1 #ifndef __KVM_HOST_H 2 #define __KVM_HOST_H 3 4 /* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/hardirq.h> 11 #include <linux/list.h> 12 #include <linux/mutex.h> 13 #include <linux/spinlock.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/bug.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/preempt.h> 20 #include <linux/msi.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/rcupdate.h> 24 #include <linux/ratelimit.h> 25 #include <linux/err.h> 26 #include <linux/irqflags.h> 27 #include <linux/context_tracking.h> 28 #include <linux/irqbypass.h> 29 #include <linux/swait.h> 30 #include <linux/refcount.h> 31 #include <linux/nospec.h> 32 #include <asm/signal.h> 33 34 #include <linux/kvm.h> 35 #include <linux/kvm_para.h> 36 37 #include <linux/kvm_types.h> 38 39 #include <asm/kvm_host.h> 40 41 #ifndef KVM_MAX_VCPU_ID 42 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 43 #endif 44 45 /* 46 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 47 * in kvm, other bits are visible for userspace which are defined in 48 * include/linux/kvm_h. 49 */ 50 #define KVM_MEMSLOT_INVALID (1UL << 16) 51 52 /* 53 * Bit 63 of the memslot generation number is an "update in-progress flag", 54 * e.g. is temporarily set for the duration of install_new_memslots(). 55 * This flag effectively creates a unique generation number that is used to 56 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 57 * i.e. may (or may not) have come from the previous memslots generation. 58 * 59 * This is necessary because the actual memslots update is not atomic with 60 * respect to the generation number update. Updating the generation number 61 * first would allow a vCPU to cache a spte from the old memslots using the 62 * new generation number, and updating the generation number after switching 63 * to the new memslots would allow cache hits using the old generation number 64 * to reference the defunct memslots. 65 * 66 * This mechanism is used to prevent getting hits in KVM's caches while a 67 * memslot update is in-progress, and to prevent cache hits *after* updating 68 * the actual generation number against accesses that were inserted into the 69 * cache *before* the memslots were updated. 70 */ 71 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 72 73 /* Two fragments for cross MMIO pages. */ 74 #define KVM_MAX_MMIO_FRAGMENTS 2 75 76 #ifndef KVM_ADDRESS_SPACE_NUM 77 #define KVM_ADDRESS_SPACE_NUM 1 78 #endif 79 80 /* 81 * For the normal pfn, the highest 12 bits should be zero, 82 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 83 * mask bit 63 to indicate the noslot pfn. 84 */ 85 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 86 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 87 #define KVM_PFN_NOSLOT (0x1ULL << 63) 88 89 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 90 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 91 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 92 93 /* 94 * error pfns indicate that the gfn is in slot but faild to 95 * translate it to pfn on host. 96 */ 97 static inline bool is_error_pfn(kvm_pfn_t pfn) 98 { 99 return !!(pfn & KVM_PFN_ERR_MASK); 100 } 101 102 /* 103 * error_noslot pfns indicate that the gfn can not be 104 * translated to pfn - it is not in slot or failed to 105 * translate it to pfn. 106 */ 107 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 108 { 109 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 110 } 111 112 /* noslot pfn indicates that the gfn is not in slot. */ 113 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 114 { 115 return pfn == KVM_PFN_NOSLOT; 116 } 117 118 /* 119 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 120 * provide own defines and kvm_is_error_hva 121 */ 122 #ifndef KVM_HVA_ERR_BAD 123 124 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 125 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 126 127 static inline bool kvm_is_error_hva(unsigned long addr) 128 { 129 return addr >= PAGE_OFFSET; 130 } 131 132 #endif 133 134 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 135 136 static inline bool is_error_page(struct page *page) 137 { 138 return IS_ERR(page); 139 } 140 141 #define KVM_REQUEST_MASK GENMASK(7,0) 142 #define KVM_REQUEST_NO_WAKEUP BIT(8) 143 #define KVM_REQUEST_WAIT BIT(9) 144 /* 145 * Architecture-independent vcpu->requests bit members 146 * Bits 4-7 are reserved for more arch-independent bits. 147 */ 148 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150 #define KVM_REQ_PENDING_TIMER 2 151 #define KVM_REQ_UNHALT 3 152 #define KVM_REQUEST_ARCH_BASE 8 153 154 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 155 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 156 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 157 }) 158 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 159 160 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 161 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 162 163 extern struct kmem_cache *kvm_vcpu_cache; 164 165 extern spinlock_t kvm_lock; 166 extern struct list_head vm_list; 167 168 struct kvm_io_range { 169 gpa_t addr; 170 int len; 171 struct kvm_io_device *dev; 172 }; 173 174 #define NR_IOBUS_DEVS 1000 175 176 struct kvm_io_bus { 177 int dev_count; 178 int ioeventfd_count; 179 struct kvm_io_range range[]; 180 }; 181 182 enum kvm_bus { 183 KVM_MMIO_BUS, 184 KVM_PIO_BUS, 185 KVM_VIRTIO_CCW_NOTIFY_BUS, 186 KVM_FAST_MMIO_BUS, 187 KVM_NR_BUSES 188 }; 189 190 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 191 int len, const void *val); 192 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 193 gpa_t addr, int len, const void *val, long cookie); 194 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 195 int len, void *val); 196 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 197 int len, struct kvm_io_device *dev); 198 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 199 struct kvm_io_device *dev); 200 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 201 gpa_t addr); 202 203 #ifdef CONFIG_KVM_ASYNC_PF 204 struct kvm_async_pf { 205 struct work_struct work; 206 struct list_head link; 207 struct list_head queue; 208 struct kvm_vcpu *vcpu; 209 struct mm_struct *mm; 210 gva_t gva; 211 unsigned long addr; 212 struct kvm_arch_async_pf arch; 213 bool wakeup_all; 214 }; 215 216 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 217 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 218 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 219 struct kvm_arch_async_pf *arch); 220 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 221 #endif 222 223 enum { 224 OUTSIDE_GUEST_MODE, 225 IN_GUEST_MODE, 226 EXITING_GUEST_MODE, 227 READING_SHADOW_PAGE_TABLES, 228 }; 229 230 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 231 232 struct kvm_host_map { 233 /* 234 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 235 * a 'struct page' for it. When using mem= kernel parameter some memory 236 * can be used as guest memory but they are not managed by host 237 * kernel). 238 * If 'pfn' is not managed by the host kernel, this field is 239 * initialized to KVM_UNMAPPED_PAGE. 240 */ 241 struct page *page; 242 void *hva; 243 kvm_pfn_t pfn; 244 kvm_pfn_t gfn; 245 }; 246 247 /* 248 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 249 * directly to check for that. 250 */ 251 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 252 { 253 return !!map->hva; 254 } 255 256 /* 257 * Sometimes a large or cross-page mmio needs to be broken up into separate 258 * exits for userspace servicing. 259 */ 260 struct kvm_mmio_fragment { 261 gpa_t gpa; 262 void *data; 263 unsigned len; 264 }; 265 266 struct kvm_vcpu { 267 struct kvm *kvm; 268 #ifdef CONFIG_PREEMPT_NOTIFIERS 269 struct preempt_notifier preempt_notifier; 270 #endif 271 int cpu; 272 int vcpu_id; 273 int srcu_idx; 274 int mode; 275 u64 requests; 276 unsigned long guest_debug; 277 278 int pre_pcpu; 279 struct list_head blocked_vcpu_list; 280 281 struct mutex mutex; 282 struct kvm_run *run; 283 284 int guest_xcr0_loaded; 285 struct swait_queue_head wq; 286 struct pid __rcu *pid; 287 int sigset_active; 288 sigset_t sigset; 289 struct kvm_vcpu_stat stat; 290 unsigned int halt_poll_ns; 291 bool valid_wakeup; 292 293 #ifdef CONFIG_HAS_IOMEM 294 int mmio_needed; 295 int mmio_read_completed; 296 int mmio_is_write; 297 int mmio_cur_fragment; 298 int mmio_nr_fragments; 299 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 300 #endif 301 302 #ifdef CONFIG_KVM_ASYNC_PF 303 struct { 304 u32 queued; 305 struct list_head queue; 306 struct list_head done; 307 spinlock_t lock; 308 } async_pf; 309 #endif 310 311 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 312 /* 313 * Cpu relax intercept or pause loop exit optimization 314 * in_spin_loop: set when a vcpu does a pause loop exit 315 * or cpu relax intercepted. 316 * dy_eligible: indicates whether vcpu is eligible for directed yield. 317 */ 318 struct { 319 bool in_spin_loop; 320 bool dy_eligible; 321 } spin_loop; 322 #endif 323 bool preempted; 324 struct kvm_vcpu_arch arch; 325 struct dentry *debugfs_dentry; 326 }; 327 328 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 329 { 330 /* 331 * The memory barrier ensures a previous write to vcpu->requests cannot 332 * be reordered with the read of vcpu->mode. It pairs with the general 333 * memory barrier following the write of vcpu->mode in VCPU RUN. 334 */ 335 smp_mb__before_atomic(); 336 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 337 } 338 339 /* 340 * Some of the bitops functions do not support too long bitmaps. 341 * This number must be determined not to exceed such limits. 342 */ 343 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 344 345 struct kvm_memory_slot { 346 gfn_t base_gfn; 347 unsigned long npages; 348 unsigned long *dirty_bitmap; 349 struct kvm_arch_memory_slot arch; 350 unsigned long userspace_addr; 351 u32 flags; 352 short id; 353 }; 354 355 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 356 { 357 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 358 } 359 360 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 361 { 362 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 363 364 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 365 } 366 367 struct kvm_s390_adapter_int { 368 u64 ind_addr; 369 u64 summary_addr; 370 u64 ind_offset; 371 u32 summary_offset; 372 u32 adapter_id; 373 }; 374 375 struct kvm_hv_sint { 376 u32 vcpu; 377 u32 sint; 378 }; 379 380 struct kvm_kernel_irq_routing_entry { 381 u32 gsi; 382 u32 type; 383 int (*set)(struct kvm_kernel_irq_routing_entry *e, 384 struct kvm *kvm, int irq_source_id, int level, 385 bool line_status); 386 union { 387 struct { 388 unsigned irqchip; 389 unsigned pin; 390 } irqchip; 391 struct { 392 u32 address_lo; 393 u32 address_hi; 394 u32 data; 395 u32 flags; 396 u32 devid; 397 } msi; 398 struct kvm_s390_adapter_int adapter; 399 struct kvm_hv_sint hv_sint; 400 }; 401 struct hlist_node link; 402 }; 403 404 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 405 struct kvm_irq_routing_table { 406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 407 u32 nr_rt_entries; 408 /* 409 * Array indexed by gsi. Each entry contains list of irq chips 410 * the gsi is connected to. 411 */ 412 struct hlist_head map[0]; 413 }; 414 #endif 415 416 #ifndef KVM_PRIVATE_MEM_SLOTS 417 #define KVM_PRIVATE_MEM_SLOTS 0 418 #endif 419 420 #ifndef KVM_MEM_SLOTS_NUM 421 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 422 #endif 423 424 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 425 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 426 { 427 return 0; 428 } 429 #endif 430 431 /* 432 * Note: 433 * memslots are not sorted by id anymore, please use id_to_memslot() 434 * to get the memslot by its id. 435 */ 436 struct kvm_memslots { 437 u64 generation; 438 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 439 /* The mapping table from slot id to the index in memslots[]. */ 440 short id_to_index[KVM_MEM_SLOTS_NUM]; 441 atomic_t lru_slot; 442 int used_slots; 443 }; 444 445 struct kvm { 446 spinlock_t mmu_lock; 447 struct mutex slots_lock; 448 struct mm_struct *mm; /* userspace tied to this vm */ 449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 451 452 /* 453 * created_vcpus is protected by kvm->lock, and is incremented 454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 455 * incremented after storing the kvm_vcpu pointer in vcpus, 456 * and is accessed atomically. 457 */ 458 atomic_t online_vcpus; 459 int created_vcpus; 460 int last_boosted_vcpu; 461 struct list_head vm_list; 462 struct mutex lock; 463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 464 #ifdef CONFIG_HAVE_KVM_EVENTFD 465 struct { 466 spinlock_t lock; 467 struct list_head items; 468 struct list_head resampler_list; 469 struct mutex resampler_lock; 470 } irqfds; 471 struct list_head ioeventfds; 472 #endif 473 struct kvm_vm_stat stat; 474 struct kvm_arch arch; 475 refcount_t users_count; 476 #ifdef CONFIG_KVM_MMIO 477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 478 spinlock_t ring_lock; 479 struct list_head coalesced_zones; 480 #endif 481 482 struct mutex irq_lock; 483 #ifdef CONFIG_HAVE_KVM_IRQCHIP 484 /* 485 * Update side is protected by irq_lock. 486 */ 487 struct kvm_irq_routing_table __rcu *irq_routing; 488 #endif 489 #ifdef CONFIG_HAVE_KVM_IRQFD 490 struct hlist_head irq_ack_notifier_list; 491 #endif 492 493 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 494 struct mmu_notifier mmu_notifier; 495 unsigned long mmu_notifier_seq; 496 long mmu_notifier_count; 497 #endif 498 long tlbs_dirty; 499 struct list_head devices; 500 bool manual_dirty_log_protect; 501 struct dentry *debugfs_dentry; 502 struct kvm_stat_data **debugfs_stat_data; 503 struct srcu_struct srcu; 504 struct srcu_struct irq_srcu; 505 pid_t userspace_pid; 506 }; 507 508 #define kvm_err(fmt, ...) \ 509 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510 #define kvm_info(fmt, ...) \ 511 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512 #define kvm_debug(fmt, ...) \ 513 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 514 #define kvm_debug_ratelimited(fmt, ...) \ 515 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 516 ## __VA_ARGS__) 517 #define kvm_pr_unimpl(fmt, ...) \ 518 pr_err_ratelimited("kvm [%i]: " fmt, \ 519 task_tgid_nr(current), ## __VA_ARGS__) 520 521 /* The guest did something we don't support. */ 522 #define vcpu_unimpl(vcpu, fmt, ...) \ 523 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 524 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 525 526 #define vcpu_debug(vcpu, fmt, ...) \ 527 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 528 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 529 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 530 ## __VA_ARGS__) 531 #define vcpu_err(vcpu, fmt, ...) \ 532 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 533 534 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 535 { 536 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 537 lockdep_is_held(&kvm->slots_lock) || 538 !refcount_read(&kvm->users_count)); 539 } 540 541 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 542 { 543 int num_vcpus = atomic_read(&kvm->online_vcpus); 544 i = array_index_nospec(i, num_vcpus); 545 546 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 547 smp_rmb(); 548 return kvm->vcpus[i]; 549 } 550 551 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 552 for (idx = 0; \ 553 idx < atomic_read(&kvm->online_vcpus) && \ 554 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 555 idx++) 556 557 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 558 { 559 struct kvm_vcpu *vcpu = NULL; 560 int i; 561 562 if (id < 0) 563 return NULL; 564 if (id < KVM_MAX_VCPUS) 565 vcpu = kvm_get_vcpu(kvm, id); 566 if (vcpu && vcpu->vcpu_id == id) 567 return vcpu; 568 kvm_for_each_vcpu(i, vcpu, kvm) 569 if (vcpu->vcpu_id == id) 570 return vcpu; 571 return NULL; 572 } 573 574 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 575 { 576 struct kvm_vcpu *tmp; 577 int idx; 578 579 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 580 if (tmp == vcpu) 581 return idx; 582 BUG(); 583 } 584 585 #define kvm_for_each_memslot(memslot, slots) \ 586 for (memslot = &slots->memslots[0]; \ 587 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 588 memslot++) 589 590 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 591 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 592 593 void vcpu_load(struct kvm_vcpu *vcpu); 594 void vcpu_put(struct kvm_vcpu *vcpu); 595 596 #ifdef __KVM_HAVE_IOAPIC 597 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 598 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 599 #else 600 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 601 { 602 } 603 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 604 { 605 } 606 #endif 607 608 #ifdef CONFIG_HAVE_KVM_IRQFD 609 int kvm_irqfd_init(void); 610 void kvm_irqfd_exit(void); 611 #else 612 static inline int kvm_irqfd_init(void) 613 { 614 return 0; 615 } 616 617 static inline void kvm_irqfd_exit(void) 618 { 619 } 620 #endif 621 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 622 struct module *module); 623 void kvm_exit(void); 624 625 void kvm_get_kvm(struct kvm *kvm); 626 void kvm_put_kvm(struct kvm *kvm); 627 628 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 629 { 630 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 631 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 632 lockdep_is_held(&kvm->slots_lock) || 633 !refcount_read(&kvm->users_count)); 634 } 635 636 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 637 { 638 return __kvm_memslots(kvm, 0); 639 } 640 641 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 642 { 643 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 644 645 return __kvm_memslots(vcpu->kvm, as_id); 646 } 647 648 static inline struct kvm_memory_slot * 649 id_to_memslot(struct kvm_memslots *slots, int id) 650 { 651 int index = slots->id_to_index[id]; 652 struct kvm_memory_slot *slot; 653 654 slot = &slots->memslots[index]; 655 656 WARN_ON(slot->id != id); 657 return slot; 658 } 659 660 /* 661 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 662 * - create a new memory slot 663 * - delete an existing memory slot 664 * - modify an existing memory slot 665 * -- move it in the guest physical memory space 666 * -- just change its flags 667 * 668 * Since flags can be changed by some of these operations, the following 669 * differentiation is the best we can do for __kvm_set_memory_region(): 670 */ 671 enum kvm_mr_change { 672 KVM_MR_CREATE, 673 KVM_MR_DELETE, 674 KVM_MR_MOVE, 675 KVM_MR_FLAGS_ONLY, 676 }; 677 678 int kvm_set_memory_region(struct kvm *kvm, 679 const struct kvm_userspace_memory_region *mem); 680 int __kvm_set_memory_region(struct kvm *kvm, 681 const struct kvm_userspace_memory_region *mem); 682 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 683 struct kvm_memory_slot *dont); 684 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 685 unsigned long npages); 686 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 687 int kvm_arch_prepare_memory_region(struct kvm *kvm, 688 struct kvm_memory_slot *memslot, 689 const struct kvm_userspace_memory_region *mem, 690 enum kvm_mr_change change); 691 void kvm_arch_commit_memory_region(struct kvm *kvm, 692 const struct kvm_userspace_memory_region *mem, 693 const struct kvm_memory_slot *old, 694 const struct kvm_memory_slot *new, 695 enum kvm_mr_change change); 696 bool kvm_largepages_enabled(void); 697 void kvm_disable_largepages(void); 698 /* flush all memory translations */ 699 void kvm_arch_flush_shadow_all(struct kvm *kvm); 700 /* flush memory translations pointing to 'slot' */ 701 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 702 struct kvm_memory_slot *slot); 703 704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 705 struct page **pages, int nr_pages); 706 707 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 708 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 709 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 710 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 711 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 712 bool *writable); 713 void kvm_release_page_clean(struct page *page); 714 void kvm_release_page_dirty(struct page *page); 715 void kvm_set_page_accessed(struct page *page); 716 717 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 718 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 719 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 720 bool *writable); 721 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 722 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 723 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 724 bool atomic, bool *async, bool write_fault, 725 bool *writable); 726 727 void kvm_release_pfn_clean(kvm_pfn_t pfn); 728 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 729 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 730 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 731 void kvm_get_pfn(kvm_pfn_t pfn); 732 733 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 734 int len); 735 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 736 unsigned long len); 737 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 738 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 739 void *data, unsigned long len); 740 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 741 int offset, int len); 742 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 743 unsigned long len); 744 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 745 void *data, unsigned long len); 746 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 747 void *data, unsigned int offset, 748 unsigned long len); 749 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 750 gpa_t gpa, unsigned long len); 751 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 752 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 753 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 754 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 755 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 756 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 757 758 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 759 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 760 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 761 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 762 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 763 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 764 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 765 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 766 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 767 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 768 int len); 769 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 770 unsigned long len); 771 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 772 unsigned long len); 773 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 774 int offset, int len); 775 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 776 unsigned long len); 777 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 778 779 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 780 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 781 782 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 783 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 784 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 785 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 786 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 787 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 788 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 789 790 void kvm_flush_remote_tlbs(struct kvm *kvm); 791 void kvm_reload_remote_mmus(struct kvm *kvm); 792 793 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 794 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 795 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 796 797 long kvm_arch_dev_ioctl(struct file *filp, 798 unsigned int ioctl, unsigned long arg); 799 long kvm_arch_vcpu_ioctl(struct file *filp, 800 unsigned int ioctl, unsigned long arg); 801 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 802 803 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 804 805 int kvm_get_dirty_log(struct kvm *kvm, 806 struct kvm_dirty_log *log, int *is_dirty); 807 808 int kvm_get_dirty_log_protect(struct kvm *kvm, 809 struct kvm_dirty_log *log, bool *flush); 810 int kvm_clear_dirty_log_protect(struct kvm *kvm, 811 struct kvm_clear_dirty_log *log, bool *flush); 812 813 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 814 struct kvm_memory_slot *slot, 815 gfn_t gfn_offset, 816 unsigned long mask); 817 818 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 819 struct kvm_dirty_log *log); 820 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 821 struct kvm_clear_dirty_log *log); 822 823 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 824 bool line_status); 825 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 826 struct kvm_enable_cap *cap); 827 long kvm_arch_vm_ioctl(struct file *filp, 828 unsigned int ioctl, unsigned long arg); 829 830 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 831 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 832 833 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 834 struct kvm_translation *tr); 835 836 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 837 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 838 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 839 struct kvm_sregs *sregs); 840 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 841 struct kvm_sregs *sregs); 842 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 843 struct kvm_mp_state *mp_state); 844 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 845 struct kvm_mp_state *mp_state); 846 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 847 struct kvm_guest_debug *dbg); 848 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 849 850 int kvm_arch_init(void *opaque); 851 void kvm_arch_exit(void); 852 853 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 854 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 855 856 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 857 858 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 859 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 860 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 861 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 862 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 863 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 864 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 865 866 bool kvm_arch_has_vcpu_debugfs(void); 867 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 868 869 int kvm_arch_hardware_enable(void); 870 void kvm_arch_hardware_disable(void); 871 int kvm_arch_hardware_setup(void); 872 void kvm_arch_hardware_unsetup(void); 873 void kvm_arch_check_processor_compat(void *rtn); 874 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 875 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 876 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 877 878 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 879 /* 880 * All architectures that want to use vzalloc currently also 881 * need their own kvm_arch_alloc_vm implementation. 882 */ 883 static inline struct kvm *kvm_arch_alloc_vm(void) 884 { 885 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 886 } 887 888 static inline void kvm_arch_free_vm(struct kvm *kvm) 889 { 890 kfree(kvm); 891 } 892 #endif 893 894 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 895 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 896 { 897 return -ENOTSUPP; 898 } 899 #endif 900 901 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 902 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 903 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 904 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 905 #else 906 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 907 { 908 } 909 910 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 911 { 912 } 913 914 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 915 { 916 return false; 917 } 918 #endif 919 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 920 void kvm_arch_start_assignment(struct kvm *kvm); 921 void kvm_arch_end_assignment(struct kvm *kvm); 922 bool kvm_arch_has_assigned_device(struct kvm *kvm); 923 #else 924 static inline void kvm_arch_start_assignment(struct kvm *kvm) 925 { 926 } 927 928 static inline void kvm_arch_end_assignment(struct kvm *kvm) 929 { 930 } 931 932 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 933 { 934 return false; 935 } 936 #endif 937 938 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 939 { 940 #ifdef __KVM_HAVE_ARCH_WQP 941 return vcpu->arch.wqp; 942 #else 943 return &vcpu->wq; 944 #endif 945 } 946 947 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 948 /* 949 * returns true if the virtual interrupt controller is initialized and 950 * ready to accept virtual IRQ. On some architectures the virtual interrupt 951 * controller is dynamically instantiated and this is not always true. 952 */ 953 bool kvm_arch_intc_initialized(struct kvm *kvm); 954 #else 955 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 956 { 957 return true; 958 } 959 #endif 960 961 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 962 void kvm_arch_destroy_vm(struct kvm *kvm); 963 void kvm_arch_sync_events(struct kvm *kvm); 964 965 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 966 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 967 968 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 969 970 struct kvm_irq_ack_notifier { 971 struct hlist_node link; 972 unsigned gsi; 973 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 974 }; 975 976 int kvm_irq_map_gsi(struct kvm *kvm, 977 struct kvm_kernel_irq_routing_entry *entries, int gsi); 978 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 979 980 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 981 bool line_status); 982 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 983 int irq_source_id, int level, bool line_status); 984 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 985 struct kvm *kvm, int irq_source_id, 986 int level, bool line_status); 987 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 988 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 989 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 990 void kvm_register_irq_ack_notifier(struct kvm *kvm, 991 struct kvm_irq_ack_notifier *kian); 992 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 993 struct kvm_irq_ack_notifier *kian); 994 int kvm_request_irq_source_id(struct kvm *kvm); 995 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 996 997 /* 998 * search_memslots() and __gfn_to_memslot() are here because they are 999 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1000 * gfn_to_memslot() itself isn't here as an inline because that would 1001 * bloat other code too much. 1002 */ 1003 static inline struct kvm_memory_slot * 1004 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1005 { 1006 int start = 0, end = slots->used_slots; 1007 int slot = atomic_read(&slots->lru_slot); 1008 struct kvm_memory_slot *memslots = slots->memslots; 1009 1010 if (gfn >= memslots[slot].base_gfn && 1011 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1012 return &memslots[slot]; 1013 1014 while (start < end) { 1015 slot = start + (end - start) / 2; 1016 1017 if (gfn >= memslots[slot].base_gfn) 1018 end = slot; 1019 else 1020 start = slot + 1; 1021 } 1022 1023 if (gfn >= memslots[start].base_gfn && 1024 gfn < memslots[start].base_gfn + memslots[start].npages) { 1025 atomic_set(&slots->lru_slot, start); 1026 return &memslots[start]; 1027 } 1028 1029 return NULL; 1030 } 1031 1032 static inline struct kvm_memory_slot * 1033 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1034 { 1035 return search_memslots(slots, gfn); 1036 } 1037 1038 static inline unsigned long 1039 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1040 { 1041 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1042 } 1043 1044 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1045 { 1046 return gfn_to_memslot(kvm, gfn)->id; 1047 } 1048 1049 static inline gfn_t 1050 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1051 { 1052 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1053 1054 return slot->base_gfn + gfn_offset; 1055 } 1056 1057 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1058 { 1059 return (gpa_t)gfn << PAGE_SHIFT; 1060 } 1061 1062 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1063 { 1064 return (gfn_t)(gpa >> PAGE_SHIFT); 1065 } 1066 1067 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1068 { 1069 return (hpa_t)pfn << PAGE_SHIFT; 1070 } 1071 1072 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1073 gpa_t gpa) 1074 { 1075 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1076 } 1077 1078 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1079 { 1080 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1081 1082 return kvm_is_error_hva(hva); 1083 } 1084 1085 enum kvm_stat_kind { 1086 KVM_STAT_VM, 1087 KVM_STAT_VCPU, 1088 }; 1089 1090 struct kvm_stat_data { 1091 int offset; 1092 struct kvm *kvm; 1093 }; 1094 1095 struct kvm_stats_debugfs_item { 1096 const char *name; 1097 int offset; 1098 enum kvm_stat_kind kind; 1099 }; 1100 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1101 extern struct dentry *kvm_debugfs_dir; 1102 1103 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1104 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1105 { 1106 if (unlikely(kvm->mmu_notifier_count)) 1107 return 1; 1108 /* 1109 * Ensure the read of mmu_notifier_count happens before the read 1110 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1111 * mmu_notifier_invalidate_range_end to make sure that the caller 1112 * either sees the old (non-zero) value of mmu_notifier_count or 1113 * the new (incremented) value of mmu_notifier_seq. 1114 * PowerPC Book3s HV KVM calls this under a per-page lock 1115 * rather than under kvm->mmu_lock, for scalability, so 1116 * can't rely on kvm->mmu_lock to keep things ordered. 1117 */ 1118 smp_rmb(); 1119 if (kvm->mmu_notifier_seq != mmu_seq) 1120 return 1; 1121 return 0; 1122 } 1123 #endif 1124 1125 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1126 1127 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1128 1129 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1130 int kvm_set_irq_routing(struct kvm *kvm, 1131 const struct kvm_irq_routing_entry *entries, 1132 unsigned nr, 1133 unsigned flags); 1134 int kvm_set_routing_entry(struct kvm *kvm, 1135 struct kvm_kernel_irq_routing_entry *e, 1136 const struct kvm_irq_routing_entry *ue); 1137 void kvm_free_irq_routing(struct kvm *kvm); 1138 1139 #else 1140 1141 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1142 1143 #endif 1144 1145 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1146 1147 #ifdef CONFIG_HAVE_KVM_EVENTFD 1148 1149 void kvm_eventfd_init(struct kvm *kvm); 1150 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1151 1152 #ifdef CONFIG_HAVE_KVM_IRQFD 1153 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1154 void kvm_irqfd_release(struct kvm *kvm); 1155 void kvm_irq_routing_update(struct kvm *); 1156 #else 1157 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1158 { 1159 return -EINVAL; 1160 } 1161 1162 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1163 #endif 1164 1165 #else 1166 1167 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1168 1169 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1170 { 1171 return -EINVAL; 1172 } 1173 1174 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1175 1176 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1177 static inline void kvm_irq_routing_update(struct kvm *kvm) 1178 { 1179 } 1180 #endif 1181 1182 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1183 { 1184 return -ENOSYS; 1185 } 1186 1187 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1188 1189 void kvm_arch_irq_routing_update(struct kvm *kvm); 1190 1191 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1192 { 1193 /* 1194 * Ensure the rest of the request is published to kvm_check_request's 1195 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1196 */ 1197 smp_wmb(); 1198 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1199 } 1200 1201 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1202 { 1203 return READ_ONCE(vcpu->requests); 1204 } 1205 1206 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1207 { 1208 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1209 } 1210 1211 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1212 { 1213 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1214 } 1215 1216 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1217 { 1218 if (kvm_test_request(req, vcpu)) { 1219 kvm_clear_request(req, vcpu); 1220 1221 /* 1222 * Ensure the rest of the request is visible to kvm_check_request's 1223 * caller. Paired with the smp_wmb in kvm_make_request. 1224 */ 1225 smp_mb__after_atomic(); 1226 return true; 1227 } else { 1228 return false; 1229 } 1230 } 1231 1232 extern bool kvm_rebooting; 1233 1234 extern unsigned int halt_poll_ns; 1235 extern unsigned int halt_poll_ns_grow; 1236 extern unsigned int halt_poll_ns_grow_start; 1237 extern unsigned int halt_poll_ns_shrink; 1238 1239 struct kvm_device { 1240 struct kvm_device_ops *ops; 1241 struct kvm *kvm; 1242 void *private; 1243 struct list_head vm_node; 1244 }; 1245 1246 /* create, destroy, and name are mandatory */ 1247 struct kvm_device_ops { 1248 const char *name; 1249 1250 /* 1251 * create is called holding kvm->lock and any operations not suitable 1252 * to do while holding the lock should be deferred to init (see 1253 * below). 1254 */ 1255 int (*create)(struct kvm_device *dev, u32 type); 1256 1257 /* 1258 * init is called after create if create is successful and is called 1259 * outside of holding kvm->lock. 1260 */ 1261 void (*init)(struct kvm_device *dev); 1262 1263 /* 1264 * Destroy is responsible for freeing dev. 1265 * 1266 * Destroy may be called before or after destructors are called 1267 * on emulated I/O regions, depending on whether a reference is 1268 * held by a vcpu or other kvm component that gets destroyed 1269 * after the emulated I/O. 1270 */ 1271 void (*destroy)(struct kvm_device *dev); 1272 1273 /* 1274 * Release is an alternative method to free the device. It is 1275 * called when the device file descriptor is closed. Once 1276 * release is called, the destroy method will not be called 1277 * anymore as the device is removed from the device list of 1278 * the VM. kvm->lock is held. 1279 */ 1280 void (*release)(struct kvm_device *dev); 1281 1282 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1283 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1284 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1285 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1286 unsigned long arg); 1287 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1288 }; 1289 1290 void kvm_device_get(struct kvm_device *dev); 1291 void kvm_device_put(struct kvm_device *dev); 1292 struct kvm_device *kvm_device_from_filp(struct file *filp); 1293 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1294 void kvm_unregister_device_ops(u32 type); 1295 1296 extern struct kvm_device_ops kvm_mpic_ops; 1297 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1298 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1299 1300 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1301 1302 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1303 { 1304 vcpu->spin_loop.in_spin_loop = val; 1305 } 1306 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1307 { 1308 vcpu->spin_loop.dy_eligible = val; 1309 } 1310 1311 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1312 1313 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1314 { 1315 } 1316 1317 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1318 { 1319 } 1320 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1321 1322 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1323 bool kvm_arch_has_irq_bypass(void); 1324 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1325 struct irq_bypass_producer *); 1326 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1327 struct irq_bypass_producer *); 1328 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1329 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1330 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1331 uint32_t guest_irq, bool set); 1332 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1333 1334 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1335 /* If we wakeup during the poll time, was it a sucessful poll? */ 1336 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1337 { 1338 return vcpu->valid_wakeup; 1339 } 1340 1341 #else 1342 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1343 { 1344 return true; 1345 } 1346 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1347 1348 #ifdef CONFIG_HAVE_KVM_NO_POLL 1349 /* Callback that tells if we must not poll */ 1350 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1351 #else 1352 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1353 { 1354 return false; 1355 } 1356 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1357 1358 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1359 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1360 unsigned int ioctl, unsigned long arg); 1361 #else 1362 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1363 unsigned int ioctl, 1364 unsigned long arg) 1365 { 1366 return -ENOIOCTLCMD; 1367 } 1368 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1369 1370 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1371 unsigned long start, unsigned long end, bool blockable); 1372 1373 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1374 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1375 #else 1376 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1377 { 1378 return 0; 1379 } 1380 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1381 1382 #endif 1383