1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 54 * in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of install_new_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_ADDRESS_SPACE_NUM 84 #define KVM_ADDRESS_SPACE_NUM 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 100 /* 101 * error pfns indicate that the gfn is in slot but faild to 102 * translate it to pfn on host. 103 */ 104 static inline bool is_error_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_MASK); 107 } 108 109 /* 110 * error_noslot pfns indicate that the gfn can not be 111 * translated to pfn - it is not in slot or failed to 112 * translate it to pfn. 113 */ 114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 115 { 116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 117 } 118 119 /* noslot pfn indicates that the gfn is not in slot. */ 120 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 121 { 122 return pfn == KVM_PFN_NOSLOT; 123 } 124 125 /* 126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 127 * provide own defines and kvm_is_error_hva 128 */ 129 #ifndef KVM_HVA_ERR_BAD 130 131 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 132 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 133 134 static inline bool kvm_is_error_hva(unsigned long addr) 135 { 136 return addr >= PAGE_OFFSET; 137 } 138 139 #endif 140 141 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 142 143 static inline bool is_error_page(struct page *page) 144 { 145 return IS_ERR(page); 146 } 147 148 #define KVM_REQUEST_MASK GENMASK(7,0) 149 #define KVM_REQUEST_NO_WAKEUP BIT(8) 150 #define KVM_REQUEST_WAIT BIT(9) 151 #define KVM_REQUEST_NO_ACTION BIT(10) 152 /* 153 * Architecture-independent vcpu->requests bit members 154 * Bits 4-7 are reserved for more arch-independent bits. 155 */ 156 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 157 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 158 #define KVM_REQ_UNBLOCK 2 159 #define KVM_REQ_UNHALT 3 160 #define KVM_REQUEST_ARCH_BASE 8 161 162 /* 163 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 164 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 165 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 166 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 167 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 168 * guarantee the vCPU received an IPI and has actually exited guest mode. 169 */ 170 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 171 172 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 173 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 174 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 175 }) 176 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 177 178 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 179 unsigned long *vcpu_bitmap); 180 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 181 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 182 struct kvm_vcpu *except); 183 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 184 unsigned long *vcpu_bitmap); 185 186 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 187 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 188 189 extern struct mutex kvm_lock; 190 extern struct list_head vm_list; 191 192 struct kvm_io_range { 193 gpa_t addr; 194 int len; 195 struct kvm_io_device *dev; 196 }; 197 198 #define NR_IOBUS_DEVS 1000 199 200 struct kvm_io_bus { 201 int dev_count; 202 int ioeventfd_count; 203 struct kvm_io_range range[]; 204 }; 205 206 enum kvm_bus { 207 KVM_MMIO_BUS, 208 KVM_PIO_BUS, 209 KVM_VIRTIO_CCW_NOTIFY_BUS, 210 KVM_FAST_MMIO_BUS, 211 KVM_NR_BUSES 212 }; 213 214 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 215 int len, const void *val); 216 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 217 gpa_t addr, int len, const void *val, long cookie); 218 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 219 int len, void *val); 220 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 221 int len, struct kvm_io_device *dev); 222 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 223 struct kvm_io_device *dev); 224 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 225 gpa_t addr); 226 227 #ifdef CONFIG_KVM_ASYNC_PF 228 struct kvm_async_pf { 229 struct work_struct work; 230 struct list_head link; 231 struct list_head queue; 232 struct kvm_vcpu *vcpu; 233 struct mm_struct *mm; 234 gpa_t cr2_or_gpa; 235 unsigned long addr; 236 struct kvm_arch_async_pf arch; 237 bool wakeup_all; 238 bool notpresent_injected; 239 }; 240 241 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 242 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 243 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 244 unsigned long hva, struct kvm_arch_async_pf *arch); 245 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 246 #endif 247 248 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 249 struct kvm_gfn_range { 250 struct kvm_memory_slot *slot; 251 gfn_t start; 252 gfn_t end; 253 pte_t pte; 254 bool may_block; 255 }; 256 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 257 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 258 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 259 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 260 #endif 261 262 enum { 263 OUTSIDE_GUEST_MODE, 264 IN_GUEST_MODE, 265 EXITING_GUEST_MODE, 266 READING_SHADOW_PAGE_TABLES, 267 }; 268 269 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 270 271 struct kvm_host_map { 272 /* 273 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 274 * a 'struct page' for it. When using mem= kernel parameter some memory 275 * can be used as guest memory but they are not managed by host 276 * kernel). 277 * If 'pfn' is not managed by the host kernel, this field is 278 * initialized to KVM_UNMAPPED_PAGE. 279 */ 280 struct page *page; 281 void *hva; 282 kvm_pfn_t pfn; 283 kvm_pfn_t gfn; 284 }; 285 286 /* 287 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 288 * directly to check for that. 289 */ 290 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 291 { 292 return !!map->hva; 293 } 294 295 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 296 { 297 return single_task_running() && !need_resched() && ktime_before(cur, stop); 298 } 299 300 /* 301 * Sometimes a large or cross-page mmio needs to be broken up into separate 302 * exits for userspace servicing. 303 */ 304 struct kvm_mmio_fragment { 305 gpa_t gpa; 306 void *data; 307 unsigned len; 308 }; 309 310 struct kvm_vcpu { 311 struct kvm *kvm; 312 #ifdef CONFIG_PREEMPT_NOTIFIERS 313 struct preempt_notifier preempt_notifier; 314 #endif 315 int cpu; 316 int vcpu_id; /* id given by userspace at creation */ 317 int vcpu_idx; /* index in kvm->vcpus array */ 318 int srcu_idx; 319 int mode; 320 u64 requests; 321 unsigned long guest_debug; 322 323 struct mutex mutex; 324 struct kvm_run *run; 325 326 #ifndef __KVM_HAVE_ARCH_WQP 327 struct rcuwait wait; 328 #endif 329 struct pid __rcu *pid; 330 int sigset_active; 331 sigset_t sigset; 332 unsigned int halt_poll_ns; 333 bool valid_wakeup; 334 335 #ifdef CONFIG_HAS_IOMEM 336 int mmio_needed; 337 int mmio_read_completed; 338 int mmio_is_write; 339 int mmio_cur_fragment; 340 int mmio_nr_fragments; 341 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 342 #endif 343 344 #ifdef CONFIG_KVM_ASYNC_PF 345 struct { 346 u32 queued; 347 struct list_head queue; 348 struct list_head done; 349 spinlock_t lock; 350 } async_pf; 351 #endif 352 353 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 354 /* 355 * Cpu relax intercept or pause loop exit optimization 356 * in_spin_loop: set when a vcpu does a pause loop exit 357 * or cpu relax intercepted. 358 * dy_eligible: indicates whether vcpu is eligible for directed yield. 359 */ 360 struct { 361 bool in_spin_loop; 362 bool dy_eligible; 363 } spin_loop; 364 #endif 365 bool preempted; 366 bool ready; 367 struct kvm_vcpu_arch arch; 368 struct kvm_vcpu_stat stat; 369 char stats_id[KVM_STATS_NAME_SIZE]; 370 struct kvm_dirty_ring dirty_ring; 371 372 /* 373 * The most recently used memslot by this vCPU and the slots generation 374 * for which it is valid. 375 * No wraparound protection is needed since generations won't overflow in 376 * thousands of years, even assuming 1M memslot operations per second. 377 */ 378 struct kvm_memory_slot *last_used_slot; 379 u64 last_used_slot_gen; 380 }; 381 382 /* 383 * Start accounting time towards a guest. 384 * Must be called before entering guest context. 385 */ 386 static __always_inline void guest_timing_enter_irqoff(void) 387 { 388 /* 389 * This is running in ioctl context so its safe to assume that it's the 390 * stime pending cputime to flush. 391 */ 392 instrumentation_begin(); 393 vtime_account_guest_enter(); 394 instrumentation_end(); 395 } 396 397 /* 398 * Enter guest context and enter an RCU extended quiescent state. 399 * 400 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 401 * unsafe to use any code which may directly or indirectly use RCU, tracing 402 * (including IRQ flag tracing), or lockdep. All code in this period must be 403 * non-instrumentable. 404 */ 405 static __always_inline void guest_context_enter_irqoff(void) 406 { 407 /* 408 * KVM does not hold any references to rcu protected data when it 409 * switches CPU into a guest mode. In fact switching to a guest mode 410 * is very similar to exiting to userspace from rcu point of view. In 411 * addition CPU may stay in a guest mode for quite a long time (up to 412 * one time slice). Lets treat guest mode as quiescent state, just like 413 * we do with user-mode execution. 414 */ 415 if (!context_tracking_guest_enter()) { 416 instrumentation_begin(); 417 rcu_virt_note_context_switch(smp_processor_id()); 418 instrumentation_end(); 419 } 420 } 421 422 /* 423 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 424 * guest_state_enter_irqoff(). 425 */ 426 static __always_inline void guest_enter_irqoff(void) 427 { 428 guest_timing_enter_irqoff(); 429 guest_context_enter_irqoff(); 430 } 431 432 /** 433 * guest_state_enter_irqoff - Fixup state when entering a guest 434 * 435 * Entry to a guest will enable interrupts, but the kernel state is interrupts 436 * disabled when this is invoked. Also tell RCU about it. 437 * 438 * 1) Trace interrupts on state 439 * 2) Invoke context tracking if enabled to adjust RCU state 440 * 3) Tell lockdep that interrupts are enabled 441 * 442 * Invoked from architecture specific code before entering a guest. 443 * Must be called with interrupts disabled and the caller must be 444 * non-instrumentable. 445 * The caller has to invoke guest_timing_enter_irqoff() before this. 446 * 447 * Note: this is analogous to exit_to_user_mode(). 448 */ 449 static __always_inline void guest_state_enter_irqoff(void) 450 { 451 instrumentation_begin(); 452 trace_hardirqs_on_prepare(); 453 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 454 instrumentation_end(); 455 456 guest_context_enter_irqoff(); 457 lockdep_hardirqs_on(CALLER_ADDR0); 458 } 459 460 /* 461 * Exit guest context and exit an RCU extended quiescent state. 462 * 463 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 464 * unsafe to use any code which may directly or indirectly use RCU, tracing 465 * (including IRQ flag tracing), or lockdep. All code in this period must be 466 * non-instrumentable. 467 */ 468 static __always_inline void guest_context_exit_irqoff(void) 469 { 470 context_tracking_guest_exit(); 471 } 472 473 /* 474 * Stop accounting time towards a guest. 475 * Must be called after exiting guest context. 476 */ 477 static __always_inline void guest_timing_exit_irqoff(void) 478 { 479 instrumentation_begin(); 480 /* Flush the guest cputime we spent on the guest */ 481 vtime_account_guest_exit(); 482 instrumentation_end(); 483 } 484 485 /* 486 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 487 * guest_timing_exit_irqoff(). 488 */ 489 static __always_inline void guest_exit_irqoff(void) 490 { 491 guest_context_exit_irqoff(); 492 guest_timing_exit_irqoff(); 493 } 494 495 static inline void guest_exit(void) 496 { 497 unsigned long flags; 498 499 local_irq_save(flags); 500 guest_exit_irqoff(); 501 local_irq_restore(flags); 502 } 503 504 /** 505 * guest_state_exit_irqoff - Establish state when returning from guest mode 506 * 507 * Entry from a guest disables interrupts, but guest mode is traced as 508 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 509 * 510 * 1) Tell lockdep that interrupts are disabled 511 * 2) Invoke context tracking if enabled to reactivate RCU 512 * 3) Trace interrupts off state 513 * 514 * Invoked from architecture specific code after exiting a guest. 515 * Must be invoked with interrupts disabled and the caller must be 516 * non-instrumentable. 517 * The caller has to invoke guest_timing_exit_irqoff() after this. 518 * 519 * Note: this is analogous to enter_from_user_mode(). 520 */ 521 static __always_inline void guest_state_exit_irqoff(void) 522 { 523 lockdep_hardirqs_off(CALLER_ADDR0); 524 guest_context_exit_irqoff(); 525 526 instrumentation_begin(); 527 trace_hardirqs_off_finish(); 528 instrumentation_end(); 529 } 530 531 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 532 { 533 /* 534 * The memory barrier ensures a previous write to vcpu->requests cannot 535 * be reordered with the read of vcpu->mode. It pairs with the general 536 * memory barrier following the write of vcpu->mode in VCPU RUN. 537 */ 538 smp_mb__before_atomic(); 539 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 540 } 541 542 /* 543 * Some of the bitops functions do not support too long bitmaps. 544 * This number must be determined not to exceed such limits. 545 */ 546 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 547 548 /* 549 * Since at idle each memslot belongs to two memslot sets it has to contain 550 * two embedded nodes for each data structure that it forms a part of. 551 * 552 * Two memslot sets (one active and one inactive) are necessary so the VM 553 * continues to run on one memslot set while the other is being modified. 554 * 555 * These two memslot sets normally point to the same set of memslots. 556 * They can, however, be desynchronized when performing a memslot management 557 * operation by replacing the memslot to be modified by its copy. 558 * After the operation is complete, both memslot sets once again point to 559 * the same, common set of memslot data. 560 * 561 * The memslots themselves are independent of each other so they can be 562 * individually added or deleted. 563 */ 564 struct kvm_memory_slot { 565 struct hlist_node id_node[2]; 566 struct interval_tree_node hva_node[2]; 567 struct rb_node gfn_node[2]; 568 gfn_t base_gfn; 569 unsigned long npages; 570 unsigned long *dirty_bitmap; 571 struct kvm_arch_memory_slot arch; 572 unsigned long userspace_addr; 573 u32 flags; 574 short id; 575 u16 as_id; 576 }; 577 578 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 579 { 580 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 581 } 582 583 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 584 { 585 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 586 } 587 588 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 589 { 590 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 591 592 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 593 } 594 595 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 596 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 597 #endif 598 599 struct kvm_s390_adapter_int { 600 u64 ind_addr; 601 u64 summary_addr; 602 u64 ind_offset; 603 u32 summary_offset; 604 u32 adapter_id; 605 }; 606 607 struct kvm_hv_sint { 608 u32 vcpu; 609 u32 sint; 610 }; 611 612 struct kvm_xen_evtchn { 613 u32 port; 614 u32 vcpu; 615 u32 priority; 616 }; 617 618 struct kvm_kernel_irq_routing_entry { 619 u32 gsi; 620 u32 type; 621 int (*set)(struct kvm_kernel_irq_routing_entry *e, 622 struct kvm *kvm, int irq_source_id, int level, 623 bool line_status); 624 union { 625 struct { 626 unsigned irqchip; 627 unsigned pin; 628 } irqchip; 629 struct { 630 u32 address_lo; 631 u32 address_hi; 632 u32 data; 633 u32 flags; 634 u32 devid; 635 } msi; 636 struct kvm_s390_adapter_int adapter; 637 struct kvm_hv_sint hv_sint; 638 struct kvm_xen_evtchn xen_evtchn; 639 }; 640 struct hlist_node link; 641 }; 642 643 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 644 struct kvm_irq_routing_table { 645 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 646 u32 nr_rt_entries; 647 /* 648 * Array indexed by gsi. Each entry contains list of irq chips 649 * the gsi is connected to. 650 */ 651 struct hlist_head map[]; 652 }; 653 #endif 654 655 #ifndef KVM_PRIVATE_MEM_SLOTS 656 #define KVM_PRIVATE_MEM_SLOTS 0 657 #endif 658 659 #define KVM_MEM_SLOTS_NUM SHRT_MAX 660 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 661 662 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 663 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 664 { 665 return 0; 666 } 667 #endif 668 669 struct kvm_memslots { 670 u64 generation; 671 atomic_long_t last_used_slot; 672 struct rb_root_cached hva_tree; 673 struct rb_root gfn_tree; 674 /* 675 * The mapping table from slot id to memslot. 676 * 677 * 7-bit bucket count matches the size of the old id to index array for 678 * 512 slots, while giving good performance with this slot count. 679 * Higher bucket counts bring only small performance improvements but 680 * always result in higher memory usage (even for lower memslot counts). 681 */ 682 DECLARE_HASHTABLE(id_hash, 7); 683 int node_idx; 684 }; 685 686 struct kvm { 687 #ifdef KVM_HAVE_MMU_RWLOCK 688 rwlock_t mmu_lock; 689 #else 690 spinlock_t mmu_lock; 691 #endif /* KVM_HAVE_MMU_RWLOCK */ 692 693 struct mutex slots_lock; 694 695 /* 696 * Protects the arch-specific fields of struct kvm_memory_slots in 697 * use by the VM. To be used under the slots_lock (above) or in a 698 * kvm->srcu critical section where acquiring the slots_lock would 699 * lead to deadlock with the synchronize_srcu in 700 * install_new_memslots. 701 */ 702 struct mutex slots_arch_lock; 703 struct mm_struct *mm; /* userspace tied to this vm */ 704 unsigned long nr_memslot_pages; 705 /* The two memslot sets - active and inactive (per address space) */ 706 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 707 /* The current active memslot set for each address space */ 708 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 709 struct xarray vcpu_array; 710 711 /* Used to wait for completion of MMU notifiers. */ 712 spinlock_t mn_invalidate_lock; 713 unsigned long mn_active_invalidate_count; 714 struct rcuwait mn_memslots_update_rcuwait; 715 716 /* For management / invalidation of gfn_to_pfn_caches */ 717 spinlock_t gpc_lock; 718 struct list_head gpc_list; 719 720 /* 721 * created_vcpus is protected by kvm->lock, and is incremented 722 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 723 * incremented after storing the kvm_vcpu pointer in vcpus, 724 * and is accessed atomically. 725 */ 726 atomic_t online_vcpus; 727 int created_vcpus; 728 int last_boosted_vcpu; 729 struct list_head vm_list; 730 struct mutex lock; 731 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 732 #ifdef CONFIG_HAVE_KVM_EVENTFD 733 struct { 734 spinlock_t lock; 735 struct list_head items; 736 struct list_head resampler_list; 737 struct mutex resampler_lock; 738 } irqfds; 739 struct list_head ioeventfds; 740 #endif 741 struct kvm_vm_stat stat; 742 struct kvm_arch arch; 743 refcount_t users_count; 744 #ifdef CONFIG_KVM_MMIO 745 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 746 spinlock_t ring_lock; 747 struct list_head coalesced_zones; 748 #endif 749 750 struct mutex irq_lock; 751 #ifdef CONFIG_HAVE_KVM_IRQCHIP 752 /* 753 * Update side is protected by irq_lock. 754 */ 755 struct kvm_irq_routing_table __rcu *irq_routing; 756 #endif 757 #ifdef CONFIG_HAVE_KVM_IRQFD 758 struct hlist_head irq_ack_notifier_list; 759 #endif 760 761 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 762 struct mmu_notifier mmu_notifier; 763 unsigned long mmu_notifier_seq; 764 long mmu_notifier_count; 765 unsigned long mmu_notifier_range_start; 766 unsigned long mmu_notifier_range_end; 767 #endif 768 struct list_head devices; 769 u64 manual_dirty_log_protect; 770 struct dentry *debugfs_dentry; 771 struct kvm_stat_data **debugfs_stat_data; 772 struct srcu_struct srcu; 773 struct srcu_struct irq_srcu; 774 pid_t userspace_pid; 775 unsigned int max_halt_poll_ns; 776 u32 dirty_ring_size; 777 bool vm_bugged; 778 bool vm_dead; 779 780 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 781 struct notifier_block pm_notifier; 782 #endif 783 char stats_id[KVM_STATS_NAME_SIZE]; 784 }; 785 786 #define kvm_err(fmt, ...) \ 787 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 788 #define kvm_info(fmt, ...) \ 789 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 790 #define kvm_debug(fmt, ...) \ 791 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 792 #define kvm_debug_ratelimited(fmt, ...) \ 793 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 794 ## __VA_ARGS__) 795 #define kvm_pr_unimpl(fmt, ...) \ 796 pr_err_ratelimited("kvm [%i]: " fmt, \ 797 task_tgid_nr(current), ## __VA_ARGS__) 798 799 /* The guest did something we don't support. */ 800 #define vcpu_unimpl(vcpu, fmt, ...) \ 801 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 802 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 803 804 #define vcpu_debug(vcpu, fmt, ...) \ 805 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 806 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 807 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 808 ## __VA_ARGS__) 809 #define vcpu_err(vcpu, fmt, ...) \ 810 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 811 812 static inline void kvm_vm_dead(struct kvm *kvm) 813 { 814 kvm->vm_dead = true; 815 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 816 } 817 818 static inline void kvm_vm_bugged(struct kvm *kvm) 819 { 820 kvm->vm_bugged = true; 821 kvm_vm_dead(kvm); 822 } 823 824 825 #define KVM_BUG(cond, kvm, fmt...) \ 826 ({ \ 827 int __ret = (cond); \ 828 \ 829 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 830 kvm_vm_bugged(kvm); \ 831 unlikely(__ret); \ 832 }) 833 834 #define KVM_BUG_ON(cond, kvm) \ 835 ({ \ 836 int __ret = (cond); \ 837 \ 838 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 839 kvm_vm_bugged(kvm); \ 840 unlikely(__ret); \ 841 }) 842 843 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 844 { 845 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 846 } 847 848 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 849 { 850 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 851 lockdep_is_held(&kvm->slots_lock) || 852 !refcount_read(&kvm->users_count)); 853 } 854 855 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 856 { 857 int num_vcpus = atomic_read(&kvm->online_vcpus); 858 i = array_index_nospec(i, num_vcpus); 859 860 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 861 smp_rmb(); 862 return xa_load(&kvm->vcpu_array, i); 863 } 864 865 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 866 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 867 (atomic_read(&kvm->online_vcpus) - 1)) 868 869 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 870 { 871 struct kvm_vcpu *vcpu = NULL; 872 unsigned long i; 873 874 if (id < 0) 875 return NULL; 876 if (id < KVM_MAX_VCPUS) 877 vcpu = kvm_get_vcpu(kvm, id); 878 if (vcpu && vcpu->vcpu_id == id) 879 return vcpu; 880 kvm_for_each_vcpu(i, vcpu, kvm) 881 if (vcpu->vcpu_id == id) 882 return vcpu; 883 return NULL; 884 } 885 886 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 887 { 888 return vcpu->vcpu_idx; 889 } 890 891 void kvm_destroy_vcpus(struct kvm *kvm); 892 893 void vcpu_load(struct kvm_vcpu *vcpu); 894 void vcpu_put(struct kvm_vcpu *vcpu); 895 896 #ifdef __KVM_HAVE_IOAPIC 897 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 898 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 899 #else 900 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 901 { 902 } 903 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 904 { 905 } 906 #endif 907 908 #ifdef CONFIG_HAVE_KVM_IRQFD 909 int kvm_irqfd_init(void); 910 void kvm_irqfd_exit(void); 911 #else 912 static inline int kvm_irqfd_init(void) 913 { 914 return 0; 915 } 916 917 static inline void kvm_irqfd_exit(void) 918 { 919 } 920 #endif 921 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 922 struct module *module); 923 void kvm_exit(void); 924 925 void kvm_get_kvm(struct kvm *kvm); 926 bool kvm_get_kvm_safe(struct kvm *kvm); 927 void kvm_put_kvm(struct kvm *kvm); 928 bool file_is_kvm(struct file *file); 929 void kvm_put_kvm_no_destroy(struct kvm *kvm); 930 931 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 932 { 933 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 934 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 935 lockdep_is_held(&kvm->slots_lock) || 936 !refcount_read(&kvm->users_count)); 937 } 938 939 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 940 { 941 return __kvm_memslots(kvm, 0); 942 } 943 944 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 945 { 946 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 947 948 return __kvm_memslots(vcpu->kvm, as_id); 949 } 950 951 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 952 { 953 return RB_EMPTY_ROOT(&slots->gfn_tree); 954 } 955 956 #define kvm_for_each_memslot(memslot, bkt, slots) \ 957 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 958 if (WARN_ON_ONCE(!memslot->npages)) { \ 959 } else 960 961 static inline 962 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 963 { 964 struct kvm_memory_slot *slot; 965 int idx = slots->node_idx; 966 967 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 968 if (slot->id == id) 969 return slot; 970 } 971 972 return NULL; 973 } 974 975 /* Iterator used for walking memslots that overlap a gfn range. */ 976 struct kvm_memslot_iter { 977 struct kvm_memslots *slots; 978 struct rb_node *node; 979 struct kvm_memory_slot *slot; 980 }; 981 982 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 983 { 984 iter->node = rb_next(iter->node); 985 if (!iter->node) 986 return; 987 988 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 989 } 990 991 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 992 struct kvm_memslots *slots, 993 gfn_t start) 994 { 995 int idx = slots->node_idx; 996 struct rb_node *tmp; 997 struct kvm_memory_slot *slot; 998 999 iter->slots = slots; 1000 1001 /* 1002 * Find the so called "upper bound" of a key - the first node that has 1003 * its key strictly greater than the searched one (the start gfn in our case). 1004 */ 1005 iter->node = NULL; 1006 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1007 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1008 if (start < slot->base_gfn) { 1009 iter->node = tmp; 1010 tmp = tmp->rb_left; 1011 } else { 1012 tmp = tmp->rb_right; 1013 } 1014 } 1015 1016 /* 1017 * Find the slot with the lowest gfn that can possibly intersect with 1018 * the range, so we'll ideally have slot start <= range start 1019 */ 1020 if (iter->node) { 1021 /* 1022 * A NULL previous node means that the very first slot 1023 * already has a higher start gfn. 1024 * In this case slot start > range start. 1025 */ 1026 tmp = rb_prev(iter->node); 1027 if (tmp) 1028 iter->node = tmp; 1029 } else { 1030 /* a NULL node below means no slots */ 1031 iter->node = rb_last(&slots->gfn_tree); 1032 } 1033 1034 if (iter->node) { 1035 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1036 1037 /* 1038 * It is possible in the slot start < range start case that the 1039 * found slot ends before or at range start (slot end <= range start) 1040 * and so it does not overlap the requested range. 1041 * 1042 * In such non-overlapping case the next slot (if it exists) will 1043 * already have slot start > range start, otherwise the logic above 1044 * would have found it instead of the current slot. 1045 */ 1046 if (iter->slot->base_gfn + iter->slot->npages <= start) 1047 kvm_memslot_iter_next(iter); 1048 } 1049 } 1050 1051 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1052 { 1053 if (!iter->node) 1054 return false; 1055 1056 /* 1057 * If this slot starts beyond or at the end of the range so does 1058 * every next one 1059 */ 1060 return iter->slot->base_gfn < end; 1061 } 1062 1063 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1064 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1065 for (kvm_memslot_iter_start(iter, slots, start); \ 1066 kvm_memslot_iter_is_valid(iter, end); \ 1067 kvm_memslot_iter_next(iter)) 1068 1069 /* 1070 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1071 * - create a new memory slot 1072 * - delete an existing memory slot 1073 * - modify an existing memory slot 1074 * -- move it in the guest physical memory space 1075 * -- just change its flags 1076 * 1077 * Since flags can be changed by some of these operations, the following 1078 * differentiation is the best we can do for __kvm_set_memory_region(): 1079 */ 1080 enum kvm_mr_change { 1081 KVM_MR_CREATE, 1082 KVM_MR_DELETE, 1083 KVM_MR_MOVE, 1084 KVM_MR_FLAGS_ONLY, 1085 }; 1086 1087 int kvm_set_memory_region(struct kvm *kvm, 1088 const struct kvm_userspace_memory_region *mem); 1089 int __kvm_set_memory_region(struct kvm *kvm, 1090 const struct kvm_userspace_memory_region *mem); 1091 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1092 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1093 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1094 const struct kvm_memory_slot *old, 1095 struct kvm_memory_slot *new, 1096 enum kvm_mr_change change); 1097 void kvm_arch_commit_memory_region(struct kvm *kvm, 1098 struct kvm_memory_slot *old, 1099 const struct kvm_memory_slot *new, 1100 enum kvm_mr_change change); 1101 /* flush all memory translations */ 1102 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1103 /* flush memory translations pointing to 'slot' */ 1104 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1105 struct kvm_memory_slot *slot); 1106 1107 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1108 struct page **pages, int nr_pages); 1109 1110 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1111 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1112 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1113 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1114 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1115 bool *writable); 1116 void kvm_release_page_clean(struct page *page); 1117 void kvm_release_page_dirty(struct page *page); 1118 void kvm_set_page_accessed(struct page *page); 1119 1120 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1121 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1122 bool *writable); 1123 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1124 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1125 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1126 bool atomic, bool *async, bool write_fault, 1127 bool *writable, hva_t *hva); 1128 1129 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1130 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1131 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1132 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1133 1134 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1135 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1136 int len); 1137 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1138 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1139 void *data, unsigned long len); 1140 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1141 void *data, unsigned int offset, 1142 unsigned long len); 1143 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1144 int offset, int len); 1145 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1146 unsigned long len); 1147 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1148 void *data, unsigned long len); 1149 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1150 void *data, unsigned int offset, 1151 unsigned long len); 1152 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1153 gpa_t gpa, unsigned long len); 1154 1155 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1156 ({ \ 1157 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1158 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1159 int __ret = -EFAULT; \ 1160 \ 1161 if (!kvm_is_error_hva(__addr)) \ 1162 __ret = get_user(v, __uaddr); \ 1163 __ret; \ 1164 }) 1165 1166 #define kvm_get_guest(kvm, gpa, v) \ 1167 ({ \ 1168 gpa_t __gpa = gpa; \ 1169 struct kvm *__kvm = kvm; \ 1170 \ 1171 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1172 offset_in_page(__gpa), v); \ 1173 }) 1174 1175 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1176 ({ \ 1177 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1178 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1179 int __ret = -EFAULT; \ 1180 \ 1181 if (!kvm_is_error_hva(__addr)) \ 1182 __ret = put_user(v, __uaddr); \ 1183 if (!__ret) \ 1184 mark_page_dirty(kvm, gfn); \ 1185 __ret; \ 1186 }) 1187 1188 #define kvm_put_guest(kvm, gpa, v) \ 1189 ({ \ 1190 gpa_t __gpa = gpa; \ 1191 struct kvm *__kvm = kvm; \ 1192 \ 1193 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1194 offset_in_page(__gpa), v); \ 1195 }) 1196 1197 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1198 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1199 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1200 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1201 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1202 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1203 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1204 1205 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1206 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1207 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1208 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1209 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1210 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 1211 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1212 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1213 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1214 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1215 int len); 1216 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1217 unsigned long len); 1218 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1219 unsigned long len); 1220 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1221 int offset, int len); 1222 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1223 unsigned long len); 1224 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1225 1226 /** 1227 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a 1228 * given guest physical address. 1229 * 1230 * @kvm: pointer to kvm instance. 1231 * @gpc: struct gfn_to_pfn_cache object. 1232 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1233 * invalidation. 1234 * @usage: indicates if the resulting host physical PFN is used while 1235 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1236 * the cache from MMU notifiers---but not for KVM memslot 1237 * changes!---will also force @vcpu to exit the guest and 1238 * refresh the cache); and/or if the PFN used directly 1239 * by KVM (and thus needs a kernel virtual mapping). 1240 * @gpa: guest physical address to map. 1241 * @len: sanity check; the range being access must fit a single page. 1242 * 1243 * @return: 0 for success. 1244 * -EINVAL for a mapping which would cross a page boundary. 1245 * -EFAULT for an untranslatable guest physical address. 1246 * 1247 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for 1248 * invalidations to be processed. Callers are required to use 1249 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before 1250 * accessing the target page. 1251 */ 1252 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1253 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage, 1254 gpa_t gpa, unsigned long len); 1255 1256 /** 1257 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache. 1258 * 1259 * @kvm: pointer to kvm instance. 1260 * @gpc: struct gfn_to_pfn_cache object. 1261 * @gpa: current guest physical address to map. 1262 * @len: sanity check; the range being access must fit a single page. 1263 * 1264 * @return: %true if the cache is still valid and the address matches. 1265 * %false if the cache is not valid. 1266 * 1267 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1268 * while calling this function, and then continue to hold the lock until the 1269 * access is complete. 1270 * 1271 * Callers in IN_GUEST_MODE may do so without locking, although they should 1272 * still hold a read lock on kvm->scru for the memslot checks. 1273 */ 1274 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1275 gpa_t gpa, unsigned long len); 1276 1277 /** 1278 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache. 1279 * 1280 * @kvm: pointer to kvm instance. 1281 * @gpc: struct gfn_to_pfn_cache object. 1282 * @gpa: updated guest physical address to map. 1283 * @len: sanity check; the range being access must fit a single page. 1284 * 1285 * @return: 0 for success. 1286 * -EINVAL for a mapping which would cross a page boundary. 1287 * -EFAULT for an untranslatable guest physical address. 1288 * 1289 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1290 * returm from this function does not mean the page can be immediately 1291 * accessed because it may have raced with an invalidation. Callers must 1292 * still lock and check the cache status, as this function does not return 1293 * with the lock still held to permit access. 1294 */ 1295 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1296 gpa_t gpa, unsigned long len); 1297 1298 /** 1299 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache. 1300 * 1301 * @kvm: pointer to kvm instance. 1302 * @gpc: struct gfn_to_pfn_cache object. 1303 * 1304 * This unmaps the referenced page. The cache is left in the invalid state 1305 * but at least the mapping from GPA to userspace HVA will remain cached 1306 * and can be reused on a subsequent refresh. 1307 */ 1308 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1309 1310 /** 1311 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache. 1312 * 1313 * @kvm: pointer to kvm instance. 1314 * @gpc: struct gfn_to_pfn_cache object. 1315 * 1316 * This removes a cache from the @kvm's list to be processed on MMU notifier 1317 * invocation. 1318 */ 1319 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1320 1321 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1322 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1323 1324 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1325 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1326 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1327 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1328 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1329 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1330 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1331 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1332 1333 void kvm_flush_remote_tlbs(struct kvm *kvm); 1334 1335 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1336 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1337 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1338 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1339 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1340 #endif 1341 1342 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 1343 unsigned long end); 1344 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 1345 unsigned long end); 1346 1347 long kvm_arch_dev_ioctl(struct file *filp, 1348 unsigned int ioctl, unsigned long arg); 1349 long kvm_arch_vcpu_ioctl(struct file *filp, 1350 unsigned int ioctl, unsigned long arg); 1351 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1352 1353 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1354 1355 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1356 struct kvm_memory_slot *slot, 1357 gfn_t gfn_offset, 1358 unsigned long mask); 1359 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1360 1361 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1362 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1363 const struct kvm_memory_slot *memslot); 1364 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1365 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1366 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1367 int *is_dirty, struct kvm_memory_slot **memslot); 1368 #endif 1369 1370 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1371 bool line_status); 1372 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1373 struct kvm_enable_cap *cap); 1374 long kvm_arch_vm_ioctl(struct file *filp, 1375 unsigned int ioctl, unsigned long arg); 1376 1377 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1378 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1379 1380 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1381 struct kvm_translation *tr); 1382 1383 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1384 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1385 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1386 struct kvm_sregs *sregs); 1387 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1388 struct kvm_sregs *sregs); 1389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1390 struct kvm_mp_state *mp_state); 1391 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1392 struct kvm_mp_state *mp_state); 1393 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1394 struct kvm_guest_debug *dbg); 1395 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1396 1397 int kvm_arch_init(void *opaque); 1398 void kvm_arch_exit(void); 1399 1400 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1401 1402 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1403 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1404 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1405 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1406 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1407 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1408 1409 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1410 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1411 #endif 1412 1413 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1414 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1415 #endif 1416 1417 int kvm_arch_hardware_enable(void); 1418 void kvm_arch_hardware_disable(void); 1419 int kvm_arch_hardware_setup(void *opaque); 1420 void kvm_arch_hardware_unsetup(void); 1421 int kvm_arch_check_processor_compat(void *opaque); 1422 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1423 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1424 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1425 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1426 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1427 int kvm_arch_post_init_vm(struct kvm *kvm); 1428 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1429 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1430 1431 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1432 /* 1433 * All architectures that want to use vzalloc currently also 1434 * need their own kvm_arch_alloc_vm implementation. 1435 */ 1436 static inline struct kvm *kvm_arch_alloc_vm(void) 1437 { 1438 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1439 } 1440 #endif 1441 1442 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1443 { 1444 kvfree(kvm); 1445 } 1446 1447 #ifndef __KVM_HAVE_ARCH_VM_FREE 1448 static inline void kvm_arch_free_vm(struct kvm *kvm) 1449 { 1450 __kvm_arch_free_vm(kvm); 1451 } 1452 #endif 1453 1454 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1455 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1456 { 1457 return -ENOTSUPP; 1458 } 1459 #endif 1460 1461 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1462 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1463 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1464 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1465 #else 1466 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1467 { 1468 } 1469 1470 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1471 { 1472 } 1473 1474 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1475 { 1476 return false; 1477 } 1478 #endif 1479 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1480 void kvm_arch_start_assignment(struct kvm *kvm); 1481 void kvm_arch_end_assignment(struct kvm *kvm); 1482 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1483 #else 1484 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1485 { 1486 } 1487 1488 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1489 { 1490 } 1491 1492 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1493 { 1494 return false; 1495 } 1496 #endif 1497 1498 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1499 { 1500 #ifdef __KVM_HAVE_ARCH_WQP 1501 return vcpu->arch.waitp; 1502 #else 1503 return &vcpu->wait; 1504 #endif 1505 } 1506 1507 /* 1508 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1509 * true if the vCPU was blocking and was awakened, false otherwise. 1510 */ 1511 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1512 { 1513 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1514 } 1515 1516 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1517 { 1518 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1519 } 1520 1521 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1522 /* 1523 * returns true if the virtual interrupt controller is initialized and 1524 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1525 * controller is dynamically instantiated and this is not always true. 1526 */ 1527 bool kvm_arch_intc_initialized(struct kvm *kvm); 1528 #else 1529 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1530 { 1531 return true; 1532 } 1533 #endif 1534 1535 #ifdef CONFIG_GUEST_PERF_EVENTS 1536 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1537 1538 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1539 void kvm_unregister_perf_callbacks(void); 1540 #else 1541 static inline void kvm_register_perf_callbacks(void *ign) {} 1542 static inline void kvm_unregister_perf_callbacks(void) {} 1543 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1544 1545 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1546 void kvm_arch_destroy_vm(struct kvm *kvm); 1547 void kvm_arch_sync_events(struct kvm *kvm); 1548 1549 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1550 1551 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1552 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1553 1554 struct kvm_irq_ack_notifier { 1555 struct hlist_node link; 1556 unsigned gsi; 1557 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1558 }; 1559 1560 int kvm_irq_map_gsi(struct kvm *kvm, 1561 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1562 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1563 1564 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1565 bool line_status); 1566 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1567 int irq_source_id, int level, bool line_status); 1568 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1569 struct kvm *kvm, int irq_source_id, 1570 int level, bool line_status); 1571 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1572 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1573 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1574 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1575 struct kvm_irq_ack_notifier *kian); 1576 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1577 struct kvm_irq_ack_notifier *kian); 1578 int kvm_request_irq_source_id(struct kvm *kvm); 1579 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1580 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1581 1582 /* 1583 * Returns a pointer to the memslot if it contains gfn. 1584 * Otherwise returns NULL. 1585 */ 1586 static inline struct kvm_memory_slot * 1587 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1588 { 1589 if (!slot) 1590 return NULL; 1591 1592 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1593 return slot; 1594 else 1595 return NULL; 1596 } 1597 1598 /* 1599 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1600 * 1601 * With "approx" set returns the memslot also when the address falls 1602 * in a hole. In that case one of the memslots bordering the hole is 1603 * returned. 1604 */ 1605 static inline struct kvm_memory_slot * 1606 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1607 { 1608 struct kvm_memory_slot *slot; 1609 struct rb_node *node; 1610 int idx = slots->node_idx; 1611 1612 slot = NULL; 1613 for (node = slots->gfn_tree.rb_node; node; ) { 1614 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1615 if (gfn >= slot->base_gfn) { 1616 if (gfn < slot->base_gfn + slot->npages) 1617 return slot; 1618 node = node->rb_right; 1619 } else 1620 node = node->rb_left; 1621 } 1622 1623 return approx ? slot : NULL; 1624 } 1625 1626 static inline struct kvm_memory_slot * 1627 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1628 { 1629 struct kvm_memory_slot *slot; 1630 1631 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1632 slot = try_get_memslot(slot, gfn); 1633 if (slot) 1634 return slot; 1635 1636 slot = search_memslots(slots, gfn, approx); 1637 if (slot) { 1638 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1639 return slot; 1640 } 1641 1642 return NULL; 1643 } 1644 1645 /* 1646 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1647 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1648 * because that would bloat other code too much. 1649 */ 1650 static inline struct kvm_memory_slot * 1651 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1652 { 1653 return ____gfn_to_memslot(slots, gfn, false); 1654 } 1655 1656 static inline unsigned long 1657 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1658 { 1659 /* 1660 * The index was checked originally in search_memslots. To avoid 1661 * that a malicious guest builds a Spectre gadget out of e.g. page 1662 * table walks, do not let the processor speculate loads outside 1663 * the guest's registered memslots. 1664 */ 1665 unsigned long offset = gfn - slot->base_gfn; 1666 offset = array_index_nospec(offset, slot->npages); 1667 return slot->userspace_addr + offset * PAGE_SIZE; 1668 } 1669 1670 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1671 { 1672 return gfn_to_memslot(kvm, gfn)->id; 1673 } 1674 1675 static inline gfn_t 1676 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1677 { 1678 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1679 1680 return slot->base_gfn + gfn_offset; 1681 } 1682 1683 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1684 { 1685 return (gpa_t)gfn << PAGE_SHIFT; 1686 } 1687 1688 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1689 { 1690 return (gfn_t)(gpa >> PAGE_SHIFT); 1691 } 1692 1693 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1694 { 1695 return (hpa_t)pfn << PAGE_SHIFT; 1696 } 1697 1698 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1699 gpa_t gpa) 1700 { 1701 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1702 } 1703 1704 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1705 { 1706 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1707 1708 return kvm_is_error_hva(hva); 1709 } 1710 1711 enum kvm_stat_kind { 1712 KVM_STAT_VM, 1713 KVM_STAT_VCPU, 1714 }; 1715 1716 struct kvm_stat_data { 1717 struct kvm *kvm; 1718 const struct _kvm_stats_desc *desc; 1719 enum kvm_stat_kind kind; 1720 }; 1721 1722 struct _kvm_stats_desc { 1723 struct kvm_stats_desc desc; 1724 char name[KVM_STATS_NAME_SIZE]; 1725 }; 1726 1727 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1728 .flags = type | unit | base | \ 1729 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1730 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1731 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1732 .exponent = exp, \ 1733 .size = sz, \ 1734 .bucket_size = bsz 1735 1736 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1737 { \ 1738 { \ 1739 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1740 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1741 }, \ 1742 .name = #stat, \ 1743 } 1744 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1745 { \ 1746 { \ 1747 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1748 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1749 }, \ 1750 .name = #stat, \ 1751 } 1752 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1753 { \ 1754 { \ 1755 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1756 .offset = offsetof(struct kvm_vm_stat, stat) \ 1757 }, \ 1758 .name = #stat, \ 1759 } 1760 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1761 { \ 1762 { \ 1763 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1764 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1765 }, \ 1766 .name = #stat, \ 1767 } 1768 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1769 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1770 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1771 1772 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1773 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1774 unit, base, exponent, 1, 0) 1775 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1776 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1777 unit, base, exponent, 1, 0) 1778 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1779 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1780 unit, base, exponent, 1, 0) 1781 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1782 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1783 unit, base, exponent, sz, bsz) 1784 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1785 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1786 unit, base, exponent, sz, 0) 1787 1788 /* Cumulative counter, read/write */ 1789 #define STATS_DESC_COUNTER(SCOPE, name) \ 1790 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1791 KVM_STATS_BASE_POW10, 0) 1792 /* Instantaneous counter, read only */ 1793 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1794 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1795 KVM_STATS_BASE_POW10, 0) 1796 /* Peak counter, read/write */ 1797 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1798 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1799 KVM_STATS_BASE_POW10, 0) 1800 1801 /* Cumulative time in nanosecond */ 1802 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1803 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1804 KVM_STATS_BASE_POW10, -9) 1805 /* Linear histogram for time in nanosecond */ 1806 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1807 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1808 KVM_STATS_BASE_POW10, -9, sz, bsz) 1809 /* Logarithmic histogram for time in nanosecond */ 1810 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1811 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1812 KVM_STATS_BASE_POW10, -9, sz) 1813 1814 #define KVM_GENERIC_VM_STATS() \ 1815 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1816 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1817 1818 #define KVM_GENERIC_VCPU_STATS() \ 1819 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1820 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1821 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1822 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1823 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1824 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1825 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1826 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1827 HALT_POLL_HIST_COUNT), \ 1828 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1829 HALT_POLL_HIST_COUNT), \ 1830 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1831 HALT_POLL_HIST_COUNT), \ 1832 STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking) 1833 1834 extern struct dentry *kvm_debugfs_dir; 1835 1836 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1837 const struct _kvm_stats_desc *desc, 1838 void *stats, size_t size_stats, 1839 char __user *user_buffer, size_t size, loff_t *offset); 1840 1841 /** 1842 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1843 * statistics data. 1844 * 1845 * @data: start address of the stats data 1846 * @size: the number of bucket of the stats data 1847 * @value: the new value used to update the linear histogram's bucket 1848 * @bucket_size: the size (width) of a bucket 1849 */ 1850 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1851 u64 value, size_t bucket_size) 1852 { 1853 size_t index = div64_u64(value, bucket_size); 1854 1855 index = min(index, size - 1); 1856 ++data[index]; 1857 } 1858 1859 /** 1860 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1861 * statistics data. 1862 * 1863 * @data: start address of the stats data 1864 * @size: the number of bucket of the stats data 1865 * @value: the new value used to update the logarithmic histogram's bucket 1866 */ 1867 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1868 { 1869 size_t index = fls64(value); 1870 1871 index = min(index, size - 1); 1872 ++data[index]; 1873 } 1874 1875 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1876 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1877 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1878 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1879 1880 1881 extern const struct kvm_stats_header kvm_vm_stats_header; 1882 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1883 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1884 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1885 1886 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1887 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1888 { 1889 if (unlikely(kvm->mmu_notifier_count)) 1890 return 1; 1891 /* 1892 * Ensure the read of mmu_notifier_count happens before the read 1893 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1894 * mmu_notifier_invalidate_range_end to make sure that the caller 1895 * either sees the old (non-zero) value of mmu_notifier_count or 1896 * the new (incremented) value of mmu_notifier_seq. 1897 * PowerPC Book3s HV KVM calls this under a per-page lock 1898 * rather than under kvm->mmu_lock, for scalability, so 1899 * can't rely on kvm->mmu_lock to keep things ordered. 1900 */ 1901 smp_rmb(); 1902 if (kvm->mmu_notifier_seq != mmu_seq) 1903 return 1; 1904 return 0; 1905 } 1906 1907 static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1908 unsigned long mmu_seq, 1909 unsigned long hva) 1910 { 1911 lockdep_assert_held(&kvm->mmu_lock); 1912 /* 1913 * If mmu_notifier_count is non-zero, then the range maintained by 1914 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1915 * might be being invalidated. Note that it may include some false 1916 * positives, due to shortcuts when handing concurrent invalidations. 1917 */ 1918 if (unlikely(kvm->mmu_notifier_count) && 1919 hva >= kvm->mmu_notifier_range_start && 1920 hva < kvm->mmu_notifier_range_end) 1921 return 1; 1922 if (kvm->mmu_notifier_seq != mmu_seq) 1923 return 1; 1924 return 0; 1925 } 1926 #endif 1927 1928 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1929 1930 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1931 1932 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1933 int kvm_set_irq_routing(struct kvm *kvm, 1934 const struct kvm_irq_routing_entry *entries, 1935 unsigned nr, 1936 unsigned flags); 1937 int kvm_set_routing_entry(struct kvm *kvm, 1938 struct kvm_kernel_irq_routing_entry *e, 1939 const struct kvm_irq_routing_entry *ue); 1940 void kvm_free_irq_routing(struct kvm *kvm); 1941 1942 #else 1943 1944 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1945 1946 #endif 1947 1948 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1949 1950 #ifdef CONFIG_HAVE_KVM_EVENTFD 1951 1952 void kvm_eventfd_init(struct kvm *kvm); 1953 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1954 1955 #ifdef CONFIG_HAVE_KVM_IRQFD 1956 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1957 void kvm_irqfd_release(struct kvm *kvm); 1958 void kvm_irq_routing_update(struct kvm *); 1959 #else 1960 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1961 { 1962 return -EINVAL; 1963 } 1964 1965 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1966 #endif 1967 1968 #else 1969 1970 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1971 1972 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1973 { 1974 return -EINVAL; 1975 } 1976 1977 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1978 1979 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1980 static inline void kvm_irq_routing_update(struct kvm *kvm) 1981 { 1982 } 1983 #endif 1984 1985 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1986 { 1987 return -ENOSYS; 1988 } 1989 1990 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1991 1992 void kvm_arch_irq_routing_update(struct kvm *kvm); 1993 1994 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 1995 { 1996 /* 1997 * Ensure the rest of the request is published to kvm_check_request's 1998 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1999 */ 2000 smp_wmb(); 2001 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2002 } 2003 2004 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2005 { 2006 /* 2007 * Request that don't require vCPU action should never be logged in 2008 * vcpu->requests. The vCPU won't clear the request, so it will stay 2009 * logged indefinitely and prevent the vCPU from entering the guest. 2010 */ 2011 BUILD_BUG_ON(!__builtin_constant_p(req) || 2012 (req & KVM_REQUEST_NO_ACTION)); 2013 2014 __kvm_make_request(req, vcpu); 2015 } 2016 2017 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2018 { 2019 return READ_ONCE(vcpu->requests); 2020 } 2021 2022 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2023 { 2024 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2025 } 2026 2027 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2028 { 2029 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2030 } 2031 2032 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2033 { 2034 if (kvm_test_request(req, vcpu)) { 2035 kvm_clear_request(req, vcpu); 2036 2037 /* 2038 * Ensure the rest of the request is visible to kvm_check_request's 2039 * caller. Paired with the smp_wmb in kvm_make_request. 2040 */ 2041 smp_mb__after_atomic(); 2042 return true; 2043 } else { 2044 return false; 2045 } 2046 } 2047 2048 extern bool kvm_rebooting; 2049 2050 extern unsigned int halt_poll_ns; 2051 extern unsigned int halt_poll_ns_grow; 2052 extern unsigned int halt_poll_ns_grow_start; 2053 extern unsigned int halt_poll_ns_shrink; 2054 2055 struct kvm_device { 2056 const struct kvm_device_ops *ops; 2057 struct kvm *kvm; 2058 void *private; 2059 struct list_head vm_node; 2060 }; 2061 2062 /* create, destroy, and name are mandatory */ 2063 struct kvm_device_ops { 2064 const char *name; 2065 2066 /* 2067 * create is called holding kvm->lock and any operations not suitable 2068 * to do while holding the lock should be deferred to init (see 2069 * below). 2070 */ 2071 int (*create)(struct kvm_device *dev, u32 type); 2072 2073 /* 2074 * init is called after create if create is successful and is called 2075 * outside of holding kvm->lock. 2076 */ 2077 void (*init)(struct kvm_device *dev); 2078 2079 /* 2080 * Destroy is responsible for freeing dev. 2081 * 2082 * Destroy may be called before or after destructors are called 2083 * on emulated I/O regions, depending on whether a reference is 2084 * held by a vcpu or other kvm component that gets destroyed 2085 * after the emulated I/O. 2086 */ 2087 void (*destroy)(struct kvm_device *dev); 2088 2089 /* 2090 * Release is an alternative method to free the device. It is 2091 * called when the device file descriptor is closed. Once 2092 * release is called, the destroy method will not be called 2093 * anymore as the device is removed from the device list of 2094 * the VM. kvm->lock is held. 2095 */ 2096 void (*release)(struct kvm_device *dev); 2097 2098 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2099 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2100 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2101 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2102 unsigned long arg); 2103 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2104 }; 2105 2106 void kvm_device_get(struct kvm_device *dev); 2107 void kvm_device_put(struct kvm_device *dev); 2108 struct kvm_device *kvm_device_from_filp(struct file *filp); 2109 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2110 void kvm_unregister_device_ops(u32 type); 2111 2112 extern struct kvm_device_ops kvm_mpic_ops; 2113 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2114 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2115 2116 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2117 2118 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2119 { 2120 vcpu->spin_loop.in_spin_loop = val; 2121 } 2122 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2123 { 2124 vcpu->spin_loop.dy_eligible = val; 2125 } 2126 2127 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2128 2129 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2130 { 2131 } 2132 2133 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2134 { 2135 } 2136 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2137 2138 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2139 { 2140 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2141 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2142 } 2143 2144 struct kvm_vcpu *kvm_get_running_vcpu(void); 2145 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2146 2147 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2148 bool kvm_arch_has_irq_bypass(void); 2149 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2150 struct irq_bypass_producer *); 2151 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2152 struct irq_bypass_producer *); 2153 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2154 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2155 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2156 uint32_t guest_irq, bool set); 2157 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2158 struct kvm_kernel_irq_routing_entry *); 2159 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2160 2161 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2162 /* If we wakeup during the poll time, was it a sucessful poll? */ 2163 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2164 { 2165 return vcpu->valid_wakeup; 2166 } 2167 2168 #else 2169 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2170 { 2171 return true; 2172 } 2173 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2174 2175 #ifdef CONFIG_HAVE_KVM_NO_POLL 2176 /* Callback that tells if we must not poll */ 2177 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2178 #else 2179 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2180 { 2181 return false; 2182 } 2183 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2184 2185 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2186 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2187 unsigned int ioctl, unsigned long arg); 2188 #else 2189 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2190 unsigned int ioctl, 2191 unsigned long arg) 2192 { 2193 return -ENOIOCTLCMD; 2194 } 2195 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2196 2197 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2198 unsigned long start, unsigned long end); 2199 2200 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2201 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2202 #else 2203 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2204 { 2205 return 0; 2206 } 2207 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2208 2209 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2210 2211 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2212 uintptr_t data, const char *name, 2213 struct task_struct **thread_ptr); 2214 2215 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2216 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2217 { 2218 vcpu->run->exit_reason = KVM_EXIT_INTR; 2219 vcpu->stat.signal_exits++; 2220 } 2221 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2222 2223 /* 2224 * This defines how many reserved entries we want to keep before we 2225 * kick the vcpu to the userspace to avoid dirty ring full. This 2226 * value can be tuned to higher if e.g. PML is enabled on the host. 2227 */ 2228 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2229 2230 /* Max number of entries allowed for each kvm dirty ring */ 2231 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2232 2233 #endif 2234