_PF 347 struct { 348 u32 queued; 349 struct list_head queue; 350 struct list_head done; 351 spinlock_t lock; 352 } async_pf; 353 #endif 354 355 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 356 /* 357 * Cpu relax intercept or pause loop exit optimization 358 * in_spin_loop: set when a vcpu does a pause loop exit 359 * or cpu relax intercepted. 360 * dy_eligible: indicates whether vcpu is eligible for directed yield. 361 */ 362 struct { 363 bool in_spin_loop; 364 bool dy_eligible; 365 } spin_loop; 366 #endif 367 bool preempted; 368 bool ready; 369 struct kvm_vcpu_arch arch; 370 struct kvm_vcpu_stat stat; 371 char stats_id[KVM_STATS_NAME_SIZE]; 372 struct kvm_dirty_ring dirty_ring; 373 374 /* 375 * The most recently used memslot by this vCPU and the slots generation 376 * for which it is valid. 377 * No wraparound protection is needed since generations won't overflow in 378 * thousands of years, even assuming 1M memslot operations per second. 379 */ 380 struct kvm_memory_slot *last_used_slot; 381 u64 last_used_slot_gen; 382 }; 383 384 /* 385 * Start accounting time towards a guest. 386 * Must be called before entering guest context. 387 */ 388 static __always_inline void guest_timing_enter_irqoff(void) 389 { 390 /* 391 * This is running in ioctl context so its safe to assume that it's the 392 * stime pending cputime to flush. 393 */ 394 instrumentation_begin(); 395 vtime_account_guest_enter(); 396 instrumentation_end(); 397 } 398 399 /* 400 * Enter guest context and enter an RCU extended quiescent state. 401 * 402 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 403 * unsafe to use any code which may directly or indirectly use RCU, tracing 404 * (including IRQ flag tracing), or lockdep. All code in this period must be 405 * non-instrumentable. 406 */ 407 static __always_inline void guest_context_enter_irqoff(void) 408 { 409 /* 410 * KVM does not hold any references to rcu protected data when it 411 * switches CPU into a guest mode. In fact switching to a guest mode 412 * is very similar to exiting to userspace from rcu point of view. In 413 * addition CPU may stay in a guest mode for quite a long time (up to 414 * one time slice). Lets treat guest mode as quiescent state, just like 415 * we do with user-mode execution. 416 */ 417 if (!context_tracking_guest_enter()) { 418 instrumentation_begin(); 419 rcu_virt_note_context_switch(smp_processor_id()); 420 instrumentation_end(); 421 } 422 } 423 424 /* 425 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 426 * guest_state_enter_irqoff(). 427 */ 428 static __always_inline void guest_enter_irqoff(void) 429 { 430 guest_timing_enter_irqoff(); 431 guest_context_enter_irqoff(); 432 } 433 434 /** 435 * guest_state_enter_irqoff - Fixup state when entering a guest 436 * 437 * Entry to a guest will enable interrupts, but the kernel state is interrupts 438 * disabled when this is invoked. Also tell RCU about it. 439 * 440 * 1) Trace interrupts on state 441 * 2) Invoke context tracking if enabled to adjust RCU state 442 * 3) Tell lockdep that interrupts are enabled 443 * 444 * Invoked from architecture specific code before entering a guest. 445 * Must be called with interrupts disabled and the caller must be 446 * non-instrumentable. 447 * The caller has to invoke guest_timing_enter_irqoff() before this. 448 * 449 * Note: this is analogous to exit_to_user_mode(). 450 */ 451 static __always_inline void guest_state_enter_irqoff(void) 452 { 453 instrumentation_begin(); 454 trace_hardirqs_on_prepare(); 455 lockdep_hardirqs_on_prepare(); 456 instrumentation_end(); 457 458 guest_context_enter_irqoff(); 459 lockdep_hardirqs_on(CALLER_ADDR0); 460 } 461 462 /* 463 * Exit guest context and exit an RCU extended quiescent state. 464 * 465 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 466 * unsafe to use any code which may directly or indirectly use RCU, tracing 467 * (including IRQ flag tracing), or lockdep. All code in this period must be 468 * non-instrumentable. 469 */ 470 static __always_inline void guest_context_exit_irqoff(void) 471 { 472 context_tracking_guest_exit(); 473 } 474 475 /* 476 * Stop accounting time towards a guest. 477 * Must be called after exiting guest context. 478 */ 479 static __always_inline void guest_timing_exit_irqoff(void) 480 { 481 instrumentation_begin(); 482 /* Flush the guest cputime we spent on the guest */ 483 vtime_account_guest_exit(); 484 instrumentation_end(); 485 } 486 487 /* 488 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 489 * guest_timing_exit_irqoff(). 490 */ 491 static __always_inline void guest_exit_irqoff(void) 492 { 493 guest_context_exit_irqoff(); 494 guest_timing_exit_irqoff(); 495 } 496 497 static inline void guest_exit(void) 498 { 499 unsigned long flags; 500 501 local_irq_save(flags); 502 guest_exit_irqoff(); 503 local_irq_restore(flags); 504 } 505 506 /** 507 * guest_state_exit_irqoff - Establish state when returning from guest mode 508 * 509 * Entry from a guest disables interrupts, but guest mode is traced as 510 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 511 * 512 * 1) Tell lockdep that interrupts are disabled 513 * 2) Invoke context tracking if enabled to reactivate RCU 514 * 3) Trace interrupts off state 515 * 516 * Invoked from architecture specific code after exiting a guest. 517 * Must be invoked with interrupts disabled and the caller must be 518 * non-instrumentable. 519 * The caller has to invoke guest_timing_exit_irqoff() after this. 520 * 521 * Note: this is analogous to enter_from_user_mode(). 522 */ 523 static __always_inline void guest_state_exit_irqoff(void) 524 { 525 lockdep_hardirqs_off(CALLER_ADDR0); 526 guest_context_exit_irqoff(); 527 528 instrumentation_begin(); 529 trace_hardirqs_off_finish(); 530 instrumentation_end(); 531 } 532 533 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 534 { 535 /* 536 * The memory barrier ensures a previous write to vcpu->requests cannot 537 * be reordered with the read of vcpu->mode. It pairs with the general 538 * memory barrier following the write of vcpu->mode in VCPU RUN. 539 */ 540 smp_mb__before_atomic(); 541 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 542 } 543 544 /* 545 * Some of the bitops functions do not support too long bitmaps. 546 * This number must be determined not to exceed such limits. 547 */ 548 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 549 550 /* 551 * Since at idle each memslot belongs to two memslot sets it has to contain 552 * two embedded nodes for each data structure that it forms a part of. 553 * 554 * Two memslot sets (one active and one inactive) are necessary so the VM 555 * continues to run on one memslot set while the other is being modified. 556 * 557 * These two memslot sets normally point to the same set of memslots. 558 * They can, however, be desynchronized when performing a memslot management 559 * operation by replacing the memslot to be modified by its copy. 560 * After the operation is complete, both memslot sets once again point to 561 * the same, common set of memslot data. 562 * 563 * The memslots themselves are independent of each other so they can be 564 * individually added or deleted. 565 */ 566 struct kvm_memory_slot { 567 struct hlist_node id_node[2]; 568 struct interval_tree_node hva_node[2]; 569 struct rb_node gfn_node[2]; 570 gfn_t base_gfn; 571 unsigned long npages; 572 unsigned long *dirty_bitmap; 573 struct kvm_arch_memory_slot arch; 574 unsigned long userspace_addr; 575 u32 flags; 576 short id; 577 u16 as_id; 578 }; 579 580 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 581 { 582 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 583 } 584 585 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 586 { 587 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 588 } 589 590 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 591 { 592 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 593 594 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 595 } 596 597 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 598 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 599 #endif 600 601 struct kvm_s390_adapter_int { 602 u64 ind_addr; 603 u64 summary_addr; 604 u64 ind_offset; 605 u32 summary_offset; 606 u32 adapter_id; 607 }; 608 609 struct kvm_hv_sint { 610 u32 vcpu; 611 u32 sint; 612 }; 613 614 struct kvm_xen_evtchn { 615 u32 port; 616 u32 vcpu_id; 617 int vcpu_idx; 618 u32 priority; 619 }; 620 621 struct kvm_kernel_irq_routing_entry { 622 u32 gsi; 623 u32 type; 624 int (*set)(struct kvm_kernel_irq_routing_entry *e, 625 struct kvm *kvm, int irq_source_id, int level, 626 bool line_status); 627 union { 628 struct { 629 unsigned irqchip; 630 unsigned pin; 631 } irqchip; 632 struct { 633 u32 address_lo; 634 u32 address_hi; 635 u32 data; 636 u32 flags; 637 u32 devid; 638 } msi; 639 struct kvm_s390_adapter_int adapter; 640 struct kvm_hv_sint hv_sint; 641 struct kvm_xen_evtchn xen_evtchn; 642 }; 643 struct hlist_node link; 644 }; 645 646 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 647 struct kvm_irq_routing_table { 648 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 649 u32 nr_rt_entries; 650 /* 651 * Array indexed by gsi. Each entry contains list of irq chips 652 * the gsi is connected to. 653 */ 654 struct hlist_head map[]; 655 }; 656 #endif 657 658 #ifndef KVM_INTERNAL_MEM_SLOTS 659 #define KVM_INTERNAL_MEM_SLOTS 0 660 #endif 661 662 #define KVM_MEM_SLOTS_NUM SHRT_MAX 663 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 664 665 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 666 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 667 { 668 return 0; 669 } 670 #endif 671 672 struct kvm_memslots { 673 u64 generation; 674 atomic_long_t last_used_slot; 675 struct rb_root_cached hva_tree; 676 struct rb_root gfn_tree; 677 /* 678 * The mapping table from slot id to memslot. 679 * 680 * 7-bit bucket count matches the size of the old id to index array for 681 * 512 slots, while giving good performance with this slot count. 682 * Higher bucket counts bring only small performance improvements but 683 * always result in higher memory usage (even for lower memslot counts). 684 */ 685 DECLARE_HASHTABLE(id_hash, 7); 686 int node_idx; 687 }; 688 689 struct kvm { 690 #ifdef KVM_HAVE_MMU_RWLOCK 691 rwlock_t mmu_lock; 692 #else 693 spinlock_t mmu_lock; 694 #endif /* KVM_HAVE_MMU_RWLOCK */ 695 696 struct mutex slots_lock; 697 698 /* 699 * Protects the arch-specific fields of struct kvm_memory_slots in 700 * use by the VM. To be used under the slots_lock (above) or in a 701 * kvm->srcu critical section where acquiring the slots_lock would 702 * lead to deadlock with the synchronize_srcu in 703 * install_new_memslots. 704 */ 705 struct mutex slots_arch_lock; 706 struct mm_struct *mm; /* userspace tied to this vm */ 707 unsigned long nr_memslot_pages; 708 /* The two memslot sets - active and inactive (per address space) */ 709 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 710 /* The current active memslot set for each address space */ 711 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 712 struct xarray vcpu_array; 713 714 /* Used to wait for completion of MMU notifiers. */ 715 spinlock_t mn_invalidate_lock; 716 unsigned long mn_active_invalidate_count; 717 struct rcuwait mn_memslots_update_rcuwait; 718 719 /* For management / invalidation of gfn_to_pfn_caches */ 720 spinlock_t gpc_lock; 721 struct list_head gpc_list; 722 723 /* 724 * created_vcpus is protected by kvm->lock, and is incremented 725 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 726 * incremented after storing the kvm_vcpu pointer in vcpus, 727 * and is accessed atomically. 728 */ 729 atomic_t online_vcpus; 730 int max_vcpus; 731 int created_vcpus; 732 int last_boosted_vcpu; 733 struct list_head vm_list; 734 struct mutex lock; 735 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 736 #ifdef CONFIG_HAVE_KVM_EVENTFD 737 struct { 738 spinlock_t lock; 739 struct list_head items; 740 struct list_head resampler_list; 741 struct mutex resampler_lock; 742 } irqfds; 743 struct list_head ioeventfds; 744 #endif 745 struct kvm_vm_stat stat; 746 struct kvm_arch arch; 747 refcount_t users_count; 748 #ifdef CONFIG_KVM_MMIO 749 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 750 spinlock_t ring_lock; 751 struct list_head coalesced_zones; 752 #endif 753 754 struct mutex irq_lock; 755 #ifdef CONFIG_HAVE_KVM_IRQCHIP 756 /* 757 * Update side is protected by irq_lock. 758 */ 759 struct kvm_irq_routing_table __rcu *irq_routing; 760 #endif 761 #ifdef CONFIG_HAVE_KVM_IRQFD 762 struct hlist_head irq_ack_notifier_list; 763 #endif 764 765 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 766 struct mmu_notifier mmu_notifier; 767 unsigned long mmu_invalidate_seq; 768 long mmu_invalidate_in_progress; 769 unsigned long mmu_invalidate_range_start; 770 unsigned long mmu_invalidate_range_end; 771 #endif 772 struct list_head devices; 773 u64 manual_dirty_log_protect; 774 struct dentry *debugfs_dentry; 775 struct kvm_stat_data **debugfs_stat_data; 776 struct srcu_struct srcu; 777 struct srcu_struct irq_srcu; 778 pid_t userspace_pid; 779 unsigned int max_halt_poll_ns; 780 u32 dirty_ring_size; 781 bool vm_bugged; 782 bool vm_dead; 783 784 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 785 struct notifier_block pm_notifier; 786 #endif 787 char stats_id[KVM_STATS_NAME_SIZE]; 788 }; 789 790 #define kvm_err(fmt, ...) \ 791 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 792 #define kvm_info(fmt, ...) \ 793 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 794 #define kvm_debug(fmt, ...) \ 795 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 796 #define kvm_debug_ratelimited(fmt, ...) \ 797 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 798 ## __VA_ARGS__) 799 #define kvm_pr_unimpl(fmt, ...) \ 800 pr_err_ratelimited("kvm [%i]: " fmt, \ 801 task_tgid_nr(current), ## __VA_ARGS__) 802 803 /* The guest did something we don't support. */ 804 #define vcpu_unimpl(vcpu, fmt, ...) \ 805 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 806 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 807 808 #define vcpu_debug(vcpu, fmt, ...) \ 809 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 810 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 811 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 812 ## __VA_ARGS__) 813 #define vcpu_err(vcpu, fmt, ...) \ 814 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 815 816 static inline void kvm_vm_dead(struct kvm *kvm) 817 { 818 kvm->vm_dead = true; 819 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 820 } 821 822 static inline void kvm_vm_bugged(struct kvm *kvm) 823 { 824 kvm->vm_bugged = true; 825 kvm_vm_dead(kvm); 826 } 827 828 829 #define KVM_BUG(cond, kvm, fmt...) \ 830 ({ \ 831 int __ret = (cond); \ 832 \ 833 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 834 kvm_vm_bugged(kvm); \ 835 unlikely(__ret); \ 836 }) 837 838 #define KVM_BUG_ON(cond, kvm) \ 839 ({ \ 840 int __ret = (cond); \ 841 \ 842 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 843 kvm_vm_bugged(kvm); \ 844 unlikely(__ret); \ 845 }) 846 847 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 848 { 849 #ifdef CONFIG_PROVE_RCU 850 WARN_ONCE(vcpu->srcu_depth++, 851 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 852 #endif 853 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 854 } 855 856 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 857 { 858 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 859 860 #ifdef CONFIG_PROVE_RCU 861 WARN_ONCE(--vcpu->srcu_depth, 862 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 863 #endif 864 } 865 866 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 867 { 868 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 869 } 870 871 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 872 { 873 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 874 lockdep_is_held(&kvm->slots_lock) || 875 !refcount_read(&kvm->users_count)); 876 } 877 878 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 879 { 880 int num_vcpus = atomic_read(&kvm->online_vcpus); 881 i = array_index_nospec(i, num_vcpus); 882 883 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 884 smp_rmb(); 885 return xa_load(&kvm->vcpu_array, i); 886 } 887 888 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 889 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 890 (atomic_read(&kvm->online_vcpus) - 1)) 891 892 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 893 { 894 struct kvm_vcpu *vcpu = NULL; 895 unsigned long i; 896 897 if (id < 0) 898 return NULL; 899 if (id < KVM_MAX_VCPUS) 900 vcpu = kvm_get_vcpu(kvm, id); 901 if (vcpu && vcpu->vcpu_id == id) 902 return vcpu; 903 kvm_for_each_vcpu(i, vcpu, kvm) 904 if (vcpu->vcpu_id == id) 905 return vcpu; 906 return NULL; 907 } 908 909 void kvm_destroy_vcpus(struct kvm *kvm); 910 911 void vcpu_load(struct kvm_vcpu *vcpu); 912 void vcpu_put(struct kvm_vcpu *vcpu); 913 914 #ifdef __KVM_HAVE_IOAPIC 915 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 916 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 917 #else 918 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 919 { 920 } 921 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 922 { 923 } 924 #endif 925 926 #ifdef CONFIG_HAVE_KVM_IRQFD 927 int kvm_irqfd_init(void); 928 void kvm_irqfd_exit(void); 929 #else 930 static inline int kvm_irqfd_init(void) 931 { 932 return 0; 933 } 934 935 static inline void kvm_irqfd_exit(void) 936 { 937 } 938 #endif 939 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 940 struct module *module); 941 void kvm_exit(void); 942 943 void kvm_get_kvm(struct kvm *kvm); 944 bool kvm_get_kvm_safe(struct kvm *kvm); 945 void kvm_put_kvm(struct kvm *kvm); 946 bool file_is_kvm(struct file *file); 947 void kvm_put_kvm_no_destroy(struct kvm *kvm); 948 949 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 950 { 951 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 952 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 953 lockdep_is_held(&kvm->slots_lock) || 954 !refcount_read(&kvm->users_count)); 955 } 956 957 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 958 { 959 return __kvm_memslots(kvm, 0); 960 } 961 962 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 963 { 964 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 965 966 return __kvm_memslots(vcpu->kvm, as_id); 967 } 968 969 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 970 { 971 return RB_EMPTY_ROOT(&slots->gfn_tree); 972 } 973 974 #define kvm_for_each_memslot(memslot, bkt, slots) \ 975 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 976 if (WARN_ON_ONCE(!memslot->npages)) { \ 977 } else 978 979 static inline 980 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 981 { 982 struct kvm_memory_slot *slot; 983 int idx = slots->node_idx; 984 985 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 986 if (slot->id == id) 987 return slot; 988 } 989 990 return NULL; 991 } 992 993 /* Iterator used for walking memslots that overlap a gfn range. */ 994 struct kvm_memslot_iter { 995 struct kvm_memslots *slots; 996 struct rb_node *node; 997 struct kvm_memory_slot *slot; 998 }; 999 1000 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1001 { 1002 iter->node = rb_next(iter->node); 1003 if (!iter->node) 1004 return; 1005 1006 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1007 } 1008 1009 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1010 struct kvm_memslots *slots, 1011 gfn_t start) 1012 { 1013 int idx = slots->node_idx; 1014 struct rb_node *tmp; 1015 struct kvm_memory_slot *slot; 1016 1017 iter->slots = slots; 1018 1019 /* 1020 * Find the so called "upper bound" of a key - the first node that has 1021 * its key strictly greater than the searched one (the start gfn in our case). 1022 */ 1023 iter->node = NULL; 1024 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1025 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1026 if (start < slot->base_gfn) { 1027 iter->node = tmp; 1028 tmp = tmp->rb_left; 1029 } else { 1030 tmp = tmp->rb_right; 1031 } 1032 } 1033 1034 /* 1035 * Find the slot with the lowest gfn that can possibly intersect with 1036 * the range, so we'll ideally have slot start <= range start 1037 */ 1038 if (iter->node) { 1039 /* 1040 * A NULL previous node means that the very first slot 1041 * already has a higher start gfn. 1042 * In this case slot start > range start. 1043 */ 1044 tmp = rb_prev(iter->node); 1045 if (tmp) 1046 iter->node = tmp; 1047 } else { 1048 /* a NULL node below means no slots */ 1049 iter->node = rb_last(&slots->gfn_tree); 1050 } 1051 1052 if (iter->node) { 1053 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1054 1055 /* 1056 * It is possible in the slot start < range start case that the 1057 * found slot ends before or at range start (slot end <= range start) 1058 * and so it does not overlap the requested range. 1059 * 1060 * In such non-overlapping case the next slot (if it exists) will 1061 * already have slot start > range start, otherwise the logic above 1062 * would have found it instead of the current slot. 1063 */ 1064 if (iter->slot->base_gfn + iter->slot->npages <= start) 1065 kvm_memslot_iter_next(iter); 1066 } 1067 } 1068 1069 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1070 { 1071 if (!iter->node) 1072 return false; 1073 1074 /* 1075 * If this slot starts beyond or at the end of the range so does 1076 * every next one 1077 */ 1078 return iter->slot->base_gfn < end; 1079 } 1080 1081 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1082 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1083 for (kvm_memslot_iter_start(iter, slots, start); \ 1084 kvm_memslot_iter_is_valid(iter, end); \ 1085 kvm_memslot_iter_next(iter)) 1086 1087 /* 1088 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1089 * - create a new memory slot 1090 * - delete an existing memory slot 1091 * - modify an existing memory slot 1092 * -- move it in the guest physical memory space 1093 * -- just change its flags 1094 * 1095 * Since flags can be changed by some of these operations, the following 1096 * differentiation is the best we can do for __kvm_set_memory_region(): 1097 */ 1098 enum kvm_mr_change { 1099 KVM_MR_CREATE, 1100 KVM_MR_DELETE, 1101 KVM_MR_MOVE, 1102 KVM_MR_FLAGS_ONLY, 1103 }; 1104 1105 int kvm_set_memory_region(struct kvm *kvm, 1106 const struct kvm_userspace_memory_region *mem); 1107 int __kvm_set_memory_region(struct kvm *kvm, 1108 const struct kvm_userspace_memory_region *mem); 1109 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1110 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1111 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1112 const struct kvm_memory_slot *old, 1113 struct kvm_memory_slot *new, 1114 enum kvm_mr_change change); 1115 void kvm_arch_commit_memory_region(struct kvm *kvm, 1116 struct kvm_memory_slot *old, 1117 const struct kvm_memory_slot *new, 1118 enum kvm_mr_change change); 1119 /* flush all memory translations */ 1120 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1121 /* flush memory translations pointing to 'slot' */ 1122 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1123 struct kvm_memory_slot *slot); 1124 1125 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1126 struct page **pages, int nr_pages); 1127 1128 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1129 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1130 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1131 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1132 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1133 bool *writable); 1134 void kvm_release_page_clean(struct page *page); 1135 void kvm_release_page_dirty(struct page *page); 1136 1137 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1138 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1139 bool *writable); 1140 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1141 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1142 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1143 bool atomic, bool *async, bool write_fault, 1144 bool *writable, hva_t *hva); 1145 1146 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1147 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1148 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1149 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1150 1151 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1152 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1153 int len); 1154 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1156 void *data, unsigned long len); 1157 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1158 void *data, unsigned int offset, 1159 unsigned long len); 1160 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1161 int offset, int len); 1162 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1163 unsigned long len); 1164 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1165 void *data, unsigned long len); 1166 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1167 void *data, unsigned int offset, 1168 unsigned long len); 1169 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1170 gpa_t gpa, unsigned long len); 1171 1172 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1173 ({ \ 1174 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1175 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1176 int __ret = -EFAULT; \ 1177 \ 1178 if (!kvm_is_error_hva(__addr)) \ 1179 __ret = get_user(v, __uaddr); \ 1180 __ret; \ 1181 }) 1182 1183 #define kvm_get_guest(kvm, gpa, v) \ 1184 ({ \ 1185 gpa_t __gpa = gpa; \ 1186 struct kvm *__kvm = kvm; \ 1187 \ 1188 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1189 offset_in_page(__gpa), v); \ 1190 }) 1191 1192 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1193 ({ \ 1194 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1195 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1196 int __ret = -EFAULT; \ 1197 \ 1198 if (!kvm_is_error_hva(__addr)) \ 1199 __ret = put_user(v, __uaddr); \ 1200 if (!__ret) \ 1201 mark_page_dirty(kvm, gfn); \ 1202 __ret; \ 1203 }) 1204 1205 #define kvm_put_guest(kvm, gpa, v) \ 1206 ({ \ 1207 gpa_t __gpa = gpa; \ 1208 struct kvm *__kvm = kvm; \ 1209 \ 1210 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1211 offset_in_page(__gpa), v); \ 1212 }) 1213 1214 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1215 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1216 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1217 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1218 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1219 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1220 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1221 1222 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1223 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1224 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1225 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1226 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1227 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1228 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1229 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1230 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1231 int len); 1232 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1233 unsigned long len); 1234 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1235 unsigned long len); 1236 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1237 int offset, int len); 1238 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1239 unsigned long len); 1240 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1241 1242 /** 1243 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a 1244 * given guest physical address. 1245 * 1246 * @kvm: pointer to kvm instance. 1247 * @gpc: struct gfn_to_pfn_cache object. 1248 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1249 * invalidation. 1250 * @usage: indicates if the resulting host physical PFN is used while 1251 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1252 * the cache from MMU notifiers---but not for KVM memslot 1253 * changes!---will also force @vcpu to exit the guest and 1254 * refresh the cache); and/or if the PFN used directly 1255 * by KVM (and thus needs a kernel virtual mapping). 1256 * @gpa: guest physical address to map. 1257 * @len: sanity check; the range being access must fit a single page. 1258 * 1259 * @return: 0 for success. 1260 * -EINVAL for a mapping which would cross a page boundary. 1261 * -EFAULT for an untranslatable guest physical address. 1262 * 1263 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for 1264 * invalidations to be processed. Callers are required to use 1265 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before 1266 * accessing the target page. 1267 */ 1268 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1269 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage, 1270 gpa_t gpa, unsigned long len); 1271 1272 /** 1273 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache. 1274 * 1275 * @kvm: pointer to kvm instance. 1276 * @gpc: struct gfn_to_pfn_cache object. 1277 * @gpa: current guest physical address to map. 1278 * @len: sanity check; the range being access must fit a single page. 1279 * 1280 * @return: %true if the cache is still valid and the address matches. 1281 * %false if the cache is not valid. 1282 * 1283 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1284 * while calling this function, and then continue to hold the lock until the 1285 * access is complete. 1286 * 1287 * Callers in IN_GUEST_MODE may do so without locking, although they should 1288 * still hold a read lock on kvm->scru for the memslot checks. 1289 */ 1290 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1291 gpa_t gpa, unsigned long len); 1292 1293 /** 1294 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache. 1295 * 1296 * @kvm: pointer to kvm instance. 1297 * @gpc: struct gfn_to_pfn_cache object. 1298 * @gpa: updated guest physical address to map. 1299 * @len: sanity check; the range being access must fit a single page. 1300 * 1301 * @return: 0 for success. 1302 * -EINVAL for a mapping which would cross a page boundary. 1303 * -EFAULT for an untranslatable guest physical address. 1304 * 1305 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1306 * returm from this function does not mean the page can be immediately 1307 * accessed because it may have raced with an invalidation. Callers must 1308 * still lock and check the cache status, as this function does not return 1309 * with the lock still held to permit access. 1310 */ 1311 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1312 gpa_t gpa, unsigned long len); 1313 1314 /** 1315 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache. 1316 * 1317 * @kvm: pointer to kvm instance. 1318 * @gpc: struct gfn_to_pfn_cache object. 1319 * 1320 * This unmaps the referenced page. The cache is left in the invalid state 1321 * but at least the mapping from GPA to userspace HVA will remain cached 1322 * and can be reused on a subsequent refresh. 1323 */ 1324 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1325 1326 /** 1327 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache. 1328 * 1329 * @kvm: pointer to kvm instance. 1330 * @gpc: struct gfn_to_pfn_cache object. 1331 * 1332 * This removes a cache from the @kvm's list to be processed on MMU notifier 1333 * invocation. 1334 */ 1335 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1336 1337 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1338 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1339 1340 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1341 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1342 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1343 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1344 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1345 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1346 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1347 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1348 1349 void kvm_flush_remote_tlbs(struct kvm *kvm); 1350 1351 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1352 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1353 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1354 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1355 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1356 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1357 #endif 1358 1359 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 1360 unsigned long end); 1361 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 1362 unsigned long end); 1363 1364 long kvm_arch_dev_ioctl(struct file *filp, 1365 unsigned int ioctl, unsigned long arg); 1366 long kvm_arch_vcpu_ioctl(struct file *filp, 1367 unsigned int ioctl, unsigned long arg); 1368 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1369 1370 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1371 1372 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1373 struct kvm_memory_slot *slot, 1374 gfn_t gfn_offset, 1375 unsigned long mask); 1376 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1377 1378 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1379 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1380 const struct kvm_memory_slot *memslot); 1381 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1382 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1383 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1384 int *is_dirty, struct kvm_memory_slot **memslot); 1385 #endif 1386 1387 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1388 bool line_status); 1389 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1390 struct kvm_enable_cap *cap); 1391 long kvm_arch_vm_ioctl(struct file *filp, 1392 unsigned int ioctl, unsigned long arg); 1393 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1394 unsigned long arg); 1395 1396 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1397 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1398 1399 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1400 struct kvm_translation *tr); 1401 1402 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1403 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1404 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1405 struct kvm_sregs *sregs); 1406 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1407 struct kvm_sregs *sregs); 1408 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1409 struct kvm_mp_state *mp_state); 1410 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1411 struct kvm_mp_state *mp_state); 1412 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1413 struct kvm_guest_debug *dbg); 1414 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1415 1416 int kvm_arch_init(void *opaque); 1417 void kvm_arch_exit(void); 1418 1419 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1420 1421 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1422 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1423 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1424 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1425 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1426 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1427 1428 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1429 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1430 #endif 1431 1432 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1433 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1434 #else 1435 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1436 #endif 1437 1438 int kvm_arch_hardware_enable(void); 1439 void kvm_arch_hardware_disable(void); 1440 int kvm_arch_hardware_setup(void *opaque); 1441 void kvm_arch_hardware_unsetup(void); 1442 int kvm_arch_check_processor_compat(void *opaque); 1443 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1444 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1445 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1446 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1447 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1448 int kvm_arch_post_init_vm(struct kvm *kvm); 1449 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1450 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1451 1452 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1453 /* 1454 * All architectures that want to use vzalloc currently also 1455 * need their own kvm_arch_alloc_vm implementation. 1456 */ 1457 static inline struct kvm *kvm_arch_alloc_vm(void) 1458 { 1459 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1460 } 1461 #endif 1462 1463 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1464 { 1465 kvfree(kvm); 1466 } 1467 1468 #ifndef __KVM_HAVE_ARCH_VM_FREE 1469 static inline void kvm_arch_free_vm(struct kvm *kvm) 1470 { 1471 __kvm_arch_free_vm(kvm); 1472 } 1473 #endif 1474 1475 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1476 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1477 { 1478 return -ENOTSUPP; 1479 } 1480 #endif 1481 1482 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1483 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1484 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1485 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1486 #else 1487 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1488 { 1489 } 1490 1491 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1492 { 1493 } 1494 1495 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1496 { 1497 return false; 1498 } 1499 #endif 1500 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1501 void kvm_arch_start_assignment(struct kvm *kvm); 1502 void kvm_arch_end_assignment(struct kvm *kvm); 1503 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1504 #else 1505 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1506 { 1507 } 1508 1509 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1510 { 1511 } 1512 1513 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1514 { 1515 return false; 1516 } 1517 #endif 1518 1519 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1520 { 1521 #ifdef __KVM_HAVE_ARCH_WQP 1522 return vcpu->arch.waitp; 1523 #else 1524 return &vcpu->wait; 1525 #endif 1526 } 1527 1528 /* 1529 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1530 * true if the vCPU was blocking and was awakened, false otherwise. 1531 */ 1532 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1533 { 1534 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1535 } 1536 1537 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1538 { 1539 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1540 } 1541 1542 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1543 /* 1544 * returns true if the virtual interrupt controller is initialized and 1545 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1546 * controller is dynamically instantiated and this is not always true. 1547 */ 1548 bool kvm_arch_intc_initialized(struct kvm *kvm); 1549 #else 1550 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1551 { 1552 return true; 1553 } 1554 #endif 1555 1556 #ifdef CONFIG_GUEST_PERF_EVENTS 1557 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1558 1559 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1560 void kvm_unregister_perf_callbacks(void); 1561 #else 1562 static inline void kvm_register_perf_callbacks(void *ign) {} 1563 static inline void kvm_unregister_perf_callbacks(void) {} 1564 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1565 1566 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1567 void kvm_arch_destroy_vm(struct kvm *kvm); 1568 void kvm_arch_sync_events(struct kvm *kvm); 1569 1570 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1571 1572 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1573 bool kvm_is_zone_device_page(struct page *page); 1574 1575 struct kvm_irq_ack_notifier { 1576 struct hlist_node link; 1577 unsigned gsi; 1578 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1579 }; 1580 1581 int kvm_irq_map_gsi(struct kvm *kvm, 1582 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1583 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1584 1585 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1586 bool line_status); 1587 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1588 int irq_source_id, int level, bool line_status); 1589 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1590 struct kvm *kvm, int irq_source_id, 1591 int level, bool line_status); 1592 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1593 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1594 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1595 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1596 struct kvm_irq_ack_notifier *kian); 1597 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1598 struct kvm_irq_ack_notifier *kian); 1599 int kvm_request_irq_source_id(struct kvm *kvm); 1600 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1601 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1602 1603 /* 1604 * Returns a pointer to the memslot if it contains gfn. 1605 * Otherwise returns NULL. 1606 */ 1607 static inline struct kvm_memory_slot * 1608 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1609 { 1610 if (!slot) 1611 return NULL; 1612 1613 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1614 return slot; 1615 else 1616 return NULL; 1617 } 1618 1619 /* 1620 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1621 * 1622 * With "approx" set returns the memslot also when the address falls 1623 * in a hole. In that case one of the memslots bordering the hole is 1624 * returned. 1625 */ 1626 static inline struct kvm_memory_slot * 1627 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1628 { 1629 struct kvm_memory_slot *slot; 1630 struct rb_node *node; 1631 int idx = slots->node_idx; 1632 1633 slot = NULL; 1634 for (node = slots->gfn_tree.rb_node; node; ) { 1635 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1636 if (gfn >= slot->base_gfn) { 1637 if (gfn < slot->base_gfn + slot->npages) 1638 return slot; 1639 node = node->rb_right; 1640 } else 1641 node = node->rb_left; 1642 } 1643 1644 return approx ? slot : NULL; 1645 } 1646 1647 static inline struct kvm_memory_slot * 1648 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1649 { 1650 struct kvm_memory_slot *slot; 1651 1652 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1653 slot = try_get_memslot(slot, gfn); 1654 if (slot) 1655 return slot; 1656 1657 slot = search_memslots(slots, gfn, approx); 1658 if (slot) { 1659 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1660 return slot; 1661 } 1662 1663 return NULL; 1664 } 1665 1666 /* 1667 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1668 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1669 * because that would bloat other code too much. 1670 */ 1671 static inline struct kvm_memory_slot * 1672 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1673 { 1674 return ____gfn_to_memslot(slots, gfn, false); 1675 } 1676 1677 static inline unsigned long 1678 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1679 { 1680 /* 1681 * The index was checked originally in search_memslots. To avoid 1682 * that a malicious guest builds a Spectre gadget out of e.g. page 1683 * table walks, do not let the processor speculate loads outside 1684 * the guest's registered memslots. 1685 */ 1686 unsigned long offset = gfn - slot->base_gfn; 1687 offset = array_index_nospec(offset, slot->npages); 1688 return slot->userspace_addr + offset * PAGE_SIZE; 1689 } 1690 1691 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1692 { 1693 return gfn_to_memslot(kvm, gfn)->id; 1694 } 1695 1696 static inline gfn_t 1697 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1698 { 1699 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1700 1701 return slot->base_gfn + gfn_offset; 1702 } 1703 1704 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1705 { 1706 return (gpa_t)gfn << PAGE_SHIFT; 1707 } 1708 1709 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1710 { 1711 return (gfn_t)(gpa >> PAGE_SHIFT); 1712 } 1713 1714 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1715 { 1716 return (hpa_t)pfn << PAGE_SHIFT; 1717 } 1718 1719 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1720 { 1721 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1722 1723 return kvm_is_error_hva(hva); 1724 } 1725 1726 enum kvm_stat_kind { 1727 KVM_STAT_VM, 1728 KVM_STAT_VCPU, 1729 }; 1730 1731 struct kvm_stat_data { 1732 struct kvm *kvm; 1733 const struct _kvm_stats_desc *desc; 1734 enum kvm_stat_kind kind; 1735 }; 1736 1737 struct _kvm_stats_desc { 1738 struct kvm_stats_desc desc; 1739 char name[KVM_STATS_NAME_SIZE]; 1740 }; 1741 1742 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1743 .flags = type | unit | base | \ 1744 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1745 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1746 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1747 .exponent = exp, \ 1748 .size = sz, \ 1749 .bucket_size = bsz 1750 1751 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1752 { \ 1753 { \ 1754 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1755 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1756 }, \ 1757 .name = #stat, \ 1758 } 1759 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1760 { \ 1761 { \ 1762 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1763 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1764 }, \ 1765 .name = #stat, \ 1766 } 1767 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1768 { \ 1769 { \ 1770 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1771 .offset = offsetof(struct kvm_vm_stat, stat) \ 1772 }, \ 1773 .name = #stat, \ 1774 } 1775 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1776 { \ 1777 { \ 1778 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1779 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1780 }, \ 1781 .name = #stat, \ 1782 } 1783 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1784 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1785 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1786 1787 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1788 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1789 unit, base, exponent, 1, 0) 1790 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1791 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1792 unit, base, exponent, 1, 0) 1793 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1794 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1795 unit, base, exponent, 1, 0) 1796 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1797 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1798 unit, base, exponent, sz, bsz) 1799 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1800 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1801 unit, base, exponent, sz, 0) 1802 1803 /* Cumulative counter, read/write */ 1804 #define STATS_DESC_COUNTER(SCOPE, name) \ 1805 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1806 KVM_STATS_BASE_POW10, 0) 1807 /* Instantaneous counter, read only */ 1808 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1809 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1810 KVM_STATS_BASE_POW10, 0) 1811 /* Peak counter, read/write */ 1812 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1813 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1814 KVM_STATS_BASE_POW10, 0) 1815 1816 /* Instantaneous boolean value, read only */ 1817 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1818 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1819 KVM_STATS_BASE_POW10, 0) 1820 /* Peak (sticky) boolean value, read/write */ 1821 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1822 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1823 KVM_STATS_BASE_POW10, 0) 1824 1825 /* Cumulative time in nanosecond */ 1826 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1827 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1828 KVM_STATS_BASE_POW10, -9) 1829 /* Linear histogram for time in nanosecond */ 1830 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1831 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1832 KVM_STATS_BASE_POW10, -9, sz, bsz) 1833 /* Logarithmic histogram for time in nanosecond */ 1834 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1835 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1836 KVM_STATS_BASE_POW10, -9, sz) 1837 1838 #define KVM_GENERIC_VM_STATS() \ 1839 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1840 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1841 1842 #define KVM_GENERIC_VCPU_STATS() \ 1843 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1844 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1845 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1846 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1847 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1848 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1849 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1850 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1851 HALT_POLL_HIST_COUNT), \ 1852 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1853 HALT_POLL_HIST_COUNT), \ 1854 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1855 HALT_POLL_HIST_COUNT), \ 1856 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1857 1858 extern struct dentry *kvm_debugfs_dir; 1859 1860 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1861 const struct _kvm_stats_desc *desc, 1862 void *stats, size_t size_stats, 1863 char __user *user_buffer, size_t size, loff_t *offset); 1864 1865 /** 1866 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1867 * statistics data. 1868 * 1869 * @data: start address of the stats data 1870 * @size: the number of bucket of the stats data 1871 * @value: the new value used to update the linear histogram's bucket 1872 * @bucket_size: the size (width) of a bucket 1873 */ 1874 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1875 u64 value, size_t bucket_size) 1876 { 1877 size_t index = div64_u64(value, bucket_size); 1878 1879 index = min(index, size - 1); 1880 ++data[index]; 1881 } 1882 1883 /** 1884 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1885 * statistics data. 1886 * 1887 * @data: start address of the stats data 1888 * @size: the number of bucket of the stats data 1889 * @value: the new value used to update the logarithmic histogram's bucket 1890 */ 1891 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1892 { 1893 size_t index = fls64(value); 1894 1895 index = min(index, size - 1); 1896 ++data[index]; 1897 } 1898 1899 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1900 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1901 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1902 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1903 1904 1905 extern const struct kvm_stats_header kvm_vm_stats_header; 1906 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1907 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1908 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1909 1910 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1911 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 1912 { 1913 if (unlikely(kvm->mmu_invalidate_in_progress)) 1914 return 1; 1915 /* 1916 * Ensure the read of mmu_invalidate_in_progress happens before 1917 * the read of mmu_invalidate_seq. This interacts with the 1918 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 1919 * that the caller either sees the old (non-zero) value of 1920 * mmu_invalidate_in_progress or the new (incremented) value of 1921 * mmu_invalidate_seq. 1922 * 1923 * PowerPC Book3s HV KVM calls this under a per-page lock rather 1924 * than under kvm->mmu_lock, for scalability, so can't rely on 1925 * kvm->mmu_lock to keep things ordered. 1926 */ 1927 smp_rmb(); 1928 if (kvm->mmu_invalidate_seq != mmu_seq) 1929 return 1; 1930 return 0; 1931 } 1932 1933 static inline int mmu_invalidate_retry_hva(struct kvm *kvm, 1934 unsigned long mmu_seq, 1935 unsigned long hva) 1936 { 1937 lockdep_assert_held(&kvm->mmu_lock); 1938 /* 1939 * If mmu_invalidate_in_progress is non-zero, then the range maintained 1940 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 1941 * that might be being invalidated. Note that it may include some false 1942 * positives, due to shortcuts when handing concurrent invalidations. 1943 */ 1944 if (unlikely(kvm->mmu_invalidate_in_progress) && 1945 hva >= kvm->mmu_invalidate_range_start && 1946 hva < kvm->mmu_invalidate_range_end) 1947 return 1; 1948 if (kvm->mmu_invalidate_seq != mmu_seq) 1949 return 1; 1950 return 0; 1951 } 1952 #endif 1953 1954 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1955 1956 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1957 1958 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1959 int kvm_set_irq_routing(struct kvm *kvm, 1960 const struct kvm_irq_routing_entry *entries, 1961 unsigned nr, 1962 unsigned flags); 1963 int kvm_set_routing_entry(struct kvm *kvm, 1964 struct kvm_kernel_irq_routing_entry *e, 1965 const struct kvm_irq_routing_entry *ue); 1966 void kvm_free_irq_routing(struct kvm *kvm); 1967 1968 #else 1969 1970 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1971 1972 #endif 1973 1974 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1975 1976 #ifdef CONFIG_HAVE_KVM_EVENTFD 1977 1978 void kvm_eventfd_init(struct kvm *kvm); 1979 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1980 1981 #ifdef CONFIG_HAVE_KVM_IRQFD 1982 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1983 void kvm_irqfd_release(struct kvm *kvm); 1984 void kvm_irq_routing_update(struct kvm *); 1985 #else 1986 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1987 { 1988 return -EINVAL; 1989 } 1990 1991 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1992 #endif 1993 1994 #else 1995 1996 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1997 1998 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1999 { 2000 return -EINVAL; 2001 } 2002 2003 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2004 2005 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2006 static inline void kvm_irq_routing_update(struct kvm *kvm) 2007 { 2008 } 2009 #endif 2010 2011 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 2012 { 2013 return -ENOSYS; 2014 } 2015 2016 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 2017 2018 void kvm_arch_irq_routing_update(struct kvm *kvm); 2019 2020 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2021 { 2022 /* 2023 * Ensure the rest of the request is published to kvm_check_request's 2024 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2025 */ 2026 smp_wmb(); 2027 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2028 } 2029 2030 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2031 { 2032 /* 2033 * Request that don't require vCPU action should never be logged in 2034 * vcpu->requests. The vCPU won't clear the request, so it will stay 2035 * logged indefinitely and prevent the vCPU from entering the guest. 2036 */ 2037 BUILD_BUG_ON(!__builtin_constant_p(req) || 2038 (req & KVM_REQUEST_NO_ACTION)); 2039 2040 __kvm_make_request(req, vcpu); 2041 } 2042 2043 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2044 { 2045 return READ_ONCE(vcpu->requests); 2046 } 2047 2048 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2049 { 2050 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2051 } 2052 2053 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2054 { 2055 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2056 } 2057 2058 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2059 { 2060 if (kvm_test_request(req, vcpu)) { 2061 kvm_clear_request(req, vcpu); 2062 2063 /* 2064 * Ensure the rest of the request is visible to kvm_check_request's 2065 * caller. Paired with the smp_wmb in kvm_make_request. 2066 */ 2067 smp_mb__after_atomic(); 2068 return true; 2069 } else { 2070 return false; 2071 } 2072 } 2073 2074 extern bool kvm_rebooting; 2075 2076 extern unsigned int halt_poll_ns; 2077 extern unsigned int halt_poll_ns_grow; 2078 extern unsigned int halt_poll_ns_grow_start; 2079 extern unsigned int halt_poll_ns_shrink; 2080 2081 struct kvm_device { 2082 const struct kvm_device_ops *ops; 2083 struct kvm *kvm; 2084 void *private; 2085 struct list_head vm_node; 2086 }; 2087 2088 /* create, destroy, and name are mandatory */ 2089 struct kvm_device_ops { 2090 const char *name; 2091 2092 /* 2093 * create is called holding kvm->lock and any operations not suitable 2094 * to do while holding the lock should be deferred to init (see 2095 * below). 2096 */ 2097 int (*create)(struct kvm_device *dev, u32 type); 2098 2099 /* 2100 * init is called after create if create is successful and is called 2101 * outside of holding kvm->lock. 2102 */ 2103 void (*init)(struct kvm_device *dev); 2104 2105 /* 2106 * Destroy is responsible for freeing dev. 2107 * 2108 * Destroy may be called before or after destructors are called 2109 * on emulated I/O regions, depending on whether a reference is 2110 * held by a vcpu or other kvm component that gets destroyed 2111 * after the emulated I/O. 2112 */ 2113 void (*destroy)(struct kvm_device *dev); 2114 2115 /* 2116 * Release is an alternative method to free the device. It is 2117 * called when the device file descriptor is closed. Once 2118 * release is called, the destroy method will not be called 2119 * anymore as the device is removed from the device list of 2120 * the VM. kvm->lock is held. 2121 */ 2122 void (*release)(struct kvm_device *dev); 2123 2124 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2125 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2126 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2127 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2128 unsigned long arg); 2129 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2130 }; 2131 2132 void kvm_device_get(struct kvm_device *dev); 2133 void kvm_device_put(struct kvm_device *dev); 2134 struct kvm_device *kvm_device_from_filp(struct file *filp); 2135 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2136 void kvm_unregister_device_ops(u32 type); 2137 2138 extern struct kvm_device_ops kvm_mpic_ops; 2139 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2140 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2141 2142 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2143 2144 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2145 { 2146 vcpu->spin_loop.in_spin_loop = val; 2147 } 2148 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2149 { 2150 vcpu->spin_loop.dy_eligible = val; 2151 } 2152 2153 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2154 2155 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2156 { 2157 } 2158 2159 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2160 { 2161 } 2162 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2163 2164 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2165 { 2166 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2167 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2168 } 2169 2170 struct kvm_vcpu *kvm_get_running_vcpu(void); 2171 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2172 2173 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2174 bool kvm_arch_has_irq_bypass(void); 2175 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2176 struct irq_bypass_producer *); 2177 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2178 struct irq_bypass_producer *); 2179 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2180 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2181 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2182 uint32_t guest_irq, bool set); 2183 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2184 struct kvm_kernel_irq_routing_entry *); 2185 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2186 2187 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2188 /* If we wakeup during the poll time, was it a sucessful poll? */ 2189 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2190 { 2191 return vcpu->valid_wakeup; 2192 } 2193 2194 #else 2195 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2196 { 2197 return true; 2198 } 2199 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2200 2201 #ifdef CONFIG_HAVE_KVM_NO_POLL 2202 /* Callback that tells if we must not poll */ 2203 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2204 #else 2205 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2206 { 2207 return false; 2208 } 2209 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2210 2211 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2212 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2213 unsigned int ioctl, unsigned long arg); 2214 #else 2215 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2216 unsigned int ioctl, 2217 unsigned long arg) 2218 { 2219 return -ENOIOCTLCMD; 2220 } 2221 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2222 2223 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2224 unsigned long start, unsigned long end); 2225 2226 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2227 2228 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2229 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2230 #else 2231 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2232 { 2233 return 0; 2234 } 2235 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2236 2237 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2238 2239 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2240 uintptr_t data, const char *name, 2241 struct task_struct **thread_ptr); 2242 2243 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2244 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2245 { 2246 vcpu->run->exit_reason = KVM_EXIT_INTR; 2247 vcpu->stat.signal_exits++; 2248 } 2249 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2250 2251 /* 2252 * If more than one page is being (un)accounted, @virt must be the address of 2253 * the first page of a block of pages what were allocated together (i.e 2254 * accounted together). 2255 * 2256 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2257 * is thread-safe. 2258 */ 2259 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2260 { 2261 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2262 } 2263 2264 /* 2265 * This defines how many reserved entries we want to keep before we 2266 * kick the vcpu to the userspace to avoid dirty ring full. This 2267 * value can be tuned to higher if e.g. PML is enabled on the host. 2268 */ 2269 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2270 2271 /* Max number of entries allowed for each kvm dirty ring */ 2272 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2273 2274 #endif 2275