xref: /openbmc/linux/include/linux/kvm_host.h (revision ec8f24b7faaf3d4799a7c3f4c1b87f6b02778ad1)
1 #ifndef __KVM_HOST_H
2 #define __KVM_HOST_H
3 
4 /*
5  * This work is licensed under the terms of the GNU GPL, version 2.  See
6  * the COPYING file in the top-level directory.
7  */
8 
9 #include <linux/types.h>
10 #include <linux/hardirq.h>
11 #include <linux/list.h>
12 #include <linux/mutex.h>
13 #include <linux/spinlock.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/bug.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/preempt.h>
20 #include <linux/msi.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/rcupdate.h>
24 #include <linux/ratelimit.h>
25 #include <linux/err.h>
26 #include <linux/irqflags.h>
27 #include <linux/context_tracking.h>
28 #include <linux/irqbypass.h>
29 #include <linux/swait.h>
30 #include <linux/refcount.h>
31 #include <linux/nospec.h>
32 #include <asm/signal.h>
33 
34 #include <linux/kvm.h>
35 #include <linux/kvm_para.h>
36 
37 #include <linux/kvm_types.h>
38 
39 #include <asm/kvm_host.h>
40 
41 #ifndef KVM_MAX_VCPU_ID
42 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
43 #endif
44 
45 /*
46  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
47  * in kvm, other bits are visible for userspace which are defined in
48  * include/linux/kvm_h.
49  */
50 #define KVM_MEMSLOT_INVALID	(1UL << 16)
51 
52 /*
53  * Bit 63 of the memslot generation number is an "update in-progress flag",
54  * e.g. is temporarily set for the duration of install_new_memslots().
55  * This flag effectively creates a unique generation number that is used to
56  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
57  * i.e. may (or may not) have come from the previous memslots generation.
58  *
59  * This is necessary because the actual memslots update is not atomic with
60  * respect to the generation number update.  Updating the generation number
61  * first would allow a vCPU to cache a spte from the old memslots using the
62  * new generation number, and updating the generation number after switching
63  * to the new memslots would allow cache hits using the old generation number
64  * to reference the defunct memslots.
65  *
66  * This mechanism is used to prevent getting hits in KVM's caches while a
67  * memslot update is in-progress, and to prevent cache hits *after* updating
68  * the actual generation number against accesses that were inserted into the
69  * cache *before* the memslots were updated.
70  */
71 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
72 
73 /* Two fragments for cross MMIO pages. */
74 #define KVM_MAX_MMIO_FRAGMENTS	2
75 
76 #ifndef KVM_ADDRESS_SPACE_NUM
77 #define KVM_ADDRESS_SPACE_NUM	1
78 #endif
79 
80 /*
81  * For the normal pfn, the highest 12 bits should be zero,
82  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
83  * mask bit 63 to indicate the noslot pfn.
84  */
85 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
86 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
87 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
88 
89 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
90 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
91 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
92 
93 /*
94  * error pfns indicate that the gfn is in slot but faild to
95  * translate it to pfn on host.
96  */
97 static inline bool is_error_pfn(kvm_pfn_t pfn)
98 {
99 	return !!(pfn & KVM_PFN_ERR_MASK);
100 }
101 
102 /*
103  * error_noslot pfns indicate that the gfn can not be
104  * translated to pfn - it is not in slot or failed to
105  * translate it to pfn.
106  */
107 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
108 {
109 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
110 }
111 
112 /* noslot pfn indicates that the gfn is not in slot. */
113 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
114 {
115 	return pfn == KVM_PFN_NOSLOT;
116 }
117 
118 /*
119  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
120  * provide own defines and kvm_is_error_hva
121  */
122 #ifndef KVM_HVA_ERR_BAD
123 
124 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
125 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
126 
127 static inline bool kvm_is_error_hva(unsigned long addr)
128 {
129 	return addr >= PAGE_OFFSET;
130 }
131 
132 #endif
133 
134 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
135 
136 static inline bool is_error_page(struct page *page)
137 {
138 	return IS_ERR(page);
139 }
140 
141 #define KVM_REQUEST_MASK           GENMASK(7,0)
142 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
143 #define KVM_REQUEST_WAIT           BIT(9)
144 /*
145  * Architecture-independent vcpu->requests bit members
146  * Bits 4-7 are reserved for more arch-independent bits.
147  */
148 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_PENDING_TIMER     2
151 #define KVM_REQ_UNHALT            3
152 #define KVM_REQUEST_ARCH_BASE     8
153 
154 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
155 	BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
156 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
157 })
158 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
159 
160 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
161 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
162 
163 extern struct kmem_cache *kvm_vcpu_cache;
164 
165 extern spinlock_t kvm_lock;
166 extern struct list_head vm_list;
167 
168 struct kvm_io_range {
169 	gpa_t addr;
170 	int len;
171 	struct kvm_io_device *dev;
172 };
173 
174 #define NR_IOBUS_DEVS 1000
175 
176 struct kvm_io_bus {
177 	int dev_count;
178 	int ioeventfd_count;
179 	struct kvm_io_range range[];
180 };
181 
182 enum kvm_bus {
183 	KVM_MMIO_BUS,
184 	KVM_PIO_BUS,
185 	KVM_VIRTIO_CCW_NOTIFY_BUS,
186 	KVM_FAST_MMIO_BUS,
187 	KVM_NR_BUSES
188 };
189 
190 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
191 		     int len, const void *val);
192 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
193 			    gpa_t addr, int len, const void *val, long cookie);
194 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
195 		    int len, void *val);
196 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
197 			    int len, struct kvm_io_device *dev);
198 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
199 			       struct kvm_io_device *dev);
200 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
201 					 gpa_t addr);
202 
203 #ifdef CONFIG_KVM_ASYNC_PF
204 struct kvm_async_pf {
205 	struct work_struct work;
206 	struct list_head link;
207 	struct list_head queue;
208 	struct kvm_vcpu *vcpu;
209 	struct mm_struct *mm;
210 	gva_t gva;
211 	unsigned long addr;
212 	struct kvm_arch_async_pf arch;
213 	bool   wakeup_all;
214 };
215 
216 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
217 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
218 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
219 		       struct kvm_arch_async_pf *arch);
220 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
221 #endif
222 
223 enum {
224 	OUTSIDE_GUEST_MODE,
225 	IN_GUEST_MODE,
226 	EXITING_GUEST_MODE,
227 	READING_SHADOW_PAGE_TABLES,
228 };
229 
230 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
231 
232 struct kvm_host_map {
233 	/*
234 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
235 	 * a 'struct page' for it. When using mem= kernel parameter some memory
236 	 * can be used as guest memory but they are not managed by host
237 	 * kernel).
238 	 * If 'pfn' is not managed by the host kernel, this field is
239 	 * initialized to KVM_UNMAPPED_PAGE.
240 	 */
241 	struct page *page;
242 	void *hva;
243 	kvm_pfn_t pfn;
244 	kvm_pfn_t gfn;
245 };
246 
247 /*
248  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
249  * directly to check for that.
250  */
251 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
252 {
253 	return !!map->hva;
254 }
255 
256 /*
257  * Sometimes a large or cross-page mmio needs to be broken up into separate
258  * exits for userspace servicing.
259  */
260 struct kvm_mmio_fragment {
261 	gpa_t gpa;
262 	void *data;
263 	unsigned len;
264 };
265 
266 struct kvm_vcpu {
267 	struct kvm *kvm;
268 #ifdef CONFIG_PREEMPT_NOTIFIERS
269 	struct preempt_notifier preempt_notifier;
270 #endif
271 	int cpu;
272 	int vcpu_id;
273 	int srcu_idx;
274 	int mode;
275 	u64 requests;
276 	unsigned long guest_debug;
277 
278 	int pre_pcpu;
279 	struct list_head blocked_vcpu_list;
280 
281 	struct mutex mutex;
282 	struct kvm_run *run;
283 
284 	int guest_xcr0_loaded;
285 	struct swait_queue_head wq;
286 	struct pid __rcu *pid;
287 	int sigset_active;
288 	sigset_t sigset;
289 	struct kvm_vcpu_stat stat;
290 	unsigned int halt_poll_ns;
291 	bool valid_wakeup;
292 
293 #ifdef CONFIG_HAS_IOMEM
294 	int mmio_needed;
295 	int mmio_read_completed;
296 	int mmio_is_write;
297 	int mmio_cur_fragment;
298 	int mmio_nr_fragments;
299 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
300 #endif
301 
302 #ifdef CONFIG_KVM_ASYNC_PF
303 	struct {
304 		u32 queued;
305 		struct list_head queue;
306 		struct list_head done;
307 		spinlock_t lock;
308 	} async_pf;
309 #endif
310 
311 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
312 	/*
313 	 * Cpu relax intercept or pause loop exit optimization
314 	 * in_spin_loop: set when a vcpu does a pause loop exit
315 	 *  or cpu relax intercepted.
316 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
317 	 */
318 	struct {
319 		bool in_spin_loop;
320 		bool dy_eligible;
321 	} spin_loop;
322 #endif
323 	bool preempted;
324 	struct kvm_vcpu_arch arch;
325 	struct dentry *debugfs_dentry;
326 };
327 
328 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
329 {
330 	/*
331 	 * The memory barrier ensures a previous write to vcpu->requests cannot
332 	 * be reordered with the read of vcpu->mode.  It pairs with the general
333 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
334 	 */
335 	smp_mb__before_atomic();
336 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
337 }
338 
339 /*
340  * Some of the bitops functions do not support too long bitmaps.
341  * This number must be determined not to exceed such limits.
342  */
343 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
344 
345 struct kvm_memory_slot {
346 	gfn_t base_gfn;
347 	unsigned long npages;
348 	unsigned long *dirty_bitmap;
349 	struct kvm_arch_memory_slot arch;
350 	unsigned long userspace_addr;
351 	u32 flags;
352 	short id;
353 };
354 
355 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
356 {
357 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
358 }
359 
360 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
361 {
362 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
363 
364 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
365 }
366 
367 struct kvm_s390_adapter_int {
368 	u64 ind_addr;
369 	u64 summary_addr;
370 	u64 ind_offset;
371 	u32 summary_offset;
372 	u32 adapter_id;
373 };
374 
375 struct kvm_hv_sint {
376 	u32 vcpu;
377 	u32 sint;
378 };
379 
380 struct kvm_kernel_irq_routing_entry {
381 	u32 gsi;
382 	u32 type;
383 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 		   struct kvm *kvm, int irq_source_id, int level,
385 		   bool line_status);
386 	union {
387 		struct {
388 			unsigned irqchip;
389 			unsigned pin;
390 		} irqchip;
391 		struct {
392 			u32 address_lo;
393 			u32 address_hi;
394 			u32 data;
395 			u32 flags;
396 			u32 devid;
397 		} msi;
398 		struct kvm_s390_adapter_int adapter;
399 		struct kvm_hv_sint hv_sint;
400 	};
401 	struct hlist_node link;
402 };
403 
404 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405 struct kvm_irq_routing_table {
406 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 	u32 nr_rt_entries;
408 	/*
409 	 * Array indexed by gsi. Each entry contains list of irq chips
410 	 * the gsi is connected to.
411 	 */
412 	struct hlist_head map[0];
413 };
414 #endif
415 
416 #ifndef KVM_PRIVATE_MEM_SLOTS
417 #define KVM_PRIVATE_MEM_SLOTS 0
418 #endif
419 
420 #ifndef KVM_MEM_SLOTS_NUM
421 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422 #endif
423 
424 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
425 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426 {
427 	return 0;
428 }
429 #endif
430 
431 /*
432  * Note:
433  * memslots are not sorted by id anymore, please use id_to_memslot()
434  * to get the memslot by its id.
435  */
436 struct kvm_memslots {
437 	u64 generation;
438 	struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
439 	/* The mapping table from slot id to the index in memslots[]. */
440 	short id_to_index[KVM_MEM_SLOTS_NUM];
441 	atomic_t lru_slot;
442 	int used_slots;
443 };
444 
445 struct kvm {
446 	spinlock_t mmu_lock;
447 	struct mutex slots_lock;
448 	struct mm_struct *mm; /* userspace tied to this vm */
449 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451 
452 	/*
453 	 * created_vcpus is protected by kvm->lock, and is incremented
454 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
455 	 * incremented after storing the kvm_vcpu pointer in vcpus,
456 	 * and is accessed atomically.
457 	 */
458 	atomic_t online_vcpus;
459 	int created_vcpus;
460 	int last_boosted_vcpu;
461 	struct list_head vm_list;
462 	struct mutex lock;
463 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464 #ifdef CONFIG_HAVE_KVM_EVENTFD
465 	struct {
466 		spinlock_t        lock;
467 		struct list_head  items;
468 		struct list_head  resampler_list;
469 		struct mutex      resampler_lock;
470 	} irqfds;
471 	struct list_head ioeventfds;
472 #endif
473 	struct kvm_vm_stat stat;
474 	struct kvm_arch arch;
475 	refcount_t users_count;
476 #ifdef CONFIG_KVM_MMIO
477 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 	spinlock_t ring_lock;
479 	struct list_head coalesced_zones;
480 #endif
481 
482 	struct mutex irq_lock;
483 #ifdef CONFIG_HAVE_KVM_IRQCHIP
484 	/*
485 	 * Update side is protected by irq_lock.
486 	 */
487 	struct kvm_irq_routing_table __rcu *irq_routing;
488 #endif
489 #ifdef CONFIG_HAVE_KVM_IRQFD
490 	struct hlist_head irq_ack_notifier_list;
491 #endif
492 
493 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 	struct mmu_notifier mmu_notifier;
495 	unsigned long mmu_notifier_seq;
496 	long mmu_notifier_count;
497 #endif
498 	long tlbs_dirty;
499 	struct list_head devices;
500 	bool manual_dirty_log_protect;
501 	struct dentry *debugfs_dentry;
502 	struct kvm_stat_data **debugfs_stat_data;
503 	struct srcu_struct srcu;
504 	struct srcu_struct irq_srcu;
505 	pid_t userspace_pid;
506 };
507 
508 #define kvm_err(fmt, ...) \
509 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510 #define kvm_info(fmt, ...) \
511 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512 #define kvm_debug(fmt, ...) \
513 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514 #define kvm_debug_ratelimited(fmt, ...) \
515 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
516 			     ## __VA_ARGS__)
517 #define kvm_pr_unimpl(fmt, ...) \
518 	pr_err_ratelimited("kvm [%i]: " fmt, \
519 			   task_tgid_nr(current), ## __VA_ARGS__)
520 
521 /* The guest did something we don't support. */
522 #define vcpu_unimpl(vcpu, fmt, ...)					\
523 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
524 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
525 
526 #define vcpu_debug(vcpu, fmt, ...)					\
527 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
528 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
529 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
530 			      ## __VA_ARGS__)
531 #define vcpu_err(vcpu, fmt, ...)					\
532 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
533 
534 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
535 {
536 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
537 				      lockdep_is_held(&kvm->slots_lock) ||
538 				      !refcount_read(&kvm->users_count));
539 }
540 
541 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
542 {
543 	int num_vcpus = atomic_read(&kvm->online_vcpus);
544 	i = array_index_nospec(i, num_vcpus);
545 
546 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
547 	smp_rmb();
548 	return kvm->vcpus[i];
549 }
550 
551 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
552 	for (idx = 0; \
553 	     idx < atomic_read(&kvm->online_vcpus) && \
554 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
555 	     idx++)
556 
557 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
558 {
559 	struct kvm_vcpu *vcpu = NULL;
560 	int i;
561 
562 	if (id < 0)
563 		return NULL;
564 	if (id < KVM_MAX_VCPUS)
565 		vcpu = kvm_get_vcpu(kvm, id);
566 	if (vcpu && vcpu->vcpu_id == id)
567 		return vcpu;
568 	kvm_for_each_vcpu(i, vcpu, kvm)
569 		if (vcpu->vcpu_id == id)
570 			return vcpu;
571 	return NULL;
572 }
573 
574 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
575 {
576 	struct kvm_vcpu *tmp;
577 	int idx;
578 
579 	kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
580 		if (tmp == vcpu)
581 			return idx;
582 	BUG();
583 }
584 
585 #define kvm_for_each_memslot(memslot, slots)	\
586 	for (memslot = &slots->memslots[0];	\
587 	      memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
588 		memslot++)
589 
590 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
591 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
592 
593 void vcpu_load(struct kvm_vcpu *vcpu);
594 void vcpu_put(struct kvm_vcpu *vcpu);
595 
596 #ifdef __KVM_HAVE_IOAPIC
597 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
598 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
599 #else
600 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
601 {
602 }
603 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
604 {
605 }
606 #endif
607 
608 #ifdef CONFIG_HAVE_KVM_IRQFD
609 int kvm_irqfd_init(void);
610 void kvm_irqfd_exit(void);
611 #else
612 static inline int kvm_irqfd_init(void)
613 {
614 	return 0;
615 }
616 
617 static inline void kvm_irqfd_exit(void)
618 {
619 }
620 #endif
621 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
622 		  struct module *module);
623 void kvm_exit(void);
624 
625 void kvm_get_kvm(struct kvm *kvm);
626 void kvm_put_kvm(struct kvm *kvm);
627 
628 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
629 {
630 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
631 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
632 			lockdep_is_held(&kvm->slots_lock) ||
633 			!refcount_read(&kvm->users_count));
634 }
635 
636 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
637 {
638 	return __kvm_memslots(kvm, 0);
639 }
640 
641 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
642 {
643 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
644 
645 	return __kvm_memslots(vcpu->kvm, as_id);
646 }
647 
648 static inline struct kvm_memory_slot *
649 id_to_memslot(struct kvm_memslots *slots, int id)
650 {
651 	int index = slots->id_to_index[id];
652 	struct kvm_memory_slot *slot;
653 
654 	slot = &slots->memslots[index];
655 
656 	WARN_ON(slot->id != id);
657 	return slot;
658 }
659 
660 /*
661  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
662  * - create a new memory slot
663  * - delete an existing memory slot
664  * - modify an existing memory slot
665  *   -- move it in the guest physical memory space
666  *   -- just change its flags
667  *
668  * Since flags can be changed by some of these operations, the following
669  * differentiation is the best we can do for __kvm_set_memory_region():
670  */
671 enum kvm_mr_change {
672 	KVM_MR_CREATE,
673 	KVM_MR_DELETE,
674 	KVM_MR_MOVE,
675 	KVM_MR_FLAGS_ONLY,
676 };
677 
678 int kvm_set_memory_region(struct kvm *kvm,
679 			  const struct kvm_userspace_memory_region *mem);
680 int __kvm_set_memory_region(struct kvm *kvm,
681 			    const struct kvm_userspace_memory_region *mem);
682 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
683 			   struct kvm_memory_slot *dont);
684 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
685 			    unsigned long npages);
686 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
687 int kvm_arch_prepare_memory_region(struct kvm *kvm,
688 				struct kvm_memory_slot *memslot,
689 				const struct kvm_userspace_memory_region *mem,
690 				enum kvm_mr_change change);
691 void kvm_arch_commit_memory_region(struct kvm *kvm,
692 				const struct kvm_userspace_memory_region *mem,
693 				const struct kvm_memory_slot *old,
694 				const struct kvm_memory_slot *new,
695 				enum kvm_mr_change change);
696 bool kvm_largepages_enabled(void);
697 void kvm_disable_largepages(void);
698 /* flush all memory translations */
699 void kvm_arch_flush_shadow_all(struct kvm *kvm);
700 /* flush memory translations pointing to 'slot' */
701 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
702 				   struct kvm_memory_slot *slot);
703 
704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
705 			    struct page **pages, int nr_pages);
706 
707 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
708 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
709 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
710 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
711 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
712 				      bool *writable);
713 void kvm_release_page_clean(struct page *page);
714 void kvm_release_page_dirty(struct page *page);
715 void kvm_set_page_accessed(struct page *page);
716 
717 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
718 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
719 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
720 		      bool *writable);
721 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
722 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
723 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
724 			       bool atomic, bool *async, bool write_fault,
725 			       bool *writable);
726 
727 void kvm_release_pfn_clean(kvm_pfn_t pfn);
728 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
729 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
730 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
731 void kvm_get_pfn(kvm_pfn_t pfn);
732 
733 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
734 			int len);
735 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
736 			  unsigned long len);
737 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
738 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
739 			   void *data, unsigned long len);
740 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
741 			 int offset, int len);
742 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
743 		    unsigned long len);
744 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 			   void *data, unsigned long len);
746 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 				  void *data, unsigned int offset,
748 				  unsigned long len);
749 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
750 			      gpa_t gpa, unsigned long len);
751 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
752 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
753 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
754 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
755 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
756 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
757 
758 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
759 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
760 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
761 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
762 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
763 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
764 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
765 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
766 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
767 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
768 			     int len);
769 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
770 			       unsigned long len);
771 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
772 			unsigned long len);
773 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
774 			      int offset, int len);
775 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
776 			 unsigned long len);
777 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
778 
779 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
780 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
781 
782 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
783 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
784 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
785 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
786 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
787 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
788 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
789 
790 void kvm_flush_remote_tlbs(struct kvm *kvm);
791 void kvm_reload_remote_mmus(struct kvm *kvm);
792 
793 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
794 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
795 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
796 
797 long kvm_arch_dev_ioctl(struct file *filp,
798 			unsigned int ioctl, unsigned long arg);
799 long kvm_arch_vcpu_ioctl(struct file *filp,
800 			 unsigned int ioctl, unsigned long arg);
801 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
802 
803 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
804 
805 int kvm_get_dirty_log(struct kvm *kvm,
806 			struct kvm_dirty_log *log, int *is_dirty);
807 
808 int kvm_get_dirty_log_protect(struct kvm *kvm,
809 			      struct kvm_dirty_log *log, bool *flush);
810 int kvm_clear_dirty_log_protect(struct kvm *kvm,
811 				struct kvm_clear_dirty_log *log, bool *flush);
812 
813 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
814 					struct kvm_memory_slot *slot,
815 					gfn_t gfn_offset,
816 					unsigned long mask);
817 
818 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
819 				struct kvm_dirty_log *log);
820 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
821 				  struct kvm_clear_dirty_log *log);
822 
823 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
824 			bool line_status);
825 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
826 			    struct kvm_enable_cap *cap);
827 long kvm_arch_vm_ioctl(struct file *filp,
828 		       unsigned int ioctl, unsigned long arg);
829 
830 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
831 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
832 
833 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
834 				    struct kvm_translation *tr);
835 
836 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
837 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
838 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
839 				  struct kvm_sregs *sregs);
840 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
841 				  struct kvm_sregs *sregs);
842 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
843 				    struct kvm_mp_state *mp_state);
844 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
845 				    struct kvm_mp_state *mp_state);
846 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
847 					struct kvm_guest_debug *dbg);
848 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
849 
850 int kvm_arch_init(void *opaque);
851 void kvm_arch_exit(void);
852 
853 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
854 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
855 
856 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
857 
858 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
859 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
860 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
861 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
862 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
863 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
864 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
865 
866 bool kvm_arch_has_vcpu_debugfs(void);
867 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
868 
869 int kvm_arch_hardware_enable(void);
870 void kvm_arch_hardware_disable(void);
871 int kvm_arch_hardware_setup(void);
872 void kvm_arch_hardware_unsetup(void);
873 void kvm_arch_check_processor_compat(void *rtn);
874 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
875 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
876 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
877 
878 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
879 /*
880  * All architectures that want to use vzalloc currently also
881  * need their own kvm_arch_alloc_vm implementation.
882  */
883 static inline struct kvm *kvm_arch_alloc_vm(void)
884 {
885 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
886 }
887 
888 static inline void kvm_arch_free_vm(struct kvm *kvm)
889 {
890 	kfree(kvm);
891 }
892 #endif
893 
894 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
895 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
896 {
897 	return -ENOTSUPP;
898 }
899 #endif
900 
901 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
902 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
903 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
904 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
905 #else
906 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
907 {
908 }
909 
910 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
911 {
912 }
913 
914 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
915 {
916 	return false;
917 }
918 #endif
919 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
920 void kvm_arch_start_assignment(struct kvm *kvm);
921 void kvm_arch_end_assignment(struct kvm *kvm);
922 bool kvm_arch_has_assigned_device(struct kvm *kvm);
923 #else
924 static inline void kvm_arch_start_assignment(struct kvm *kvm)
925 {
926 }
927 
928 static inline void kvm_arch_end_assignment(struct kvm *kvm)
929 {
930 }
931 
932 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
933 {
934 	return false;
935 }
936 #endif
937 
938 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
939 {
940 #ifdef __KVM_HAVE_ARCH_WQP
941 	return vcpu->arch.wqp;
942 #else
943 	return &vcpu->wq;
944 #endif
945 }
946 
947 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
948 /*
949  * returns true if the virtual interrupt controller is initialized and
950  * ready to accept virtual IRQ. On some architectures the virtual interrupt
951  * controller is dynamically instantiated and this is not always true.
952  */
953 bool kvm_arch_intc_initialized(struct kvm *kvm);
954 #else
955 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
956 {
957 	return true;
958 }
959 #endif
960 
961 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
962 void kvm_arch_destroy_vm(struct kvm *kvm);
963 void kvm_arch_sync_events(struct kvm *kvm);
964 
965 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
966 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
967 
968 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
969 
970 struct kvm_irq_ack_notifier {
971 	struct hlist_node link;
972 	unsigned gsi;
973 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
974 };
975 
976 int kvm_irq_map_gsi(struct kvm *kvm,
977 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
978 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
979 
980 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
981 		bool line_status);
982 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
983 		int irq_source_id, int level, bool line_status);
984 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
985 			       struct kvm *kvm, int irq_source_id,
986 			       int level, bool line_status);
987 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
988 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
989 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
990 void kvm_register_irq_ack_notifier(struct kvm *kvm,
991 				   struct kvm_irq_ack_notifier *kian);
992 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
993 				   struct kvm_irq_ack_notifier *kian);
994 int kvm_request_irq_source_id(struct kvm *kvm);
995 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
996 
997 /*
998  * search_memslots() and __gfn_to_memslot() are here because they are
999  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1000  * gfn_to_memslot() itself isn't here as an inline because that would
1001  * bloat other code too much.
1002  */
1003 static inline struct kvm_memory_slot *
1004 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1005 {
1006 	int start = 0, end = slots->used_slots;
1007 	int slot = atomic_read(&slots->lru_slot);
1008 	struct kvm_memory_slot *memslots = slots->memslots;
1009 
1010 	if (gfn >= memslots[slot].base_gfn &&
1011 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1012 		return &memslots[slot];
1013 
1014 	while (start < end) {
1015 		slot = start + (end - start) / 2;
1016 
1017 		if (gfn >= memslots[slot].base_gfn)
1018 			end = slot;
1019 		else
1020 			start = slot + 1;
1021 	}
1022 
1023 	if (gfn >= memslots[start].base_gfn &&
1024 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1025 		atomic_set(&slots->lru_slot, start);
1026 		return &memslots[start];
1027 	}
1028 
1029 	return NULL;
1030 }
1031 
1032 static inline struct kvm_memory_slot *
1033 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1034 {
1035 	return search_memslots(slots, gfn);
1036 }
1037 
1038 static inline unsigned long
1039 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1040 {
1041 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1042 }
1043 
1044 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1045 {
1046 	return gfn_to_memslot(kvm, gfn)->id;
1047 }
1048 
1049 static inline gfn_t
1050 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1051 {
1052 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1053 
1054 	return slot->base_gfn + gfn_offset;
1055 }
1056 
1057 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1058 {
1059 	return (gpa_t)gfn << PAGE_SHIFT;
1060 }
1061 
1062 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1063 {
1064 	return (gfn_t)(gpa >> PAGE_SHIFT);
1065 }
1066 
1067 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1068 {
1069 	return (hpa_t)pfn << PAGE_SHIFT;
1070 }
1071 
1072 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1073 						gpa_t gpa)
1074 {
1075 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1076 }
1077 
1078 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1079 {
1080 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1081 
1082 	return kvm_is_error_hva(hva);
1083 }
1084 
1085 enum kvm_stat_kind {
1086 	KVM_STAT_VM,
1087 	KVM_STAT_VCPU,
1088 };
1089 
1090 struct kvm_stat_data {
1091 	int offset;
1092 	struct kvm *kvm;
1093 };
1094 
1095 struct kvm_stats_debugfs_item {
1096 	const char *name;
1097 	int offset;
1098 	enum kvm_stat_kind kind;
1099 };
1100 extern struct kvm_stats_debugfs_item debugfs_entries[];
1101 extern struct dentry *kvm_debugfs_dir;
1102 
1103 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1104 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1105 {
1106 	if (unlikely(kvm->mmu_notifier_count))
1107 		return 1;
1108 	/*
1109 	 * Ensure the read of mmu_notifier_count happens before the read
1110 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1111 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1112 	 * either sees the old (non-zero) value of mmu_notifier_count or
1113 	 * the new (incremented) value of mmu_notifier_seq.
1114 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1115 	 * rather than under kvm->mmu_lock, for scalability, so
1116 	 * can't rely on kvm->mmu_lock to keep things ordered.
1117 	 */
1118 	smp_rmb();
1119 	if (kvm->mmu_notifier_seq != mmu_seq)
1120 		return 1;
1121 	return 0;
1122 }
1123 #endif
1124 
1125 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1126 
1127 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1128 
1129 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1130 int kvm_set_irq_routing(struct kvm *kvm,
1131 			const struct kvm_irq_routing_entry *entries,
1132 			unsigned nr,
1133 			unsigned flags);
1134 int kvm_set_routing_entry(struct kvm *kvm,
1135 			  struct kvm_kernel_irq_routing_entry *e,
1136 			  const struct kvm_irq_routing_entry *ue);
1137 void kvm_free_irq_routing(struct kvm *kvm);
1138 
1139 #else
1140 
1141 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1142 
1143 #endif
1144 
1145 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1146 
1147 #ifdef CONFIG_HAVE_KVM_EVENTFD
1148 
1149 void kvm_eventfd_init(struct kvm *kvm);
1150 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1151 
1152 #ifdef CONFIG_HAVE_KVM_IRQFD
1153 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1154 void kvm_irqfd_release(struct kvm *kvm);
1155 void kvm_irq_routing_update(struct kvm *);
1156 #else
1157 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1158 {
1159 	return -EINVAL;
1160 }
1161 
1162 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1163 #endif
1164 
1165 #else
1166 
1167 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1168 
1169 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1170 {
1171 	return -EINVAL;
1172 }
1173 
1174 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1175 
1176 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1177 static inline void kvm_irq_routing_update(struct kvm *kvm)
1178 {
1179 }
1180 #endif
1181 
1182 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1183 {
1184 	return -ENOSYS;
1185 }
1186 
1187 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1188 
1189 void kvm_arch_irq_routing_update(struct kvm *kvm);
1190 
1191 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1192 {
1193 	/*
1194 	 * Ensure the rest of the request is published to kvm_check_request's
1195 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1196 	 */
1197 	smp_wmb();
1198 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1199 }
1200 
1201 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1202 {
1203 	return READ_ONCE(vcpu->requests);
1204 }
1205 
1206 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1207 {
1208 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1209 }
1210 
1211 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1212 {
1213 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1214 }
1215 
1216 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1217 {
1218 	if (kvm_test_request(req, vcpu)) {
1219 		kvm_clear_request(req, vcpu);
1220 
1221 		/*
1222 		 * Ensure the rest of the request is visible to kvm_check_request's
1223 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1224 		 */
1225 		smp_mb__after_atomic();
1226 		return true;
1227 	} else {
1228 		return false;
1229 	}
1230 }
1231 
1232 extern bool kvm_rebooting;
1233 
1234 extern unsigned int halt_poll_ns;
1235 extern unsigned int halt_poll_ns_grow;
1236 extern unsigned int halt_poll_ns_grow_start;
1237 extern unsigned int halt_poll_ns_shrink;
1238 
1239 struct kvm_device {
1240 	struct kvm_device_ops *ops;
1241 	struct kvm *kvm;
1242 	void *private;
1243 	struct list_head vm_node;
1244 };
1245 
1246 /* create, destroy, and name are mandatory */
1247 struct kvm_device_ops {
1248 	const char *name;
1249 
1250 	/*
1251 	 * create is called holding kvm->lock and any operations not suitable
1252 	 * to do while holding the lock should be deferred to init (see
1253 	 * below).
1254 	 */
1255 	int (*create)(struct kvm_device *dev, u32 type);
1256 
1257 	/*
1258 	 * init is called after create if create is successful and is called
1259 	 * outside of holding kvm->lock.
1260 	 */
1261 	void (*init)(struct kvm_device *dev);
1262 
1263 	/*
1264 	 * Destroy is responsible for freeing dev.
1265 	 *
1266 	 * Destroy may be called before or after destructors are called
1267 	 * on emulated I/O regions, depending on whether a reference is
1268 	 * held by a vcpu or other kvm component that gets destroyed
1269 	 * after the emulated I/O.
1270 	 */
1271 	void (*destroy)(struct kvm_device *dev);
1272 
1273 	/*
1274 	 * Release is an alternative method to free the device. It is
1275 	 * called when the device file descriptor is closed. Once
1276 	 * release is called, the destroy method will not be called
1277 	 * anymore as the device is removed from the device list of
1278 	 * the VM. kvm->lock is held.
1279 	 */
1280 	void (*release)(struct kvm_device *dev);
1281 
1282 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1283 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1284 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1285 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1286 		      unsigned long arg);
1287 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1288 };
1289 
1290 void kvm_device_get(struct kvm_device *dev);
1291 void kvm_device_put(struct kvm_device *dev);
1292 struct kvm_device *kvm_device_from_filp(struct file *filp);
1293 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1294 void kvm_unregister_device_ops(u32 type);
1295 
1296 extern struct kvm_device_ops kvm_mpic_ops;
1297 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1298 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1299 
1300 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1301 
1302 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1303 {
1304 	vcpu->spin_loop.in_spin_loop = val;
1305 }
1306 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1307 {
1308 	vcpu->spin_loop.dy_eligible = val;
1309 }
1310 
1311 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1312 
1313 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1314 {
1315 }
1316 
1317 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1318 {
1319 }
1320 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1321 
1322 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1323 bool kvm_arch_has_irq_bypass(void);
1324 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1325 			   struct irq_bypass_producer *);
1326 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1327 			   struct irq_bypass_producer *);
1328 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1329 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1330 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1331 				  uint32_t guest_irq, bool set);
1332 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1333 
1334 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1335 /* If we wakeup during the poll time, was it a sucessful poll? */
1336 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1337 {
1338 	return vcpu->valid_wakeup;
1339 }
1340 
1341 #else
1342 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1343 {
1344 	return true;
1345 }
1346 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1347 
1348 #ifdef CONFIG_HAVE_KVM_NO_POLL
1349 /* Callback that tells if we must not poll */
1350 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1351 #else
1352 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1353 {
1354 	return false;
1355 }
1356 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1357 
1358 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1359 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1360 			       unsigned int ioctl, unsigned long arg);
1361 #else
1362 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1363 					     unsigned int ioctl,
1364 					     unsigned long arg)
1365 {
1366 	return -ENOIOCTLCMD;
1367 }
1368 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1369 
1370 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1371 		unsigned long start, unsigned long end, bool blockable);
1372 
1373 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1374 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1375 #else
1376 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1377 {
1378 	return 0;
1379 }
1380 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1381 
1382 #endif
1383