1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of install_new_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_ADDRESS_SPACE_NUM 84 #define KVM_ADDRESS_SPACE_NUM 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 152 153 static inline bool is_error_page(struct page *page) 154 { 155 return IS_ERR(page); 156 } 157 158 #define KVM_REQUEST_MASK GENMASK(7,0) 159 #define KVM_REQUEST_NO_WAKEUP BIT(8) 160 #define KVM_REQUEST_WAIT BIT(9) 161 #define KVM_REQUEST_NO_ACTION BIT(10) 162 /* 163 * Architecture-independent vcpu->requests bit members 164 * Bits 3-7 are reserved for more arch-independent bits. 165 */ 166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 168 #define KVM_REQ_UNBLOCK 2 169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 170 #define KVM_REQUEST_ARCH_BASE 8 171 172 /* 173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 178 * guarantee the vCPU received an IPI and has actually exited guest mode. 179 */ 180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 181 182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 185 }) 186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 187 188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 189 unsigned long *vcpu_bitmap); 190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 192 struct kvm_vcpu *except); 193 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 194 unsigned long *vcpu_bitmap); 195 196 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 197 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 198 199 extern struct mutex kvm_lock; 200 extern struct list_head vm_list; 201 202 struct kvm_io_range { 203 gpa_t addr; 204 int len; 205 struct kvm_io_device *dev; 206 }; 207 208 #define NR_IOBUS_DEVS 1000 209 210 struct kvm_io_bus { 211 int dev_count; 212 int ioeventfd_count; 213 struct kvm_io_range range[]; 214 }; 215 216 enum kvm_bus { 217 KVM_MMIO_BUS, 218 KVM_PIO_BUS, 219 KVM_VIRTIO_CCW_NOTIFY_BUS, 220 KVM_FAST_MMIO_BUS, 221 KVM_NR_BUSES 222 }; 223 224 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, const void *val); 226 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 227 gpa_t addr, int len, const void *val, long cookie); 228 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 229 int len, void *val); 230 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 231 int len, struct kvm_io_device *dev); 232 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 233 struct kvm_io_device *dev); 234 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 235 gpa_t addr); 236 237 #ifdef CONFIG_KVM_ASYNC_PF 238 struct kvm_async_pf { 239 struct work_struct work; 240 struct list_head link; 241 struct list_head queue; 242 struct kvm_vcpu *vcpu; 243 struct mm_struct *mm; 244 gpa_t cr2_or_gpa; 245 unsigned long addr; 246 struct kvm_arch_async_pf arch; 247 bool wakeup_all; 248 bool notpresent_injected; 249 }; 250 251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 254 unsigned long hva, struct kvm_arch_async_pf *arch); 255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 256 #endif 257 258 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 259 struct kvm_gfn_range { 260 struct kvm_memory_slot *slot; 261 gfn_t start; 262 gfn_t end; 263 pte_t pte; 264 bool may_block; 265 }; 266 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 267 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 268 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 269 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 270 #endif 271 272 enum { 273 OUTSIDE_GUEST_MODE, 274 IN_GUEST_MODE, 275 EXITING_GUEST_MODE, 276 READING_SHADOW_PAGE_TABLES, 277 }; 278 279 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 280 281 struct kvm_host_map { 282 /* 283 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 284 * a 'struct page' for it. When using mem= kernel parameter some memory 285 * can be used as guest memory but they are not managed by host 286 * kernel). 287 * If 'pfn' is not managed by the host kernel, this field is 288 * initialized to KVM_UNMAPPED_PAGE. 289 */ 290 struct page *page; 291 void *hva; 292 kvm_pfn_t pfn; 293 kvm_pfn_t gfn; 294 }; 295 296 /* 297 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 298 * directly to check for that. 299 */ 300 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 301 { 302 return !!map->hva; 303 } 304 305 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 306 { 307 return single_task_running() && !need_resched() && ktime_before(cur, stop); 308 } 309 310 /* 311 * Sometimes a large or cross-page mmio needs to be broken up into separate 312 * exits for userspace servicing. 313 */ 314 struct kvm_mmio_fragment { 315 gpa_t gpa; 316 void *data; 317 unsigned len; 318 }; 319 320 struct kvm_vcpu { 321 struct kvm *kvm; 322 #ifdef CONFIG_PREEMPT_NOTIFIERS 323 struct preempt_notifier preempt_notifier; 324 #endif 325 int cpu; 326 int vcpu_id; /* id given by userspace at creation */ 327 int vcpu_idx; /* index in kvm->vcpus array */ 328 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 329 #ifdef CONFIG_PROVE_RCU 330 int srcu_depth; 331 #endif 332 int mode; 333 u64 requests; 334 unsigned long guest_debug; 335 336 struct mutex mutex; 337 struct kvm_run *run; 338 339 #ifndef __KVM_HAVE_ARCH_WQP 340 struct rcuwait wait; 341 #endif 342 struct pid __rcu *pid; 343 int sigset_active; 344 sigset_t sigset; 345 unsigned int halt_poll_ns; 346 bool valid_wakeup; 347 348 #ifdef CONFIG_HAS_IOMEM 349 int mmio_needed; 350 int mmio_read_completed; 351 int mmio_is_write; 352 int mmio_cur_fragment; 353 int mmio_nr_fragments; 354 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 355 #endif 356 357 #ifdef CONFIG_KVM_ASYNC_PF 358 struct { 359 u32 queued; 360 struct list_head queue; 361 struct list_head done; 362 spinlock_t lock; 363 } async_pf; 364 #endif 365 366 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 367 /* 368 * Cpu relax intercept or pause loop exit optimization 369 * in_spin_loop: set when a vcpu does a pause loop exit 370 * or cpu relax intercepted. 371 * dy_eligible: indicates whether vcpu is eligible for directed yield. 372 */ 373 struct { 374 bool in_spin_loop; 375 bool dy_eligible; 376 } spin_loop; 377 #endif 378 bool preempted; 379 bool ready; 380 struct kvm_vcpu_arch arch; 381 struct kvm_vcpu_stat stat; 382 char stats_id[KVM_STATS_NAME_SIZE]; 383 struct kvm_dirty_ring dirty_ring; 384 385 /* 386 * The most recently used memslot by this vCPU and the slots generation 387 * for which it is valid. 388 * No wraparound protection is needed since generations won't overflow in 389 * thousands of years, even assuming 1M memslot operations per second. 390 */ 391 struct kvm_memory_slot *last_used_slot; 392 u64 last_used_slot_gen; 393 }; 394 395 /* 396 * Start accounting time towards a guest. 397 * Must be called before entering guest context. 398 */ 399 static __always_inline void guest_timing_enter_irqoff(void) 400 { 401 /* 402 * This is running in ioctl context so its safe to assume that it's the 403 * stime pending cputime to flush. 404 */ 405 instrumentation_begin(); 406 vtime_account_guest_enter(); 407 instrumentation_end(); 408 } 409 410 /* 411 * Enter guest context and enter an RCU extended quiescent state. 412 * 413 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 414 * unsafe to use any code which may directly or indirectly use RCU, tracing 415 * (including IRQ flag tracing), or lockdep. All code in this period must be 416 * non-instrumentable. 417 */ 418 static __always_inline void guest_context_enter_irqoff(void) 419 { 420 /* 421 * KVM does not hold any references to rcu protected data when it 422 * switches CPU into a guest mode. In fact switching to a guest mode 423 * is very similar to exiting to userspace from rcu point of view. In 424 * addition CPU may stay in a guest mode for quite a long time (up to 425 * one time slice). Lets treat guest mode as quiescent state, just like 426 * we do with user-mode execution. 427 */ 428 if (!context_tracking_guest_enter()) { 429 instrumentation_begin(); 430 rcu_virt_note_context_switch(); 431 instrumentation_end(); 432 } 433 } 434 435 /* 436 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 437 * guest_state_enter_irqoff(). 438 */ 439 static __always_inline void guest_enter_irqoff(void) 440 { 441 guest_timing_enter_irqoff(); 442 guest_context_enter_irqoff(); 443 } 444 445 /** 446 * guest_state_enter_irqoff - Fixup state when entering a guest 447 * 448 * Entry to a guest will enable interrupts, but the kernel state is interrupts 449 * disabled when this is invoked. Also tell RCU about it. 450 * 451 * 1) Trace interrupts on state 452 * 2) Invoke context tracking if enabled to adjust RCU state 453 * 3) Tell lockdep that interrupts are enabled 454 * 455 * Invoked from architecture specific code before entering a guest. 456 * Must be called with interrupts disabled and the caller must be 457 * non-instrumentable. 458 * The caller has to invoke guest_timing_enter_irqoff() before this. 459 * 460 * Note: this is analogous to exit_to_user_mode(). 461 */ 462 static __always_inline void guest_state_enter_irqoff(void) 463 { 464 instrumentation_begin(); 465 trace_hardirqs_on_prepare(); 466 lockdep_hardirqs_on_prepare(); 467 instrumentation_end(); 468 469 guest_context_enter_irqoff(); 470 lockdep_hardirqs_on(CALLER_ADDR0); 471 } 472 473 /* 474 * Exit guest context and exit an RCU extended quiescent state. 475 * 476 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 477 * unsafe to use any code which may directly or indirectly use RCU, tracing 478 * (including IRQ flag tracing), or lockdep. All code in this period must be 479 * non-instrumentable. 480 */ 481 static __always_inline void guest_context_exit_irqoff(void) 482 { 483 context_tracking_guest_exit(); 484 } 485 486 /* 487 * Stop accounting time towards a guest. 488 * Must be called after exiting guest context. 489 */ 490 static __always_inline void guest_timing_exit_irqoff(void) 491 { 492 instrumentation_begin(); 493 /* Flush the guest cputime we spent on the guest */ 494 vtime_account_guest_exit(); 495 instrumentation_end(); 496 } 497 498 /* 499 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 500 * guest_timing_exit_irqoff(). 501 */ 502 static __always_inline void guest_exit_irqoff(void) 503 { 504 guest_context_exit_irqoff(); 505 guest_timing_exit_irqoff(); 506 } 507 508 static inline void guest_exit(void) 509 { 510 unsigned long flags; 511 512 local_irq_save(flags); 513 guest_exit_irqoff(); 514 local_irq_restore(flags); 515 } 516 517 /** 518 * guest_state_exit_irqoff - Establish state when returning from guest mode 519 * 520 * Entry from a guest disables interrupts, but guest mode is traced as 521 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 522 * 523 * 1) Tell lockdep that interrupts are disabled 524 * 2) Invoke context tracking if enabled to reactivate RCU 525 * 3) Trace interrupts off state 526 * 527 * Invoked from architecture specific code after exiting a guest. 528 * Must be invoked with interrupts disabled and the caller must be 529 * non-instrumentable. 530 * The caller has to invoke guest_timing_exit_irqoff() after this. 531 * 532 * Note: this is analogous to enter_from_user_mode(). 533 */ 534 static __always_inline void guest_state_exit_irqoff(void) 535 { 536 lockdep_hardirqs_off(CALLER_ADDR0); 537 guest_context_exit_irqoff(); 538 539 instrumentation_begin(); 540 trace_hardirqs_off_finish(); 541 instrumentation_end(); 542 } 543 544 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 545 { 546 /* 547 * The memory barrier ensures a previous write to vcpu->requests cannot 548 * be reordered with the read of vcpu->mode. It pairs with the general 549 * memory barrier following the write of vcpu->mode in VCPU RUN. 550 */ 551 smp_mb__before_atomic(); 552 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 553 } 554 555 /* 556 * Some of the bitops functions do not support too long bitmaps. 557 * This number must be determined not to exceed such limits. 558 */ 559 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 560 561 /* 562 * Since at idle each memslot belongs to two memslot sets it has to contain 563 * two embedded nodes for each data structure that it forms a part of. 564 * 565 * Two memslot sets (one active and one inactive) are necessary so the VM 566 * continues to run on one memslot set while the other is being modified. 567 * 568 * These two memslot sets normally point to the same set of memslots. 569 * They can, however, be desynchronized when performing a memslot management 570 * operation by replacing the memslot to be modified by its copy. 571 * After the operation is complete, both memslot sets once again point to 572 * the same, common set of memslot data. 573 * 574 * The memslots themselves are independent of each other so they can be 575 * individually added or deleted. 576 */ 577 struct kvm_memory_slot { 578 struct hlist_node id_node[2]; 579 struct interval_tree_node hva_node[2]; 580 struct rb_node gfn_node[2]; 581 gfn_t base_gfn; 582 unsigned long npages; 583 unsigned long *dirty_bitmap; 584 struct kvm_arch_memory_slot arch; 585 unsigned long userspace_addr; 586 u32 flags; 587 short id; 588 u16 as_id; 589 }; 590 591 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 592 { 593 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 594 } 595 596 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 597 { 598 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 599 } 600 601 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 602 { 603 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 604 605 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 606 } 607 608 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 609 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 610 #endif 611 612 struct kvm_s390_adapter_int { 613 u64 ind_addr; 614 u64 summary_addr; 615 u64 ind_offset; 616 u32 summary_offset; 617 u32 adapter_id; 618 }; 619 620 struct kvm_hv_sint { 621 u32 vcpu; 622 u32 sint; 623 }; 624 625 struct kvm_xen_evtchn { 626 u32 port; 627 u32 vcpu_id; 628 int vcpu_idx; 629 u32 priority; 630 }; 631 632 struct kvm_kernel_irq_routing_entry { 633 u32 gsi; 634 u32 type; 635 int (*set)(struct kvm_kernel_irq_routing_entry *e, 636 struct kvm *kvm, int irq_source_id, int level, 637 bool line_status); 638 union { 639 struct { 640 unsigned irqchip; 641 unsigned pin; 642 } irqchip; 643 struct { 644 u32 address_lo; 645 u32 address_hi; 646 u32 data; 647 u32 flags; 648 u32 devid; 649 } msi; 650 struct kvm_s390_adapter_int adapter; 651 struct kvm_hv_sint hv_sint; 652 struct kvm_xen_evtchn xen_evtchn; 653 }; 654 struct hlist_node link; 655 }; 656 657 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 658 struct kvm_irq_routing_table { 659 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 660 u32 nr_rt_entries; 661 /* 662 * Array indexed by gsi. Each entry contains list of irq chips 663 * the gsi is connected to. 664 */ 665 struct hlist_head map[]; 666 }; 667 #endif 668 669 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 670 671 #ifndef KVM_INTERNAL_MEM_SLOTS 672 #define KVM_INTERNAL_MEM_SLOTS 0 673 #endif 674 675 #define KVM_MEM_SLOTS_NUM SHRT_MAX 676 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 677 678 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 679 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 680 { 681 return 0; 682 } 683 #endif 684 685 struct kvm_memslots { 686 u64 generation; 687 atomic_long_t last_used_slot; 688 struct rb_root_cached hva_tree; 689 struct rb_root gfn_tree; 690 /* 691 * The mapping table from slot id to memslot. 692 * 693 * 7-bit bucket count matches the size of the old id to index array for 694 * 512 slots, while giving good performance with this slot count. 695 * Higher bucket counts bring only small performance improvements but 696 * always result in higher memory usage (even for lower memslot counts). 697 */ 698 DECLARE_HASHTABLE(id_hash, 7); 699 int node_idx; 700 }; 701 702 struct kvm { 703 #ifdef KVM_HAVE_MMU_RWLOCK 704 rwlock_t mmu_lock; 705 #else 706 spinlock_t mmu_lock; 707 #endif /* KVM_HAVE_MMU_RWLOCK */ 708 709 struct mutex slots_lock; 710 711 /* 712 * Protects the arch-specific fields of struct kvm_memory_slots in 713 * use by the VM. To be used under the slots_lock (above) or in a 714 * kvm->srcu critical section where acquiring the slots_lock would 715 * lead to deadlock with the synchronize_srcu in 716 * install_new_memslots. 717 */ 718 struct mutex slots_arch_lock; 719 struct mm_struct *mm; /* userspace tied to this vm */ 720 unsigned long nr_memslot_pages; 721 /* The two memslot sets - active and inactive (per address space) */ 722 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 723 /* The current active memslot set for each address space */ 724 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 725 struct xarray vcpu_array; 726 /* 727 * Protected by slots_lock, but can be read outside if an 728 * incorrect answer is acceptable. 729 */ 730 atomic_t nr_memslots_dirty_logging; 731 732 /* Used to wait for completion of MMU notifiers. */ 733 spinlock_t mn_invalidate_lock; 734 unsigned long mn_active_invalidate_count; 735 struct rcuwait mn_memslots_update_rcuwait; 736 737 /* For management / invalidation of gfn_to_pfn_caches */ 738 spinlock_t gpc_lock; 739 struct list_head gpc_list; 740 741 /* 742 * created_vcpus is protected by kvm->lock, and is incremented 743 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 744 * incremented after storing the kvm_vcpu pointer in vcpus, 745 * and is accessed atomically. 746 */ 747 atomic_t online_vcpus; 748 int max_vcpus; 749 int created_vcpus; 750 int last_boosted_vcpu; 751 struct list_head vm_list; 752 struct mutex lock; 753 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 754 #ifdef CONFIG_HAVE_KVM_EVENTFD 755 struct { 756 spinlock_t lock; 757 struct list_head items; 758 struct list_head resampler_list; 759 struct mutex resampler_lock; 760 } irqfds; 761 struct list_head ioeventfds; 762 #endif 763 struct kvm_vm_stat stat; 764 struct kvm_arch arch; 765 refcount_t users_count; 766 #ifdef CONFIG_KVM_MMIO 767 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 768 spinlock_t ring_lock; 769 struct list_head coalesced_zones; 770 #endif 771 772 struct mutex irq_lock; 773 #ifdef CONFIG_HAVE_KVM_IRQCHIP 774 /* 775 * Update side is protected by irq_lock. 776 */ 777 struct kvm_irq_routing_table __rcu *irq_routing; 778 #endif 779 #ifdef CONFIG_HAVE_KVM_IRQFD 780 struct hlist_head irq_ack_notifier_list; 781 #endif 782 783 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 784 struct mmu_notifier mmu_notifier; 785 unsigned long mmu_invalidate_seq; 786 long mmu_invalidate_in_progress; 787 unsigned long mmu_invalidate_range_start; 788 unsigned long mmu_invalidate_range_end; 789 #endif 790 struct list_head devices; 791 u64 manual_dirty_log_protect; 792 struct dentry *debugfs_dentry; 793 struct kvm_stat_data **debugfs_stat_data; 794 struct srcu_struct srcu; 795 struct srcu_struct irq_srcu; 796 pid_t userspace_pid; 797 bool override_halt_poll_ns; 798 unsigned int max_halt_poll_ns; 799 u32 dirty_ring_size; 800 bool dirty_ring_with_bitmap; 801 bool vm_bugged; 802 bool vm_dead; 803 804 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 805 struct notifier_block pm_notifier; 806 #endif 807 char stats_id[KVM_STATS_NAME_SIZE]; 808 }; 809 810 #define kvm_err(fmt, ...) \ 811 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 812 #define kvm_info(fmt, ...) \ 813 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 814 #define kvm_debug(fmt, ...) \ 815 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 816 #define kvm_debug_ratelimited(fmt, ...) \ 817 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 818 ## __VA_ARGS__) 819 #define kvm_pr_unimpl(fmt, ...) \ 820 pr_err_ratelimited("kvm [%i]: " fmt, \ 821 task_tgid_nr(current), ## __VA_ARGS__) 822 823 /* The guest did something we don't support. */ 824 #define vcpu_unimpl(vcpu, fmt, ...) \ 825 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 826 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 827 828 #define vcpu_debug(vcpu, fmt, ...) \ 829 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 830 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 831 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 832 ## __VA_ARGS__) 833 #define vcpu_err(vcpu, fmt, ...) \ 834 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 835 836 static inline void kvm_vm_dead(struct kvm *kvm) 837 { 838 kvm->vm_dead = true; 839 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 840 } 841 842 static inline void kvm_vm_bugged(struct kvm *kvm) 843 { 844 kvm->vm_bugged = true; 845 kvm_vm_dead(kvm); 846 } 847 848 849 #define KVM_BUG(cond, kvm, fmt...) \ 850 ({ \ 851 int __ret = (cond); \ 852 \ 853 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 854 kvm_vm_bugged(kvm); \ 855 unlikely(__ret); \ 856 }) 857 858 #define KVM_BUG_ON(cond, kvm) \ 859 ({ \ 860 int __ret = (cond); \ 861 \ 862 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 863 kvm_vm_bugged(kvm); \ 864 unlikely(__ret); \ 865 }) 866 867 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 868 { 869 #ifdef CONFIG_PROVE_RCU 870 WARN_ONCE(vcpu->srcu_depth++, 871 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 872 #endif 873 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 874 } 875 876 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 877 { 878 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 879 880 #ifdef CONFIG_PROVE_RCU 881 WARN_ONCE(--vcpu->srcu_depth, 882 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 883 #endif 884 } 885 886 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 887 { 888 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 889 } 890 891 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 892 { 893 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 894 lockdep_is_held(&kvm->slots_lock) || 895 !refcount_read(&kvm->users_count)); 896 } 897 898 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 899 { 900 int num_vcpus = atomic_read(&kvm->online_vcpus); 901 i = array_index_nospec(i, num_vcpus); 902 903 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 904 smp_rmb(); 905 return xa_load(&kvm->vcpu_array, i); 906 } 907 908 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 909 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 910 (atomic_read(&kvm->online_vcpus) - 1)) 911 912 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 913 { 914 struct kvm_vcpu *vcpu = NULL; 915 unsigned long i; 916 917 if (id < 0) 918 return NULL; 919 if (id < KVM_MAX_VCPUS) 920 vcpu = kvm_get_vcpu(kvm, id); 921 if (vcpu && vcpu->vcpu_id == id) 922 return vcpu; 923 kvm_for_each_vcpu(i, vcpu, kvm) 924 if (vcpu->vcpu_id == id) 925 return vcpu; 926 return NULL; 927 } 928 929 void kvm_destroy_vcpus(struct kvm *kvm); 930 931 void vcpu_load(struct kvm_vcpu *vcpu); 932 void vcpu_put(struct kvm_vcpu *vcpu); 933 934 #ifdef __KVM_HAVE_IOAPIC 935 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 936 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 937 #else 938 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 939 { 940 } 941 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 942 { 943 } 944 #endif 945 946 #ifdef CONFIG_HAVE_KVM_IRQFD 947 int kvm_irqfd_init(void); 948 void kvm_irqfd_exit(void); 949 #else 950 static inline int kvm_irqfd_init(void) 951 { 952 return 0; 953 } 954 955 static inline void kvm_irqfd_exit(void) 956 { 957 } 958 #endif 959 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 960 struct module *module); 961 void kvm_exit(void); 962 963 void kvm_get_kvm(struct kvm *kvm); 964 bool kvm_get_kvm_safe(struct kvm *kvm); 965 void kvm_put_kvm(struct kvm *kvm); 966 bool file_is_kvm(struct file *file); 967 void kvm_put_kvm_no_destroy(struct kvm *kvm); 968 969 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 970 { 971 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 972 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 973 lockdep_is_held(&kvm->slots_lock) || 974 !refcount_read(&kvm->users_count)); 975 } 976 977 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 978 { 979 return __kvm_memslots(kvm, 0); 980 } 981 982 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 983 { 984 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 985 986 return __kvm_memslots(vcpu->kvm, as_id); 987 } 988 989 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 990 { 991 return RB_EMPTY_ROOT(&slots->gfn_tree); 992 } 993 994 #define kvm_for_each_memslot(memslot, bkt, slots) \ 995 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 996 if (WARN_ON_ONCE(!memslot->npages)) { \ 997 } else 998 999 static inline 1000 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1001 { 1002 struct kvm_memory_slot *slot; 1003 int idx = slots->node_idx; 1004 1005 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1006 if (slot->id == id) 1007 return slot; 1008 } 1009 1010 return NULL; 1011 } 1012 1013 /* Iterator used for walking memslots that overlap a gfn range. */ 1014 struct kvm_memslot_iter { 1015 struct kvm_memslots *slots; 1016 struct rb_node *node; 1017 struct kvm_memory_slot *slot; 1018 }; 1019 1020 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1021 { 1022 iter->node = rb_next(iter->node); 1023 if (!iter->node) 1024 return; 1025 1026 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1027 } 1028 1029 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1030 struct kvm_memslots *slots, 1031 gfn_t start) 1032 { 1033 int idx = slots->node_idx; 1034 struct rb_node *tmp; 1035 struct kvm_memory_slot *slot; 1036 1037 iter->slots = slots; 1038 1039 /* 1040 * Find the so called "upper bound" of a key - the first node that has 1041 * its key strictly greater than the searched one (the start gfn in our case). 1042 */ 1043 iter->node = NULL; 1044 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1045 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1046 if (start < slot->base_gfn) { 1047 iter->node = tmp; 1048 tmp = tmp->rb_left; 1049 } else { 1050 tmp = tmp->rb_right; 1051 } 1052 } 1053 1054 /* 1055 * Find the slot with the lowest gfn that can possibly intersect with 1056 * the range, so we'll ideally have slot start <= range start 1057 */ 1058 if (iter->node) { 1059 /* 1060 * A NULL previous node means that the very first slot 1061 * already has a higher start gfn. 1062 * In this case slot start > range start. 1063 */ 1064 tmp = rb_prev(iter->node); 1065 if (tmp) 1066 iter->node = tmp; 1067 } else { 1068 /* a NULL node below means no slots */ 1069 iter->node = rb_last(&slots->gfn_tree); 1070 } 1071 1072 if (iter->node) { 1073 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1074 1075 /* 1076 * It is possible in the slot start < range start case that the 1077 * found slot ends before or at range start (slot end <= range start) 1078 * and so it does not overlap the requested range. 1079 * 1080 * In such non-overlapping case the next slot (if it exists) will 1081 * already have slot start > range start, otherwise the logic above 1082 * would have found it instead of the current slot. 1083 */ 1084 if (iter->slot->base_gfn + iter->slot->npages <= start) 1085 kvm_memslot_iter_next(iter); 1086 } 1087 } 1088 1089 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1090 { 1091 if (!iter->node) 1092 return false; 1093 1094 /* 1095 * If this slot starts beyond or at the end of the range so does 1096 * every next one 1097 */ 1098 return iter->slot->base_gfn < end; 1099 } 1100 1101 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1102 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1103 for (kvm_memslot_iter_start(iter, slots, start); \ 1104 kvm_memslot_iter_is_valid(iter, end); \ 1105 kvm_memslot_iter_next(iter)) 1106 1107 /* 1108 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1109 * - create a new memory slot 1110 * - delete an existing memory slot 1111 * - modify an existing memory slot 1112 * -- move it in the guest physical memory space 1113 * -- just change its flags 1114 * 1115 * Since flags can be changed by some of these operations, the following 1116 * differentiation is the best we can do for __kvm_set_memory_region(): 1117 */ 1118 enum kvm_mr_change { 1119 KVM_MR_CREATE, 1120 KVM_MR_DELETE, 1121 KVM_MR_MOVE, 1122 KVM_MR_FLAGS_ONLY, 1123 }; 1124 1125 int kvm_set_memory_region(struct kvm *kvm, 1126 const struct kvm_userspace_memory_region *mem); 1127 int __kvm_set_memory_region(struct kvm *kvm, 1128 const struct kvm_userspace_memory_region *mem); 1129 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1130 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1131 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1132 const struct kvm_memory_slot *old, 1133 struct kvm_memory_slot *new, 1134 enum kvm_mr_change change); 1135 void kvm_arch_commit_memory_region(struct kvm *kvm, 1136 struct kvm_memory_slot *old, 1137 const struct kvm_memory_slot *new, 1138 enum kvm_mr_change change); 1139 /* flush all memory translations */ 1140 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1141 /* flush memory translations pointing to 'slot' */ 1142 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1143 struct kvm_memory_slot *slot); 1144 1145 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1146 struct page **pages, int nr_pages); 1147 1148 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1149 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1150 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1151 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1152 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1153 bool *writable); 1154 void kvm_release_page_clean(struct page *page); 1155 void kvm_release_page_dirty(struct page *page); 1156 1157 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1158 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1159 bool *writable); 1160 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1161 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1162 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1163 bool atomic, bool interruptible, bool *async, 1164 bool write_fault, bool *writable, hva_t *hva); 1165 1166 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1167 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1168 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1169 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1170 1171 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1172 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1173 int len); 1174 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1175 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1176 void *data, unsigned long len); 1177 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1178 void *data, unsigned int offset, 1179 unsigned long len); 1180 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1181 int offset, int len); 1182 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1183 unsigned long len); 1184 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1185 void *data, unsigned long len); 1186 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1187 void *data, unsigned int offset, 1188 unsigned long len); 1189 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1190 gpa_t gpa, unsigned long len); 1191 1192 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1193 ({ \ 1194 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1195 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1196 int __ret = -EFAULT; \ 1197 \ 1198 if (!kvm_is_error_hva(__addr)) \ 1199 __ret = get_user(v, __uaddr); \ 1200 __ret; \ 1201 }) 1202 1203 #define kvm_get_guest(kvm, gpa, v) \ 1204 ({ \ 1205 gpa_t __gpa = gpa; \ 1206 struct kvm *__kvm = kvm; \ 1207 \ 1208 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1209 offset_in_page(__gpa), v); \ 1210 }) 1211 1212 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1213 ({ \ 1214 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1215 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1216 int __ret = -EFAULT; \ 1217 \ 1218 if (!kvm_is_error_hva(__addr)) \ 1219 __ret = put_user(v, __uaddr); \ 1220 if (!__ret) \ 1221 mark_page_dirty(kvm, gfn); \ 1222 __ret; \ 1223 }) 1224 1225 #define kvm_put_guest(kvm, gpa, v) \ 1226 ({ \ 1227 gpa_t __gpa = gpa; \ 1228 struct kvm *__kvm = kvm; \ 1229 \ 1230 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1231 offset_in_page(__gpa), v); \ 1232 }) 1233 1234 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1235 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1237 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1238 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1239 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1240 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1241 1242 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1243 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1244 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1245 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1246 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1247 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1248 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1249 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1250 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1251 int len); 1252 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1253 unsigned long len); 1254 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1255 unsigned long len); 1256 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1257 int offset, int len); 1258 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1259 unsigned long len); 1260 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1261 1262 /** 1263 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1264 * 1265 * @gpc: struct gfn_to_pfn_cache object. 1266 * @kvm: pointer to kvm instance. 1267 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1268 * invalidation. 1269 * @usage: indicates if the resulting host physical PFN is used while 1270 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1271 * the cache from MMU notifiers---but not for KVM memslot 1272 * changes!---will also force @vcpu to exit the guest and 1273 * refresh the cache); and/or if the PFN used directly 1274 * by KVM (and thus needs a kernel virtual mapping). 1275 * 1276 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1277 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1278 * the caller before init). 1279 */ 1280 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm, 1281 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage); 1282 1283 /** 1284 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1285 * physical address. 1286 * 1287 * @gpc: struct gfn_to_pfn_cache object. 1288 * @gpa: guest physical address to map. 1289 * @len: sanity check; the range being access must fit a single page. 1290 * 1291 * @return: 0 for success. 1292 * -EINVAL for a mapping which would cross a page boundary. 1293 * -EFAULT for an untranslatable guest physical address. 1294 * 1295 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1296 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1297 * to ensure that the cache is valid before accessing the target page. 1298 */ 1299 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1300 1301 /** 1302 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1303 * 1304 * @gpc: struct gfn_to_pfn_cache object. 1305 * @len: sanity check; the range being access must fit a single page. 1306 * 1307 * @return: %true if the cache is still valid and the address matches. 1308 * %false if the cache is not valid. 1309 * 1310 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1311 * while calling this function, and then continue to hold the lock until the 1312 * access is complete. 1313 * 1314 * Callers in IN_GUEST_MODE may do so without locking, although they should 1315 * still hold a read lock on kvm->scru for the memslot checks. 1316 */ 1317 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1318 1319 /** 1320 * kvm_gpc_refresh - update a previously initialized cache. 1321 * 1322 * @gpc: struct gfn_to_pfn_cache object. 1323 * @len: sanity check; the range being access must fit a single page. 1324 * 1325 * @return: 0 for success. 1326 * -EINVAL for a mapping which would cross a page boundary. 1327 * -EFAULT for an untranslatable guest physical address. 1328 * 1329 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1330 * return from this function does not mean the page can be immediately 1331 * accessed because it may have raced with an invalidation. Callers must 1332 * still lock and check the cache status, as this function does not return 1333 * with the lock still held to permit access. 1334 */ 1335 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1336 1337 /** 1338 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1339 * 1340 * @gpc: struct gfn_to_pfn_cache object. 1341 * 1342 * This removes a cache from the VM's list to be processed on MMU notifier 1343 * invocation. 1344 */ 1345 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1346 1347 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1348 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1349 1350 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1351 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1352 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1353 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1354 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1355 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1356 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1357 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1358 1359 void kvm_flush_remote_tlbs(struct kvm *kvm); 1360 1361 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1362 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1363 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1364 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1365 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1366 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1367 #endif 1368 1369 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 1370 unsigned long end); 1371 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 1372 unsigned long end); 1373 1374 long kvm_arch_dev_ioctl(struct file *filp, 1375 unsigned int ioctl, unsigned long arg); 1376 long kvm_arch_vcpu_ioctl(struct file *filp, 1377 unsigned int ioctl, unsigned long arg); 1378 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1379 1380 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1381 1382 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1383 struct kvm_memory_slot *slot, 1384 gfn_t gfn_offset, 1385 unsigned long mask); 1386 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1387 1388 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1389 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1390 const struct kvm_memory_slot *memslot); 1391 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1392 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1393 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1394 int *is_dirty, struct kvm_memory_slot **memslot); 1395 #endif 1396 1397 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1398 bool line_status); 1399 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1400 struct kvm_enable_cap *cap); 1401 long kvm_arch_vm_ioctl(struct file *filp, 1402 unsigned int ioctl, unsigned long arg); 1403 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1404 unsigned long arg); 1405 1406 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1407 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1408 1409 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1410 struct kvm_translation *tr); 1411 1412 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1413 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1414 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1415 struct kvm_sregs *sregs); 1416 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1417 struct kvm_sregs *sregs); 1418 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1419 struct kvm_mp_state *mp_state); 1420 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1421 struct kvm_mp_state *mp_state); 1422 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1423 struct kvm_guest_debug *dbg); 1424 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1425 1426 int kvm_arch_init(void *opaque); 1427 void kvm_arch_exit(void); 1428 1429 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1430 1431 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1432 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1433 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1434 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1435 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1436 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1437 1438 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1439 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1440 #endif 1441 1442 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1443 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1444 #else 1445 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1446 #endif 1447 1448 int kvm_arch_hardware_enable(void); 1449 void kvm_arch_hardware_disable(void); 1450 int kvm_arch_hardware_setup(void *opaque); 1451 void kvm_arch_hardware_unsetup(void); 1452 int kvm_arch_check_processor_compat(void *opaque); 1453 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1454 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1455 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1456 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1457 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1458 int kvm_arch_post_init_vm(struct kvm *kvm); 1459 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1460 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1461 1462 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1463 /* 1464 * All architectures that want to use vzalloc currently also 1465 * need their own kvm_arch_alloc_vm implementation. 1466 */ 1467 static inline struct kvm *kvm_arch_alloc_vm(void) 1468 { 1469 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1470 } 1471 #endif 1472 1473 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1474 { 1475 kvfree(kvm); 1476 } 1477 1478 #ifndef __KVM_HAVE_ARCH_VM_FREE 1479 static inline void kvm_arch_free_vm(struct kvm *kvm) 1480 { 1481 __kvm_arch_free_vm(kvm); 1482 } 1483 #endif 1484 1485 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1486 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1487 { 1488 return -ENOTSUPP; 1489 } 1490 #endif 1491 1492 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1493 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1494 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1495 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1496 #else 1497 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1498 { 1499 } 1500 1501 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1502 { 1503 } 1504 1505 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1506 { 1507 return false; 1508 } 1509 #endif 1510 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1511 void kvm_arch_start_assignment(struct kvm *kvm); 1512 void kvm_arch_end_assignment(struct kvm *kvm); 1513 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1514 #else 1515 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1516 { 1517 } 1518 1519 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1520 { 1521 } 1522 1523 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1524 { 1525 return false; 1526 } 1527 #endif 1528 1529 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1530 { 1531 #ifdef __KVM_HAVE_ARCH_WQP 1532 return vcpu->arch.waitp; 1533 #else 1534 return &vcpu->wait; 1535 #endif 1536 } 1537 1538 /* 1539 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1540 * true if the vCPU was blocking and was awakened, false otherwise. 1541 */ 1542 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1543 { 1544 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1545 } 1546 1547 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1548 { 1549 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1550 } 1551 1552 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1553 /* 1554 * returns true if the virtual interrupt controller is initialized and 1555 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1556 * controller is dynamically instantiated and this is not always true. 1557 */ 1558 bool kvm_arch_intc_initialized(struct kvm *kvm); 1559 #else 1560 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1561 { 1562 return true; 1563 } 1564 #endif 1565 1566 #ifdef CONFIG_GUEST_PERF_EVENTS 1567 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1568 1569 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1570 void kvm_unregister_perf_callbacks(void); 1571 #else 1572 static inline void kvm_register_perf_callbacks(void *ign) {} 1573 static inline void kvm_unregister_perf_callbacks(void) {} 1574 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1575 1576 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1577 void kvm_arch_destroy_vm(struct kvm *kvm); 1578 void kvm_arch_sync_events(struct kvm *kvm); 1579 1580 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1581 1582 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1583 bool kvm_is_zone_device_page(struct page *page); 1584 1585 struct kvm_irq_ack_notifier { 1586 struct hlist_node link; 1587 unsigned gsi; 1588 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1589 }; 1590 1591 int kvm_irq_map_gsi(struct kvm *kvm, 1592 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1593 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1594 1595 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1596 bool line_status); 1597 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1598 int irq_source_id, int level, bool line_status); 1599 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1600 struct kvm *kvm, int irq_source_id, 1601 int level, bool line_status); 1602 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1603 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1604 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1605 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1606 struct kvm_irq_ack_notifier *kian); 1607 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1608 struct kvm_irq_ack_notifier *kian); 1609 int kvm_request_irq_source_id(struct kvm *kvm); 1610 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1611 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1612 1613 /* 1614 * Returns a pointer to the memslot if it contains gfn. 1615 * Otherwise returns NULL. 1616 */ 1617 static inline struct kvm_memory_slot * 1618 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1619 { 1620 if (!slot) 1621 return NULL; 1622 1623 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1624 return slot; 1625 else 1626 return NULL; 1627 } 1628 1629 /* 1630 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1631 * 1632 * With "approx" set returns the memslot also when the address falls 1633 * in a hole. In that case one of the memslots bordering the hole is 1634 * returned. 1635 */ 1636 static inline struct kvm_memory_slot * 1637 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1638 { 1639 struct kvm_memory_slot *slot; 1640 struct rb_node *node; 1641 int idx = slots->node_idx; 1642 1643 slot = NULL; 1644 for (node = slots->gfn_tree.rb_node; node; ) { 1645 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1646 if (gfn >= slot->base_gfn) { 1647 if (gfn < slot->base_gfn + slot->npages) 1648 return slot; 1649 node = node->rb_right; 1650 } else 1651 node = node->rb_left; 1652 } 1653 1654 return approx ? slot : NULL; 1655 } 1656 1657 static inline struct kvm_memory_slot * 1658 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1659 { 1660 struct kvm_memory_slot *slot; 1661 1662 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1663 slot = try_get_memslot(slot, gfn); 1664 if (slot) 1665 return slot; 1666 1667 slot = search_memslots(slots, gfn, approx); 1668 if (slot) { 1669 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1670 return slot; 1671 } 1672 1673 return NULL; 1674 } 1675 1676 /* 1677 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1678 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1679 * because that would bloat other code too much. 1680 */ 1681 static inline struct kvm_memory_slot * 1682 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1683 { 1684 return ____gfn_to_memslot(slots, gfn, false); 1685 } 1686 1687 static inline unsigned long 1688 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1689 { 1690 /* 1691 * The index was checked originally in search_memslots. To avoid 1692 * that a malicious guest builds a Spectre gadget out of e.g. page 1693 * table walks, do not let the processor speculate loads outside 1694 * the guest's registered memslots. 1695 */ 1696 unsigned long offset = gfn - slot->base_gfn; 1697 offset = array_index_nospec(offset, slot->npages); 1698 return slot->userspace_addr + offset * PAGE_SIZE; 1699 } 1700 1701 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1702 { 1703 return gfn_to_memslot(kvm, gfn)->id; 1704 } 1705 1706 static inline gfn_t 1707 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1708 { 1709 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1710 1711 return slot->base_gfn + gfn_offset; 1712 } 1713 1714 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1715 { 1716 return (gpa_t)gfn << PAGE_SHIFT; 1717 } 1718 1719 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1720 { 1721 return (gfn_t)(gpa >> PAGE_SHIFT); 1722 } 1723 1724 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1725 { 1726 return (hpa_t)pfn << PAGE_SHIFT; 1727 } 1728 1729 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1730 { 1731 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1732 1733 return kvm_is_error_hva(hva); 1734 } 1735 1736 enum kvm_stat_kind { 1737 KVM_STAT_VM, 1738 KVM_STAT_VCPU, 1739 }; 1740 1741 struct kvm_stat_data { 1742 struct kvm *kvm; 1743 const struct _kvm_stats_desc *desc; 1744 enum kvm_stat_kind kind; 1745 }; 1746 1747 struct _kvm_stats_desc { 1748 struct kvm_stats_desc desc; 1749 char name[KVM_STATS_NAME_SIZE]; 1750 }; 1751 1752 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1753 .flags = type | unit | base | \ 1754 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1755 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1756 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1757 .exponent = exp, \ 1758 .size = sz, \ 1759 .bucket_size = bsz 1760 1761 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1762 { \ 1763 { \ 1764 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1765 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1766 }, \ 1767 .name = #stat, \ 1768 } 1769 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1770 { \ 1771 { \ 1772 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1773 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1774 }, \ 1775 .name = #stat, \ 1776 } 1777 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1778 { \ 1779 { \ 1780 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1781 .offset = offsetof(struct kvm_vm_stat, stat) \ 1782 }, \ 1783 .name = #stat, \ 1784 } 1785 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1786 { \ 1787 { \ 1788 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1789 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1790 }, \ 1791 .name = #stat, \ 1792 } 1793 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1794 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1795 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1796 1797 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1798 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1799 unit, base, exponent, 1, 0) 1800 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1801 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1802 unit, base, exponent, 1, 0) 1803 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1804 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1805 unit, base, exponent, 1, 0) 1806 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1807 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1808 unit, base, exponent, sz, bsz) 1809 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1810 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1811 unit, base, exponent, sz, 0) 1812 1813 /* Cumulative counter, read/write */ 1814 #define STATS_DESC_COUNTER(SCOPE, name) \ 1815 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1816 KVM_STATS_BASE_POW10, 0) 1817 /* Instantaneous counter, read only */ 1818 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1819 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1820 KVM_STATS_BASE_POW10, 0) 1821 /* Peak counter, read/write */ 1822 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1823 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1824 KVM_STATS_BASE_POW10, 0) 1825 1826 /* Instantaneous boolean value, read only */ 1827 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1828 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1829 KVM_STATS_BASE_POW10, 0) 1830 /* Peak (sticky) boolean value, read/write */ 1831 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1832 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1833 KVM_STATS_BASE_POW10, 0) 1834 1835 /* Cumulative time in nanosecond */ 1836 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1837 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1838 KVM_STATS_BASE_POW10, -9) 1839 /* Linear histogram for time in nanosecond */ 1840 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1841 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1842 KVM_STATS_BASE_POW10, -9, sz, bsz) 1843 /* Logarithmic histogram for time in nanosecond */ 1844 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1845 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1846 KVM_STATS_BASE_POW10, -9, sz) 1847 1848 #define KVM_GENERIC_VM_STATS() \ 1849 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1850 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1851 1852 #define KVM_GENERIC_VCPU_STATS() \ 1853 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1854 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1855 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1856 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1857 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1858 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1859 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1860 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1861 HALT_POLL_HIST_COUNT), \ 1862 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1863 HALT_POLL_HIST_COUNT), \ 1864 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1865 HALT_POLL_HIST_COUNT), \ 1866 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1867 1868 extern struct dentry *kvm_debugfs_dir; 1869 1870 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1871 const struct _kvm_stats_desc *desc, 1872 void *stats, size_t size_stats, 1873 char __user *user_buffer, size_t size, loff_t *offset); 1874 1875 /** 1876 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1877 * statistics data. 1878 * 1879 * @data: start address of the stats data 1880 * @size: the number of bucket of the stats data 1881 * @value: the new value used to update the linear histogram's bucket 1882 * @bucket_size: the size (width) of a bucket 1883 */ 1884 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1885 u64 value, size_t bucket_size) 1886 { 1887 size_t index = div64_u64(value, bucket_size); 1888 1889 index = min(index, size - 1); 1890 ++data[index]; 1891 } 1892 1893 /** 1894 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1895 * statistics data. 1896 * 1897 * @data: start address of the stats data 1898 * @size: the number of bucket of the stats data 1899 * @value: the new value used to update the logarithmic histogram's bucket 1900 */ 1901 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1902 { 1903 size_t index = fls64(value); 1904 1905 index = min(index, size - 1); 1906 ++data[index]; 1907 } 1908 1909 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1910 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1911 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1912 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1913 1914 1915 extern const struct kvm_stats_header kvm_vm_stats_header; 1916 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1917 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1918 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1919 1920 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1921 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 1922 { 1923 if (unlikely(kvm->mmu_invalidate_in_progress)) 1924 return 1; 1925 /* 1926 * Ensure the read of mmu_invalidate_in_progress happens before 1927 * the read of mmu_invalidate_seq. This interacts with the 1928 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 1929 * that the caller either sees the old (non-zero) value of 1930 * mmu_invalidate_in_progress or the new (incremented) value of 1931 * mmu_invalidate_seq. 1932 * 1933 * PowerPC Book3s HV KVM calls this under a per-page lock rather 1934 * than under kvm->mmu_lock, for scalability, so can't rely on 1935 * kvm->mmu_lock to keep things ordered. 1936 */ 1937 smp_rmb(); 1938 if (kvm->mmu_invalidate_seq != mmu_seq) 1939 return 1; 1940 return 0; 1941 } 1942 1943 static inline int mmu_invalidate_retry_hva(struct kvm *kvm, 1944 unsigned long mmu_seq, 1945 unsigned long hva) 1946 { 1947 lockdep_assert_held(&kvm->mmu_lock); 1948 /* 1949 * If mmu_invalidate_in_progress is non-zero, then the range maintained 1950 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 1951 * that might be being invalidated. Note that it may include some false 1952 * positives, due to shortcuts when handing concurrent invalidations. 1953 */ 1954 if (unlikely(kvm->mmu_invalidate_in_progress) && 1955 hva >= kvm->mmu_invalidate_range_start && 1956 hva < kvm->mmu_invalidate_range_end) 1957 return 1; 1958 if (kvm->mmu_invalidate_seq != mmu_seq) 1959 return 1; 1960 return 0; 1961 } 1962 #endif 1963 1964 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1965 1966 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1967 1968 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1969 int kvm_set_irq_routing(struct kvm *kvm, 1970 const struct kvm_irq_routing_entry *entries, 1971 unsigned nr, 1972 unsigned flags); 1973 int kvm_set_routing_entry(struct kvm *kvm, 1974 struct kvm_kernel_irq_routing_entry *e, 1975 const struct kvm_irq_routing_entry *ue); 1976 void kvm_free_irq_routing(struct kvm *kvm); 1977 1978 #else 1979 1980 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1981 1982 #endif 1983 1984 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1985 1986 #ifdef CONFIG_HAVE_KVM_EVENTFD 1987 1988 void kvm_eventfd_init(struct kvm *kvm); 1989 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1990 1991 #ifdef CONFIG_HAVE_KVM_IRQFD 1992 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1993 void kvm_irqfd_release(struct kvm *kvm); 1994 void kvm_irq_routing_update(struct kvm *); 1995 #else 1996 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1997 { 1998 return -EINVAL; 1999 } 2000 2001 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2002 #endif 2003 2004 #else 2005 2006 static inline void kvm_eventfd_init(struct kvm *kvm) {} 2007 2008 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2009 { 2010 return -EINVAL; 2011 } 2012 2013 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2014 2015 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2016 static inline void kvm_irq_routing_update(struct kvm *kvm) 2017 { 2018 } 2019 #endif 2020 2021 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 2022 { 2023 return -ENOSYS; 2024 } 2025 2026 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 2027 2028 void kvm_arch_irq_routing_update(struct kvm *kvm); 2029 2030 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2031 { 2032 /* 2033 * Ensure the rest of the request is published to kvm_check_request's 2034 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2035 */ 2036 smp_wmb(); 2037 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2038 } 2039 2040 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2041 { 2042 /* 2043 * Request that don't require vCPU action should never be logged in 2044 * vcpu->requests. The vCPU won't clear the request, so it will stay 2045 * logged indefinitely and prevent the vCPU from entering the guest. 2046 */ 2047 BUILD_BUG_ON(!__builtin_constant_p(req) || 2048 (req & KVM_REQUEST_NO_ACTION)); 2049 2050 __kvm_make_request(req, vcpu); 2051 } 2052 2053 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2054 { 2055 return READ_ONCE(vcpu->requests); 2056 } 2057 2058 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2059 { 2060 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2061 } 2062 2063 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2064 { 2065 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2066 } 2067 2068 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2069 { 2070 if (kvm_test_request(req, vcpu)) { 2071 kvm_clear_request(req, vcpu); 2072 2073 /* 2074 * Ensure the rest of the request is visible to kvm_check_request's 2075 * caller. Paired with the smp_wmb in kvm_make_request. 2076 */ 2077 smp_mb__after_atomic(); 2078 return true; 2079 } else { 2080 return false; 2081 } 2082 } 2083 2084 extern bool kvm_rebooting; 2085 2086 extern unsigned int halt_poll_ns; 2087 extern unsigned int halt_poll_ns_grow; 2088 extern unsigned int halt_poll_ns_grow_start; 2089 extern unsigned int halt_poll_ns_shrink; 2090 2091 struct kvm_device { 2092 const struct kvm_device_ops *ops; 2093 struct kvm *kvm; 2094 void *private; 2095 struct list_head vm_node; 2096 }; 2097 2098 /* create, destroy, and name are mandatory */ 2099 struct kvm_device_ops { 2100 const char *name; 2101 2102 /* 2103 * create is called holding kvm->lock and any operations not suitable 2104 * to do while holding the lock should be deferred to init (see 2105 * below). 2106 */ 2107 int (*create)(struct kvm_device *dev, u32 type); 2108 2109 /* 2110 * init is called after create if create is successful and is called 2111 * outside of holding kvm->lock. 2112 */ 2113 void (*init)(struct kvm_device *dev); 2114 2115 /* 2116 * Destroy is responsible for freeing dev. 2117 * 2118 * Destroy may be called before or after destructors are called 2119 * on emulated I/O regions, depending on whether a reference is 2120 * held by a vcpu or other kvm component that gets destroyed 2121 * after the emulated I/O. 2122 */ 2123 void (*destroy)(struct kvm_device *dev); 2124 2125 /* 2126 * Release is an alternative method to free the device. It is 2127 * called when the device file descriptor is closed. Once 2128 * release is called, the destroy method will not be called 2129 * anymore as the device is removed from the device list of 2130 * the VM. kvm->lock is held. 2131 */ 2132 void (*release)(struct kvm_device *dev); 2133 2134 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2135 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2136 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2137 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2138 unsigned long arg); 2139 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2140 }; 2141 2142 void kvm_device_get(struct kvm_device *dev); 2143 void kvm_device_put(struct kvm_device *dev); 2144 struct kvm_device *kvm_device_from_filp(struct file *filp); 2145 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2146 void kvm_unregister_device_ops(u32 type); 2147 2148 extern struct kvm_device_ops kvm_mpic_ops; 2149 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2150 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2151 2152 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2153 2154 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2155 { 2156 vcpu->spin_loop.in_spin_loop = val; 2157 } 2158 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2159 { 2160 vcpu->spin_loop.dy_eligible = val; 2161 } 2162 2163 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2164 2165 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2166 { 2167 } 2168 2169 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2170 { 2171 } 2172 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2173 2174 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2175 { 2176 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2177 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2178 } 2179 2180 struct kvm_vcpu *kvm_get_running_vcpu(void); 2181 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2182 2183 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2184 bool kvm_arch_has_irq_bypass(void); 2185 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2186 struct irq_bypass_producer *); 2187 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2188 struct irq_bypass_producer *); 2189 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2190 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2191 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2192 uint32_t guest_irq, bool set); 2193 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2194 struct kvm_kernel_irq_routing_entry *); 2195 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2196 2197 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2198 /* If we wakeup during the poll time, was it a sucessful poll? */ 2199 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2200 { 2201 return vcpu->valid_wakeup; 2202 } 2203 2204 #else 2205 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2206 { 2207 return true; 2208 } 2209 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2210 2211 #ifdef CONFIG_HAVE_KVM_NO_POLL 2212 /* Callback that tells if we must not poll */ 2213 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2214 #else 2215 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2216 { 2217 return false; 2218 } 2219 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2220 2221 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2222 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2223 unsigned int ioctl, unsigned long arg); 2224 #else 2225 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2226 unsigned int ioctl, 2227 unsigned long arg) 2228 { 2229 return -ENOIOCTLCMD; 2230 } 2231 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2232 2233 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2234 unsigned long start, unsigned long end); 2235 2236 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2237 2238 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2239 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2240 #else 2241 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2242 { 2243 return 0; 2244 } 2245 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2246 2247 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2248 2249 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2250 uintptr_t data, const char *name, 2251 struct task_struct **thread_ptr); 2252 2253 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2254 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2255 { 2256 vcpu->run->exit_reason = KVM_EXIT_INTR; 2257 vcpu->stat.signal_exits++; 2258 } 2259 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2260 2261 /* 2262 * If more than one page is being (un)accounted, @virt must be the address of 2263 * the first page of a block of pages what were allocated together (i.e 2264 * accounted together). 2265 * 2266 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2267 * is thread-safe. 2268 */ 2269 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2270 { 2271 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2272 } 2273 2274 /* 2275 * This defines how many reserved entries we want to keep before we 2276 * kick the vcpu to the userspace to avoid dirty ring full. This 2277 * value can be tuned to higher if e.g. PML is enabled on the host. 2278 */ 2279 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2280 2281 /* Max number of entries allowed for each kvm dirty ring */ 2282 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2283 2284 #endif 2285