xref: /openbmc/linux/include/linux/kvm_host.h (revision c57f3dbc3bd9ae3c4cf72c9937de205458815c8d)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54  * in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of install_new_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 
100 /*
101  * error pfns indicate that the gfn is in slot but faild to
102  * translate it to pfn on host.
103  */
104 static inline bool is_error_pfn(kvm_pfn_t pfn)
105 {
106 	return !!(pfn & KVM_PFN_ERR_MASK);
107 }
108 
109 /*
110  * error_noslot pfns indicate that the gfn can not be
111  * translated to pfn - it is not in slot or failed to
112  * translate it to pfn.
113  */
114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115 {
116 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117 }
118 
119 /* noslot pfn indicates that the gfn is not in slot. */
120 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121 {
122 	return pfn == KVM_PFN_NOSLOT;
123 }
124 
125 /*
126  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127  * provide own defines and kvm_is_error_hva
128  */
129 #ifndef KVM_HVA_ERR_BAD
130 
131 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
132 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
133 
134 static inline bool kvm_is_error_hva(unsigned long addr)
135 {
136 	return addr >= PAGE_OFFSET;
137 }
138 
139 #endif
140 
141 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
142 
143 static inline bool is_error_page(struct page *page)
144 {
145 	return IS_ERR(page);
146 }
147 
148 #define KVM_REQUEST_MASK           GENMASK(7,0)
149 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
150 #define KVM_REQUEST_WAIT           BIT(9)
151 #define KVM_REQUEST_NO_ACTION      BIT(10)
152 /*
153  * Architecture-independent vcpu->requests bit members
154  * Bits 4-7 are reserved for more arch-independent bits.
155  */
156 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157 #define KVM_REQ_VM_DEAD           (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158 #define KVM_REQ_UNBLOCK           2
159 #define KVM_REQ_UNHALT            3
160 #define KVM_REQUEST_ARCH_BASE     8
161 
162 /*
163  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
164  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
165  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
166  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
167  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
168  * guarantee the vCPU received an IPI and has actually exited guest mode.
169  */
170 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
171 
172 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
173 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
174 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
175 })
176 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
177 
178 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
179 				 unsigned long *vcpu_bitmap);
180 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
181 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
182 				      struct kvm_vcpu *except);
183 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
184 				unsigned long *vcpu_bitmap);
185 
186 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
187 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
188 
189 extern struct mutex kvm_lock;
190 extern struct list_head vm_list;
191 
192 struct kvm_io_range {
193 	gpa_t addr;
194 	int len;
195 	struct kvm_io_device *dev;
196 };
197 
198 #define NR_IOBUS_DEVS 1000
199 
200 struct kvm_io_bus {
201 	int dev_count;
202 	int ioeventfd_count;
203 	struct kvm_io_range range[];
204 };
205 
206 enum kvm_bus {
207 	KVM_MMIO_BUS,
208 	KVM_PIO_BUS,
209 	KVM_VIRTIO_CCW_NOTIFY_BUS,
210 	KVM_FAST_MMIO_BUS,
211 	KVM_NR_BUSES
212 };
213 
214 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
215 		     int len, const void *val);
216 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
217 			    gpa_t addr, int len, const void *val, long cookie);
218 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
219 		    int len, void *val);
220 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
221 			    int len, struct kvm_io_device *dev);
222 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
223 			      struct kvm_io_device *dev);
224 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
225 					 gpa_t addr);
226 
227 #ifdef CONFIG_KVM_ASYNC_PF
228 struct kvm_async_pf {
229 	struct work_struct work;
230 	struct list_head link;
231 	struct list_head queue;
232 	struct kvm_vcpu *vcpu;
233 	struct mm_struct *mm;
234 	gpa_t cr2_or_gpa;
235 	unsigned long addr;
236 	struct kvm_arch_async_pf arch;
237 	bool   wakeup_all;
238 	bool notpresent_injected;
239 };
240 
241 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
242 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
243 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
244 			unsigned long hva, struct kvm_arch_async_pf *arch);
245 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
246 #endif
247 
248 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
249 struct kvm_gfn_range {
250 	struct kvm_memory_slot *slot;
251 	gfn_t start;
252 	gfn_t end;
253 	pte_t pte;
254 	bool may_block;
255 };
256 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
257 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
260 #endif
261 
262 enum {
263 	OUTSIDE_GUEST_MODE,
264 	IN_GUEST_MODE,
265 	EXITING_GUEST_MODE,
266 	READING_SHADOW_PAGE_TABLES,
267 };
268 
269 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
270 
271 struct kvm_host_map {
272 	/*
273 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
274 	 * a 'struct page' for it. When using mem= kernel parameter some memory
275 	 * can be used as guest memory but they are not managed by host
276 	 * kernel).
277 	 * If 'pfn' is not managed by the host kernel, this field is
278 	 * initialized to KVM_UNMAPPED_PAGE.
279 	 */
280 	struct page *page;
281 	void *hva;
282 	kvm_pfn_t pfn;
283 	kvm_pfn_t gfn;
284 };
285 
286 /*
287  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
288  * directly to check for that.
289  */
290 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
291 {
292 	return !!map->hva;
293 }
294 
295 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
296 {
297 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
298 }
299 
300 /*
301  * Sometimes a large or cross-page mmio needs to be broken up into separate
302  * exits for userspace servicing.
303  */
304 struct kvm_mmio_fragment {
305 	gpa_t gpa;
306 	void *data;
307 	unsigned len;
308 };
309 
310 struct kvm_vcpu {
311 	struct kvm *kvm;
312 #ifdef CONFIG_PREEMPT_NOTIFIERS
313 	struct preempt_notifier preempt_notifier;
314 #endif
315 	int cpu;
316 	int vcpu_id; /* id given by userspace at creation */
317 	int vcpu_idx; /* index in kvm->vcpus array */
318 	int srcu_idx;
319 	int mode;
320 	u64 requests;
321 	unsigned long guest_debug;
322 
323 	struct mutex mutex;
324 	struct kvm_run *run;
325 
326 #ifndef __KVM_HAVE_ARCH_WQP
327 	struct rcuwait wait;
328 #endif
329 	struct pid __rcu *pid;
330 	int sigset_active;
331 	sigset_t sigset;
332 	unsigned int halt_poll_ns;
333 	bool valid_wakeup;
334 
335 #ifdef CONFIG_HAS_IOMEM
336 	int mmio_needed;
337 	int mmio_read_completed;
338 	int mmio_is_write;
339 	int mmio_cur_fragment;
340 	int mmio_nr_fragments;
341 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
342 #endif
343 
344 #ifdef CONFIG_KVM_ASYNC_PF
345 	struct {
346 		u32 queued;
347 		struct list_head queue;
348 		struct list_head done;
349 		spinlock_t lock;
350 	} async_pf;
351 #endif
352 
353 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
354 	/*
355 	 * Cpu relax intercept or pause loop exit optimization
356 	 * in_spin_loop: set when a vcpu does a pause loop exit
357 	 *  or cpu relax intercepted.
358 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
359 	 */
360 	struct {
361 		bool in_spin_loop;
362 		bool dy_eligible;
363 	} spin_loop;
364 #endif
365 	bool preempted;
366 	bool ready;
367 	struct kvm_vcpu_arch arch;
368 	struct kvm_vcpu_stat stat;
369 	char stats_id[KVM_STATS_NAME_SIZE];
370 	struct kvm_dirty_ring dirty_ring;
371 
372 	/*
373 	 * The most recently used memslot by this vCPU and the slots generation
374 	 * for which it is valid.
375 	 * No wraparound protection is needed since generations won't overflow in
376 	 * thousands of years, even assuming 1M memslot operations per second.
377 	 */
378 	struct kvm_memory_slot *last_used_slot;
379 	u64 last_used_slot_gen;
380 };
381 
382 /*
383  * Start accounting time towards a guest.
384  * Must be called before entering guest context.
385  */
386 static __always_inline void guest_timing_enter_irqoff(void)
387 {
388 	/*
389 	 * This is running in ioctl context so its safe to assume that it's the
390 	 * stime pending cputime to flush.
391 	 */
392 	instrumentation_begin();
393 	vtime_account_guest_enter();
394 	instrumentation_end();
395 }
396 
397 /*
398  * Enter guest context and enter an RCU extended quiescent state.
399  *
400  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
401  * unsafe to use any code which may directly or indirectly use RCU, tracing
402  * (including IRQ flag tracing), or lockdep. All code in this period must be
403  * non-instrumentable.
404  */
405 static __always_inline void guest_context_enter_irqoff(void)
406 {
407 	/*
408 	 * KVM does not hold any references to rcu protected data when it
409 	 * switches CPU into a guest mode. In fact switching to a guest mode
410 	 * is very similar to exiting to userspace from rcu point of view. In
411 	 * addition CPU may stay in a guest mode for quite a long time (up to
412 	 * one time slice). Lets treat guest mode as quiescent state, just like
413 	 * we do with user-mode execution.
414 	 */
415 	if (!context_tracking_guest_enter()) {
416 		instrumentation_begin();
417 		rcu_virt_note_context_switch(smp_processor_id());
418 		instrumentation_end();
419 	}
420 }
421 
422 /*
423  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
424  * guest_state_enter_irqoff().
425  */
426 static __always_inline void guest_enter_irqoff(void)
427 {
428 	guest_timing_enter_irqoff();
429 	guest_context_enter_irqoff();
430 }
431 
432 /**
433  * guest_state_enter_irqoff - Fixup state when entering a guest
434  *
435  * Entry to a guest will enable interrupts, but the kernel state is interrupts
436  * disabled when this is invoked. Also tell RCU about it.
437  *
438  * 1) Trace interrupts on state
439  * 2) Invoke context tracking if enabled to adjust RCU state
440  * 3) Tell lockdep that interrupts are enabled
441  *
442  * Invoked from architecture specific code before entering a guest.
443  * Must be called with interrupts disabled and the caller must be
444  * non-instrumentable.
445  * The caller has to invoke guest_timing_enter_irqoff() before this.
446  *
447  * Note: this is analogous to exit_to_user_mode().
448  */
449 static __always_inline void guest_state_enter_irqoff(void)
450 {
451 	instrumentation_begin();
452 	trace_hardirqs_on_prepare();
453 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
454 	instrumentation_end();
455 
456 	guest_context_enter_irqoff();
457 	lockdep_hardirqs_on(CALLER_ADDR0);
458 }
459 
460 /*
461  * Exit guest context and exit an RCU extended quiescent state.
462  *
463  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
464  * unsafe to use any code which may directly or indirectly use RCU, tracing
465  * (including IRQ flag tracing), or lockdep. All code in this period must be
466  * non-instrumentable.
467  */
468 static __always_inline void guest_context_exit_irqoff(void)
469 {
470 	context_tracking_guest_exit();
471 }
472 
473 /*
474  * Stop accounting time towards a guest.
475  * Must be called after exiting guest context.
476  */
477 static __always_inline void guest_timing_exit_irqoff(void)
478 {
479 	instrumentation_begin();
480 	/* Flush the guest cputime we spent on the guest */
481 	vtime_account_guest_exit();
482 	instrumentation_end();
483 }
484 
485 /*
486  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
487  * guest_timing_exit_irqoff().
488  */
489 static __always_inline void guest_exit_irqoff(void)
490 {
491 	guest_context_exit_irqoff();
492 	guest_timing_exit_irqoff();
493 }
494 
495 static inline void guest_exit(void)
496 {
497 	unsigned long flags;
498 
499 	local_irq_save(flags);
500 	guest_exit_irqoff();
501 	local_irq_restore(flags);
502 }
503 
504 /**
505  * guest_state_exit_irqoff - Establish state when returning from guest mode
506  *
507  * Entry from a guest disables interrupts, but guest mode is traced as
508  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
509  *
510  * 1) Tell lockdep that interrupts are disabled
511  * 2) Invoke context tracking if enabled to reactivate RCU
512  * 3) Trace interrupts off state
513  *
514  * Invoked from architecture specific code after exiting a guest.
515  * Must be invoked with interrupts disabled and the caller must be
516  * non-instrumentable.
517  * The caller has to invoke guest_timing_exit_irqoff() after this.
518  *
519  * Note: this is analogous to enter_from_user_mode().
520  */
521 static __always_inline void guest_state_exit_irqoff(void)
522 {
523 	lockdep_hardirqs_off(CALLER_ADDR0);
524 	guest_context_exit_irqoff();
525 
526 	instrumentation_begin();
527 	trace_hardirqs_off_finish();
528 	instrumentation_end();
529 }
530 
531 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
532 {
533 	/*
534 	 * The memory barrier ensures a previous write to vcpu->requests cannot
535 	 * be reordered with the read of vcpu->mode.  It pairs with the general
536 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
537 	 */
538 	smp_mb__before_atomic();
539 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
540 }
541 
542 /*
543  * Some of the bitops functions do not support too long bitmaps.
544  * This number must be determined not to exceed such limits.
545  */
546 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
547 
548 /*
549  * Since at idle each memslot belongs to two memslot sets it has to contain
550  * two embedded nodes for each data structure that it forms a part of.
551  *
552  * Two memslot sets (one active and one inactive) are necessary so the VM
553  * continues to run on one memslot set while the other is being modified.
554  *
555  * These two memslot sets normally point to the same set of memslots.
556  * They can, however, be desynchronized when performing a memslot management
557  * operation by replacing the memslot to be modified by its copy.
558  * After the operation is complete, both memslot sets once again point to
559  * the same, common set of memslot data.
560  *
561  * The memslots themselves are independent of each other so they can be
562  * individually added or deleted.
563  */
564 struct kvm_memory_slot {
565 	struct hlist_node id_node[2];
566 	struct interval_tree_node hva_node[2];
567 	struct rb_node gfn_node[2];
568 	gfn_t base_gfn;
569 	unsigned long npages;
570 	unsigned long *dirty_bitmap;
571 	struct kvm_arch_memory_slot arch;
572 	unsigned long userspace_addr;
573 	u32 flags;
574 	short id;
575 	u16 as_id;
576 };
577 
578 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
579 {
580 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
581 }
582 
583 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
584 {
585 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
586 }
587 
588 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
589 {
590 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
591 
592 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
593 }
594 
595 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
596 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
597 #endif
598 
599 struct kvm_s390_adapter_int {
600 	u64 ind_addr;
601 	u64 summary_addr;
602 	u64 ind_offset;
603 	u32 summary_offset;
604 	u32 adapter_id;
605 };
606 
607 struct kvm_hv_sint {
608 	u32 vcpu;
609 	u32 sint;
610 };
611 
612 struct kvm_xen_evtchn {
613 	u32 port;
614 	u32 vcpu;
615 	u32 priority;
616 };
617 
618 struct kvm_kernel_irq_routing_entry {
619 	u32 gsi;
620 	u32 type;
621 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
622 		   struct kvm *kvm, int irq_source_id, int level,
623 		   bool line_status);
624 	union {
625 		struct {
626 			unsigned irqchip;
627 			unsigned pin;
628 		} irqchip;
629 		struct {
630 			u32 address_lo;
631 			u32 address_hi;
632 			u32 data;
633 			u32 flags;
634 			u32 devid;
635 		} msi;
636 		struct kvm_s390_adapter_int adapter;
637 		struct kvm_hv_sint hv_sint;
638 		struct kvm_xen_evtchn xen_evtchn;
639 	};
640 	struct hlist_node link;
641 };
642 
643 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
644 struct kvm_irq_routing_table {
645 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
646 	u32 nr_rt_entries;
647 	/*
648 	 * Array indexed by gsi. Each entry contains list of irq chips
649 	 * the gsi is connected to.
650 	 */
651 	struct hlist_head map[];
652 };
653 #endif
654 
655 #ifndef KVM_PRIVATE_MEM_SLOTS
656 #define KVM_PRIVATE_MEM_SLOTS 0
657 #endif
658 
659 #define KVM_MEM_SLOTS_NUM SHRT_MAX
660 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
661 
662 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
663 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
664 {
665 	return 0;
666 }
667 #endif
668 
669 struct kvm_memslots {
670 	u64 generation;
671 	atomic_long_t last_used_slot;
672 	struct rb_root_cached hva_tree;
673 	struct rb_root gfn_tree;
674 	/*
675 	 * The mapping table from slot id to memslot.
676 	 *
677 	 * 7-bit bucket count matches the size of the old id to index array for
678 	 * 512 slots, while giving good performance with this slot count.
679 	 * Higher bucket counts bring only small performance improvements but
680 	 * always result in higher memory usage (even for lower memslot counts).
681 	 */
682 	DECLARE_HASHTABLE(id_hash, 7);
683 	int node_idx;
684 };
685 
686 struct kvm {
687 #ifdef KVM_HAVE_MMU_RWLOCK
688 	rwlock_t mmu_lock;
689 #else
690 	spinlock_t mmu_lock;
691 #endif /* KVM_HAVE_MMU_RWLOCK */
692 
693 	struct mutex slots_lock;
694 
695 	/*
696 	 * Protects the arch-specific fields of struct kvm_memory_slots in
697 	 * use by the VM. To be used under the slots_lock (above) or in a
698 	 * kvm->srcu critical section where acquiring the slots_lock would
699 	 * lead to deadlock with the synchronize_srcu in
700 	 * install_new_memslots.
701 	 */
702 	struct mutex slots_arch_lock;
703 	struct mm_struct *mm; /* userspace tied to this vm */
704 	unsigned long nr_memslot_pages;
705 	/* The two memslot sets - active and inactive (per address space) */
706 	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
707 	/* The current active memslot set for each address space */
708 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
709 	struct xarray vcpu_array;
710 
711 	/* Used to wait for completion of MMU notifiers.  */
712 	spinlock_t mn_invalidate_lock;
713 	unsigned long mn_active_invalidate_count;
714 	struct rcuwait mn_memslots_update_rcuwait;
715 
716 	/* For management / invalidation of gfn_to_pfn_caches */
717 	spinlock_t gpc_lock;
718 	struct list_head gpc_list;
719 
720 	/*
721 	 * created_vcpus is protected by kvm->lock, and is incremented
722 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
723 	 * incremented after storing the kvm_vcpu pointer in vcpus,
724 	 * and is accessed atomically.
725 	 */
726 	atomic_t online_vcpus;
727 	int created_vcpus;
728 	int last_boosted_vcpu;
729 	struct list_head vm_list;
730 	struct mutex lock;
731 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
732 #ifdef CONFIG_HAVE_KVM_EVENTFD
733 	struct {
734 		spinlock_t        lock;
735 		struct list_head  items;
736 		struct list_head  resampler_list;
737 		struct mutex      resampler_lock;
738 	} irqfds;
739 	struct list_head ioeventfds;
740 #endif
741 	struct kvm_vm_stat stat;
742 	struct kvm_arch arch;
743 	refcount_t users_count;
744 #ifdef CONFIG_KVM_MMIO
745 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
746 	spinlock_t ring_lock;
747 	struct list_head coalesced_zones;
748 #endif
749 
750 	struct mutex irq_lock;
751 #ifdef CONFIG_HAVE_KVM_IRQCHIP
752 	/*
753 	 * Update side is protected by irq_lock.
754 	 */
755 	struct kvm_irq_routing_table __rcu *irq_routing;
756 #endif
757 #ifdef CONFIG_HAVE_KVM_IRQFD
758 	struct hlist_head irq_ack_notifier_list;
759 #endif
760 
761 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
762 	struct mmu_notifier mmu_notifier;
763 	unsigned long mmu_notifier_seq;
764 	long mmu_notifier_count;
765 	unsigned long mmu_notifier_range_start;
766 	unsigned long mmu_notifier_range_end;
767 #endif
768 	struct list_head devices;
769 	u64 manual_dirty_log_protect;
770 	struct dentry *debugfs_dentry;
771 	struct kvm_stat_data **debugfs_stat_data;
772 	struct srcu_struct srcu;
773 	struct srcu_struct irq_srcu;
774 	pid_t userspace_pid;
775 	unsigned int max_halt_poll_ns;
776 	u32 dirty_ring_size;
777 	bool vm_bugged;
778 	bool vm_dead;
779 
780 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
781 	struct notifier_block pm_notifier;
782 #endif
783 	char stats_id[KVM_STATS_NAME_SIZE];
784 };
785 
786 #define kvm_err(fmt, ...) \
787 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
788 #define kvm_info(fmt, ...) \
789 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
790 #define kvm_debug(fmt, ...) \
791 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
792 #define kvm_debug_ratelimited(fmt, ...) \
793 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
794 			     ## __VA_ARGS__)
795 #define kvm_pr_unimpl(fmt, ...) \
796 	pr_err_ratelimited("kvm [%i]: " fmt, \
797 			   task_tgid_nr(current), ## __VA_ARGS__)
798 
799 /* The guest did something we don't support. */
800 #define vcpu_unimpl(vcpu, fmt, ...)					\
801 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
802 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
803 
804 #define vcpu_debug(vcpu, fmt, ...)					\
805 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
806 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
807 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
808 			      ## __VA_ARGS__)
809 #define vcpu_err(vcpu, fmt, ...)					\
810 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
811 
812 static inline void kvm_vm_dead(struct kvm *kvm)
813 {
814 	kvm->vm_dead = true;
815 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
816 }
817 
818 static inline void kvm_vm_bugged(struct kvm *kvm)
819 {
820 	kvm->vm_bugged = true;
821 	kvm_vm_dead(kvm);
822 }
823 
824 
825 #define KVM_BUG(cond, kvm, fmt...)				\
826 ({								\
827 	int __ret = (cond);					\
828 								\
829 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
830 		kvm_vm_bugged(kvm);				\
831 	unlikely(__ret);					\
832 })
833 
834 #define KVM_BUG_ON(cond, kvm)					\
835 ({								\
836 	int __ret = (cond);					\
837 								\
838 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
839 		kvm_vm_bugged(kvm);				\
840 	unlikely(__ret);					\
841 })
842 
843 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
844 {
845 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
846 }
847 
848 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
849 {
850 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
851 				      lockdep_is_held(&kvm->slots_lock) ||
852 				      !refcount_read(&kvm->users_count));
853 }
854 
855 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
856 {
857 	int num_vcpus = atomic_read(&kvm->online_vcpus);
858 	i = array_index_nospec(i, num_vcpus);
859 
860 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
861 	smp_rmb();
862 	return xa_load(&kvm->vcpu_array, i);
863 }
864 
865 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
866 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
867 			  (atomic_read(&kvm->online_vcpus) - 1))
868 
869 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
870 {
871 	struct kvm_vcpu *vcpu = NULL;
872 	unsigned long i;
873 
874 	if (id < 0)
875 		return NULL;
876 	if (id < KVM_MAX_VCPUS)
877 		vcpu = kvm_get_vcpu(kvm, id);
878 	if (vcpu && vcpu->vcpu_id == id)
879 		return vcpu;
880 	kvm_for_each_vcpu(i, vcpu, kvm)
881 		if (vcpu->vcpu_id == id)
882 			return vcpu;
883 	return NULL;
884 }
885 
886 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
887 {
888 	return vcpu->vcpu_idx;
889 }
890 
891 void kvm_destroy_vcpus(struct kvm *kvm);
892 
893 void vcpu_load(struct kvm_vcpu *vcpu);
894 void vcpu_put(struct kvm_vcpu *vcpu);
895 
896 #ifdef __KVM_HAVE_IOAPIC
897 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
898 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
899 #else
900 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
901 {
902 }
903 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
904 {
905 }
906 #endif
907 
908 #ifdef CONFIG_HAVE_KVM_IRQFD
909 int kvm_irqfd_init(void);
910 void kvm_irqfd_exit(void);
911 #else
912 static inline int kvm_irqfd_init(void)
913 {
914 	return 0;
915 }
916 
917 static inline void kvm_irqfd_exit(void)
918 {
919 }
920 #endif
921 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
922 		  struct module *module);
923 void kvm_exit(void);
924 
925 void kvm_get_kvm(struct kvm *kvm);
926 bool kvm_get_kvm_safe(struct kvm *kvm);
927 void kvm_put_kvm(struct kvm *kvm);
928 bool file_is_kvm(struct file *file);
929 void kvm_put_kvm_no_destroy(struct kvm *kvm);
930 
931 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
932 {
933 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
934 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
935 			lockdep_is_held(&kvm->slots_lock) ||
936 			!refcount_read(&kvm->users_count));
937 }
938 
939 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
940 {
941 	return __kvm_memslots(kvm, 0);
942 }
943 
944 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
945 {
946 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
947 
948 	return __kvm_memslots(vcpu->kvm, as_id);
949 }
950 
951 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
952 {
953 	return RB_EMPTY_ROOT(&slots->gfn_tree);
954 }
955 
956 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
957 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
958 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
959 		} else
960 
961 static inline
962 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
963 {
964 	struct kvm_memory_slot *slot;
965 	int idx = slots->node_idx;
966 
967 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
968 		if (slot->id == id)
969 			return slot;
970 	}
971 
972 	return NULL;
973 }
974 
975 /* Iterator used for walking memslots that overlap a gfn range. */
976 struct kvm_memslot_iter {
977 	struct kvm_memslots *slots;
978 	struct rb_node *node;
979 	struct kvm_memory_slot *slot;
980 };
981 
982 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
983 {
984 	iter->node = rb_next(iter->node);
985 	if (!iter->node)
986 		return;
987 
988 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
989 }
990 
991 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
992 					  struct kvm_memslots *slots,
993 					  gfn_t start)
994 {
995 	int idx = slots->node_idx;
996 	struct rb_node *tmp;
997 	struct kvm_memory_slot *slot;
998 
999 	iter->slots = slots;
1000 
1001 	/*
1002 	 * Find the so called "upper bound" of a key - the first node that has
1003 	 * its key strictly greater than the searched one (the start gfn in our case).
1004 	 */
1005 	iter->node = NULL;
1006 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1007 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1008 		if (start < slot->base_gfn) {
1009 			iter->node = tmp;
1010 			tmp = tmp->rb_left;
1011 		} else {
1012 			tmp = tmp->rb_right;
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Find the slot with the lowest gfn that can possibly intersect with
1018 	 * the range, so we'll ideally have slot start <= range start
1019 	 */
1020 	if (iter->node) {
1021 		/*
1022 		 * A NULL previous node means that the very first slot
1023 		 * already has a higher start gfn.
1024 		 * In this case slot start > range start.
1025 		 */
1026 		tmp = rb_prev(iter->node);
1027 		if (tmp)
1028 			iter->node = tmp;
1029 	} else {
1030 		/* a NULL node below means no slots */
1031 		iter->node = rb_last(&slots->gfn_tree);
1032 	}
1033 
1034 	if (iter->node) {
1035 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1036 
1037 		/*
1038 		 * It is possible in the slot start < range start case that the
1039 		 * found slot ends before or at range start (slot end <= range start)
1040 		 * and so it does not overlap the requested range.
1041 		 *
1042 		 * In such non-overlapping case the next slot (if it exists) will
1043 		 * already have slot start > range start, otherwise the logic above
1044 		 * would have found it instead of the current slot.
1045 		 */
1046 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1047 			kvm_memslot_iter_next(iter);
1048 	}
1049 }
1050 
1051 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1052 {
1053 	if (!iter->node)
1054 		return false;
1055 
1056 	/*
1057 	 * If this slot starts beyond or at the end of the range so does
1058 	 * every next one
1059 	 */
1060 	return iter->slot->base_gfn < end;
1061 }
1062 
1063 /* Iterate over each memslot at least partially intersecting [start, end) range */
1064 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1065 	for (kvm_memslot_iter_start(iter, slots, start);		\
1066 	     kvm_memslot_iter_is_valid(iter, end);			\
1067 	     kvm_memslot_iter_next(iter))
1068 
1069 /*
1070  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1071  * - create a new memory slot
1072  * - delete an existing memory slot
1073  * - modify an existing memory slot
1074  *   -- move it in the guest physical memory space
1075  *   -- just change its flags
1076  *
1077  * Since flags can be changed by some of these operations, the following
1078  * differentiation is the best we can do for __kvm_set_memory_region():
1079  */
1080 enum kvm_mr_change {
1081 	KVM_MR_CREATE,
1082 	KVM_MR_DELETE,
1083 	KVM_MR_MOVE,
1084 	KVM_MR_FLAGS_ONLY,
1085 };
1086 
1087 int kvm_set_memory_region(struct kvm *kvm,
1088 			  const struct kvm_userspace_memory_region *mem);
1089 int __kvm_set_memory_region(struct kvm *kvm,
1090 			    const struct kvm_userspace_memory_region *mem);
1091 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1092 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1093 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1094 				const struct kvm_memory_slot *old,
1095 				struct kvm_memory_slot *new,
1096 				enum kvm_mr_change change);
1097 void kvm_arch_commit_memory_region(struct kvm *kvm,
1098 				struct kvm_memory_slot *old,
1099 				const struct kvm_memory_slot *new,
1100 				enum kvm_mr_change change);
1101 /* flush all memory translations */
1102 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1103 /* flush memory translations pointing to 'slot' */
1104 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1105 				   struct kvm_memory_slot *slot);
1106 
1107 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1108 			    struct page **pages, int nr_pages);
1109 
1110 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1111 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1112 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1113 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1114 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1115 				      bool *writable);
1116 void kvm_release_page_clean(struct page *page);
1117 void kvm_release_page_dirty(struct page *page);
1118 void kvm_set_page_accessed(struct page *page);
1119 
1120 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1121 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1122 		      bool *writable);
1123 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1124 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1125 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1126 			       bool atomic, bool *async, bool write_fault,
1127 			       bool *writable, hva_t *hva);
1128 
1129 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1130 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1131 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1132 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1133 
1134 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1135 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1136 			int len);
1137 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1138 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1139 			   void *data, unsigned long len);
1140 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1141 				 void *data, unsigned int offset,
1142 				 unsigned long len);
1143 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1144 			 int offset, int len);
1145 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1146 		    unsigned long len);
1147 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1148 			   void *data, unsigned long len);
1149 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1150 				  void *data, unsigned int offset,
1151 				  unsigned long len);
1152 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1153 			      gpa_t gpa, unsigned long len);
1154 
1155 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1156 ({									\
1157 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1158 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1159 	int __ret = -EFAULT;						\
1160 									\
1161 	if (!kvm_is_error_hva(__addr))					\
1162 		__ret = get_user(v, __uaddr);				\
1163 	__ret;								\
1164 })
1165 
1166 #define kvm_get_guest(kvm, gpa, v)					\
1167 ({									\
1168 	gpa_t __gpa = gpa;						\
1169 	struct kvm *__kvm = kvm;					\
1170 									\
1171 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1172 			offset_in_page(__gpa), v);			\
1173 })
1174 
1175 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1176 ({									\
1177 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1178 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1179 	int __ret = -EFAULT;						\
1180 									\
1181 	if (!kvm_is_error_hva(__addr))					\
1182 		__ret = put_user(v, __uaddr);				\
1183 	if (!__ret)							\
1184 		mark_page_dirty(kvm, gfn);				\
1185 	__ret;								\
1186 })
1187 
1188 #define kvm_put_guest(kvm, gpa, v)					\
1189 ({									\
1190 	gpa_t __gpa = gpa;						\
1191 	struct kvm *__kvm = kvm;					\
1192 									\
1193 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1194 			offset_in_page(__gpa), v);			\
1195 })
1196 
1197 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1198 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1199 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1200 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1201 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1202 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1203 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1204 
1205 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1206 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1207 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1208 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1209 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1210 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1211 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1212 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1213 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1214 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1215 			     int len);
1216 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1217 			       unsigned long len);
1218 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1219 			unsigned long len);
1220 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1221 			      int offset, int len);
1222 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1223 			 unsigned long len);
1224 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1225 
1226 /**
1227  * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1228  *                             given guest physical address.
1229  *
1230  * @kvm:	   pointer to kvm instance.
1231  * @gpc:	   struct gfn_to_pfn_cache object.
1232  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1233  *		   invalidation.
1234  * @usage:	   indicates if the resulting host physical PFN is used while
1235  *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1236  *		   the cache from MMU notifiers---but not for KVM memslot
1237  *		   changes!---will also force @vcpu to exit the guest and
1238  *		   refresh the cache); and/or if the PFN used directly
1239  *		   by KVM (and thus needs a kernel virtual mapping).
1240  * @gpa:	   guest physical address to map.
1241  * @len:	   sanity check; the range being access must fit a single page.
1242  *
1243  * @return:	   0 for success.
1244  *		   -EINVAL for a mapping which would cross a page boundary.
1245  *                 -EFAULT for an untranslatable guest physical address.
1246  *
1247  * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1248  * invalidations to be processed.  Callers are required to use
1249  * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1250  * accessing the target page.
1251  */
1252 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1253 			      struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1254 			      gpa_t gpa, unsigned long len);
1255 
1256 /**
1257  * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1258  *
1259  * @kvm:	   pointer to kvm instance.
1260  * @gpc:	   struct gfn_to_pfn_cache object.
1261  * @gpa:	   current guest physical address to map.
1262  * @len:	   sanity check; the range being access must fit a single page.
1263  *
1264  * @return:	   %true if the cache is still valid and the address matches.
1265  *		   %false if the cache is not valid.
1266  *
1267  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1268  * while calling this function, and then continue to hold the lock until the
1269  * access is complete.
1270  *
1271  * Callers in IN_GUEST_MODE may do so without locking, although they should
1272  * still hold a read lock on kvm->scru for the memslot checks.
1273  */
1274 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1275 				gpa_t gpa, unsigned long len);
1276 
1277 /**
1278  * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1279  *
1280  * @kvm:	   pointer to kvm instance.
1281  * @gpc:	   struct gfn_to_pfn_cache object.
1282  * @gpa:	   updated guest physical address to map.
1283  * @len:	   sanity check; the range being access must fit a single page.
1284  *
1285  * @return:	   0 for success.
1286  *		   -EINVAL for a mapping which would cross a page boundary.
1287  *                 -EFAULT for an untranslatable guest physical address.
1288  *
1289  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1290  * returm from this function does not mean the page can be immediately
1291  * accessed because it may have raced with an invalidation. Callers must
1292  * still lock and check the cache status, as this function does not return
1293  * with the lock still held to permit access.
1294  */
1295 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1296 				 gpa_t gpa, unsigned long len);
1297 
1298 /**
1299  * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1300  *
1301  * @kvm:	   pointer to kvm instance.
1302  * @gpc:	   struct gfn_to_pfn_cache object.
1303  *
1304  * This unmaps the referenced page. The cache is left in the invalid state
1305  * but at least the mapping from GPA to userspace HVA will remain cached
1306  * and can be reused on a subsequent refresh.
1307  */
1308 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1309 
1310 /**
1311  * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1312  *
1313  * @kvm:	   pointer to kvm instance.
1314  * @gpc:	   struct gfn_to_pfn_cache object.
1315  *
1316  * This removes a cache from the @kvm's list to be processed on MMU notifier
1317  * invocation.
1318  */
1319 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1320 
1321 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1322 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1323 
1324 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1325 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1326 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1327 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1328 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1329 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1330 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1331 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1332 
1333 void kvm_flush_remote_tlbs(struct kvm *kvm);
1334 
1335 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1336 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1337 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1338 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1339 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1340 #endif
1341 
1342 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1343 				   unsigned long end);
1344 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1345 				   unsigned long end);
1346 
1347 long kvm_arch_dev_ioctl(struct file *filp,
1348 			unsigned int ioctl, unsigned long arg);
1349 long kvm_arch_vcpu_ioctl(struct file *filp,
1350 			 unsigned int ioctl, unsigned long arg);
1351 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1352 
1353 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1354 
1355 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1356 					struct kvm_memory_slot *slot,
1357 					gfn_t gfn_offset,
1358 					unsigned long mask);
1359 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1360 
1361 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1362 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1363 					const struct kvm_memory_slot *memslot);
1364 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1365 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1366 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1367 		      int *is_dirty, struct kvm_memory_slot **memslot);
1368 #endif
1369 
1370 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1371 			bool line_status);
1372 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1373 			    struct kvm_enable_cap *cap);
1374 long kvm_arch_vm_ioctl(struct file *filp,
1375 		       unsigned int ioctl, unsigned long arg);
1376 
1377 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1378 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1379 
1380 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1381 				    struct kvm_translation *tr);
1382 
1383 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1384 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1385 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1386 				  struct kvm_sregs *sregs);
1387 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1388 				  struct kvm_sregs *sregs);
1389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1390 				    struct kvm_mp_state *mp_state);
1391 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1392 				    struct kvm_mp_state *mp_state);
1393 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1394 					struct kvm_guest_debug *dbg);
1395 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1396 
1397 int kvm_arch_init(void *opaque);
1398 void kvm_arch_exit(void);
1399 
1400 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1401 
1402 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1403 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1404 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1405 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1406 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1407 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1408 
1409 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1410 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1411 #endif
1412 
1413 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1414 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1415 #endif
1416 
1417 int kvm_arch_hardware_enable(void);
1418 void kvm_arch_hardware_disable(void);
1419 int kvm_arch_hardware_setup(void *opaque);
1420 void kvm_arch_hardware_unsetup(void);
1421 int kvm_arch_check_processor_compat(void *opaque);
1422 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1423 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1424 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1425 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1426 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1427 int kvm_arch_post_init_vm(struct kvm *kvm);
1428 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1429 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1430 
1431 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1432 /*
1433  * All architectures that want to use vzalloc currently also
1434  * need their own kvm_arch_alloc_vm implementation.
1435  */
1436 static inline struct kvm *kvm_arch_alloc_vm(void)
1437 {
1438 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1439 }
1440 #endif
1441 
1442 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1443 {
1444 	kvfree(kvm);
1445 }
1446 
1447 #ifndef __KVM_HAVE_ARCH_VM_FREE
1448 static inline void kvm_arch_free_vm(struct kvm *kvm)
1449 {
1450 	__kvm_arch_free_vm(kvm);
1451 }
1452 #endif
1453 
1454 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1455 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1456 {
1457 	return -ENOTSUPP;
1458 }
1459 #endif
1460 
1461 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1462 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1463 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1464 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1465 #else
1466 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1467 {
1468 }
1469 
1470 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1471 {
1472 }
1473 
1474 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1475 {
1476 	return false;
1477 }
1478 #endif
1479 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1480 void kvm_arch_start_assignment(struct kvm *kvm);
1481 void kvm_arch_end_assignment(struct kvm *kvm);
1482 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1483 #else
1484 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1485 {
1486 }
1487 
1488 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1489 {
1490 }
1491 
1492 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1493 {
1494 	return false;
1495 }
1496 #endif
1497 
1498 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1499 {
1500 #ifdef __KVM_HAVE_ARCH_WQP
1501 	return vcpu->arch.waitp;
1502 #else
1503 	return &vcpu->wait;
1504 #endif
1505 }
1506 
1507 /*
1508  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1509  * true if the vCPU was blocking and was awakened, false otherwise.
1510  */
1511 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1512 {
1513 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1514 }
1515 
1516 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1517 {
1518 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1519 }
1520 
1521 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1522 /*
1523  * returns true if the virtual interrupt controller is initialized and
1524  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1525  * controller is dynamically instantiated and this is not always true.
1526  */
1527 bool kvm_arch_intc_initialized(struct kvm *kvm);
1528 #else
1529 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1530 {
1531 	return true;
1532 }
1533 #endif
1534 
1535 #ifdef CONFIG_GUEST_PERF_EVENTS
1536 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1537 
1538 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1539 void kvm_unregister_perf_callbacks(void);
1540 #else
1541 static inline void kvm_register_perf_callbacks(void *ign) {}
1542 static inline void kvm_unregister_perf_callbacks(void) {}
1543 #endif /* CONFIG_GUEST_PERF_EVENTS */
1544 
1545 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1546 void kvm_arch_destroy_vm(struct kvm *kvm);
1547 void kvm_arch_sync_events(struct kvm *kvm);
1548 
1549 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1550 
1551 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1552 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1553 
1554 struct kvm_irq_ack_notifier {
1555 	struct hlist_node link;
1556 	unsigned gsi;
1557 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1558 };
1559 
1560 int kvm_irq_map_gsi(struct kvm *kvm,
1561 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1562 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1563 
1564 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1565 		bool line_status);
1566 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1567 		int irq_source_id, int level, bool line_status);
1568 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1569 			       struct kvm *kvm, int irq_source_id,
1570 			       int level, bool line_status);
1571 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1572 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1573 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1574 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1575 				   struct kvm_irq_ack_notifier *kian);
1576 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1577 				   struct kvm_irq_ack_notifier *kian);
1578 int kvm_request_irq_source_id(struct kvm *kvm);
1579 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1580 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1581 
1582 /*
1583  * Returns a pointer to the memslot if it contains gfn.
1584  * Otherwise returns NULL.
1585  */
1586 static inline struct kvm_memory_slot *
1587 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1588 {
1589 	if (!slot)
1590 		return NULL;
1591 
1592 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1593 		return slot;
1594 	else
1595 		return NULL;
1596 }
1597 
1598 /*
1599  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1600  *
1601  * With "approx" set returns the memslot also when the address falls
1602  * in a hole. In that case one of the memslots bordering the hole is
1603  * returned.
1604  */
1605 static inline struct kvm_memory_slot *
1606 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1607 {
1608 	struct kvm_memory_slot *slot;
1609 	struct rb_node *node;
1610 	int idx = slots->node_idx;
1611 
1612 	slot = NULL;
1613 	for (node = slots->gfn_tree.rb_node; node; ) {
1614 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1615 		if (gfn >= slot->base_gfn) {
1616 			if (gfn < slot->base_gfn + slot->npages)
1617 				return slot;
1618 			node = node->rb_right;
1619 		} else
1620 			node = node->rb_left;
1621 	}
1622 
1623 	return approx ? slot : NULL;
1624 }
1625 
1626 static inline struct kvm_memory_slot *
1627 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1628 {
1629 	struct kvm_memory_slot *slot;
1630 
1631 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1632 	slot = try_get_memslot(slot, gfn);
1633 	if (slot)
1634 		return slot;
1635 
1636 	slot = search_memslots(slots, gfn, approx);
1637 	if (slot) {
1638 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1639 		return slot;
1640 	}
1641 
1642 	return NULL;
1643 }
1644 
1645 /*
1646  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1647  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1648  * because that would bloat other code too much.
1649  */
1650 static inline struct kvm_memory_slot *
1651 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1652 {
1653 	return ____gfn_to_memslot(slots, gfn, false);
1654 }
1655 
1656 static inline unsigned long
1657 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1658 {
1659 	/*
1660 	 * The index was checked originally in search_memslots.  To avoid
1661 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1662 	 * table walks, do not let the processor speculate loads outside
1663 	 * the guest's registered memslots.
1664 	 */
1665 	unsigned long offset = gfn - slot->base_gfn;
1666 	offset = array_index_nospec(offset, slot->npages);
1667 	return slot->userspace_addr + offset * PAGE_SIZE;
1668 }
1669 
1670 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1671 {
1672 	return gfn_to_memslot(kvm, gfn)->id;
1673 }
1674 
1675 static inline gfn_t
1676 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1677 {
1678 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1679 
1680 	return slot->base_gfn + gfn_offset;
1681 }
1682 
1683 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1684 {
1685 	return (gpa_t)gfn << PAGE_SHIFT;
1686 }
1687 
1688 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1689 {
1690 	return (gfn_t)(gpa >> PAGE_SHIFT);
1691 }
1692 
1693 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1694 {
1695 	return (hpa_t)pfn << PAGE_SHIFT;
1696 }
1697 
1698 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1699 						gpa_t gpa)
1700 {
1701 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1702 }
1703 
1704 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1705 {
1706 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1707 
1708 	return kvm_is_error_hva(hva);
1709 }
1710 
1711 enum kvm_stat_kind {
1712 	KVM_STAT_VM,
1713 	KVM_STAT_VCPU,
1714 };
1715 
1716 struct kvm_stat_data {
1717 	struct kvm *kvm;
1718 	const struct _kvm_stats_desc *desc;
1719 	enum kvm_stat_kind kind;
1720 };
1721 
1722 struct _kvm_stats_desc {
1723 	struct kvm_stats_desc desc;
1724 	char name[KVM_STATS_NAME_SIZE];
1725 };
1726 
1727 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1728 	.flags = type | unit | base |					       \
1729 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1730 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1731 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1732 	.exponent = exp,						       \
1733 	.size = sz,							       \
1734 	.bucket_size = bsz
1735 
1736 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1737 	{								       \
1738 		{							       \
1739 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1740 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1741 		},							       \
1742 		.name = #stat,						       \
1743 	}
1744 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1745 	{								       \
1746 		{							       \
1747 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1748 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1749 		},							       \
1750 		.name = #stat,						       \
1751 	}
1752 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1753 	{								       \
1754 		{							       \
1755 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1756 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1757 		},							       \
1758 		.name = #stat,						       \
1759 	}
1760 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1761 	{								       \
1762 		{							       \
1763 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1764 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1765 		},							       \
1766 		.name = #stat,						       \
1767 	}
1768 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1769 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1770 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1771 
1772 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1773 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1774 		unit, base, exponent, 1, 0)
1775 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1776 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1777 		unit, base, exponent, 1, 0)
1778 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1779 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1780 		unit, base, exponent, 1, 0)
1781 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1782 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1783 		unit, base, exponent, sz, bsz)
1784 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1785 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1786 		unit, base, exponent, sz, 0)
1787 
1788 /* Cumulative counter, read/write */
1789 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1790 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1791 		KVM_STATS_BASE_POW10, 0)
1792 /* Instantaneous counter, read only */
1793 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1794 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1795 		KVM_STATS_BASE_POW10, 0)
1796 /* Peak counter, read/write */
1797 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1798 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1799 		KVM_STATS_BASE_POW10, 0)
1800 
1801 /* Cumulative time in nanosecond */
1802 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1803 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1804 		KVM_STATS_BASE_POW10, -9)
1805 /* Linear histogram for time in nanosecond */
1806 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1807 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1808 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1809 /* Logarithmic histogram for time in nanosecond */
1810 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1811 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1812 		KVM_STATS_BASE_POW10, -9, sz)
1813 
1814 #define KVM_GENERIC_VM_STATS()						       \
1815 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1816 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1817 
1818 #define KVM_GENERIC_VCPU_STATS()					       \
1819 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1820 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1821 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1822 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1823 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1824 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1825 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1826 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1827 			HALT_POLL_HIST_COUNT),				       \
1828 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1829 			HALT_POLL_HIST_COUNT),				       \
1830 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1831 			HALT_POLL_HIST_COUNT),				       \
1832 	STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking)
1833 
1834 extern struct dentry *kvm_debugfs_dir;
1835 
1836 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1837 		       const struct _kvm_stats_desc *desc,
1838 		       void *stats, size_t size_stats,
1839 		       char __user *user_buffer, size_t size, loff_t *offset);
1840 
1841 /**
1842  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1843  * statistics data.
1844  *
1845  * @data: start address of the stats data
1846  * @size: the number of bucket of the stats data
1847  * @value: the new value used to update the linear histogram's bucket
1848  * @bucket_size: the size (width) of a bucket
1849  */
1850 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1851 						u64 value, size_t bucket_size)
1852 {
1853 	size_t index = div64_u64(value, bucket_size);
1854 
1855 	index = min(index, size - 1);
1856 	++data[index];
1857 }
1858 
1859 /**
1860  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1861  * statistics data.
1862  *
1863  * @data: start address of the stats data
1864  * @size: the number of bucket of the stats data
1865  * @value: the new value used to update the logarithmic histogram's bucket
1866  */
1867 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1868 {
1869 	size_t index = fls64(value);
1870 
1871 	index = min(index, size - 1);
1872 	++data[index];
1873 }
1874 
1875 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1876 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1877 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1878 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1879 
1880 
1881 extern const struct kvm_stats_header kvm_vm_stats_header;
1882 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1883 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1884 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1885 
1886 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1887 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1888 {
1889 	if (unlikely(kvm->mmu_notifier_count))
1890 		return 1;
1891 	/*
1892 	 * Ensure the read of mmu_notifier_count happens before the read
1893 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1894 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1895 	 * either sees the old (non-zero) value of mmu_notifier_count or
1896 	 * the new (incremented) value of mmu_notifier_seq.
1897 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1898 	 * rather than under kvm->mmu_lock, for scalability, so
1899 	 * can't rely on kvm->mmu_lock to keep things ordered.
1900 	 */
1901 	smp_rmb();
1902 	if (kvm->mmu_notifier_seq != mmu_seq)
1903 		return 1;
1904 	return 0;
1905 }
1906 
1907 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1908 					 unsigned long mmu_seq,
1909 					 unsigned long hva)
1910 {
1911 	lockdep_assert_held(&kvm->mmu_lock);
1912 	/*
1913 	 * If mmu_notifier_count is non-zero, then the range maintained by
1914 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1915 	 * might be being invalidated. Note that it may include some false
1916 	 * positives, due to shortcuts when handing concurrent invalidations.
1917 	 */
1918 	if (unlikely(kvm->mmu_notifier_count) &&
1919 	    hva >= kvm->mmu_notifier_range_start &&
1920 	    hva < kvm->mmu_notifier_range_end)
1921 		return 1;
1922 	if (kvm->mmu_notifier_seq != mmu_seq)
1923 		return 1;
1924 	return 0;
1925 }
1926 #endif
1927 
1928 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1929 
1930 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1931 
1932 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1933 int kvm_set_irq_routing(struct kvm *kvm,
1934 			const struct kvm_irq_routing_entry *entries,
1935 			unsigned nr,
1936 			unsigned flags);
1937 int kvm_set_routing_entry(struct kvm *kvm,
1938 			  struct kvm_kernel_irq_routing_entry *e,
1939 			  const struct kvm_irq_routing_entry *ue);
1940 void kvm_free_irq_routing(struct kvm *kvm);
1941 
1942 #else
1943 
1944 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1945 
1946 #endif
1947 
1948 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1949 
1950 #ifdef CONFIG_HAVE_KVM_EVENTFD
1951 
1952 void kvm_eventfd_init(struct kvm *kvm);
1953 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1954 
1955 #ifdef CONFIG_HAVE_KVM_IRQFD
1956 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1957 void kvm_irqfd_release(struct kvm *kvm);
1958 void kvm_irq_routing_update(struct kvm *);
1959 #else
1960 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1961 {
1962 	return -EINVAL;
1963 }
1964 
1965 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1966 #endif
1967 
1968 #else
1969 
1970 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1971 
1972 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1973 {
1974 	return -EINVAL;
1975 }
1976 
1977 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1978 
1979 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1980 static inline void kvm_irq_routing_update(struct kvm *kvm)
1981 {
1982 }
1983 #endif
1984 
1985 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1986 {
1987 	return -ENOSYS;
1988 }
1989 
1990 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1991 
1992 void kvm_arch_irq_routing_update(struct kvm *kvm);
1993 
1994 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
1995 {
1996 	/*
1997 	 * Ensure the rest of the request is published to kvm_check_request's
1998 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1999 	 */
2000 	smp_wmb();
2001 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2002 }
2003 
2004 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2005 {
2006 	/*
2007 	 * Request that don't require vCPU action should never be logged in
2008 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2009 	 * logged indefinitely and prevent the vCPU from entering the guest.
2010 	 */
2011 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2012 		     (req & KVM_REQUEST_NO_ACTION));
2013 
2014 	__kvm_make_request(req, vcpu);
2015 }
2016 
2017 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2018 {
2019 	return READ_ONCE(vcpu->requests);
2020 }
2021 
2022 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2023 {
2024 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2025 }
2026 
2027 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2028 {
2029 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2030 }
2031 
2032 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2033 {
2034 	if (kvm_test_request(req, vcpu)) {
2035 		kvm_clear_request(req, vcpu);
2036 
2037 		/*
2038 		 * Ensure the rest of the request is visible to kvm_check_request's
2039 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2040 		 */
2041 		smp_mb__after_atomic();
2042 		return true;
2043 	} else {
2044 		return false;
2045 	}
2046 }
2047 
2048 extern bool kvm_rebooting;
2049 
2050 extern unsigned int halt_poll_ns;
2051 extern unsigned int halt_poll_ns_grow;
2052 extern unsigned int halt_poll_ns_grow_start;
2053 extern unsigned int halt_poll_ns_shrink;
2054 
2055 struct kvm_device {
2056 	const struct kvm_device_ops *ops;
2057 	struct kvm *kvm;
2058 	void *private;
2059 	struct list_head vm_node;
2060 };
2061 
2062 /* create, destroy, and name are mandatory */
2063 struct kvm_device_ops {
2064 	const char *name;
2065 
2066 	/*
2067 	 * create is called holding kvm->lock and any operations not suitable
2068 	 * to do while holding the lock should be deferred to init (see
2069 	 * below).
2070 	 */
2071 	int (*create)(struct kvm_device *dev, u32 type);
2072 
2073 	/*
2074 	 * init is called after create if create is successful and is called
2075 	 * outside of holding kvm->lock.
2076 	 */
2077 	void (*init)(struct kvm_device *dev);
2078 
2079 	/*
2080 	 * Destroy is responsible for freeing dev.
2081 	 *
2082 	 * Destroy may be called before or after destructors are called
2083 	 * on emulated I/O regions, depending on whether a reference is
2084 	 * held by a vcpu or other kvm component that gets destroyed
2085 	 * after the emulated I/O.
2086 	 */
2087 	void (*destroy)(struct kvm_device *dev);
2088 
2089 	/*
2090 	 * Release is an alternative method to free the device. It is
2091 	 * called when the device file descriptor is closed. Once
2092 	 * release is called, the destroy method will not be called
2093 	 * anymore as the device is removed from the device list of
2094 	 * the VM. kvm->lock is held.
2095 	 */
2096 	void (*release)(struct kvm_device *dev);
2097 
2098 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2099 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2100 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2101 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2102 		      unsigned long arg);
2103 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2104 };
2105 
2106 void kvm_device_get(struct kvm_device *dev);
2107 void kvm_device_put(struct kvm_device *dev);
2108 struct kvm_device *kvm_device_from_filp(struct file *filp);
2109 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2110 void kvm_unregister_device_ops(u32 type);
2111 
2112 extern struct kvm_device_ops kvm_mpic_ops;
2113 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2114 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2115 
2116 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2117 
2118 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2119 {
2120 	vcpu->spin_loop.in_spin_loop = val;
2121 }
2122 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2123 {
2124 	vcpu->spin_loop.dy_eligible = val;
2125 }
2126 
2127 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2128 
2129 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2130 {
2131 }
2132 
2133 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2134 {
2135 }
2136 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2137 
2138 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2139 {
2140 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2141 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2142 }
2143 
2144 struct kvm_vcpu *kvm_get_running_vcpu(void);
2145 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2146 
2147 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2148 bool kvm_arch_has_irq_bypass(void);
2149 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2150 			   struct irq_bypass_producer *);
2151 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2152 			   struct irq_bypass_producer *);
2153 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2154 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2155 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2156 				  uint32_t guest_irq, bool set);
2157 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2158 				  struct kvm_kernel_irq_routing_entry *);
2159 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2160 
2161 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2162 /* If we wakeup during the poll time, was it a sucessful poll? */
2163 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2164 {
2165 	return vcpu->valid_wakeup;
2166 }
2167 
2168 #else
2169 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2170 {
2171 	return true;
2172 }
2173 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2174 
2175 #ifdef CONFIG_HAVE_KVM_NO_POLL
2176 /* Callback that tells if we must not poll */
2177 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2178 #else
2179 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2180 {
2181 	return false;
2182 }
2183 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2184 
2185 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2186 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2187 			       unsigned int ioctl, unsigned long arg);
2188 #else
2189 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2190 					     unsigned int ioctl,
2191 					     unsigned long arg)
2192 {
2193 	return -ENOIOCTLCMD;
2194 }
2195 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2196 
2197 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2198 					    unsigned long start, unsigned long end);
2199 
2200 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2201 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2202 #else
2203 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2204 {
2205 	return 0;
2206 }
2207 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2208 
2209 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2210 
2211 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2212 				uintptr_t data, const char *name,
2213 				struct task_struct **thread_ptr);
2214 
2215 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2216 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2217 {
2218 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2219 	vcpu->stat.signal_exits++;
2220 }
2221 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2222 
2223 /*
2224  * This defines how many reserved entries we want to keep before we
2225  * kick the vcpu to the userspace to avoid dirty ring full.  This
2226  * value can be tuned to higher if e.g. PML is enabled on the host.
2227  */
2228 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2229 
2230 /* Max number of entries allowed for each kvm dirty ring */
2231 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2232 
2233 #endif
2234