xref: /openbmc/linux/include/linux/kvm_host.h (revision c0c45238fcf44b05c86f2f7d1dda136df7a83ff9)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54  * in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of install_new_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 
100 /*
101  * error pfns indicate that the gfn is in slot but faild to
102  * translate it to pfn on host.
103  */
104 static inline bool is_error_pfn(kvm_pfn_t pfn)
105 {
106 	return !!(pfn & KVM_PFN_ERR_MASK);
107 }
108 
109 /*
110  * error_noslot pfns indicate that the gfn can not be
111  * translated to pfn - it is not in slot or failed to
112  * translate it to pfn.
113  */
114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115 {
116 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117 }
118 
119 /* noslot pfn indicates that the gfn is not in slot. */
120 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121 {
122 	return pfn == KVM_PFN_NOSLOT;
123 }
124 
125 /*
126  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127  * provide own defines and kvm_is_error_hva
128  */
129 #ifndef KVM_HVA_ERR_BAD
130 
131 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
132 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
133 
134 static inline bool kvm_is_error_hva(unsigned long addr)
135 {
136 	return addr >= PAGE_OFFSET;
137 }
138 
139 #endif
140 
141 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
142 
143 static inline bool is_error_page(struct page *page)
144 {
145 	return IS_ERR(page);
146 }
147 
148 #define KVM_REQUEST_MASK           GENMASK(7,0)
149 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
150 #define KVM_REQUEST_WAIT           BIT(9)
151 #define KVM_REQUEST_NO_ACTION      BIT(10)
152 /*
153  * Architecture-independent vcpu->requests bit members
154  * Bits 4-7 are reserved for more arch-independent bits.
155  */
156 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157 #define KVM_REQ_VM_DEAD           (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158 #define KVM_REQ_UNBLOCK           2
159 #define KVM_REQ_UNHALT            3
160 #define KVM_REQUEST_ARCH_BASE     8
161 
162 /*
163  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
164  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
165  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
166  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
167  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
168  * guarantee the vCPU received an IPI and has actually exited guest mode.
169  */
170 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
171 
172 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
173 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
174 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
175 })
176 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
177 
178 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
179 				 unsigned long *vcpu_bitmap);
180 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
181 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
182 				      struct kvm_vcpu *except);
183 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
184 				unsigned long *vcpu_bitmap);
185 
186 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
187 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
188 
189 extern struct mutex kvm_lock;
190 extern struct list_head vm_list;
191 
192 struct kvm_io_range {
193 	gpa_t addr;
194 	int len;
195 	struct kvm_io_device *dev;
196 };
197 
198 #define NR_IOBUS_DEVS 1000
199 
200 struct kvm_io_bus {
201 	int dev_count;
202 	int ioeventfd_count;
203 	struct kvm_io_range range[];
204 };
205 
206 enum kvm_bus {
207 	KVM_MMIO_BUS,
208 	KVM_PIO_BUS,
209 	KVM_VIRTIO_CCW_NOTIFY_BUS,
210 	KVM_FAST_MMIO_BUS,
211 	KVM_NR_BUSES
212 };
213 
214 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
215 		     int len, const void *val);
216 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
217 			    gpa_t addr, int len, const void *val, long cookie);
218 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
219 		    int len, void *val);
220 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
221 			    int len, struct kvm_io_device *dev);
222 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
223 			      struct kvm_io_device *dev);
224 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
225 					 gpa_t addr);
226 
227 #ifdef CONFIG_KVM_ASYNC_PF
228 struct kvm_async_pf {
229 	struct work_struct work;
230 	struct list_head link;
231 	struct list_head queue;
232 	struct kvm_vcpu *vcpu;
233 	struct mm_struct *mm;
234 	gpa_t cr2_or_gpa;
235 	unsigned long addr;
236 	struct kvm_arch_async_pf arch;
237 	bool   wakeup_all;
238 	bool notpresent_injected;
239 };
240 
241 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
242 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
243 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
244 			unsigned long hva, struct kvm_arch_async_pf *arch);
245 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
246 #endif
247 
248 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
249 struct kvm_gfn_range {
250 	struct kvm_memory_slot *slot;
251 	gfn_t start;
252 	gfn_t end;
253 	pte_t pte;
254 	bool may_block;
255 };
256 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
257 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
260 #endif
261 
262 enum {
263 	OUTSIDE_GUEST_MODE,
264 	IN_GUEST_MODE,
265 	EXITING_GUEST_MODE,
266 	READING_SHADOW_PAGE_TABLES,
267 };
268 
269 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
270 
271 struct kvm_host_map {
272 	/*
273 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
274 	 * a 'struct page' for it. When using mem= kernel parameter some memory
275 	 * can be used as guest memory but they are not managed by host
276 	 * kernel).
277 	 * If 'pfn' is not managed by the host kernel, this field is
278 	 * initialized to KVM_UNMAPPED_PAGE.
279 	 */
280 	struct page *page;
281 	void *hva;
282 	kvm_pfn_t pfn;
283 	kvm_pfn_t gfn;
284 };
285 
286 /*
287  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
288  * directly to check for that.
289  */
290 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
291 {
292 	return !!map->hva;
293 }
294 
295 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
296 {
297 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
298 }
299 
300 /*
301  * Sometimes a large or cross-page mmio needs to be broken up into separate
302  * exits for userspace servicing.
303  */
304 struct kvm_mmio_fragment {
305 	gpa_t gpa;
306 	void *data;
307 	unsigned len;
308 };
309 
310 struct kvm_vcpu {
311 	struct kvm *kvm;
312 #ifdef CONFIG_PREEMPT_NOTIFIERS
313 	struct preempt_notifier preempt_notifier;
314 #endif
315 	int cpu;
316 	int vcpu_id; /* id given by userspace at creation */
317 	int vcpu_idx; /* index in kvm->vcpus array */
318 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
319 #ifdef CONFIG_PROVE_RCU
320 	int srcu_depth;
321 #endif
322 	int mode;
323 	u64 requests;
324 	unsigned long guest_debug;
325 
326 	struct mutex mutex;
327 	struct kvm_run *run;
328 
329 #ifndef __KVM_HAVE_ARCH_WQP
330 	struct rcuwait wait;
331 #endif
332 	struct pid __rcu *pid;
333 	int sigset_active;
334 	sigset_t sigset;
335 	unsigned int halt_poll_ns;
336 	bool valid_wakeup;
337 
338 #ifdef CONFIG_HAS_IOMEM
339 	int mmio_needed;
340 	int mmio_read_completed;
341 	int mmio_is_write;
342 	int mmio_cur_fragment;
343 	int mmio_nr_fragments;
344 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
345 #endif
346 
347 #ifdef CONFIG_KVM_ASYNC_PF
348 	struct {
349 		u32 queued;
350 		struct list_head queue;
351 		struct list_head done;
352 		spinlock_t lock;
353 	} async_pf;
354 #endif
355 
356 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
357 	/*
358 	 * Cpu relax intercept or pause loop exit optimization
359 	 * in_spin_loop: set when a vcpu does a pause loop exit
360 	 *  or cpu relax intercepted.
361 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
362 	 */
363 	struct {
364 		bool in_spin_loop;
365 		bool dy_eligible;
366 	} spin_loop;
367 #endif
368 	bool preempted;
369 	bool ready;
370 	struct kvm_vcpu_arch arch;
371 	struct kvm_vcpu_stat stat;
372 	char stats_id[KVM_STATS_NAME_SIZE];
373 	struct kvm_dirty_ring dirty_ring;
374 
375 	/*
376 	 * The most recently used memslot by this vCPU and the slots generation
377 	 * for which it is valid.
378 	 * No wraparound protection is needed since generations won't overflow in
379 	 * thousands of years, even assuming 1M memslot operations per second.
380 	 */
381 	struct kvm_memory_slot *last_used_slot;
382 	u64 last_used_slot_gen;
383 };
384 
385 /*
386  * Start accounting time towards a guest.
387  * Must be called before entering guest context.
388  */
389 static __always_inline void guest_timing_enter_irqoff(void)
390 {
391 	/*
392 	 * This is running in ioctl context so its safe to assume that it's the
393 	 * stime pending cputime to flush.
394 	 */
395 	instrumentation_begin();
396 	vtime_account_guest_enter();
397 	instrumentation_end();
398 }
399 
400 /*
401  * Enter guest context and enter an RCU extended quiescent state.
402  *
403  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
404  * unsafe to use any code which may directly or indirectly use RCU, tracing
405  * (including IRQ flag tracing), or lockdep. All code in this period must be
406  * non-instrumentable.
407  */
408 static __always_inline void guest_context_enter_irqoff(void)
409 {
410 	/*
411 	 * KVM does not hold any references to rcu protected data when it
412 	 * switches CPU into a guest mode. In fact switching to a guest mode
413 	 * is very similar to exiting to userspace from rcu point of view. In
414 	 * addition CPU may stay in a guest mode for quite a long time (up to
415 	 * one time slice). Lets treat guest mode as quiescent state, just like
416 	 * we do with user-mode execution.
417 	 */
418 	if (!context_tracking_guest_enter()) {
419 		instrumentation_begin();
420 		rcu_virt_note_context_switch(smp_processor_id());
421 		instrumentation_end();
422 	}
423 }
424 
425 /*
426  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
427  * guest_state_enter_irqoff().
428  */
429 static __always_inline void guest_enter_irqoff(void)
430 {
431 	guest_timing_enter_irqoff();
432 	guest_context_enter_irqoff();
433 }
434 
435 /**
436  * guest_state_enter_irqoff - Fixup state when entering a guest
437  *
438  * Entry to a guest will enable interrupts, but the kernel state is interrupts
439  * disabled when this is invoked. Also tell RCU about it.
440  *
441  * 1) Trace interrupts on state
442  * 2) Invoke context tracking if enabled to adjust RCU state
443  * 3) Tell lockdep that interrupts are enabled
444  *
445  * Invoked from architecture specific code before entering a guest.
446  * Must be called with interrupts disabled and the caller must be
447  * non-instrumentable.
448  * The caller has to invoke guest_timing_enter_irqoff() before this.
449  *
450  * Note: this is analogous to exit_to_user_mode().
451  */
452 static __always_inline void guest_state_enter_irqoff(void)
453 {
454 	instrumentation_begin();
455 	trace_hardirqs_on_prepare();
456 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
457 	instrumentation_end();
458 
459 	guest_context_enter_irqoff();
460 	lockdep_hardirqs_on(CALLER_ADDR0);
461 }
462 
463 /*
464  * Exit guest context and exit an RCU extended quiescent state.
465  *
466  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
467  * unsafe to use any code which may directly or indirectly use RCU, tracing
468  * (including IRQ flag tracing), or lockdep. All code in this period must be
469  * non-instrumentable.
470  */
471 static __always_inline void guest_context_exit_irqoff(void)
472 {
473 	context_tracking_guest_exit();
474 }
475 
476 /*
477  * Stop accounting time towards a guest.
478  * Must be called after exiting guest context.
479  */
480 static __always_inline void guest_timing_exit_irqoff(void)
481 {
482 	instrumentation_begin();
483 	/* Flush the guest cputime we spent on the guest */
484 	vtime_account_guest_exit();
485 	instrumentation_end();
486 }
487 
488 /*
489  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
490  * guest_timing_exit_irqoff().
491  */
492 static __always_inline void guest_exit_irqoff(void)
493 {
494 	guest_context_exit_irqoff();
495 	guest_timing_exit_irqoff();
496 }
497 
498 static inline void guest_exit(void)
499 {
500 	unsigned long flags;
501 
502 	local_irq_save(flags);
503 	guest_exit_irqoff();
504 	local_irq_restore(flags);
505 }
506 
507 /**
508  * guest_state_exit_irqoff - Establish state when returning from guest mode
509  *
510  * Entry from a guest disables interrupts, but guest mode is traced as
511  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
512  *
513  * 1) Tell lockdep that interrupts are disabled
514  * 2) Invoke context tracking if enabled to reactivate RCU
515  * 3) Trace interrupts off state
516  *
517  * Invoked from architecture specific code after exiting a guest.
518  * Must be invoked with interrupts disabled and the caller must be
519  * non-instrumentable.
520  * The caller has to invoke guest_timing_exit_irqoff() after this.
521  *
522  * Note: this is analogous to enter_from_user_mode().
523  */
524 static __always_inline void guest_state_exit_irqoff(void)
525 {
526 	lockdep_hardirqs_off(CALLER_ADDR0);
527 	guest_context_exit_irqoff();
528 
529 	instrumentation_begin();
530 	trace_hardirqs_off_finish();
531 	instrumentation_end();
532 }
533 
534 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
535 {
536 	/*
537 	 * The memory barrier ensures a previous write to vcpu->requests cannot
538 	 * be reordered with the read of vcpu->mode.  It pairs with the general
539 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
540 	 */
541 	smp_mb__before_atomic();
542 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
543 }
544 
545 /*
546  * Some of the bitops functions do not support too long bitmaps.
547  * This number must be determined not to exceed such limits.
548  */
549 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
550 
551 /*
552  * Since at idle each memslot belongs to two memslot sets it has to contain
553  * two embedded nodes for each data structure that it forms a part of.
554  *
555  * Two memslot sets (one active and one inactive) are necessary so the VM
556  * continues to run on one memslot set while the other is being modified.
557  *
558  * These two memslot sets normally point to the same set of memslots.
559  * They can, however, be desynchronized when performing a memslot management
560  * operation by replacing the memslot to be modified by its copy.
561  * After the operation is complete, both memslot sets once again point to
562  * the same, common set of memslot data.
563  *
564  * The memslots themselves are independent of each other so they can be
565  * individually added or deleted.
566  */
567 struct kvm_memory_slot {
568 	struct hlist_node id_node[2];
569 	struct interval_tree_node hva_node[2];
570 	struct rb_node gfn_node[2];
571 	gfn_t base_gfn;
572 	unsigned long npages;
573 	unsigned long *dirty_bitmap;
574 	struct kvm_arch_memory_slot arch;
575 	unsigned long userspace_addr;
576 	u32 flags;
577 	short id;
578 	u16 as_id;
579 };
580 
581 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
582 {
583 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
584 }
585 
586 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
587 {
588 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
589 }
590 
591 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
592 {
593 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
594 
595 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
596 }
597 
598 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
599 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
600 #endif
601 
602 struct kvm_s390_adapter_int {
603 	u64 ind_addr;
604 	u64 summary_addr;
605 	u64 ind_offset;
606 	u32 summary_offset;
607 	u32 adapter_id;
608 };
609 
610 struct kvm_hv_sint {
611 	u32 vcpu;
612 	u32 sint;
613 };
614 
615 struct kvm_xen_evtchn {
616 	u32 port;
617 	u32 vcpu;
618 	u32 priority;
619 };
620 
621 struct kvm_kernel_irq_routing_entry {
622 	u32 gsi;
623 	u32 type;
624 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
625 		   struct kvm *kvm, int irq_source_id, int level,
626 		   bool line_status);
627 	union {
628 		struct {
629 			unsigned irqchip;
630 			unsigned pin;
631 		} irqchip;
632 		struct {
633 			u32 address_lo;
634 			u32 address_hi;
635 			u32 data;
636 			u32 flags;
637 			u32 devid;
638 		} msi;
639 		struct kvm_s390_adapter_int adapter;
640 		struct kvm_hv_sint hv_sint;
641 		struct kvm_xen_evtchn xen_evtchn;
642 	};
643 	struct hlist_node link;
644 };
645 
646 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
647 struct kvm_irq_routing_table {
648 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
649 	u32 nr_rt_entries;
650 	/*
651 	 * Array indexed by gsi. Each entry contains list of irq chips
652 	 * the gsi is connected to.
653 	 */
654 	struct hlist_head map[];
655 };
656 #endif
657 
658 #ifndef KVM_PRIVATE_MEM_SLOTS
659 #define KVM_PRIVATE_MEM_SLOTS 0
660 #endif
661 
662 #define KVM_MEM_SLOTS_NUM SHRT_MAX
663 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
664 
665 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
666 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
667 {
668 	return 0;
669 }
670 #endif
671 
672 struct kvm_memslots {
673 	u64 generation;
674 	atomic_long_t last_used_slot;
675 	struct rb_root_cached hva_tree;
676 	struct rb_root gfn_tree;
677 	/*
678 	 * The mapping table from slot id to memslot.
679 	 *
680 	 * 7-bit bucket count matches the size of the old id to index array for
681 	 * 512 slots, while giving good performance with this slot count.
682 	 * Higher bucket counts bring only small performance improvements but
683 	 * always result in higher memory usage (even for lower memslot counts).
684 	 */
685 	DECLARE_HASHTABLE(id_hash, 7);
686 	int node_idx;
687 };
688 
689 struct kvm {
690 #ifdef KVM_HAVE_MMU_RWLOCK
691 	rwlock_t mmu_lock;
692 #else
693 	spinlock_t mmu_lock;
694 #endif /* KVM_HAVE_MMU_RWLOCK */
695 
696 	struct mutex slots_lock;
697 
698 	/*
699 	 * Protects the arch-specific fields of struct kvm_memory_slots in
700 	 * use by the VM. To be used under the slots_lock (above) or in a
701 	 * kvm->srcu critical section where acquiring the slots_lock would
702 	 * lead to deadlock with the synchronize_srcu in
703 	 * install_new_memslots.
704 	 */
705 	struct mutex slots_arch_lock;
706 	struct mm_struct *mm; /* userspace tied to this vm */
707 	unsigned long nr_memslot_pages;
708 	/* The two memslot sets - active and inactive (per address space) */
709 	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
710 	/* The current active memslot set for each address space */
711 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
712 	struct xarray vcpu_array;
713 
714 	/* Used to wait for completion of MMU notifiers.  */
715 	spinlock_t mn_invalidate_lock;
716 	unsigned long mn_active_invalidate_count;
717 	struct rcuwait mn_memslots_update_rcuwait;
718 
719 	/* For management / invalidation of gfn_to_pfn_caches */
720 	spinlock_t gpc_lock;
721 	struct list_head gpc_list;
722 
723 	/*
724 	 * created_vcpus is protected by kvm->lock, and is incremented
725 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
726 	 * incremented after storing the kvm_vcpu pointer in vcpus,
727 	 * and is accessed atomically.
728 	 */
729 	atomic_t online_vcpus;
730 	int created_vcpus;
731 	int last_boosted_vcpu;
732 	struct list_head vm_list;
733 	struct mutex lock;
734 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
735 #ifdef CONFIG_HAVE_KVM_EVENTFD
736 	struct {
737 		spinlock_t        lock;
738 		struct list_head  items;
739 		struct list_head  resampler_list;
740 		struct mutex      resampler_lock;
741 	} irqfds;
742 	struct list_head ioeventfds;
743 #endif
744 	struct kvm_vm_stat stat;
745 	struct kvm_arch arch;
746 	refcount_t users_count;
747 #ifdef CONFIG_KVM_MMIO
748 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
749 	spinlock_t ring_lock;
750 	struct list_head coalesced_zones;
751 #endif
752 
753 	struct mutex irq_lock;
754 #ifdef CONFIG_HAVE_KVM_IRQCHIP
755 	/*
756 	 * Update side is protected by irq_lock.
757 	 */
758 	struct kvm_irq_routing_table __rcu *irq_routing;
759 #endif
760 #ifdef CONFIG_HAVE_KVM_IRQFD
761 	struct hlist_head irq_ack_notifier_list;
762 #endif
763 
764 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
765 	struct mmu_notifier mmu_notifier;
766 	unsigned long mmu_notifier_seq;
767 	long mmu_notifier_count;
768 	unsigned long mmu_notifier_range_start;
769 	unsigned long mmu_notifier_range_end;
770 #endif
771 	struct list_head devices;
772 	u64 manual_dirty_log_protect;
773 	struct dentry *debugfs_dentry;
774 	struct kvm_stat_data **debugfs_stat_data;
775 	struct srcu_struct srcu;
776 	struct srcu_struct irq_srcu;
777 	pid_t userspace_pid;
778 	unsigned int max_halt_poll_ns;
779 	u32 dirty_ring_size;
780 	bool vm_bugged;
781 	bool vm_dead;
782 
783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 	struct notifier_block pm_notifier;
785 #endif
786 	char stats_id[KVM_STATS_NAME_SIZE];
787 };
788 
789 #define kvm_err(fmt, ...) \
790 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
791 #define kvm_info(fmt, ...) \
792 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
793 #define kvm_debug(fmt, ...) \
794 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
795 #define kvm_debug_ratelimited(fmt, ...) \
796 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
797 			     ## __VA_ARGS__)
798 #define kvm_pr_unimpl(fmt, ...) \
799 	pr_err_ratelimited("kvm [%i]: " fmt, \
800 			   task_tgid_nr(current), ## __VA_ARGS__)
801 
802 /* The guest did something we don't support. */
803 #define vcpu_unimpl(vcpu, fmt, ...)					\
804 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
805 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
806 
807 #define vcpu_debug(vcpu, fmt, ...)					\
808 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
809 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
810 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
811 			      ## __VA_ARGS__)
812 #define vcpu_err(vcpu, fmt, ...)					\
813 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
814 
815 static inline void kvm_vm_dead(struct kvm *kvm)
816 {
817 	kvm->vm_dead = true;
818 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
819 }
820 
821 static inline void kvm_vm_bugged(struct kvm *kvm)
822 {
823 	kvm->vm_bugged = true;
824 	kvm_vm_dead(kvm);
825 }
826 
827 
828 #define KVM_BUG(cond, kvm, fmt...)				\
829 ({								\
830 	int __ret = (cond);					\
831 								\
832 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
833 		kvm_vm_bugged(kvm);				\
834 	unlikely(__ret);					\
835 })
836 
837 #define KVM_BUG_ON(cond, kvm)					\
838 ({								\
839 	int __ret = (cond);					\
840 								\
841 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
842 		kvm_vm_bugged(kvm);				\
843 	unlikely(__ret);					\
844 })
845 
846 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
847 {
848 #ifdef CONFIG_PROVE_RCU
849 	WARN_ONCE(vcpu->srcu_depth++,
850 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
851 #endif
852 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
853 }
854 
855 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
856 {
857 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
858 
859 #ifdef CONFIG_PROVE_RCU
860 	WARN_ONCE(--vcpu->srcu_depth,
861 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
862 #endif
863 }
864 
865 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
866 {
867 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
868 }
869 
870 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
871 {
872 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
873 				      lockdep_is_held(&kvm->slots_lock) ||
874 				      !refcount_read(&kvm->users_count));
875 }
876 
877 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
878 {
879 	int num_vcpus = atomic_read(&kvm->online_vcpus);
880 	i = array_index_nospec(i, num_vcpus);
881 
882 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
883 	smp_rmb();
884 	return xa_load(&kvm->vcpu_array, i);
885 }
886 
887 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
888 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
889 			  (atomic_read(&kvm->online_vcpus) - 1))
890 
891 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
892 {
893 	struct kvm_vcpu *vcpu = NULL;
894 	unsigned long i;
895 
896 	if (id < 0)
897 		return NULL;
898 	if (id < KVM_MAX_VCPUS)
899 		vcpu = kvm_get_vcpu(kvm, id);
900 	if (vcpu && vcpu->vcpu_id == id)
901 		return vcpu;
902 	kvm_for_each_vcpu(i, vcpu, kvm)
903 		if (vcpu->vcpu_id == id)
904 			return vcpu;
905 	return NULL;
906 }
907 
908 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
909 {
910 	return vcpu->vcpu_idx;
911 }
912 
913 void kvm_destroy_vcpus(struct kvm *kvm);
914 
915 void vcpu_load(struct kvm_vcpu *vcpu);
916 void vcpu_put(struct kvm_vcpu *vcpu);
917 
918 #ifdef __KVM_HAVE_IOAPIC
919 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
920 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
921 #else
922 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
923 {
924 }
925 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
926 {
927 }
928 #endif
929 
930 #ifdef CONFIG_HAVE_KVM_IRQFD
931 int kvm_irqfd_init(void);
932 void kvm_irqfd_exit(void);
933 #else
934 static inline int kvm_irqfd_init(void)
935 {
936 	return 0;
937 }
938 
939 static inline void kvm_irqfd_exit(void)
940 {
941 }
942 #endif
943 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
944 		  struct module *module);
945 void kvm_exit(void);
946 
947 void kvm_get_kvm(struct kvm *kvm);
948 bool kvm_get_kvm_safe(struct kvm *kvm);
949 void kvm_put_kvm(struct kvm *kvm);
950 bool file_is_kvm(struct file *file);
951 void kvm_put_kvm_no_destroy(struct kvm *kvm);
952 
953 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
954 {
955 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
956 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
957 			lockdep_is_held(&kvm->slots_lock) ||
958 			!refcount_read(&kvm->users_count));
959 }
960 
961 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
962 {
963 	return __kvm_memslots(kvm, 0);
964 }
965 
966 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
967 {
968 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
969 
970 	return __kvm_memslots(vcpu->kvm, as_id);
971 }
972 
973 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
974 {
975 	return RB_EMPTY_ROOT(&slots->gfn_tree);
976 }
977 
978 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
979 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
980 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
981 		} else
982 
983 static inline
984 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
985 {
986 	struct kvm_memory_slot *slot;
987 	int idx = slots->node_idx;
988 
989 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
990 		if (slot->id == id)
991 			return slot;
992 	}
993 
994 	return NULL;
995 }
996 
997 /* Iterator used for walking memslots that overlap a gfn range. */
998 struct kvm_memslot_iter {
999 	struct kvm_memslots *slots;
1000 	struct rb_node *node;
1001 	struct kvm_memory_slot *slot;
1002 };
1003 
1004 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1005 {
1006 	iter->node = rb_next(iter->node);
1007 	if (!iter->node)
1008 		return;
1009 
1010 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1011 }
1012 
1013 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1014 					  struct kvm_memslots *slots,
1015 					  gfn_t start)
1016 {
1017 	int idx = slots->node_idx;
1018 	struct rb_node *tmp;
1019 	struct kvm_memory_slot *slot;
1020 
1021 	iter->slots = slots;
1022 
1023 	/*
1024 	 * Find the so called "upper bound" of a key - the first node that has
1025 	 * its key strictly greater than the searched one (the start gfn in our case).
1026 	 */
1027 	iter->node = NULL;
1028 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1029 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1030 		if (start < slot->base_gfn) {
1031 			iter->node = tmp;
1032 			tmp = tmp->rb_left;
1033 		} else {
1034 			tmp = tmp->rb_right;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Find the slot with the lowest gfn that can possibly intersect with
1040 	 * the range, so we'll ideally have slot start <= range start
1041 	 */
1042 	if (iter->node) {
1043 		/*
1044 		 * A NULL previous node means that the very first slot
1045 		 * already has a higher start gfn.
1046 		 * In this case slot start > range start.
1047 		 */
1048 		tmp = rb_prev(iter->node);
1049 		if (tmp)
1050 			iter->node = tmp;
1051 	} else {
1052 		/* a NULL node below means no slots */
1053 		iter->node = rb_last(&slots->gfn_tree);
1054 	}
1055 
1056 	if (iter->node) {
1057 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1058 
1059 		/*
1060 		 * It is possible in the slot start < range start case that the
1061 		 * found slot ends before or at range start (slot end <= range start)
1062 		 * and so it does not overlap the requested range.
1063 		 *
1064 		 * In such non-overlapping case the next slot (if it exists) will
1065 		 * already have slot start > range start, otherwise the logic above
1066 		 * would have found it instead of the current slot.
1067 		 */
1068 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1069 			kvm_memslot_iter_next(iter);
1070 	}
1071 }
1072 
1073 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1074 {
1075 	if (!iter->node)
1076 		return false;
1077 
1078 	/*
1079 	 * If this slot starts beyond or at the end of the range so does
1080 	 * every next one
1081 	 */
1082 	return iter->slot->base_gfn < end;
1083 }
1084 
1085 /* Iterate over each memslot at least partially intersecting [start, end) range */
1086 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1087 	for (kvm_memslot_iter_start(iter, slots, start);		\
1088 	     kvm_memslot_iter_is_valid(iter, end);			\
1089 	     kvm_memslot_iter_next(iter))
1090 
1091 /*
1092  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1093  * - create a new memory slot
1094  * - delete an existing memory slot
1095  * - modify an existing memory slot
1096  *   -- move it in the guest physical memory space
1097  *   -- just change its flags
1098  *
1099  * Since flags can be changed by some of these operations, the following
1100  * differentiation is the best we can do for __kvm_set_memory_region():
1101  */
1102 enum kvm_mr_change {
1103 	KVM_MR_CREATE,
1104 	KVM_MR_DELETE,
1105 	KVM_MR_MOVE,
1106 	KVM_MR_FLAGS_ONLY,
1107 };
1108 
1109 int kvm_set_memory_region(struct kvm *kvm,
1110 			  const struct kvm_userspace_memory_region *mem);
1111 int __kvm_set_memory_region(struct kvm *kvm,
1112 			    const struct kvm_userspace_memory_region *mem);
1113 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1114 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1115 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1116 				const struct kvm_memory_slot *old,
1117 				struct kvm_memory_slot *new,
1118 				enum kvm_mr_change change);
1119 void kvm_arch_commit_memory_region(struct kvm *kvm,
1120 				struct kvm_memory_slot *old,
1121 				const struct kvm_memory_slot *new,
1122 				enum kvm_mr_change change);
1123 /* flush all memory translations */
1124 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1125 /* flush memory translations pointing to 'slot' */
1126 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1127 				   struct kvm_memory_slot *slot);
1128 
1129 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1130 			    struct page **pages, int nr_pages);
1131 
1132 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1133 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1134 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1135 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1136 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1137 				      bool *writable);
1138 void kvm_release_page_clean(struct page *page);
1139 void kvm_release_page_dirty(struct page *page);
1140 void kvm_set_page_accessed(struct page *page);
1141 
1142 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1143 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1144 		      bool *writable);
1145 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1146 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1147 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1148 			       bool atomic, bool *async, bool write_fault,
1149 			       bool *writable, hva_t *hva);
1150 
1151 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1152 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1153 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1154 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1155 
1156 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1157 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1158 			int len);
1159 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1160 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1161 			   void *data, unsigned long len);
1162 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1163 				 void *data, unsigned int offset,
1164 				 unsigned long len);
1165 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1166 			 int offset, int len);
1167 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1168 		    unsigned long len);
1169 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1170 			   void *data, unsigned long len);
1171 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1172 				  void *data, unsigned int offset,
1173 				  unsigned long len);
1174 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1175 			      gpa_t gpa, unsigned long len);
1176 
1177 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1178 ({									\
1179 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1180 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1181 	int __ret = -EFAULT;						\
1182 									\
1183 	if (!kvm_is_error_hva(__addr))					\
1184 		__ret = get_user(v, __uaddr);				\
1185 	__ret;								\
1186 })
1187 
1188 #define kvm_get_guest(kvm, gpa, v)					\
1189 ({									\
1190 	gpa_t __gpa = gpa;						\
1191 	struct kvm *__kvm = kvm;					\
1192 									\
1193 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1194 			offset_in_page(__gpa), v);			\
1195 })
1196 
1197 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1198 ({									\
1199 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1200 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1201 	int __ret = -EFAULT;						\
1202 									\
1203 	if (!kvm_is_error_hva(__addr))					\
1204 		__ret = put_user(v, __uaddr);				\
1205 	if (!__ret)							\
1206 		mark_page_dirty(kvm, gfn);				\
1207 	__ret;								\
1208 })
1209 
1210 #define kvm_put_guest(kvm, gpa, v)					\
1211 ({									\
1212 	gpa_t __gpa = gpa;						\
1213 	struct kvm *__kvm = kvm;					\
1214 									\
1215 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1216 			offset_in_page(__gpa), v);			\
1217 })
1218 
1219 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1220 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1221 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1222 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1223 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1224 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1225 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1226 
1227 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1228 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1229 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1230 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1231 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1232 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1233 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1234 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1235 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1236 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1237 			     int len);
1238 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1239 			       unsigned long len);
1240 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1241 			unsigned long len);
1242 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1243 			      int offset, int len);
1244 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1245 			 unsigned long len);
1246 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1247 
1248 /**
1249  * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1250  *                             given guest physical address.
1251  *
1252  * @kvm:	   pointer to kvm instance.
1253  * @gpc:	   struct gfn_to_pfn_cache object.
1254  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1255  *		   invalidation.
1256  * @usage:	   indicates if the resulting host physical PFN is used while
1257  *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1258  *		   the cache from MMU notifiers---but not for KVM memslot
1259  *		   changes!---will also force @vcpu to exit the guest and
1260  *		   refresh the cache); and/or if the PFN used directly
1261  *		   by KVM (and thus needs a kernel virtual mapping).
1262  * @gpa:	   guest physical address to map.
1263  * @len:	   sanity check; the range being access must fit a single page.
1264  *
1265  * @return:	   0 for success.
1266  *		   -EINVAL for a mapping which would cross a page boundary.
1267  *                 -EFAULT for an untranslatable guest physical address.
1268  *
1269  * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1270  * invalidations to be processed.  Callers are required to use
1271  * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1272  * accessing the target page.
1273  */
1274 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1275 			      struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1276 			      gpa_t gpa, unsigned long len);
1277 
1278 /**
1279  * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1280  *
1281  * @kvm:	   pointer to kvm instance.
1282  * @gpc:	   struct gfn_to_pfn_cache object.
1283  * @gpa:	   current guest physical address to map.
1284  * @len:	   sanity check; the range being access must fit a single page.
1285  *
1286  * @return:	   %true if the cache is still valid and the address matches.
1287  *		   %false if the cache is not valid.
1288  *
1289  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1290  * while calling this function, and then continue to hold the lock until the
1291  * access is complete.
1292  *
1293  * Callers in IN_GUEST_MODE may do so without locking, although they should
1294  * still hold a read lock on kvm->scru for the memslot checks.
1295  */
1296 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1297 				gpa_t gpa, unsigned long len);
1298 
1299 /**
1300  * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1301  *
1302  * @kvm:	   pointer to kvm instance.
1303  * @gpc:	   struct gfn_to_pfn_cache object.
1304  * @gpa:	   updated guest physical address to map.
1305  * @len:	   sanity check; the range being access must fit a single page.
1306  *
1307  * @return:	   0 for success.
1308  *		   -EINVAL for a mapping which would cross a page boundary.
1309  *                 -EFAULT for an untranslatable guest physical address.
1310  *
1311  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1312  * returm from this function does not mean the page can be immediately
1313  * accessed because it may have raced with an invalidation. Callers must
1314  * still lock and check the cache status, as this function does not return
1315  * with the lock still held to permit access.
1316  */
1317 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1318 				 gpa_t gpa, unsigned long len);
1319 
1320 /**
1321  * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1322  *
1323  * @kvm:	   pointer to kvm instance.
1324  * @gpc:	   struct gfn_to_pfn_cache object.
1325  *
1326  * This unmaps the referenced page. The cache is left in the invalid state
1327  * but at least the mapping from GPA to userspace HVA will remain cached
1328  * and can be reused on a subsequent refresh.
1329  */
1330 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1331 
1332 /**
1333  * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1334  *
1335  * @kvm:	   pointer to kvm instance.
1336  * @gpc:	   struct gfn_to_pfn_cache object.
1337  *
1338  * This removes a cache from the @kvm's list to be processed on MMU notifier
1339  * invocation.
1340  */
1341 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1342 
1343 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1344 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1345 
1346 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1347 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1348 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1349 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1350 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1351 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1352 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1353 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1354 
1355 void kvm_flush_remote_tlbs(struct kvm *kvm);
1356 
1357 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1358 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1359 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1360 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1361 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1362 #endif
1363 
1364 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1365 				   unsigned long end);
1366 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1367 				   unsigned long end);
1368 
1369 long kvm_arch_dev_ioctl(struct file *filp,
1370 			unsigned int ioctl, unsigned long arg);
1371 long kvm_arch_vcpu_ioctl(struct file *filp,
1372 			 unsigned int ioctl, unsigned long arg);
1373 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1374 
1375 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1376 
1377 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1378 					struct kvm_memory_slot *slot,
1379 					gfn_t gfn_offset,
1380 					unsigned long mask);
1381 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1382 
1383 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1384 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1385 					const struct kvm_memory_slot *memslot);
1386 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1387 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1388 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1389 		      int *is_dirty, struct kvm_memory_slot **memslot);
1390 #endif
1391 
1392 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1393 			bool line_status);
1394 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1395 			    struct kvm_enable_cap *cap);
1396 long kvm_arch_vm_ioctl(struct file *filp,
1397 		       unsigned int ioctl, unsigned long arg);
1398 
1399 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1400 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1401 
1402 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1403 				    struct kvm_translation *tr);
1404 
1405 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1406 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1407 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1408 				  struct kvm_sregs *sregs);
1409 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1410 				  struct kvm_sregs *sregs);
1411 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1412 				    struct kvm_mp_state *mp_state);
1413 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1414 				    struct kvm_mp_state *mp_state);
1415 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1416 					struct kvm_guest_debug *dbg);
1417 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1418 
1419 int kvm_arch_init(void *opaque);
1420 void kvm_arch_exit(void);
1421 
1422 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1423 
1424 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1425 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1426 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1427 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1428 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1429 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1430 
1431 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1432 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1433 #endif
1434 
1435 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1436 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1437 #endif
1438 
1439 int kvm_arch_hardware_enable(void);
1440 void kvm_arch_hardware_disable(void);
1441 int kvm_arch_hardware_setup(void *opaque);
1442 void kvm_arch_hardware_unsetup(void);
1443 int kvm_arch_check_processor_compat(void *opaque);
1444 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1445 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1446 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1447 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1448 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1449 int kvm_arch_post_init_vm(struct kvm *kvm);
1450 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1451 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1452 
1453 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1454 /*
1455  * All architectures that want to use vzalloc currently also
1456  * need their own kvm_arch_alloc_vm implementation.
1457  */
1458 static inline struct kvm *kvm_arch_alloc_vm(void)
1459 {
1460 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1461 }
1462 #endif
1463 
1464 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1465 {
1466 	kvfree(kvm);
1467 }
1468 
1469 #ifndef __KVM_HAVE_ARCH_VM_FREE
1470 static inline void kvm_arch_free_vm(struct kvm *kvm)
1471 {
1472 	__kvm_arch_free_vm(kvm);
1473 }
1474 #endif
1475 
1476 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1477 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1478 {
1479 	return -ENOTSUPP;
1480 }
1481 #endif
1482 
1483 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1484 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1485 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1486 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1487 #else
1488 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1489 {
1490 }
1491 
1492 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1493 {
1494 }
1495 
1496 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1497 {
1498 	return false;
1499 }
1500 #endif
1501 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1502 void kvm_arch_start_assignment(struct kvm *kvm);
1503 void kvm_arch_end_assignment(struct kvm *kvm);
1504 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1505 #else
1506 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1507 {
1508 }
1509 
1510 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1511 {
1512 }
1513 
1514 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1515 {
1516 	return false;
1517 }
1518 #endif
1519 
1520 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1521 {
1522 #ifdef __KVM_HAVE_ARCH_WQP
1523 	return vcpu->arch.waitp;
1524 #else
1525 	return &vcpu->wait;
1526 #endif
1527 }
1528 
1529 /*
1530  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1531  * true if the vCPU was blocking and was awakened, false otherwise.
1532  */
1533 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1534 {
1535 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1536 }
1537 
1538 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1539 {
1540 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1541 }
1542 
1543 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1544 /*
1545  * returns true if the virtual interrupt controller is initialized and
1546  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1547  * controller is dynamically instantiated and this is not always true.
1548  */
1549 bool kvm_arch_intc_initialized(struct kvm *kvm);
1550 #else
1551 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1552 {
1553 	return true;
1554 }
1555 #endif
1556 
1557 #ifdef CONFIG_GUEST_PERF_EVENTS
1558 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1559 
1560 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1561 void kvm_unregister_perf_callbacks(void);
1562 #else
1563 static inline void kvm_register_perf_callbacks(void *ign) {}
1564 static inline void kvm_unregister_perf_callbacks(void) {}
1565 #endif /* CONFIG_GUEST_PERF_EVENTS */
1566 
1567 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1568 void kvm_arch_destroy_vm(struct kvm *kvm);
1569 void kvm_arch_sync_events(struct kvm *kvm);
1570 
1571 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1572 
1573 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1574 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1575 
1576 struct kvm_irq_ack_notifier {
1577 	struct hlist_node link;
1578 	unsigned gsi;
1579 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1580 };
1581 
1582 int kvm_irq_map_gsi(struct kvm *kvm,
1583 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1584 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1585 
1586 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1587 		bool line_status);
1588 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1589 		int irq_source_id, int level, bool line_status);
1590 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1591 			       struct kvm *kvm, int irq_source_id,
1592 			       int level, bool line_status);
1593 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1594 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1595 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1596 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1597 				   struct kvm_irq_ack_notifier *kian);
1598 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1599 				   struct kvm_irq_ack_notifier *kian);
1600 int kvm_request_irq_source_id(struct kvm *kvm);
1601 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1602 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1603 
1604 /*
1605  * Returns a pointer to the memslot if it contains gfn.
1606  * Otherwise returns NULL.
1607  */
1608 static inline struct kvm_memory_slot *
1609 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1610 {
1611 	if (!slot)
1612 		return NULL;
1613 
1614 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1615 		return slot;
1616 	else
1617 		return NULL;
1618 }
1619 
1620 /*
1621  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1622  *
1623  * With "approx" set returns the memslot also when the address falls
1624  * in a hole. In that case one of the memslots bordering the hole is
1625  * returned.
1626  */
1627 static inline struct kvm_memory_slot *
1628 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1629 {
1630 	struct kvm_memory_slot *slot;
1631 	struct rb_node *node;
1632 	int idx = slots->node_idx;
1633 
1634 	slot = NULL;
1635 	for (node = slots->gfn_tree.rb_node; node; ) {
1636 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1637 		if (gfn >= slot->base_gfn) {
1638 			if (gfn < slot->base_gfn + slot->npages)
1639 				return slot;
1640 			node = node->rb_right;
1641 		} else
1642 			node = node->rb_left;
1643 	}
1644 
1645 	return approx ? slot : NULL;
1646 }
1647 
1648 static inline struct kvm_memory_slot *
1649 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1650 {
1651 	struct kvm_memory_slot *slot;
1652 
1653 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1654 	slot = try_get_memslot(slot, gfn);
1655 	if (slot)
1656 		return slot;
1657 
1658 	slot = search_memslots(slots, gfn, approx);
1659 	if (slot) {
1660 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1661 		return slot;
1662 	}
1663 
1664 	return NULL;
1665 }
1666 
1667 /*
1668  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1669  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1670  * because that would bloat other code too much.
1671  */
1672 static inline struct kvm_memory_slot *
1673 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1674 {
1675 	return ____gfn_to_memslot(slots, gfn, false);
1676 }
1677 
1678 static inline unsigned long
1679 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1680 {
1681 	/*
1682 	 * The index was checked originally in search_memslots.  To avoid
1683 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1684 	 * table walks, do not let the processor speculate loads outside
1685 	 * the guest's registered memslots.
1686 	 */
1687 	unsigned long offset = gfn - slot->base_gfn;
1688 	offset = array_index_nospec(offset, slot->npages);
1689 	return slot->userspace_addr + offset * PAGE_SIZE;
1690 }
1691 
1692 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1693 {
1694 	return gfn_to_memslot(kvm, gfn)->id;
1695 }
1696 
1697 static inline gfn_t
1698 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1699 {
1700 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1701 
1702 	return slot->base_gfn + gfn_offset;
1703 }
1704 
1705 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1706 {
1707 	return (gpa_t)gfn << PAGE_SHIFT;
1708 }
1709 
1710 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1711 {
1712 	return (gfn_t)(gpa >> PAGE_SHIFT);
1713 }
1714 
1715 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1716 {
1717 	return (hpa_t)pfn << PAGE_SHIFT;
1718 }
1719 
1720 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1721 						gpa_t gpa)
1722 {
1723 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1724 }
1725 
1726 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1727 {
1728 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1729 
1730 	return kvm_is_error_hva(hva);
1731 }
1732 
1733 enum kvm_stat_kind {
1734 	KVM_STAT_VM,
1735 	KVM_STAT_VCPU,
1736 };
1737 
1738 struct kvm_stat_data {
1739 	struct kvm *kvm;
1740 	const struct _kvm_stats_desc *desc;
1741 	enum kvm_stat_kind kind;
1742 };
1743 
1744 struct _kvm_stats_desc {
1745 	struct kvm_stats_desc desc;
1746 	char name[KVM_STATS_NAME_SIZE];
1747 };
1748 
1749 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1750 	.flags = type | unit | base |					       \
1751 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1752 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1753 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1754 	.exponent = exp,						       \
1755 	.size = sz,							       \
1756 	.bucket_size = bsz
1757 
1758 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1759 	{								       \
1760 		{							       \
1761 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1762 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1763 		},							       \
1764 		.name = #stat,						       \
1765 	}
1766 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1767 	{								       \
1768 		{							       \
1769 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1770 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1771 		},							       \
1772 		.name = #stat,						       \
1773 	}
1774 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1775 	{								       \
1776 		{							       \
1777 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1778 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1779 		},							       \
1780 		.name = #stat,						       \
1781 	}
1782 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1783 	{								       \
1784 		{							       \
1785 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1786 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1787 		},							       \
1788 		.name = #stat,						       \
1789 	}
1790 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1791 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1792 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1793 
1794 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1795 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1796 		unit, base, exponent, 1, 0)
1797 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1798 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1799 		unit, base, exponent, 1, 0)
1800 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1801 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1802 		unit, base, exponent, 1, 0)
1803 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1804 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1805 		unit, base, exponent, sz, bsz)
1806 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1807 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1808 		unit, base, exponent, sz, 0)
1809 
1810 /* Cumulative counter, read/write */
1811 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1812 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1813 		KVM_STATS_BASE_POW10, 0)
1814 /* Instantaneous counter, read only */
1815 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1816 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1817 		KVM_STATS_BASE_POW10, 0)
1818 /* Peak counter, read/write */
1819 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1820 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1821 		KVM_STATS_BASE_POW10, 0)
1822 
1823 /* Cumulative time in nanosecond */
1824 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1825 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1826 		KVM_STATS_BASE_POW10, -9)
1827 /* Linear histogram for time in nanosecond */
1828 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1829 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1830 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1831 /* Logarithmic histogram for time in nanosecond */
1832 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1833 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1834 		KVM_STATS_BASE_POW10, -9, sz)
1835 
1836 #define KVM_GENERIC_VM_STATS()						       \
1837 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1838 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1839 
1840 #define KVM_GENERIC_VCPU_STATS()					       \
1841 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1842 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1843 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1844 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1845 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1846 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1847 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1848 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1849 			HALT_POLL_HIST_COUNT),				       \
1850 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1851 			HALT_POLL_HIST_COUNT),				       \
1852 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1853 			HALT_POLL_HIST_COUNT),				       \
1854 	STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking)
1855 
1856 extern struct dentry *kvm_debugfs_dir;
1857 
1858 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1859 		       const struct _kvm_stats_desc *desc,
1860 		       void *stats, size_t size_stats,
1861 		       char __user *user_buffer, size_t size, loff_t *offset);
1862 
1863 /**
1864  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1865  * statistics data.
1866  *
1867  * @data: start address of the stats data
1868  * @size: the number of bucket of the stats data
1869  * @value: the new value used to update the linear histogram's bucket
1870  * @bucket_size: the size (width) of a bucket
1871  */
1872 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1873 						u64 value, size_t bucket_size)
1874 {
1875 	size_t index = div64_u64(value, bucket_size);
1876 
1877 	index = min(index, size - 1);
1878 	++data[index];
1879 }
1880 
1881 /**
1882  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1883  * statistics data.
1884  *
1885  * @data: start address of the stats data
1886  * @size: the number of bucket of the stats data
1887  * @value: the new value used to update the logarithmic histogram's bucket
1888  */
1889 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1890 {
1891 	size_t index = fls64(value);
1892 
1893 	index = min(index, size - 1);
1894 	++data[index];
1895 }
1896 
1897 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1898 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1899 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1900 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1901 
1902 
1903 extern const struct kvm_stats_header kvm_vm_stats_header;
1904 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1905 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1906 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1907 
1908 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1909 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1910 {
1911 	if (unlikely(kvm->mmu_notifier_count))
1912 		return 1;
1913 	/*
1914 	 * Ensure the read of mmu_notifier_count happens before the read
1915 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1916 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1917 	 * either sees the old (non-zero) value of mmu_notifier_count or
1918 	 * the new (incremented) value of mmu_notifier_seq.
1919 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1920 	 * rather than under kvm->mmu_lock, for scalability, so
1921 	 * can't rely on kvm->mmu_lock to keep things ordered.
1922 	 */
1923 	smp_rmb();
1924 	if (kvm->mmu_notifier_seq != mmu_seq)
1925 		return 1;
1926 	return 0;
1927 }
1928 
1929 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1930 					 unsigned long mmu_seq,
1931 					 unsigned long hva)
1932 {
1933 	lockdep_assert_held(&kvm->mmu_lock);
1934 	/*
1935 	 * If mmu_notifier_count is non-zero, then the range maintained by
1936 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1937 	 * might be being invalidated. Note that it may include some false
1938 	 * positives, due to shortcuts when handing concurrent invalidations.
1939 	 */
1940 	if (unlikely(kvm->mmu_notifier_count) &&
1941 	    hva >= kvm->mmu_notifier_range_start &&
1942 	    hva < kvm->mmu_notifier_range_end)
1943 		return 1;
1944 	if (kvm->mmu_notifier_seq != mmu_seq)
1945 		return 1;
1946 	return 0;
1947 }
1948 #endif
1949 
1950 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1951 
1952 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1953 
1954 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1955 int kvm_set_irq_routing(struct kvm *kvm,
1956 			const struct kvm_irq_routing_entry *entries,
1957 			unsigned nr,
1958 			unsigned flags);
1959 int kvm_set_routing_entry(struct kvm *kvm,
1960 			  struct kvm_kernel_irq_routing_entry *e,
1961 			  const struct kvm_irq_routing_entry *ue);
1962 void kvm_free_irq_routing(struct kvm *kvm);
1963 
1964 #else
1965 
1966 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1967 
1968 #endif
1969 
1970 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1971 
1972 #ifdef CONFIG_HAVE_KVM_EVENTFD
1973 
1974 void kvm_eventfd_init(struct kvm *kvm);
1975 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1976 
1977 #ifdef CONFIG_HAVE_KVM_IRQFD
1978 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1979 void kvm_irqfd_release(struct kvm *kvm);
1980 void kvm_irq_routing_update(struct kvm *);
1981 #else
1982 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1983 {
1984 	return -EINVAL;
1985 }
1986 
1987 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1988 #endif
1989 
1990 #else
1991 
1992 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1993 
1994 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1995 {
1996 	return -EINVAL;
1997 }
1998 
1999 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2000 
2001 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2002 static inline void kvm_irq_routing_update(struct kvm *kvm)
2003 {
2004 }
2005 #endif
2006 
2007 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2008 {
2009 	return -ENOSYS;
2010 }
2011 
2012 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2013 
2014 void kvm_arch_irq_routing_update(struct kvm *kvm);
2015 
2016 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2017 {
2018 	/*
2019 	 * Ensure the rest of the request is published to kvm_check_request's
2020 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2021 	 */
2022 	smp_wmb();
2023 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2024 }
2025 
2026 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2027 {
2028 	/*
2029 	 * Request that don't require vCPU action should never be logged in
2030 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2031 	 * logged indefinitely and prevent the vCPU from entering the guest.
2032 	 */
2033 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2034 		     (req & KVM_REQUEST_NO_ACTION));
2035 
2036 	__kvm_make_request(req, vcpu);
2037 }
2038 
2039 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2040 {
2041 	return READ_ONCE(vcpu->requests);
2042 }
2043 
2044 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2045 {
2046 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2047 }
2048 
2049 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2050 {
2051 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2052 }
2053 
2054 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2055 {
2056 	if (kvm_test_request(req, vcpu)) {
2057 		kvm_clear_request(req, vcpu);
2058 
2059 		/*
2060 		 * Ensure the rest of the request is visible to kvm_check_request's
2061 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2062 		 */
2063 		smp_mb__after_atomic();
2064 		return true;
2065 	} else {
2066 		return false;
2067 	}
2068 }
2069 
2070 extern bool kvm_rebooting;
2071 
2072 extern unsigned int halt_poll_ns;
2073 extern unsigned int halt_poll_ns_grow;
2074 extern unsigned int halt_poll_ns_grow_start;
2075 extern unsigned int halt_poll_ns_shrink;
2076 
2077 struct kvm_device {
2078 	const struct kvm_device_ops *ops;
2079 	struct kvm *kvm;
2080 	void *private;
2081 	struct list_head vm_node;
2082 };
2083 
2084 /* create, destroy, and name are mandatory */
2085 struct kvm_device_ops {
2086 	const char *name;
2087 
2088 	/*
2089 	 * create is called holding kvm->lock and any operations not suitable
2090 	 * to do while holding the lock should be deferred to init (see
2091 	 * below).
2092 	 */
2093 	int (*create)(struct kvm_device *dev, u32 type);
2094 
2095 	/*
2096 	 * init is called after create if create is successful and is called
2097 	 * outside of holding kvm->lock.
2098 	 */
2099 	void (*init)(struct kvm_device *dev);
2100 
2101 	/*
2102 	 * Destroy is responsible for freeing dev.
2103 	 *
2104 	 * Destroy may be called before or after destructors are called
2105 	 * on emulated I/O regions, depending on whether a reference is
2106 	 * held by a vcpu or other kvm component that gets destroyed
2107 	 * after the emulated I/O.
2108 	 */
2109 	void (*destroy)(struct kvm_device *dev);
2110 
2111 	/*
2112 	 * Release is an alternative method to free the device. It is
2113 	 * called when the device file descriptor is closed. Once
2114 	 * release is called, the destroy method will not be called
2115 	 * anymore as the device is removed from the device list of
2116 	 * the VM. kvm->lock is held.
2117 	 */
2118 	void (*release)(struct kvm_device *dev);
2119 
2120 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2121 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2122 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2123 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2124 		      unsigned long arg);
2125 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2126 };
2127 
2128 void kvm_device_get(struct kvm_device *dev);
2129 void kvm_device_put(struct kvm_device *dev);
2130 struct kvm_device *kvm_device_from_filp(struct file *filp);
2131 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2132 void kvm_unregister_device_ops(u32 type);
2133 
2134 extern struct kvm_device_ops kvm_mpic_ops;
2135 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2136 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2137 
2138 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2139 
2140 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2141 {
2142 	vcpu->spin_loop.in_spin_loop = val;
2143 }
2144 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2145 {
2146 	vcpu->spin_loop.dy_eligible = val;
2147 }
2148 
2149 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2150 
2151 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2152 {
2153 }
2154 
2155 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2156 {
2157 }
2158 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2159 
2160 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2161 {
2162 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2163 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2164 }
2165 
2166 struct kvm_vcpu *kvm_get_running_vcpu(void);
2167 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2168 
2169 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2170 bool kvm_arch_has_irq_bypass(void);
2171 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2172 			   struct irq_bypass_producer *);
2173 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2174 			   struct irq_bypass_producer *);
2175 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2176 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2177 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2178 				  uint32_t guest_irq, bool set);
2179 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2180 				  struct kvm_kernel_irq_routing_entry *);
2181 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2182 
2183 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2184 /* If we wakeup during the poll time, was it a sucessful poll? */
2185 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2186 {
2187 	return vcpu->valid_wakeup;
2188 }
2189 
2190 #else
2191 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2192 {
2193 	return true;
2194 }
2195 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2196 
2197 #ifdef CONFIG_HAVE_KVM_NO_POLL
2198 /* Callback that tells if we must not poll */
2199 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2200 #else
2201 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2202 {
2203 	return false;
2204 }
2205 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2206 
2207 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2208 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2209 			       unsigned int ioctl, unsigned long arg);
2210 #else
2211 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2212 					     unsigned int ioctl,
2213 					     unsigned long arg)
2214 {
2215 	return -ENOIOCTLCMD;
2216 }
2217 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2218 
2219 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2220 					    unsigned long start, unsigned long end);
2221 
2222 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2223 
2224 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2225 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2226 #else
2227 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2228 {
2229 	return 0;
2230 }
2231 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2232 
2233 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2234 
2235 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2236 				uintptr_t data, const char *name,
2237 				struct task_struct **thread_ptr);
2238 
2239 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2240 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2241 {
2242 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2243 	vcpu->stat.signal_exits++;
2244 }
2245 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2246 
2247 /*
2248  * This defines how many reserved entries we want to keep before we
2249  * kick the vcpu to the userspace to avoid dirty ring full.  This
2250  * value can be tuned to higher if e.g. PML is enabled on the host.
2251  */
2252 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2253 
2254 /* Max number of entries allowed for each kvm dirty ring */
2255 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2256 
2257 #endif
2258