xref: /openbmc/linux/include/linux/kvm_host.h (revision 8b3a9ad86239f80ed569e23c3954a311f66481d6)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54  * in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of install_new_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 
100 /*
101  * error pfns indicate that the gfn is in slot but faild to
102  * translate it to pfn on host.
103  */
104 static inline bool is_error_pfn(kvm_pfn_t pfn)
105 {
106 	return !!(pfn & KVM_PFN_ERR_MASK);
107 }
108 
109 /*
110  * error_noslot pfns indicate that the gfn can not be
111  * translated to pfn - it is not in slot or failed to
112  * translate it to pfn.
113  */
114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115 {
116 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117 }
118 
119 /* noslot pfn indicates that the gfn is not in slot. */
120 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121 {
122 	return pfn == KVM_PFN_NOSLOT;
123 }
124 
125 /*
126  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127  * provide own defines and kvm_is_error_hva
128  */
129 #ifndef KVM_HVA_ERR_BAD
130 
131 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
132 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
133 
134 static inline bool kvm_is_error_hva(unsigned long addr)
135 {
136 	return addr >= PAGE_OFFSET;
137 }
138 
139 #endif
140 
141 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
142 
143 static inline bool is_error_page(struct page *page)
144 {
145 	return IS_ERR(page);
146 }
147 
148 #define KVM_REQUEST_MASK           GENMASK(7,0)
149 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
150 #define KVM_REQUEST_WAIT           BIT(9)
151 #define KVM_REQUEST_NO_ACTION      BIT(10)
152 /*
153  * Architecture-independent vcpu->requests bit members
154  * Bits 3-7 are reserved for more arch-independent bits.
155  */
156 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157 #define KVM_REQ_VM_DEAD           (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158 #define KVM_REQ_UNBLOCK           2
159 #define KVM_REQUEST_ARCH_BASE     8
160 
161 /*
162  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
163  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
164  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
165  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
166  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
167  * guarantee the vCPU received an IPI and has actually exited guest mode.
168  */
169 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
170 
171 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
172 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
173 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
174 })
175 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
176 
177 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
178 				 unsigned long *vcpu_bitmap);
179 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
180 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
181 				      struct kvm_vcpu *except);
182 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
183 				unsigned long *vcpu_bitmap);
184 
185 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
186 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
187 
188 extern struct mutex kvm_lock;
189 extern struct list_head vm_list;
190 
191 struct kvm_io_range {
192 	gpa_t addr;
193 	int len;
194 	struct kvm_io_device *dev;
195 };
196 
197 #define NR_IOBUS_DEVS 1000
198 
199 struct kvm_io_bus {
200 	int dev_count;
201 	int ioeventfd_count;
202 	struct kvm_io_range range[];
203 };
204 
205 enum kvm_bus {
206 	KVM_MMIO_BUS,
207 	KVM_PIO_BUS,
208 	KVM_VIRTIO_CCW_NOTIFY_BUS,
209 	KVM_FAST_MMIO_BUS,
210 	KVM_NR_BUSES
211 };
212 
213 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
214 		     int len, const void *val);
215 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
216 			    gpa_t addr, int len, const void *val, long cookie);
217 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
218 		    int len, void *val);
219 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
220 			    int len, struct kvm_io_device *dev);
221 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
222 			      struct kvm_io_device *dev);
223 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
224 					 gpa_t addr);
225 
226 #ifdef CONFIG_KVM_ASYNC_PF
227 struct kvm_async_pf {
228 	struct work_struct work;
229 	struct list_head link;
230 	struct list_head queue;
231 	struct kvm_vcpu *vcpu;
232 	struct mm_struct *mm;
233 	gpa_t cr2_or_gpa;
234 	unsigned long addr;
235 	struct kvm_arch_async_pf arch;
236 	bool   wakeup_all;
237 	bool notpresent_injected;
238 };
239 
240 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
241 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
242 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
243 			unsigned long hva, struct kvm_arch_async_pf *arch);
244 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
245 #endif
246 
247 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
248 struct kvm_gfn_range {
249 	struct kvm_memory_slot *slot;
250 	gfn_t start;
251 	gfn_t end;
252 	pte_t pte;
253 	bool may_block;
254 };
255 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
256 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
257 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259 #endif
260 
261 enum {
262 	OUTSIDE_GUEST_MODE,
263 	IN_GUEST_MODE,
264 	EXITING_GUEST_MODE,
265 	READING_SHADOW_PAGE_TABLES,
266 };
267 
268 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
269 
270 struct kvm_host_map {
271 	/*
272 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
273 	 * a 'struct page' for it. When using mem= kernel parameter some memory
274 	 * can be used as guest memory but they are not managed by host
275 	 * kernel).
276 	 * If 'pfn' is not managed by the host kernel, this field is
277 	 * initialized to KVM_UNMAPPED_PAGE.
278 	 */
279 	struct page *page;
280 	void *hva;
281 	kvm_pfn_t pfn;
282 	kvm_pfn_t gfn;
283 };
284 
285 /*
286  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
287  * directly to check for that.
288  */
289 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
290 {
291 	return !!map->hva;
292 }
293 
294 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
295 {
296 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
297 }
298 
299 /*
300  * Sometimes a large or cross-page mmio needs to be broken up into separate
301  * exits for userspace servicing.
302  */
303 struct kvm_mmio_fragment {
304 	gpa_t gpa;
305 	void *data;
306 	unsigned len;
307 };
308 
309 struct kvm_vcpu {
310 	struct kvm *kvm;
311 #ifdef CONFIG_PREEMPT_NOTIFIERS
312 	struct preempt_notifier preempt_notifier;
313 #endif
314 	int cpu;
315 	int vcpu_id; /* id given by userspace at creation */
316 	int vcpu_idx; /* index in kvm->vcpus array */
317 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
318 #ifdef CONFIG_PROVE_RCU
319 	int srcu_depth;
320 #endif
321 	int mode;
322 	u64 requests;
323 	unsigned long guest_debug;
324 
325 	struct mutex mutex;
326 	struct kvm_run *run;
327 
328 #ifndef __KVM_HAVE_ARCH_WQP
329 	struct rcuwait wait;
330 #endif
331 	struct pid __rcu *pid;
332 	int sigset_active;
333 	sigset_t sigset;
334 	unsigned int halt_poll_ns;
335 	bool valid_wakeup;
336 
337 #ifdef CONFIG_HAS_IOMEM
338 	int mmio_needed;
339 	int mmio_read_completed;
340 	int mmio_is_write;
341 	int mmio_cur_fragment;
342 	int mmio_nr_fragments;
343 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
344 #endif
345 
346 #ifdef CONFIG_KVM_ASYNC_PF
347 	struct {
348 		u32 queued;
349 		struct list_head queue;
350 		struct list_head done;
351 		spinlock_t lock;
352 	} async_pf;
353 #endif
354 
355 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
356 	/*
357 	 * Cpu relax intercept or pause loop exit optimization
358 	 * in_spin_loop: set when a vcpu does a pause loop exit
359 	 *  or cpu relax intercepted.
360 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
361 	 */
362 	struct {
363 		bool in_spin_loop;
364 		bool dy_eligible;
365 	} spin_loop;
366 #endif
367 	bool preempted;
368 	bool ready;
369 	struct kvm_vcpu_arch arch;
370 	struct kvm_vcpu_stat stat;
371 	char stats_id[KVM_STATS_NAME_SIZE];
372 	struct kvm_dirty_ring dirty_ring;
373 
374 	/*
375 	 * The most recently used memslot by this vCPU and the slots generation
376 	 * for which it is valid.
377 	 * No wraparound protection is needed since generations won't overflow in
378 	 * thousands of years, even assuming 1M memslot operations per second.
379 	 */
380 	struct kvm_memory_slot *last_used_slot;
381 	u64 last_used_slot_gen;
382 };
383 
384 /*
385  * Start accounting time towards a guest.
386  * Must be called before entering guest context.
387  */
388 static __always_inline void guest_timing_enter_irqoff(void)
389 {
390 	/*
391 	 * This is running in ioctl context so its safe to assume that it's the
392 	 * stime pending cputime to flush.
393 	 */
394 	instrumentation_begin();
395 	vtime_account_guest_enter();
396 	instrumentation_end();
397 }
398 
399 /*
400  * Enter guest context and enter an RCU extended quiescent state.
401  *
402  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
403  * unsafe to use any code which may directly or indirectly use RCU, tracing
404  * (including IRQ flag tracing), or lockdep. All code in this period must be
405  * non-instrumentable.
406  */
407 static __always_inline void guest_context_enter_irqoff(void)
408 {
409 	/*
410 	 * KVM does not hold any references to rcu protected data when it
411 	 * switches CPU into a guest mode. In fact switching to a guest mode
412 	 * is very similar to exiting to userspace from rcu point of view. In
413 	 * addition CPU may stay in a guest mode for quite a long time (up to
414 	 * one time slice). Lets treat guest mode as quiescent state, just like
415 	 * we do with user-mode execution.
416 	 */
417 	if (!context_tracking_guest_enter()) {
418 		instrumentation_begin();
419 		rcu_virt_note_context_switch(smp_processor_id());
420 		instrumentation_end();
421 	}
422 }
423 
424 /*
425  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
426  * guest_state_enter_irqoff().
427  */
428 static __always_inline void guest_enter_irqoff(void)
429 {
430 	guest_timing_enter_irqoff();
431 	guest_context_enter_irqoff();
432 }
433 
434 /**
435  * guest_state_enter_irqoff - Fixup state when entering a guest
436  *
437  * Entry to a guest will enable interrupts, but the kernel state is interrupts
438  * disabled when this is invoked. Also tell RCU about it.
439  *
440  * 1) Trace interrupts on state
441  * 2) Invoke context tracking if enabled to adjust RCU state
442  * 3) Tell lockdep that interrupts are enabled
443  *
444  * Invoked from architecture specific code before entering a guest.
445  * Must be called with interrupts disabled and the caller must be
446  * non-instrumentable.
447  * The caller has to invoke guest_timing_enter_irqoff() before this.
448  *
449  * Note: this is analogous to exit_to_user_mode().
450  */
451 static __always_inline void guest_state_enter_irqoff(void)
452 {
453 	instrumentation_begin();
454 	trace_hardirqs_on_prepare();
455 	lockdep_hardirqs_on_prepare();
456 	instrumentation_end();
457 
458 	guest_context_enter_irqoff();
459 	lockdep_hardirqs_on(CALLER_ADDR0);
460 }
461 
462 /*
463  * Exit guest context and exit an RCU extended quiescent state.
464  *
465  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
466  * unsafe to use any code which may directly or indirectly use RCU, tracing
467  * (including IRQ flag tracing), or lockdep. All code in this period must be
468  * non-instrumentable.
469  */
470 static __always_inline void guest_context_exit_irqoff(void)
471 {
472 	context_tracking_guest_exit();
473 }
474 
475 /*
476  * Stop accounting time towards a guest.
477  * Must be called after exiting guest context.
478  */
479 static __always_inline void guest_timing_exit_irqoff(void)
480 {
481 	instrumentation_begin();
482 	/* Flush the guest cputime we spent on the guest */
483 	vtime_account_guest_exit();
484 	instrumentation_end();
485 }
486 
487 /*
488  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
489  * guest_timing_exit_irqoff().
490  */
491 static __always_inline void guest_exit_irqoff(void)
492 {
493 	guest_context_exit_irqoff();
494 	guest_timing_exit_irqoff();
495 }
496 
497 static inline void guest_exit(void)
498 {
499 	unsigned long flags;
500 
501 	local_irq_save(flags);
502 	guest_exit_irqoff();
503 	local_irq_restore(flags);
504 }
505 
506 /**
507  * guest_state_exit_irqoff - Establish state when returning from guest mode
508  *
509  * Entry from a guest disables interrupts, but guest mode is traced as
510  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
511  *
512  * 1) Tell lockdep that interrupts are disabled
513  * 2) Invoke context tracking if enabled to reactivate RCU
514  * 3) Trace interrupts off state
515  *
516  * Invoked from architecture specific code after exiting a guest.
517  * Must be invoked with interrupts disabled and the caller must be
518  * non-instrumentable.
519  * The caller has to invoke guest_timing_exit_irqoff() after this.
520  *
521  * Note: this is analogous to enter_from_user_mode().
522  */
523 static __always_inline void guest_state_exit_irqoff(void)
524 {
525 	lockdep_hardirqs_off(CALLER_ADDR0);
526 	guest_context_exit_irqoff();
527 
528 	instrumentation_begin();
529 	trace_hardirqs_off_finish();
530 	instrumentation_end();
531 }
532 
533 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
534 {
535 	/*
536 	 * The memory barrier ensures a previous write to vcpu->requests cannot
537 	 * be reordered with the read of vcpu->mode.  It pairs with the general
538 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
539 	 */
540 	smp_mb__before_atomic();
541 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
542 }
543 
544 /*
545  * Some of the bitops functions do not support too long bitmaps.
546  * This number must be determined not to exceed such limits.
547  */
548 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
549 
550 /*
551  * Since at idle each memslot belongs to two memslot sets it has to contain
552  * two embedded nodes for each data structure that it forms a part of.
553  *
554  * Two memslot sets (one active and one inactive) are necessary so the VM
555  * continues to run on one memslot set while the other is being modified.
556  *
557  * These two memslot sets normally point to the same set of memslots.
558  * They can, however, be desynchronized when performing a memslot management
559  * operation by replacing the memslot to be modified by its copy.
560  * After the operation is complete, both memslot sets once again point to
561  * the same, common set of memslot data.
562  *
563  * The memslots themselves are independent of each other so they can be
564  * individually added or deleted.
565  */
566 struct kvm_memory_slot {
567 	struct hlist_node id_node[2];
568 	struct interval_tree_node hva_node[2];
569 	struct rb_node gfn_node[2];
570 	gfn_t base_gfn;
571 	unsigned long npages;
572 	unsigned long *dirty_bitmap;
573 	struct kvm_arch_memory_slot arch;
574 	unsigned long userspace_addr;
575 	u32 flags;
576 	short id;
577 	u16 as_id;
578 };
579 
580 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
581 {
582 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
583 }
584 
585 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
586 {
587 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
588 }
589 
590 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
591 {
592 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
593 
594 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
595 }
596 
597 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
598 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
599 #endif
600 
601 struct kvm_s390_adapter_int {
602 	u64 ind_addr;
603 	u64 summary_addr;
604 	u64 ind_offset;
605 	u32 summary_offset;
606 	u32 adapter_id;
607 };
608 
609 struct kvm_hv_sint {
610 	u32 vcpu;
611 	u32 sint;
612 };
613 
614 struct kvm_xen_evtchn {
615 	u32 port;
616 	u32 vcpu_id;
617 	int vcpu_idx;
618 	u32 priority;
619 };
620 
621 struct kvm_kernel_irq_routing_entry {
622 	u32 gsi;
623 	u32 type;
624 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
625 		   struct kvm *kvm, int irq_source_id, int level,
626 		   bool line_status);
627 	union {
628 		struct {
629 			unsigned irqchip;
630 			unsigned pin;
631 		} irqchip;
632 		struct {
633 			u32 address_lo;
634 			u32 address_hi;
635 			u32 data;
636 			u32 flags;
637 			u32 devid;
638 		} msi;
639 		struct kvm_s390_adapter_int adapter;
640 		struct kvm_hv_sint hv_sint;
641 		struct kvm_xen_evtchn xen_evtchn;
642 	};
643 	struct hlist_node link;
644 };
645 
646 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
647 struct kvm_irq_routing_table {
648 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
649 	u32 nr_rt_entries;
650 	/*
651 	 * Array indexed by gsi. Each entry contains list of irq chips
652 	 * the gsi is connected to.
653 	 */
654 	struct hlist_head map[];
655 };
656 #endif
657 
658 #ifndef KVM_INTERNAL_MEM_SLOTS
659 #define KVM_INTERNAL_MEM_SLOTS 0
660 #endif
661 
662 #define KVM_MEM_SLOTS_NUM SHRT_MAX
663 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
664 
665 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
666 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
667 {
668 	return 0;
669 }
670 #endif
671 
672 struct kvm_memslots {
673 	u64 generation;
674 	atomic_long_t last_used_slot;
675 	struct rb_root_cached hva_tree;
676 	struct rb_root gfn_tree;
677 	/*
678 	 * The mapping table from slot id to memslot.
679 	 *
680 	 * 7-bit bucket count matches the size of the old id to index array for
681 	 * 512 slots, while giving good performance with this slot count.
682 	 * Higher bucket counts bring only small performance improvements but
683 	 * always result in higher memory usage (even for lower memslot counts).
684 	 */
685 	DECLARE_HASHTABLE(id_hash, 7);
686 	int node_idx;
687 };
688 
689 struct kvm {
690 #ifdef KVM_HAVE_MMU_RWLOCK
691 	rwlock_t mmu_lock;
692 #else
693 	spinlock_t mmu_lock;
694 #endif /* KVM_HAVE_MMU_RWLOCK */
695 
696 	struct mutex slots_lock;
697 
698 	/*
699 	 * Protects the arch-specific fields of struct kvm_memory_slots in
700 	 * use by the VM. To be used under the slots_lock (above) or in a
701 	 * kvm->srcu critical section where acquiring the slots_lock would
702 	 * lead to deadlock with the synchronize_srcu in
703 	 * install_new_memslots.
704 	 */
705 	struct mutex slots_arch_lock;
706 	struct mm_struct *mm; /* userspace tied to this vm */
707 	unsigned long nr_memslot_pages;
708 	/* The two memslot sets - active and inactive (per address space) */
709 	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
710 	/* The current active memslot set for each address space */
711 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
712 	struct xarray vcpu_array;
713 
714 	/* Used to wait for completion of MMU notifiers.  */
715 	spinlock_t mn_invalidate_lock;
716 	unsigned long mn_active_invalidate_count;
717 	struct rcuwait mn_memslots_update_rcuwait;
718 
719 	/* For management / invalidation of gfn_to_pfn_caches */
720 	spinlock_t gpc_lock;
721 	struct list_head gpc_list;
722 
723 	/*
724 	 * created_vcpus is protected by kvm->lock, and is incremented
725 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
726 	 * incremented after storing the kvm_vcpu pointer in vcpus,
727 	 * and is accessed atomically.
728 	 */
729 	atomic_t online_vcpus;
730 	int max_vcpus;
731 	int created_vcpus;
732 	int last_boosted_vcpu;
733 	struct list_head vm_list;
734 	struct mutex lock;
735 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
736 #ifdef CONFIG_HAVE_KVM_EVENTFD
737 	struct {
738 		spinlock_t        lock;
739 		struct list_head  items;
740 		struct list_head  resampler_list;
741 		struct mutex      resampler_lock;
742 	} irqfds;
743 	struct list_head ioeventfds;
744 #endif
745 	struct kvm_vm_stat stat;
746 	struct kvm_arch arch;
747 	refcount_t users_count;
748 #ifdef CONFIG_KVM_MMIO
749 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
750 	spinlock_t ring_lock;
751 	struct list_head coalesced_zones;
752 #endif
753 
754 	struct mutex irq_lock;
755 #ifdef CONFIG_HAVE_KVM_IRQCHIP
756 	/*
757 	 * Update side is protected by irq_lock.
758 	 */
759 	struct kvm_irq_routing_table __rcu *irq_routing;
760 #endif
761 #ifdef CONFIG_HAVE_KVM_IRQFD
762 	struct hlist_head irq_ack_notifier_list;
763 #endif
764 
765 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
766 	struct mmu_notifier mmu_notifier;
767 	unsigned long mmu_invalidate_seq;
768 	long mmu_invalidate_in_progress;
769 	unsigned long mmu_invalidate_range_start;
770 	unsigned long mmu_invalidate_range_end;
771 #endif
772 	struct list_head devices;
773 	u64 manual_dirty_log_protect;
774 	struct dentry *debugfs_dentry;
775 	struct kvm_stat_data **debugfs_stat_data;
776 	struct srcu_struct srcu;
777 	struct srcu_struct irq_srcu;
778 	pid_t userspace_pid;
779 	unsigned int max_halt_poll_ns;
780 	u32 dirty_ring_size;
781 	bool vm_bugged;
782 	bool vm_dead;
783 
784 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
785 	struct notifier_block pm_notifier;
786 #endif
787 	char stats_id[KVM_STATS_NAME_SIZE];
788 };
789 
790 #define kvm_err(fmt, ...) \
791 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
792 #define kvm_info(fmt, ...) \
793 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
794 #define kvm_debug(fmt, ...) \
795 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
796 #define kvm_debug_ratelimited(fmt, ...) \
797 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
798 			     ## __VA_ARGS__)
799 #define kvm_pr_unimpl(fmt, ...) \
800 	pr_err_ratelimited("kvm [%i]: " fmt, \
801 			   task_tgid_nr(current), ## __VA_ARGS__)
802 
803 /* The guest did something we don't support. */
804 #define vcpu_unimpl(vcpu, fmt, ...)					\
805 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
806 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
807 
808 #define vcpu_debug(vcpu, fmt, ...)					\
809 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
810 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
811 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
812 			      ## __VA_ARGS__)
813 #define vcpu_err(vcpu, fmt, ...)					\
814 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
815 
816 static inline void kvm_vm_dead(struct kvm *kvm)
817 {
818 	kvm->vm_dead = true;
819 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
820 }
821 
822 static inline void kvm_vm_bugged(struct kvm *kvm)
823 {
824 	kvm->vm_bugged = true;
825 	kvm_vm_dead(kvm);
826 }
827 
828 
829 #define KVM_BUG(cond, kvm, fmt...)				\
830 ({								\
831 	int __ret = (cond);					\
832 								\
833 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
834 		kvm_vm_bugged(kvm);				\
835 	unlikely(__ret);					\
836 })
837 
838 #define KVM_BUG_ON(cond, kvm)					\
839 ({								\
840 	int __ret = (cond);					\
841 								\
842 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
843 		kvm_vm_bugged(kvm);				\
844 	unlikely(__ret);					\
845 })
846 
847 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
848 {
849 #ifdef CONFIG_PROVE_RCU
850 	WARN_ONCE(vcpu->srcu_depth++,
851 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
852 #endif
853 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
854 }
855 
856 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
857 {
858 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
859 
860 #ifdef CONFIG_PROVE_RCU
861 	WARN_ONCE(--vcpu->srcu_depth,
862 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
863 #endif
864 }
865 
866 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
867 {
868 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
869 }
870 
871 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
872 {
873 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
874 				      lockdep_is_held(&kvm->slots_lock) ||
875 				      !refcount_read(&kvm->users_count));
876 }
877 
878 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
879 {
880 	int num_vcpus = atomic_read(&kvm->online_vcpus);
881 	i = array_index_nospec(i, num_vcpus);
882 
883 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
884 	smp_rmb();
885 	return xa_load(&kvm->vcpu_array, i);
886 }
887 
888 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
889 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
890 			  (atomic_read(&kvm->online_vcpus) - 1))
891 
892 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
893 {
894 	struct kvm_vcpu *vcpu = NULL;
895 	unsigned long i;
896 
897 	if (id < 0)
898 		return NULL;
899 	if (id < KVM_MAX_VCPUS)
900 		vcpu = kvm_get_vcpu(kvm, id);
901 	if (vcpu && vcpu->vcpu_id == id)
902 		return vcpu;
903 	kvm_for_each_vcpu(i, vcpu, kvm)
904 		if (vcpu->vcpu_id == id)
905 			return vcpu;
906 	return NULL;
907 }
908 
909 void kvm_destroy_vcpus(struct kvm *kvm);
910 
911 void vcpu_load(struct kvm_vcpu *vcpu);
912 void vcpu_put(struct kvm_vcpu *vcpu);
913 
914 #ifdef __KVM_HAVE_IOAPIC
915 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
916 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
917 #else
918 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
919 {
920 }
921 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
922 {
923 }
924 #endif
925 
926 #ifdef CONFIG_HAVE_KVM_IRQFD
927 int kvm_irqfd_init(void);
928 void kvm_irqfd_exit(void);
929 #else
930 static inline int kvm_irqfd_init(void)
931 {
932 	return 0;
933 }
934 
935 static inline void kvm_irqfd_exit(void)
936 {
937 }
938 #endif
939 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
940 		  struct module *module);
941 void kvm_exit(void);
942 
943 void kvm_get_kvm(struct kvm *kvm);
944 bool kvm_get_kvm_safe(struct kvm *kvm);
945 void kvm_put_kvm(struct kvm *kvm);
946 bool file_is_kvm(struct file *file);
947 void kvm_put_kvm_no_destroy(struct kvm *kvm);
948 
949 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
950 {
951 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
952 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
953 			lockdep_is_held(&kvm->slots_lock) ||
954 			!refcount_read(&kvm->users_count));
955 }
956 
957 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
958 {
959 	return __kvm_memslots(kvm, 0);
960 }
961 
962 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
963 {
964 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
965 
966 	return __kvm_memslots(vcpu->kvm, as_id);
967 }
968 
969 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
970 {
971 	return RB_EMPTY_ROOT(&slots->gfn_tree);
972 }
973 
974 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
975 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
976 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
977 		} else
978 
979 static inline
980 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
981 {
982 	struct kvm_memory_slot *slot;
983 	int idx = slots->node_idx;
984 
985 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
986 		if (slot->id == id)
987 			return slot;
988 	}
989 
990 	return NULL;
991 }
992 
993 /* Iterator used for walking memslots that overlap a gfn range. */
994 struct kvm_memslot_iter {
995 	struct kvm_memslots *slots;
996 	struct rb_node *node;
997 	struct kvm_memory_slot *slot;
998 };
999 
1000 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1001 {
1002 	iter->node = rb_next(iter->node);
1003 	if (!iter->node)
1004 		return;
1005 
1006 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1007 }
1008 
1009 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1010 					  struct kvm_memslots *slots,
1011 					  gfn_t start)
1012 {
1013 	int idx = slots->node_idx;
1014 	struct rb_node *tmp;
1015 	struct kvm_memory_slot *slot;
1016 
1017 	iter->slots = slots;
1018 
1019 	/*
1020 	 * Find the so called "upper bound" of a key - the first node that has
1021 	 * its key strictly greater than the searched one (the start gfn in our case).
1022 	 */
1023 	iter->node = NULL;
1024 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1025 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1026 		if (start < slot->base_gfn) {
1027 			iter->node = tmp;
1028 			tmp = tmp->rb_left;
1029 		} else {
1030 			tmp = tmp->rb_right;
1031 		}
1032 	}
1033 
1034 	/*
1035 	 * Find the slot with the lowest gfn that can possibly intersect with
1036 	 * the range, so we'll ideally have slot start <= range start
1037 	 */
1038 	if (iter->node) {
1039 		/*
1040 		 * A NULL previous node means that the very first slot
1041 		 * already has a higher start gfn.
1042 		 * In this case slot start > range start.
1043 		 */
1044 		tmp = rb_prev(iter->node);
1045 		if (tmp)
1046 			iter->node = tmp;
1047 	} else {
1048 		/* a NULL node below means no slots */
1049 		iter->node = rb_last(&slots->gfn_tree);
1050 	}
1051 
1052 	if (iter->node) {
1053 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1054 
1055 		/*
1056 		 * It is possible in the slot start < range start case that the
1057 		 * found slot ends before or at range start (slot end <= range start)
1058 		 * and so it does not overlap the requested range.
1059 		 *
1060 		 * In such non-overlapping case the next slot (if it exists) will
1061 		 * already have slot start > range start, otherwise the logic above
1062 		 * would have found it instead of the current slot.
1063 		 */
1064 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1065 			kvm_memslot_iter_next(iter);
1066 	}
1067 }
1068 
1069 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1070 {
1071 	if (!iter->node)
1072 		return false;
1073 
1074 	/*
1075 	 * If this slot starts beyond or at the end of the range so does
1076 	 * every next one
1077 	 */
1078 	return iter->slot->base_gfn < end;
1079 }
1080 
1081 /* Iterate over each memslot at least partially intersecting [start, end) range */
1082 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1083 	for (kvm_memslot_iter_start(iter, slots, start);		\
1084 	     kvm_memslot_iter_is_valid(iter, end);			\
1085 	     kvm_memslot_iter_next(iter))
1086 
1087 /*
1088  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1089  * - create a new memory slot
1090  * - delete an existing memory slot
1091  * - modify an existing memory slot
1092  *   -- move it in the guest physical memory space
1093  *   -- just change its flags
1094  *
1095  * Since flags can be changed by some of these operations, the following
1096  * differentiation is the best we can do for __kvm_set_memory_region():
1097  */
1098 enum kvm_mr_change {
1099 	KVM_MR_CREATE,
1100 	KVM_MR_DELETE,
1101 	KVM_MR_MOVE,
1102 	KVM_MR_FLAGS_ONLY,
1103 };
1104 
1105 int kvm_set_memory_region(struct kvm *kvm,
1106 			  const struct kvm_userspace_memory_region *mem);
1107 int __kvm_set_memory_region(struct kvm *kvm,
1108 			    const struct kvm_userspace_memory_region *mem);
1109 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1110 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1111 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1112 				const struct kvm_memory_slot *old,
1113 				struct kvm_memory_slot *new,
1114 				enum kvm_mr_change change);
1115 void kvm_arch_commit_memory_region(struct kvm *kvm,
1116 				struct kvm_memory_slot *old,
1117 				const struct kvm_memory_slot *new,
1118 				enum kvm_mr_change change);
1119 /* flush all memory translations */
1120 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1121 /* flush memory translations pointing to 'slot' */
1122 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1123 				   struct kvm_memory_slot *slot);
1124 
1125 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1126 			    struct page **pages, int nr_pages);
1127 
1128 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1129 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1130 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1131 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1132 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1133 				      bool *writable);
1134 void kvm_release_page_clean(struct page *page);
1135 void kvm_release_page_dirty(struct page *page);
1136 
1137 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1138 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1139 		      bool *writable);
1140 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1141 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1142 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1143 			       bool atomic, bool *async, bool write_fault,
1144 			       bool *writable, hva_t *hva);
1145 
1146 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1147 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1148 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1149 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1150 
1151 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1152 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1153 			int len);
1154 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1156 			   void *data, unsigned long len);
1157 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1158 				 void *data, unsigned int offset,
1159 				 unsigned long len);
1160 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1161 			 int offset, int len);
1162 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1163 		    unsigned long len);
1164 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1165 			   void *data, unsigned long len);
1166 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1167 				  void *data, unsigned int offset,
1168 				  unsigned long len);
1169 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1170 			      gpa_t gpa, unsigned long len);
1171 
1172 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1173 ({									\
1174 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1175 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1176 	int __ret = -EFAULT;						\
1177 									\
1178 	if (!kvm_is_error_hva(__addr))					\
1179 		__ret = get_user(v, __uaddr);				\
1180 	__ret;								\
1181 })
1182 
1183 #define kvm_get_guest(kvm, gpa, v)					\
1184 ({									\
1185 	gpa_t __gpa = gpa;						\
1186 	struct kvm *__kvm = kvm;					\
1187 									\
1188 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1189 			offset_in_page(__gpa), v);			\
1190 })
1191 
1192 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1193 ({									\
1194 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1195 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1196 	int __ret = -EFAULT;						\
1197 									\
1198 	if (!kvm_is_error_hva(__addr))					\
1199 		__ret = put_user(v, __uaddr);				\
1200 	if (!__ret)							\
1201 		mark_page_dirty(kvm, gfn);				\
1202 	__ret;								\
1203 })
1204 
1205 #define kvm_put_guest(kvm, gpa, v)					\
1206 ({									\
1207 	gpa_t __gpa = gpa;						\
1208 	struct kvm *__kvm = kvm;					\
1209 									\
1210 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1211 			offset_in_page(__gpa), v);			\
1212 })
1213 
1214 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1215 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1216 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1217 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1218 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1219 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1220 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1221 
1222 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1223 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1224 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1225 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1226 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1227 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1228 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1229 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1230 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1231 			     int len);
1232 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1233 			       unsigned long len);
1234 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1235 			unsigned long len);
1236 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1237 			      int offset, int len);
1238 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1239 			 unsigned long len);
1240 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1241 
1242 /**
1243  * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1244  *                             given guest physical address.
1245  *
1246  * @kvm:	   pointer to kvm instance.
1247  * @gpc:	   struct gfn_to_pfn_cache object.
1248  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1249  *		   invalidation.
1250  * @usage:	   indicates if the resulting host physical PFN is used while
1251  *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1252  *		   the cache from MMU notifiers---but not for KVM memslot
1253  *		   changes!---will also force @vcpu to exit the guest and
1254  *		   refresh the cache); and/or if the PFN used directly
1255  *		   by KVM (and thus needs a kernel virtual mapping).
1256  * @gpa:	   guest physical address to map.
1257  * @len:	   sanity check; the range being access must fit a single page.
1258  *
1259  * @return:	   0 for success.
1260  *		   -EINVAL for a mapping which would cross a page boundary.
1261  *                 -EFAULT for an untranslatable guest physical address.
1262  *
1263  * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1264  * invalidations to be processed.  Callers are required to use
1265  * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1266  * accessing the target page.
1267  */
1268 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1269 			      struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1270 			      gpa_t gpa, unsigned long len);
1271 
1272 /**
1273  * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1274  *
1275  * @kvm:	   pointer to kvm instance.
1276  * @gpc:	   struct gfn_to_pfn_cache object.
1277  * @gpa:	   current guest physical address to map.
1278  * @len:	   sanity check; the range being access must fit a single page.
1279  *
1280  * @return:	   %true if the cache is still valid and the address matches.
1281  *		   %false if the cache is not valid.
1282  *
1283  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1284  * while calling this function, and then continue to hold the lock until the
1285  * access is complete.
1286  *
1287  * Callers in IN_GUEST_MODE may do so without locking, although they should
1288  * still hold a read lock on kvm->scru for the memslot checks.
1289  */
1290 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1291 				gpa_t gpa, unsigned long len);
1292 
1293 /**
1294  * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1295  *
1296  * @kvm:	   pointer to kvm instance.
1297  * @gpc:	   struct gfn_to_pfn_cache object.
1298  * @gpa:	   updated guest physical address to map.
1299  * @len:	   sanity check; the range being access must fit a single page.
1300  *
1301  * @return:	   0 for success.
1302  *		   -EINVAL for a mapping which would cross a page boundary.
1303  *                 -EFAULT for an untranslatable guest physical address.
1304  *
1305  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1306  * returm from this function does not mean the page can be immediately
1307  * accessed because it may have raced with an invalidation. Callers must
1308  * still lock and check the cache status, as this function does not return
1309  * with the lock still held to permit access.
1310  */
1311 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1312 				 gpa_t gpa, unsigned long len);
1313 
1314 /**
1315  * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1316  *
1317  * @kvm:	   pointer to kvm instance.
1318  * @gpc:	   struct gfn_to_pfn_cache object.
1319  *
1320  * This unmaps the referenced page. The cache is left in the invalid state
1321  * but at least the mapping from GPA to userspace HVA will remain cached
1322  * and can be reused on a subsequent refresh.
1323  */
1324 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1325 
1326 /**
1327  * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1328  *
1329  * @kvm:	   pointer to kvm instance.
1330  * @gpc:	   struct gfn_to_pfn_cache object.
1331  *
1332  * This removes a cache from the @kvm's list to be processed on MMU notifier
1333  * invocation.
1334  */
1335 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1336 
1337 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1338 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1339 
1340 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1341 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1342 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1343 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1344 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1345 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1346 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1347 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1348 
1349 void kvm_flush_remote_tlbs(struct kvm *kvm);
1350 
1351 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1352 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1353 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1354 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1355 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1356 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1357 #endif
1358 
1359 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1360 			      unsigned long end);
1361 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1362 			    unsigned long end);
1363 
1364 long kvm_arch_dev_ioctl(struct file *filp,
1365 			unsigned int ioctl, unsigned long arg);
1366 long kvm_arch_vcpu_ioctl(struct file *filp,
1367 			 unsigned int ioctl, unsigned long arg);
1368 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1369 
1370 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1371 
1372 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1373 					struct kvm_memory_slot *slot,
1374 					gfn_t gfn_offset,
1375 					unsigned long mask);
1376 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1377 
1378 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1379 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1380 					const struct kvm_memory_slot *memslot);
1381 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1382 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1383 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1384 		      int *is_dirty, struct kvm_memory_slot **memslot);
1385 #endif
1386 
1387 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1388 			bool line_status);
1389 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1390 			    struct kvm_enable_cap *cap);
1391 long kvm_arch_vm_ioctl(struct file *filp,
1392 		       unsigned int ioctl, unsigned long arg);
1393 
1394 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1395 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1396 
1397 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1398 				    struct kvm_translation *tr);
1399 
1400 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1401 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1402 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1403 				  struct kvm_sregs *sregs);
1404 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1405 				  struct kvm_sregs *sregs);
1406 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1407 				    struct kvm_mp_state *mp_state);
1408 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1409 				    struct kvm_mp_state *mp_state);
1410 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1411 					struct kvm_guest_debug *dbg);
1412 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1413 
1414 int kvm_arch_init(void *opaque);
1415 void kvm_arch_exit(void);
1416 
1417 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1418 
1419 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1420 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1421 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1422 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1423 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1424 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1425 
1426 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1427 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1428 #endif
1429 
1430 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1431 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1432 #else
1433 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1434 #endif
1435 
1436 int kvm_arch_hardware_enable(void);
1437 void kvm_arch_hardware_disable(void);
1438 int kvm_arch_hardware_setup(void *opaque);
1439 void kvm_arch_hardware_unsetup(void);
1440 int kvm_arch_check_processor_compat(void *opaque);
1441 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1442 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1443 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1444 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1445 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1446 int kvm_arch_post_init_vm(struct kvm *kvm);
1447 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1448 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1449 
1450 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1451 /*
1452  * All architectures that want to use vzalloc currently also
1453  * need their own kvm_arch_alloc_vm implementation.
1454  */
1455 static inline struct kvm *kvm_arch_alloc_vm(void)
1456 {
1457 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1458 }
1459 #endif
1460 
1461 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1462 {
1463 	kvfree(kvm);
1464 }
1465 
1466 #ifndef __KVM_HAVE_ARCH_VM_FREE
1467 static inline void kvm_arch_free_vm(struct kvm *kvm)
1468 {
1469 	__kvm_arch_free_vm(kvm);
1470 }
1471 #endif
1472 
1473 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1474 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1475 {
1476 	return -ENOTSUPP;
1477 }
1478 #endif
1479 
1480 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1481 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1482 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1483 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1484 #else
1485 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1486 {
1487 }
1488 
1489 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1490 {
1491 }
1492 
1493 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1494 {
1495 	return false;
1496 }
1497 #endif
1498 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1499 void kvm_arch_start_assignment(struct kvm *kvm);
1500 void kvm_arch_end_assignment(struct kvm *kvm);
1501 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1502 #else
1503 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1504 {
1505 }
1506 
1507 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1508 {
1509 }
1510 
1511 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1512 {
1513 	return false;
1514 }
1515 #endif
1516 
1517 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1518 {
1519 #ifdef __KVM_HAVE_ARCH_WQP
1520 	return vcpu->arch.waitp;
1521 #else
1522 	return &vcpu->wait;
1523 #endif
1524 }
1525 
1526 /*
1527  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1528  * true if the vCPU was blocking and was awakened, false otherwise.
1529  */
1530 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1531 {
1532 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1533 }
1534 
1535 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1536 {
1537 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1538 }
1539 
1540 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1541 /*
1542  * returns true if the virtual interrupt controller is initialized and
1543  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1544  * controller is dynamically instantiated and this is not always true.
1545  */
1546 bool kvm_arch_intc_initialized(struct kvm *kvm);
1547 #else
1548 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1549 {
1550 	return true;
1551 }
1552 #endif
1553 
1554 #ifdef CONFIG_GUEST_PERF_EVENTS
1555 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1556 
1557 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1558 void kvm_unregister_perf_callbacks(void);
1559 #else
1560 static inline void kvm_register_perf_callbacks(void *ign) {}
1561 static inline void kvm_unregister_perf_callbacks(void) {}
1562 #endif /* CONFIG_GUEST_PERF_EVENTS */
1563 
1564 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1565 void kvm_arch_destroy_vm(struct kvm *kvm);
1566 void kvm_arch_sync_events(struct kvm *kvm);
1567 
1568 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1569 
1570 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1571 bool kvm_is_zone_device_page(struct page *page);
1572 
1573 struct kvm_irq_ack_notifier {
1574 	struct hlist_node link;
1575 	unsigned gsi;
1576 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1577 };
1578 
1579 int kvm_irq_map_gsi(struct kvm *kvm,
1580 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1581 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1582 
1583 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1584 		bool line_status);
1585 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1586 		int irq_source_id, int level, bool line_status);
1587 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1588 			       struct kvm *kvm, int irq_source_id,
1589 			       int level, bool line_status);
1590 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1591 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1592 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1593 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1594 				   struct kvm_irq_ack_notifier *kian);
1595 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1596 				   struct kvm_irq_ack_notifier *kian);
1597 int kvm_request_irq_source_id(struct kvm *kvm);
1598 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1599 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1600 
1601 /*
1602  * Returns a pointer to the memslot if it contains gfn.
1603  * Otherwise returns NULL.
1604  */
1605 static inline struct kvm_memory_slot *
1606 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1607 {
1608 	if (!slot)
1609 		return NULL;
1610 
1611 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1612 		return slot;
1613 	else
1614 		return NULL;
1615 }
1616 
1617 /*
1618  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1619  *
1620  * With "approx" set returns the memslot also when the address falls
1621  * in a hole. In that case one of the memslots bordering the hole is
1622  * returned.
1623  */
1624 static inline struct kvm_memory_slot *
1625 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1626 {
1627 	struct kvm_memory_slot *slot;
1628 	struct rb_node *node;
1629 	int idx = slots->node_idx;
1630 
1631 	slot = NULL;
1632 	for (node = slots->gfn_tree.rb_node; node; ) {
1633 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1634 		if (gfn >= slot->base_gfn) {
1635 			if (gfn < slot->base_gfn + slot->npages)
1636 				return slot;
1637 			node = node->rb_right;
1638 		} else
1639 			node = node->rb_left;
1640 	}
1641 
1642 	return approx ? slot : NULL;
1643 }
1644 
1645 static inline struct kvm_memory_slot *
1646 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1647 {
1648 	struct kvm_memory_slot *slot;
1649 
1650 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1651 	slot = try_get_memslot(slot, gfn);
1652 	if (slot)
1653 		return slot;
1654 
1655 	slot = search_memslots(slots, gfn, approx);
1656 	if (slot) {
1657 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1658 		return slot;
1659 	}
1660 
1661 	return NULL;
1662 }
1663 
1664 /*
1665  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1666  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1667  * because that would bloat other code too much.
1668  */
1669 static inline struct kvm_memory_slot *
1670 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1671 {
1672 	return ____gfn_to_memslot(slots, gfn, false);
1673 }
1674 
1675 static inline unsigned long
1676 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1677 {
1678 	/*
1679 	 * The index was checked originally in search_memslots.  To avoid
1680 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1681 	 * table walks, do not let the processor speculate loads outside
1682 	 * the guest's registered memslots.
1683 	 */
1684 	unsigned long offset = gfn - slot->base_gfn;
1685 	offset = array_index_nospec(offset, slot->npages);
1686 	return slot->userspace_addr + offset * PAGE_SIZE;
1687 }
1688 
1689 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1690 {
1691 	return gfn_to_memslot(kvm, gfn)->id;
1692 }
1693 
1694 static inline gfn_t
1695 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1696 {
1697 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1698 
1699 	return slot->base_gfn + gfn_offset;
1700 }
1701 
1702 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1703 {
1704 	return (gpa_t)gfn << PAGE_SHIFT;
1705 }
1706 
1707 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1708 {
1709 	return (gfn_t)(gpa >> PAGE_SHIFT);
1710 }
1711 
1712 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1713 {
1714 	return (hpa_t)pfn << PAGE_SHIFT;
1715 }
1716 
1717 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1718 {
1719 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1720 
1721 	return kvm_is_error_hva(hva);
1722 }
1723 
1724 enum kvm_stat_kind {
1725 	KVM_STAT_VM,
1726 	KVM_STAT_VCPU,
1727 };
1728 
1729 struct kvm_stat_data {
1730 	struct kvm *kvm;
1731 	const struct _kvm_stats_desc *desc;
1732 	enum kvm_stat_kind kind;
1733 };
1734 
1735 struct _kvm_stats_desc {
1736 	struct kvm_stats_desc desc;
1737 	char name[KVM_STATS_NAME_SIZE];
1738 };
1739 
1740 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1741 	.flags = type | unit | base |					       \
1742 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1743 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1744 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1745 	.exponent = exp,						       \
1746 	.size = sz,							       \
1747 	.bucket_size = bsz
1748 
1749 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1750 	{								       \
1751 		{							       \
1752 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1753 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1754 		},							       \
1755 		.name = #stat,						       \
1756 	}
1757 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1758 	{								       \
1759 		{							       \
1760 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1761 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1762 		},							       \
1763 		.name = #stat,						       \
1764 	}
1765 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1766 	{								       \
1767 		{							       \
1768 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1769 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1770 		},							       \
1771 		.name = #stat,						       \
1772 	}
1773 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1774 	{								       \
1775 		{							       \
1776 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1777 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1778 		},							       \
1779 		.name = #stat,						       \
1780 	}
1781 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1782 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1783 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1784 
1785 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1786 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1787 		unit, base, exponent, 1, 0)
1788 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1789 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1790 		unit, base, exponent, 1, 0)
1791 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1792 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1793 		unit, base, exponent, 1, 0)
1794 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1795 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1796 		unit, base, exponent, sz, bsz)
1797 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1798 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1799 		unit, base, exponent, sz, 0)
1800 
1801 /* Cumulative counter, read/write */
1802 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1803 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1804 		KVM_STATS_BASE_POW10, 0)
1805 /* Instantaneous counter, read only */
1806 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1807 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1808 		KVM_STATS_BASE_POW10, 0)
1809 /* Peak counter, read/write */
1810 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1811 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1812 		KVM_STATS_BASE_POW10, 0)
1813 
1814 /* Instantaneous boolean value, read only */
1815 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1816 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1817 		KVM_STATS_BASE_POW10, 0)
1818 /* Peak (sticky) boolean value, read/write */
1819 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1820 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1821 		KVM_STATS_BASE_POW10, 0)
1822 
1823 /* Cumulative time in nanosecond */
1824 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1825 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1826 		KVM_STATS_BASE_POW10, -9)
1827 /* Linear histogram for time in nanosecond */
1828 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1829 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1830 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1831 /* Logarithmic histogram for time in nanosecond */
1832 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1833 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1834 		KVM_STATS_BASE_POW10, -9, sz)
1835 
1836 #define KVM_GENERIC_VM_STATS()						       \
1837 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1838 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1839 
1840 #define KVM_GENERIC_VCPU_STATS()					       \
1841 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1842 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1843 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1844 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1845 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1846 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1847 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1848 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1849 			HALT_POLL_HIST_COUNT),				       \
1850 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1851 			HALT_POLL_HIST_COUNT),				       \
1852 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1853 			HALT_POLL_HIST_COUNT),				       \
1854 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1855 
1856 extern struct dentry *kvm_debugfs_dir;
1857 
1858 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1859 		       const struct _kvm_stats_desc *desc,
1860 		       void *stats, size_t size_stats,
1861 		       char __user *user_buffer, size_t size, loff_t *offset);
1862 
1863 /**
1864  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1865  * statistics data.
1866  *
1867  * @data: start address of the stats data
1868  * @size: the number of bucket of the stats data
1869  * @value: the new value used to update the linear histogram's bucket
1870  * @bucket_size: the size (width) of a bucket
1871  */
1872 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1873 						u64 value, size_t bucket_size)
1874 {
1875 	size_t index = div64_u64(value, bucket_size);
1876 
1877 	index = min(index, size - 1);
1878 	++data[index];
1879 }
1880 
1881 /**
1882  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1883  * statistics data.
1884  *
1885  * @data: start address of the stats data
1886  * @size: the number of bucket of the stats data
1887  * @value: the new value used to update the logarithmic histogram's bucket
1888  */
1889 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1890 {
1891 	size_t index = fls64(value);
1892 
1893 	index = min(index, size - 1);
1894 	++data[index];
1895 }
1896 
1897 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1898 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1899 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1900 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1901 
1902 
1903 extern const struct kvm_stats_header kvm_vm_stats_header;
1904 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1905 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1906 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1907 
1908 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1909 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1910 {
1911 	if (unlikely(kvm->mmu_invalidate_in_progress))
1912 		return 1;
1913 	/*
1914 	 * Ensure the read of mmu_invalidate_in_progress happens before
1915 	 * the read of mmu_invalidate_seq.  This interacts with the
1916 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1917 	 * that the caller either sees the old (non-zero) value of
1918 	 * mmu_invalidate_in_progress or the new (incremented) value of
1919 	 * mmu_invalidate_seq.
1920 	 *
1921 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1922 	 * than under kvm->mmu_lock, for scalability, so can't rely on
1923 	 * kvm->mmu_lock to keep things ordered.
1924 	 */
1925 	smp_rmb();
1926 	if (kvm->mmu_invalidate_seq != mmu_seq)
1927 		return 1;
1928 	return 0;
1929 }
1930 
1931 static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1932 					   unsigned long mmu_seq,
1933 					   unsigned long hva)
1934 {
1935 	lockdep_assert_held(&kvm->mmu_lock);
1936 	/*
1937 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1938 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1939 	 * that might be being invalidated. Note that it may include some false
1940 	 * positives, due to shortcuts when handing concurrent invalidations.
1941 	 */
1942 	if (unlikely(kvm->mmu_invalidate_in_progress) &&
1943 	    hva >= kvm->mmu_invalidate_range_start &&
1944 	    hva < kvm->mmu_invalidate_range_end)
1945 		return 1;
1946 	if (kvm->mmu_invalidate_seq != mmu_seq)
1947 		return 1;
1948 	return 0;
1949 }
1950 #endif
1951 
1952 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1953 
1954 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1955 
1956 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1957 int kvm_set_irq_routing(struct kvm *kvm,
1958 			const struct kvm_irq_routing_entry *entries,
1959 			unsigned nr,
1960 			unsigned flags);
1961 int kvm_set_routing_entry(struct kvm *kvm,
1962 			  struct kvm_kernel_irq_routing_entry *e,
1963 			  const struct kvm_irq_routing_entry *ue);
1964 void kvm_free_irq_routing(struct kvm *kvm);
1965 
1966 #else
1967 
1968 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1969 
1970 #endif
1971 
1972 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1973 
1974 #ifdef CONFIG_HAVE_KVM_EVENTFD
1975 
1976 void kvm_eventfd_init(struct kvm *kvm);
1977 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1978 
1979 #ifdef CONFIG_HAVE_KVM_IRQFD
1980 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1981 void kvm_irqfd_release(struct kvm *kvm);
1982 void kvm_irq_routing_update(struct kvm *);
1983 #else
1984 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1985 {
1986 	return -EINVAL;
1987 }
1988 
1989 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1990 #endif
1991 
1992 #else
1993 
1994 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1995 
1996 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1997 {
1998 	return -EINVAL;
1999 }
2000 
2001 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2002 
2003 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2004 static inline void kvm_irq_routing_update(struct kvm *kvm)
2005 {
2006 }
2007 #endif
2008 
2009 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2010 {
2011 	return -ENOSYS;
2012 }
2013 
2014 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2015 
2016 void kvm_arch_irq_routing_update(struct kvm *kvm);
2017 
2018 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2019 {
2020 	/*
2021 	 * Ensure the rest of the request is published to kvm_check_request's
2022 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2023 	 */
2024 	smp_wmb();
2025 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2026 }
2027 
2028 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2029 {
2030 	/*
2031 	 * Request that don't require vCPU action should never be logged in
2032 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2033 	 * logged indefinitely and prevent the vCPU from entering the guest.
2034 	 */
2035 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2036 		     (req & KVM_REQUEST_NO_ACTION));
2037 
2038 	__kvm_make_request(req, vcpu);
2039 }
2040 
2041 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2042 {
2043 	return READ_ONCE(vcpu->requests);
2044 }
2045 
2046 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2047 {
2048 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2049 }
2050 
2051 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2052 {
2053 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2054 }
2055 
2056 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2057 {
2058 	if (kvm_test_request(req, vcpu)) {
2059 		kvm_clear_request(req, vcpu);
2060 
2061 		/*
2062 		 * Ensure the rest of the request is visible to kvm_check_request's
2063 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2064 		 */
2065 		smp_mb__after_atomic();
2066 		return true;
2067 	} else {
2068 		return false;
2069 	}
2070 }
2071 
2072 extern bool kvm_rebooting;
2073 
2074 extern unsigned int halt_poll_ns;
2075 extern unsigned int halt_poll_ns_grow;
2076 extern unsigned int halt_poll_ns_grow_start;
2077 extern unsigned int halt_poll_ns_shrink;
2078 
2079 struct kvm_device {
2080 	const struct kvm_device_ops *ops;
2081 	struct kvm *kvm;
2082 	void *private;
2083 	struct list_head vm_node;
2084 };
2085 
2086 /* create, destroy, and name are mandatory */
2087 struct kvm_device_ops {
2088 	const char *name;
2089 
2090 	/*
2091 	 * create is called holding kvm->lock and any operations not suitable
2092 	 * to do while holding the lock should be deferred to init (see
2093 	 * below).
2094 	 */
2095 	int (*create)(struct kvm_device *dev, u32 type);
2096 
2097 	/*
2098 	 * init is called after create if create is successful and is called
2099 	 * outside of holding kvm->lock.
2100 	 */
2101 	void (*init)(struct kvm_device *dev);
2102 
2103 	/*
2104 	 * Destroy is responsible for freeing dev.
2105 	 *
2106 	 * Destroy may be called before or after destructors are called
2107 	 * on emulated I/O regions, depending on whether a reference is
2108 	 * held by a vcpu or other kvm component that gets destroyed
2109 	 * after the emulated I/O.
2110 	 */
2111 	void (*destroy)(struct kvm_device *dev);
2112 
2113 	/*
2114 	 * Release is an alternative method to free the device. It is
2115 	 * called when the device file descriptor is closed. Once
2116 	 * release is called, the destroy method will not be called
2117 	 * anymore as the device is removed from the device list of
2118 	 * the VM. kvm->lock is held.
2119 	 */
2120 	void (*release)(struct kvm_device *dev);
2121 
2122 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2123 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2124 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2125 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2126 		      unsigned long arg);
2127 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2128 };
2129 
2130 void kvm_device_get(struct kvm_device *dev);
2131 void kvm_device_put(struct kvm_device *dev);
2132 struct kvm_device *kvm_device_from_filp(struct file *filp);
2133 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2134 void kvm_unregister_device_ops(u32 type);
2135 
2136 extern struct kvm_device_ops kvm_mpic_ops;
2137 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2138 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2139 
2140 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2141 
2142 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2143 {
2144 	vcpu->spin_loop.in_spin_loop = val;
2145 }
2146 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2147 {
2148 	vcpu->spin_loop.dy_eligible = val;
2149 }
2150 
2151 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2152 
2153 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2154 {
2155 }
2156 
2157 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2158 {
2159 }
2160 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2161 
2162 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2163 {
2164 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2165 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2166 }
2167 
2168 struct kvm_vcpu *kvm_get_running_vcpu(void);
2169 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2170 
2171 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2172 bool kvm_arch_has_irq_bypass(void);
2173 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2174 			   struct irq_bypass_producer *);
2175 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2176 			   struct irq_bypass_producer *);
2177 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2178 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2179 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2180 				  uint32_t guest_irq, bool set);
2181 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2182 				  struct kvm_kernel_irq_routing_entry *);
2183 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2184 
2185 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2186 /* If we wakeup during the poll time, was it a sucessful poll? */
2187 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2188 {
2189 	return vcpu->valid_wakeup;
2190 }
2191 
2192 #else
2193 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2194 {
2195 	return true;
2196 }
2197 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2198 
2199 #ifdef CONFIG_HAVE_KVM_NO_POLL
2200 /* Callback that tells if we must not poll */
2201 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2202 #else
2203 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2204 {
2205 	return false;
2206 }
2207 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2208 
2209 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2210 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2211 			       unsigned int ioctl, unsigned long arg);
2212 #else
2213 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2214 					     unsigned int ioctl,
2215 					     unsigned long arg)
2216 {
2217 	return -ENOIOCTLCMD;
2218 }
2219 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2220 
2221 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2222 					    unsigned long start, unsigned long end);
2223 
2224 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2225 
2226 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2227 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2228 #else
2229 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2230 {
2231 	return 0;
2232 }
2233 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2234 
2235 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2236 
2237 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2238 				uintptr_t data, const char *name,
2239 				struct task_struct **thread_ptr);
2240 
2241 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2242 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2243 {
2244 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2245 	vcpu->stat.signal_exits++;
2246 }
2247 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2248 
2249 /*
2250  * If more than one page is being (un)accounted, @virt must be the address of
2251  * the first page of a block of pages what were allocated together (i.e
2252  * accounted together).
2253  *
2254  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2255  * is thread-safe.
2256  */
2257 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2258 {
2259 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2260 }
2261 
2262 /*
2263  * This defines how many reserved entries we want to keep before we
2264  * kick the vcpu to the userspace to avoid dirty ring full.  This
2265  * value can be tuned to higher if e.g. PML is enabled on the host.
2266  */
2267 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2268 
2269 /* Max number of entries allowed for each kvm dirty ring */
2270 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2271 
2272 #endif
2273