xref: /openbmc/linux/include/linux/kvm_host.h (revision a08b9f2f2267421092bf4b882a9461858216ed47)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/minmax.h>
15 #include <linux/mm.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/preempt.h>
18 #include <linux/msi.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rcupdate.h>
22 #include <linux/ratelimit.h>
23 #include <linux/err.h>
24 #include <linux/irqflags.h>
25 #include <linux/context_tracking.h>
26 #include <linux/irqbypass.h>
27 #include <linux/rcuwait.h>
28 #include <linux/refcount.h>
29 #include <linux/nospec.h>
30 #include <asm/signal.h>
31 
32 #include <linux/kvm.h>
33 #include <linux/kvm_para.h>
34 
35 #include <linux/kvm_types.h>
36 
37 #include <asm/kvm_host.h>
38 #include <linux/kvm_dirty_ring.h>
39 
40 #ifndef KVM_MAX_VCPU_ID
41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42 #endif
43 
44 /*
45  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46  * in kvm, other bits are visible for userspace which are defined in
47  * include/linux/kvm_h.
48  */
49 #define KVM_MEMSLOT_INVALID	(1UL << 16)
50 
51 /*
52  * Bit 63 of the memslot generation number is an "update in-progress flag",
53  * e.g. is temporarily set for the duration of install_new_memslots().
54  * This flag effectively creates a unique generation number that is used to
55  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
56  * i.e. may (or may not) have come from the previous memslots generation.
57  *
58  * This is necessary because the actual memslots update is not atomic with
59  * respect to the generation number update.  Updating the generation number
60  * first would allow a vCPU to cache a spte from the old memslots using the
61  * new generation number, and updating the generation number after switching
62  * to the new memslots would allow cache hits using the old generation number
63  * to reference the defunct memslots.
64  *
65  * This mechanism is used to prevent getting hits in KVM's caches while a
66  * memslot update is in-progress, and to prevent cache hits *after* updating
67  * the actual generation number against accesses that were inserted into the
68  * cache *before* the memslots were updated.
69  */
70 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
71 
72 /* Two fragments for cross MMIO pages. */
73 #define KVM_MAX_MMIO_FRAGMENTS	2
74 
75 #ifndef KVM_ADDRESS_SPACE_NUM
76 #define KVM_ADDRESS_SPACE_NUM	1
77 #endif
78 
79 /*
80  * For the normal pfn, the highest 12 bits should be zero,
81  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
82  * mask bit 63 to indicate the noslot pfn.
83  */
84 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
85 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
86 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
87 
88 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
89 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
90 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
91 
92 /*
93  * error pfns indicate that the gfn is in slot but faild to
94  * translate it to pfn on host.
95  */
96 static inline bool is_error_pfn(kvm_pfn_t pfn)
97 {
98 	return !!(pfn & KVM_PFN_ERR_MASK);
99 }
100 
101 /*
102  * error_noslot pfns indicate that the gfn can not be
103  * translated to pfn - it is not in slot or failed to
104  * translate it to pfn.
105  */
106 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
109 }
110 
111 /* noslot pfn indicates that the gfn is not in slot. */
112 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
113 {
114 	return pfn == KVM_PFN_NOSLOT;
115 }
116 
117 /*
118  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
119  * provide own defines and kvm_is_error_hva
120  */
121 #ifndef KVM_HVA_ERR_BAD
122 
123 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
124 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
125 
126 static inline bool kvm_is_error_hva(unsigned long addr)
127 {
128 	return addr >= PAGE_OFFSET;
129 }
130 
131 #endif
132 
133 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
134 
135 static inline bool is_error_page(struct page *page)
136 {
137 	return IS_ERR(page);
138 }
139 
140 #define KVM_REQUEST_MASK           GENMASK(7,0)
141 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
142 #define KVM_REQUEST_WAIT           BIT(9)
143 /*
144  * Architecture-independent vcpu->requests bit members
145  * Bits 4-7 are reserved for more arch-independent bits.
146  */
147 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149 #define KVM_REQ_PENDING_TIMER     2
150 #define KVM_REQ_UNHALT            3
151 #define KVM_REQUEST_ARCH_BASE     8
152 
153 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
154 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
155 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
156 })
157 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
158 
159 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
160 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
161 
162 extern struct mutex kvm_lock;
163 extern struct list_head vm_list;
164 
165 struct kvm_io_range {
166 	gpa_t addr;
167 	int len;
168 	struct kvm_io_device *dev;
169 };
170 
171 #define NR_IOBUS_DEVS 1000
172 
173 struct kvm_io_bus {
174 	int dev_count;
175 	int ioeventfd_count;
176 	struct kvm_io_range range[];
177 };
178 
179 enum kvm_bus {
180 	KVM_MMIO_BUS,
181 	KVM_PIO_BUS,
182 	KVM_VIRTIO_CCW_NOTIFY_BUS,
183 	KVM_FAST_MMIO_BUS,
184 	KVM_NR_BUSES
185 };
186 
187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 		     int len, const void *val);
189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 			    gpa_t addr, int len, const void *val, long cookie);
191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 		    int len, void *val);
193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 			    int len, struct kvm_io_device *dev);
195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 			       struct kvm_io_device *dev);
197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 					 gpa_t addr);
199 
200 #ifdef CONFIG_KVM_ASYNC_PF
201 struct kvm_async_pf {
202 	struct work_struct work;
203 	struct list_head link;
204 	struct list_head queue;
205 	struct kvm_vcpu *vcpu;
206 	struct mm_struct *mm;
207 	gpa_t cr2_or_gpa;
208 	unsigned long addr;
209 	struct kvm_arch_async_pf arch;
210 	bool   wakeup_all;
211 	bool notpresent_injected;
212 };
213 
214 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
215 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
216 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
217 			unsigned long hva, struct kvm_arch_async_pf *arch);
218 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
219 #endif
220 
221 enum {
222 	OUTSIDE_GUEST_MODE,
223 	IN_GUEST_MODE,
224 	EXITING_GUEST_MODE,
225 	READING_SHADOW_PAGE_TABLES,
226 };
227 
228 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
229 
230 struct kvm_host_map {
231 	/*
232 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
233 	 * a 'struct page' for it. When using mem= kernel parameter some memory
234 	 * can be used as guest memory but they are not managed by host
235 	 * kernel).
236 	 * If 'pfn' is not managed by the host kernel, this field is
237 	 * initialized to KVM_UNMAPPED_PAGE.
238 	 */
239 	struct page *page;
240 	void *hva;
241 	kvm_pfn_t pfn;
242 	kvm_pfn_t gfn;
243 };
244 
245 /*
246  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
247  * directly to check for that.
248  */
249 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
250 {
251 	return !!map->hva;
252 }
253 
254 /*
255  * Sometimes a large or cross-page mmio needs to be broken up into separate
256  * exits for userspace servicing.
257  */
258 struct kvm_mmio_fragment {
259 	gpa_t gpa;
260 	void *data;
261 	unsigned len;
262 };
263 
264 struct kvm_vcpu {
265 	struct kvm *kvm;
266 #ifdef CONFIG_PREEMPT_NOTIFIERS
267 	struct preempt_notifier preempt_notifier;
268 #endif
269 	int cpu;
270 	int vcpu_id; /* id given by userspace at creation */
271 	int vcpu_idx; /* index in kvm->vcpus array */
272 	int srcu_idx;
273 	int mode;
274 	u64 requests;
275 	unsigned long guest_debug;
276 
277 	int pre_pcpu;
278 	struct list_head blocked_vcpu_list;
279 
280 	struct mutex mutex;
281 	struct kvm_run *run;
282 
283 	struct rcuwait wait;
284 	struct pid __rcu *pid;
285 	int sigset_active;
286 	sigset_t sigset;
287 	struct kvm_vcpu_stat stat;
288 	unsigned int halt_poll_ns;
289 	bool valid_wakeup;
290 
291 #ifdef CONFIG_HAS_IOMEM
292 	int mmio_needed;
293 	int mmio_read_completed;
294 	int mmio_is_write;
295 	int mmio_cur_fragment;
296 	int mmio_nr_fragments;
297 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
298 #endif
299 
300 #ifdef CONFIG_KVM_ASYNC_PF
301 	struct {
302 		u32 queued;
303 		struct list_head queue;
304 		struct list_head done;
305 		spinlock_t lock;
306 	} async_pf;
307 #endif
308 
309 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
310 	/*
311 	 * Cpu relax intercept or pause loop exit optimization
312 	 * in_spin_loop: set when a vcpu does a pause loop exit
313 	 *  or cpu relax intercepted.
314 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
315 	 */
316 	struct {
317 		bool in_spin_loop;
318 		bool dy_eligible;
319 	} spin_loop;
320 #endif
321 	bool preempted;
322 	bool ready;
323 	struct kvm_vcpu_arch arch;
324 	struct kvm_dirty_ring dirty_ring;
325 };
326 
327 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
328 {
329 	/*
330 	 * The memory barrier ensures a previous write to vcpu->requests cannot
331 	 * be reordered with the read of vcpu->mode.  It pairs with the general
332 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
333 	 */
334 	smp_mb__before_atomic();
335 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
336 }
337 
338 /*
339  * Some of the bitops functions do not support too long bitmaps.
340  * This number must be determined not to exceed such limits.
341  */
342 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
343 
344 struct kvm_memory_slot {
345 	gfn_t base_gfn;
346 	unsigned long npages;
347 	unsigned long *dirty_bitmap;
348 	struct kvm_arch_memory_slot arch;
349 	unsigned long userspace_addr;
350 	u32 flags;
351 	short id;
352 	u16 as_id;
353 };
354 
355 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
356 {
357 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
358 }
359 
360 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
361 {
362 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
363 }
364 
365 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
366 {
367 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
368 
369 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
370 }
371 
372 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
373 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
374 #endif
375 
376 struct kvm_s390_adapter_int {
377 	u64 ind_addr;
378 	u64 summary_addr;
379 	u64 ind_offset;
380 	u32 summary_offset;
381 	u32 adapter_id;
382 };
383 
384 struct kvm_hv_sint {
385 	u32 vcpu;
386 	u32 sint;
387 };
388 
389 struct kvm_kernel_irq_routing_entry {
390 	u32 gsi;
391 	u32 type;
392 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
393 		   struct kvm *kvm, int irq_source_id, int level,
394 		   bool line_status);
395 	union {
396 		struct {
397 			unsigned irqchip;
398 			unsigned pin;
399 		} irqchip;
400 		struct {
401 			u32 address_lo;
402 			u32 address_hi;
403 			u32 data;
404 			u32 flags;
405 			u32 devid;
406 		} msi;
407 		struct kvm_s390_adapter_int adapter;
408 		struct kvm_hv_sint hv_sint;
409 	};
410 	struct hlist_node link;
411 };
412 
413 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
414 struct kvm_irq_routing_table {
415 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
416 	u32 nr_rt_entries;
417 	/*
418 	 * Array indexed by gsi. Each entry contains list of irq chips
419 	 * the gsi is connected to.
420 	 */
421 	struct hlist_head map[];
422 };
423 #endif
424 
425 #ifndef KVM_PRIVATE_MEM_SLOTS
426 #define KVM_PRIVATE_MEM_SLOTS 0
427 #endif
428 
429 #define KVM_MEM_SLOTS_NUM SHRT_MAX
430 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
431 
432 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
433 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
434 {
435 	return 0;
436 }
437 #endif
438 
439 /*
440  * Note:
441  * memslots are not sorted by id anymore, please use id_to_memslot()
442  * to get the memslot by its id.
443  */
444 struct kvm_memslots {
445 	u64 generation;
446 	/* The mapping table from slot id to the index in memslots[]. */
447 	short id_to_index[KVM_MEM_SLOTS_NUM];
448 	atomic_t lru_slot;
449 	int used_slots;
450 	struct kvm_memory_slot memslots[];
451 };
452 
453 struct kvm {
454 #ifdef KVM_HAVE_MMU_RWLOCK
455 	rwlock_t mmu_lock;
456 #else
457 	spinlock_t mmu_lock;
458 #endif /* KVM_HAVE_MMU_RWLOCK */
459 
460 	struct mutex slots_lock;
461 	struct mm_struct *mm; /* userspace tied to this vm */
462 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
463 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
464 
465 	/*
466 	 * created_vcpus is protected by kvm->lock, and is incremented
467 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
468 	 * incremented after storing the kvm_vcpu pointer in vcpus,
469 	 * and is accessed atomically.
470 	 */
471 	atomic_t online_vcpus;
472 	int created_vcpus;
473 	int last_boosted_vcpu;
474 	struct list_head vm_list;
475 	struct mutex lock;
476 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
477 #ifdef CONFIG_HAVE_KVM_EVENTFD
478 	struct {
479 		spinlock_t        lock;
480 		struct list_head  items;
481 		struct list_head  resampler_list;
482 		struct mutex      resampler_lock;
483 	} irqfds;
484 	struct list_head ioeventfds;
485 #endif
486 	struct kvm_vm_stat stat;
487 	struct kvm_arch arch;
488 	refcount_t users_count;
489 #ifdef CONFIG_KVM_MMIO
490 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
491 	spinlock_t ring_lock;
492 	struct list_head coalesced_zones;
493 #endif
494 
495 	struct mutex irq_lock;
496 #ifdef CONFIG_HAVE_KVM_IRQCHIP
497 	/*
498 	 * Update side is protected by irq_lock.
499 	 */
500 	struct kvm_irq_routing_table __rcu *irq_routing;
501 #endif
502 #ifdef CONFIG_HAVE_KVM_IRQFD
503 	struct hlist_head irq_ack_notifier_list;
504 #endif
505 
506 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
507 	struct mmu_notifier mmu_notifier;
508 	unsigned long mmu_notifier_seq;
509 	long mmu_notifier_count;
510 	unsigned long mmu_notifier_range_start;
511 	unsigned long mmu_notifier_range_end;
512 #endif
513 	long tlbs_dirty;
514 	struct list_head devices;
515 	u64 manual_dirty_log_protect;
516 	struct dentry *debugfs_dentry;
517 	struct kvm_stat_data **debugfs_stat_data;
518 	struct srcu_struct srcu;
519 	struct srcu_struct irq_srcu;
520 	pid_t userspace_pid;
521 	unsigned int max_halt_poll_ns;
522 	u32 dirty_ring_size;
523 };
524 
525 #define kvm_err(fmt, ...) \
526 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
527 #define kvm_info(fmt, ...) \
528 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
529 #define kvm_debug(fmt, ...) \
530 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
531 #define kvm_debug_ratelimited(fmt, ...) \
532 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
533 			     ## __VA_ARGS__)
534 #define kvm_pr_unimpl(fmt, ...) \
535 	pr_err_ratelimited("kvm [%i]: " fmt, \
536 			   task_tgid_nr(current), ## __VA_ARGS__)
537 
538 /* The guest did something we don't support. */
539 #define vcpu_unimpl(vcpu, fmt, ...)					\
540 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
541 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
542 
543 #define vcpu_debug(vcpu, fmt, ...)					\
544 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
545 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
546 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
547 			      ## __VA_ARGS__)
548 #define vcpu_err(vcpu, fmt, ...)					\
549 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
550 
551 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
552 {
553 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
554 }
555 
556 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
557 {
558 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
559 				      lockdep_is_held(&kvm->slots_lock) ||
560 				      !refcount_read(&kvm->users_count));
561 }
562 
563 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
564 {
565 	int num_vcpus = atomic_read(&kvm->online_vcpus);
566 	i = array_index_nospec(i, num_vcpus);
567 
568 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
569 	smp_rmb();
570 	return kvm->vcpus[i];
571 }
572 
573 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
574 	for (idx = 0; \
575 	     idx < atomic_read(&kvm->online_vcpus) && \
576 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
577 	     idx++)
578 
579 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
580 {
581 	struct kvm_vcpu *vcpu = NULL;
582 	int i;
583 
584 	if (id < 0)
585 		return NULL;
586 	if (id < KVM_MAX_VCPUS)
587 		vcpu = kvm_get_vcpu(kvm, id);
588 	if (vcpu && vcpu->vcpu_id == id)
589 		return vcpu;
590 	kvm_for_each_vcpu(i, vcpu, kvm)
591 		if (vcpu->vcpu_id == id)
592 			return vcpu;
593 	return NULL;
594 }
595 
596 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
597 {
598 	return vcpu->vcpu_idx;
599 }
600 
601 #define kvm_for_each_memslot(memslot, slots)				\
602 	for (memslot = &slots->memslots[0];				\
603 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
604 		if (WARN_ON_ONCE(!memslot->npages)) {			\
605 		} else
606 
607 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
608 
609 void vcpu_load(struct kvm_vcpu *vcpu);
610 void vcpu_put(struct kvm_vcpu *vcpu);
611 
612 #ifdef __KVM_HAVE_IOAPIC
613 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
614 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
615 #else
616 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
617 {
618 }
619 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
620 {
621 }
622 #endif
623 
624 #ifdef CONFIG_HAVE_KVM_IRQFD
625 int kvm_irqfd_init(void);
626 void kvm_irqfd_exit(void);
627 #else
628 static inline int kvm_irqfd_init(void)
629 {
630 	return 0;
631 }
632 
633 static inline void kvm_irqfd_exit(void)
634 {
635 }
636 #endif
637 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
638 		  struct module *module);
639 void kvm_exit(void);
640 
641 void kvm_get_kvm(struct kvm *kvm);
642 void kvm_put_kvm(struct kvm *kvm);
643 void kvm_put_kvm_no_destroy(struct kvm *kvm);
644 
645 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
646 {
647 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
648 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
649 			lockdep_is_held(&kvm->slots_lock) ||
650 			!refcount_read(&kvm->users_count));
651 }
652 
653 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
654 {
655 	return __kvm_memslots(kvm, 0);
656 }
657 
658 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
659 {
660 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
661 
662 	return __kvm_memslots(vcpu->kvm, as_id);
663 }
664 
665 static inline
666 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
667 {
668 	int index = slots->id_to_index[id];
669 	struct kvm_memory_slot *slot;
670 
671 	if (index < 0)
672 		return NULL;
673 
674 	slot = &slots->memslots[index];
675 
676 	WARN_ON(slot->id != id);
677 	return slot;
678 }
679 
680 /*
681  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
682  * - create a new memory slot
683  * - delete an existing memory slot
684  * - modify an existing memory slot
685  *   -- move it in the guest physical memory space
686  *   -- just change its flags
687  *
688  * Since flags can be changed by some of these operations, the following
689  * differentiation is the best we can do for __kvm_set_memory_region():
690  */
691 enum kvm_mr_change {
692 	KVM_MR_CREATE,
693 	KVM_MR_DELETE,
694 	KVM_MR_MOVE,
695 	KVM_MR_FLAGS_ONLY,
696 };
697 
698 int kvm_set_memory_region(struct kvm *kvm,
699 			  const struct kvm_userspace_memory_region *mem);
700 int __kvm_set_memory_region(struct kvm *kvm,
701 			    const struct kvm_userspace_memory_region *mem);
702 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
703 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
704 int kvm_arch_prepare_memory_region(struct kvm *kvm,
705 				struct kvm_memory_slot *memslot,
706 				const struct kvm_userspace_memory_region *mem,
707 				enum kvm_mr_change change);
708 void kvm_arch_commit_memory_region(struct kvm *kvm,
709 				const struct kvm_userspace_memory_region *mem,
710 				struct kvm_memory_slot *old,
711 				const struct kvm_memory_slot *new,
712 				enum kvm_mr_change change);
713 /* flush all memory translations */
714 void kvm_arch_flush_shadow_all(struct kvm *kvm);
715 /* flush memory translations pointing to 'slot' */
716 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
717 				   struct kvm_memory_slot *slot);
718 
719 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
720 			    struct page **pages, int nr_pages);
721 
722 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
723 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
724 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
725 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
726 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
727 				      bool *writable);
728 void kvm_release_page_clean(struct page *page);
729 void kvm_release_page_dirty(struct page *page);
730 void kvm_set_page_accessed(struct page *page);
731 
732 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
733 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
734 		      bool *writable);
735 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
736 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
737 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
738 			       bool atomic, bool *async, bool write_fault,
739 			       bool *writable, hva_t *hva);
740 
741 void kvm_release_pfn_clean(kvm_pfn_t pfn);
742 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
743 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
744 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
745 void kvm_get_pfn(kvm_pfn_t pfn);
746 
747 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
748 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
749 			int len);
750 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
751 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
752 			   void *data, unsigned long len);
753 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
754 				 void *data, unsigned int offset,
755 				 unsigned long len);
756 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
757 			 int offset, int len);
758 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
759 		    unsigned long len);
760 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
761 			   void *data, unsigned long len);
762 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
763 				  void *data, unsigned int offset,
764 				  unsigned long len);
765 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
766 			      gpa_t gpa, unsigned long len);
767 
768 #define __kvm_get_guest(kvm, gfn, offset, v)				\
769 ({									\
770 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
771 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
772 	int __ret = -EFAULT;						\
773 									\
774 	if (!kvm_is_error_hva(__addr))					\
775 		__ret = get_user(v, __uaddr);				\
776 	__ret;								\
777 })
778 
779 #define kvm_get_guest(kvm, gpa, v)					\
780 ({									\
781 	gpa_t __gpa = gpa;						\
782 	struct kvm *__kvm = kvm;					\
783 									\
784 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
785 			offset_in_page(__gpa), v);			\
786 })
787 
788 #define __kvm_put_guest(kvm, gfn, offset, v)				\
789 ({									\
790 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
791 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
792 	int __ret = -EFAULT;						\
793 									\
794 	if (!kvm_is_error_hva(__addr))					\
795 		__ret = put_user(v, __uaddr);				\
796 	if (!__ret)							\
797 		mark_page_dirty(kvm, gfn);				\
798 	__ret;								\
799 })
800 
801 #define kvm_put_guest(kvm, gpa, v)					\
802 ({									\
803 	gpa_t __gpa = gpa;						\
804 	struct kvm *__kvm = kvm;					\
805 									\
806 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
807 			offset_in_page(__gpa), v);			\
808 })
809 
810 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
811 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
812 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
813 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
814 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
815 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
816 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
817 
818 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
819 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
820 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
821 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
822 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
823 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
824 		struct gfn_to_pfn_cache *cache, bool atomic);
825 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
826 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
827 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
828 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
829 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
830 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
831 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
832 			     int len);
833 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
834 			       unsigned long len);
835 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
836 			unsigned long len);
837 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
838 			      int offset, int len);
839 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
840 			 unsigned long len);
841 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
842 
843 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
844 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
845 
846 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
847 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
848 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
849 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
850 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
851 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
852 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
853 
854 void kvm_flush_remote_tlbs(struct kvm *kvm);
855 void kvm_reload_remote_mmus(struct kvm *kvm);
856 
857 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
858 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
859 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
860 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
861 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
862 #endif
863 
864 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
865 				 struct kvm_vcpu *except,
866 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
867 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
868 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
869 				      struct kvm_vcpu *except);
870 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
871 				unsigned long *vcpu_bitmap);
872 
873 long kvm_arch_dev_ioctl(struct file *filp,
874 			unsigned int ioctl, unsigned long arg);
875 long kvm_arch_vcpu_ioctl(struct file *filp,
876 			 unsigned int ioctl, unsigned long arg);
877 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
878 
879 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
880 
881 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
882 					struct kvm_memory_slot *slot,
883 					gfn_t gfn_offset,
884 					unsigned long mask);
885 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
886 
887 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
888 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
889 					struct kvm_memory_slot *memslot);
890 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
891 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
892 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
893 		      int *is_dirty, struct kvm_memory_slot **memslot);
894 #endif
895 
896 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
897 			bool line_status);
898 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
899 			    struct kvm_enable_cap *cap);
900 long kvm_arch_vm_ioctl(struct file *filp,
901 		       unsigned int ioctl, unsigned long arg);
902 
903 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
904 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
905 
906 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
907 				    struct kvm_translation *tr);
908 
909 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
910 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
911 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
912 				  struct kvm_sregs *sregs);
913 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
914 				  struct kvm_sregs *sregs);
915 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
916 				    struct kvm_mp_state *mp_state);
917 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
918 				    struct kvm_mp_state *mp_state);
919 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
920 					struct kvm_guest_debug *dbg);
921 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
922 
923 int kvm_arch_init(void *opaque);
924 void kvm_arch_exit(void);
925 
926 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
927 
928 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
929 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
930 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
931 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
932 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
933 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
934 
935 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
936 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
937 #endif
938 
939 int kvm_arch_hardware_enable(void);
940 void kvm_arch_hardware_disable(void);
941 int kvm_arch_hardware_setup(void *opaque);
942 void kvm_arch_hardware_unsetup(void);
943 int kvm_arch_check_processor_compat(void *opaque);
944 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
945 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
946 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
947 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
948 int kvm_arch_post_init_vm(struct kvm *kvm);
949 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
950 
951 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
952 /*
953  * All architectures that want to use vzalloc currently also
954  * need their own kvm_arch_alloc_vm implementation.
955  */
956 static inline struct kvm *kvm_arch_alloc_vm(void)
957 {
958 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
959 }
960 
961 static inline void kvm_arch_free_vm(struct kvm *kvm)
962 {
963 	kfree(kvm);
964 }
965 #endif
966 
967 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
968 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
969 {
970 	return -ENOTSUPP;
971 }
972 #endif
973 
974 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
975 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
976 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
977 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
978 #else
979 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
980 {
981 }
982 
983 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
984 {
985 }
986 
987 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
988 {
989 	return false;
990 }
991 #endif
992 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
993 void kvm_arch_start_assignment(struct kvm *kvm);
994 void kvm_arch_end_assignment(struct kvm *kvm);
995 bool kvm_arch_has_assigned_device(struct kvm *kvm);
996 #else
997 static inline void kvm_arch_start_assignment(struct kvm *kvm)
998 {
999 }
1000 
1001 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1002 {
1003 }
1004 
1005 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1006 {
1007 	return false;
1008 }
1009 #endif
1010 
1011 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1012 {
1013 #ifdef __KVM_HAVE_ARCH_WQP
1014 	return vcpu->arch.waitp;
1015 #else
1016 	return &vcpu->wait;
1017 #endif
1018 }
1019 
1020 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1021 /*
1022  * returns true if the virtual interrupt controller is initialized and
1023  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1024  * controller is dynamically instantiated and this is not always true.
1025  */
1026 bool kvm_arch_intc_initialized(struct kvm *kvm);
1027 #else
1028 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1029 {
1030 	return true;
1031 }
1032 #endif
1033 
1034 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1035 void kvm_arch_destroy_vm(struct kvm *kvm);
1036 void kvm_arch_sync_events(struct kvm *kvm);
1037 
1038 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1039 
1040 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1041 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1042 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1043 
1044 struct kvm_irq_ack_notifier {
1045 	struct hlist_node link;
1046 	unsigned gsi;
1047 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1048 };
1049 
1050 int kvm_irq_map_gsi(struct kvm *kvm,
1051 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1052 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1053 
1054 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1055 		bool line_status);
1056 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1057 		int irq_source_id, int level, bool line_status);
1058 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1059 			       struct kvm *kvm, int irq_source_id,
1060 			       int level, bool line_status);
1061 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1062 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1063 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1064 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1065 				   struct kvm_irq_ack_notifier *kian);
1066 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1067 				   struct kvm_irq_ack_notifier *kian);
1068 int kvm_request_irq_source_id(struct kvm *kvm);
1069 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1070 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1071 
1072 /*
1073  * search_memslots() and __gfn_to_memslot() are here because they are
1074  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1075  * gfn_to_memslot() itself isn't here as an inline because that would
1076  * bloat other code too much.
1077  *
1078  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1079  */
1080 static inline struct kvm_memory_slot *
1081 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1082 {
1083 	int start = 0, end = slots->used_slots;
1084 	int slot = atomic_read(&slots->lru_slot);
1085 	struct kvm_memory_slot *memslots = slots->memslots;
1086 
1087 	if (unlikely(!slots->used_slots))
1088 		return NULL;
1089 
1090 	if (gfn >= memslots[slot].base_gfn &&
1091 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1092 		return &memslots[slot];
1093 
1094 	while (start < end) {
1095 		slot = start + (end - start) / 2;
1096 
1097 		if (gfn >= memslots[slot].base_gfn)
1098 			end = slot;
1099 		else
1100 			start = slot + 1;
1101 	}
1102 
1103 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1104 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1105 		atomic_set(&slots->lru_slot, start);
1106 		return &memslots[start];
1107 	}
1108 
1109 	return NULL;
1110 }
1111 
1112 static inline struct kvm_memory_slot *
1113 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1114 {
1115 	return search_memslots(slots, gfn);
1116 }
1117 
1118 static inline unsigned long
1119 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1120 {
1121 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1122 }
1123 
1124 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1125 {
1126 	return gfn_to_memslot(kvm, gfn)->id;
1127 }
1128 
1129 static inline gfn_t
1130 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1131 {
1132 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1133 
1134 	return slot->base_gfn + gfn_offset;
1135 }
1136 
1137 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1138 {
1139 	return (gpa_t)gfn << PAGE_SHIFT;
1140 }
1141 
1142 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1143 {
1144 	return (gfn_t)(gpa >> PAGE_SHIFT);
1145 }
1146 
1147 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1148 {
1149 	return (hpa_t)pfn << PAGE_SHIFT;
1150 }
1151 
1152 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1153 						gpa_t gpa)
1154 {
1155 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1156 }
1157 
1158 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1159 {
1160 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1161 
1162 	return kvm_is_error_hva(hva);
1163 }
1164 
1165 enum kvm_stat_kind {
1166 	KVM_STAT_VM,
1167 	KVM_STAT_VCPU,
1168 };
1169 
1170 struct kvm_stat_data {
1171 	struct kvm *kvm;
1172 	struct kvm_stats_debugfs_item *dbgfs_item;
1173 };
1174 
1175 struct kvm_stats_debugfs_item {
1176 	const char *name;
1177 	int offset;
1178 	enum kvm_stat_kind kind;
1179 	int mode;
1180 };
1181 
1182 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1183 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1184 
1185 #define VM_STAT(n, x, ...) 							\
1186 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1187 #define VCPU_STAT(n, x, ...)							\
1188 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1189 
1190 extern struct kvm_stats_debugfs_item debugfs_entries[];
1191 extern struct dentry *kvm_debugfs_dir;
1192 
1193 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1194 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1195 {
1196 	if (unlikely(kvm->mmu_notifier_count))
1197 		return 1;
1198 	/*
1199 	 * Ensure the read of mmu_notifier_count happens before the read
1200 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1201 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1202 	 * either sees the old (non-zero) value of mmu_notifier_count or
1203 	 * the new (incremented) value of mmu_notifier_seq.
1204 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1205 	 * rather than under kvm->mmu_lock, for scalability, so
1206 	 * can't rely on kvm->mmu_lock to keep things ordered.
1207 	 */
1208 	smp_rmb();
1209 	if (kvm->mmu_notifier_seq != mmu_seq)
1210 		return 1;
1211 	return 0;
1212 }
1213 
1214 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1215 					 unsigned long mmu_seq,
1216 					 unsigned long hva)
1217 {
1218 	lockdep_assert_held(&kvm->mmu_lock);
1219 	/*
1220 	 * If mmu_notifier_count is non-zero, then the range maintained by
1221 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1222 	 * might be being invalidated. Note that it may include some false
1223 	 * positives, due to shortcuts when handing concurrent invalidations.
1224 	 */
1225 	if (unlikely(kvm->mmu_notifier_count) &&
1226 	    hva >= kvm->mmu_notifier_range_start &&
1227 	    hva < kvm->mmu_notifier_range_end)
1228 		return 1;
1229 	if (kvm->mmu_notifier_seq != mmu_seq)
1230 		return 1;
1231 	return 0;
1232 }
1233 #endif
1234 
1235 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1236 
1237 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1238 
1239 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1240 int kvm_set_irq_routing(struct kvm *kvm,
1241 			const struct kvm_irq_routing_entry *entries,
1242 			unsigned nr,
1243 			unsigned flags);
1244 int kvm_set_routing_entry(struct kvm *kvm,
1245 			  struct kvm_kernel_irq_routing_entry *e,
1246 			  const struct kvm_irq_routing_entry *ue);
1247 void kvm_free_irq_routing(struct kvm *kvm);
1248 
1249 #else
1250 
1251 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1252 
1253 #endif
1254 
1255 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1256 
1257 #ifdef CONFIG_HAVE_KVM_EVENTFD
1258 
1259 void kvm_eventfd_init(struct kvm *kvm);
1260 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1261 
1262 #ifdef CONFIG_HAVE_KVM_IRQFD
1263 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1264 void kvm_irqfd_release(struct kvm *kvm);
1265 void kvm_irq_routing_update(struct kvm *);
1266 #else
1267 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1268 {
1269 	return -EINVAL;
1270 }
1271 
1272 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1273 #endif
1274 
1275 #else
1276 
1277 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1278 
1279 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1280 {
1281 	return -EINVAL;
1282 }
1283 
1284 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1285 
1286 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1287 static inline void kvm_irq_routing_update(struct kvm *kvm)
1288 {
1289 }
1290 #endif
1291 
1292 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1293 {
1294 	return -ENOSYS;
1295 }
1296 
1297 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1298 
1299 void kvm_arch_irq_routing_update(struct kvm *kvm);
1300 
1301 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1302 {
1303 	/*
1304 	 * Ensure the rest of the request is published to kvm_check_request's
1305 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1306 	 */
1307 	smp_wmb();
1308 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1309 }
1310 
1311 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1312 {
1313 	return READ_ONCE(vcpu->requests);
1314 }
1315 
1316 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1317 {
1318 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1319 }
1320 
1321 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1322 {
1323 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1324 }
1325 
1326 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1327 {
1328 	if (kvm_test_request(req, vcpu)) {
1329 		kvm_clear_request(req, vcpu);
1330 
1331 		/*
1332 		 * Ensure the rest of the request is visible to kvm_check_request's
1333 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1334 		 */
1335 		smp_mb__after_atomic();
1336 		return true;
1337 	} else {
1338 		return false;
1339 	}
1340 }
1341 
1342 extern bool kvm_rebooting;
1343 
1344 extern unsigned int halt_poll_ns;
1345 extern unsigned int halt_poll_ns_grow;
1346 extern unsigned int halt_poll_ns_grow_start;
1347 extern unsigned int halt_poll_ns_shrink;
1348 
1349 struct kvm_device {
1350 	const struct kvm_device_ops *ops;
1351 	struct kvm *kvm;
1352 	void *private;
1353 	struct list_head vm_node;
1354 };
1355 
1356 /* create, destroy, and name are mandatory */
1357 struct kvm_device_ops {
1358 	const char *name;
1359 
1360 	/*
1361 	 * create is called holding kvm->lock and any operations not suitable
1362 	 * to do while holding the lock should be deferred to init (see
1363 	 * below).
1364 	 */
1365 	int (*create)(struct kvm_device *dev, u32 type);
1366 
1367 	/*
1368 	 * init is called after create if create is successful and is called
1369 	 * outside of holding kvm->lock.
1370 	 */
1371 	void (*init)(struct kvm_device *dev);
1372 
1373 	/*
1374 	 * Destroy is responsible for freeing dev.
1375 	 *
1376 	 * Destroy may be called before or after destructors are called
1377 	 * on emulated I/O regions, depending on whether a reference is
1378 	 * held by a vcpu or other kvm component that gets destroyed
1379 	 * after the emulated I/O.
1380 	 */
1381 	void (*destroy)(struct kvm_device *dev);
1382 
1383 	/*
1384 	 * Release is an alternative method to free the device. It is
1385 	 * called when the device file descriptor is closed. Once
1386 	 * release is called, the destroy method will not be called
1387 	 * anymore as the device is removed from the device list of
1388 	 * the VM. kvm->lock is held.
1389 	 */
1390 	void (*release)(struct kvm_device *dev);
1391 
1392 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1393 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1394 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1395 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1396 		      unsigned long arg);
1397 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1398 };
1399 
1400 void kvm_device_get(struct kvm_device *dev);
1401 void kvm_device_put(struct kvm_device *dev);
1402 struct kvm_device *kvm_device_from_filp(struct file *filp);
1403 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1404 void kvm_unregister_device_ops(u32 type);
1405 
1406 extern struct kvm_device_ops kvm_mpic_ops;
1407 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1408 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1409 
1410 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1411 
1412 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1413 {
1414 	vcpu->spin_loop.in_spin_loop = val;
1415 }
1416 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1417 {
1418 	vcpu->spin_loop.dy_eligible = val;
1419 }
1420 
1421 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1422 
1423 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1424 {
1425 }
1426 
1427 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1428 {
1429 }
1430 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1431 
1432 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1433 {
1434 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1435 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1436 }
1437 
1438 struct kvm_vcpu *kvm_get_running_vcpu(void);
1439 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1440 
1441 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1442 bool kvm_arch_has_irq_bypass(void);
1443 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1444 			   struct irq_bypass_producer *);
1445 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1446 			   struct irq_bypass_producer *);
1447 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1448 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1449 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1450 				  uint32_t guest_irq, bool set);
1451 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1452 
1453 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1454 /* If we wakeup during the poll time, was it a sucessful poll? */
1455 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1456 {
1457 	return vcpu->valid_wakeup;
1458 }
1459 
1460 #else
1461 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1462 {
1463 	return true;
1464 }
1465 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1466 
1467 #ifdef CONFIG_HAVE_KVM_NO_POLL
1468 /* Callback that tells if we must not poll */
1469 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1470 #else
1471 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1472 {
1473 	return false;
1474 }
1475 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1476 
1477 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1478 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1479 			       unsigned int ioctl, unsigned long arg);
1480 #else
1481 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1482 					     unsigned int ioctl,
1483 					     unsigned long arg)
1484 {
1485 	return -ENOIOCTLCMD;
1486 }
1487 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1488 
1489 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1490 					    unsigned long start, unsigned long end);
1491 
1492 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1493 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1494 #else
1495 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1496 {
1497 	return 0;
1498 }
1499 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1500 
1501 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1502 
1503 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1504 				uintptr_t data, const char *name,
1505 				struct task_struct **thread_ptr);
1506 
1507 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1508 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1509 {
1510 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1511 	vcpu->stat.signal_exits++;
1512 }
1513 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1514 
1515 /*
1516  * This defines how many reserved entries we want to keep before we
1517  * kick the vcpu to the userspace to avoid dirty ring full.  This
1518  * value can be tuned to higher if e.g. PML is enabled on the host.
1519  */
1520 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1521 
1522 /* Max number of entries allowed for each kvm dirty ring */
1523 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1524 
1525 #endif
1526