1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_ADDRESS_SPACE_NUM 84 #define KVM_ADDRESS_SPACE_NUM 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 152 153 static inline bool is_error_page(struct page *page) 154 { 155 return IS_ERR(page); 156 } 157 158 #define KVM_REQUEST_MASK GENMASK(7,0) 159 #define KVM_REQUEST_NO_WAKEUP BIT(8) 160 #define KVM_REQUEST_WAIT BIT(9) 161 #define KVM_REQUEST_NO_ACTION BIT(10) 162 /* 163 * Architecture-independent vcpu->requests bit members 164 * Bits 3-7 are reserved for more arch-independent bits. 165 */ 166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 168 #define KVM_REQ_UNBLOCK 2 169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 170 #define KVM_REQUEST_ARCH_BASE 8 171 172 /* 173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 178 * guarantee the vCPU received an IPI and has actually exited guest mode. 179 */ 180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 181 182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 185 }) 186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 187 188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 189 unsigned long *vcpu_bitmap); 190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 192 struct kvm_vcpu *except); 193 194 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 195 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 196 197 extern struct mutex kvm_lock; 198 extern struct list_head vm_list; 199 200 struct kvm_io_range { 201 gpa_t addr; 202 int len; 203 struct kvm_io_device *dev; 204 }; 205 206 #define NR_IOBUS_DEVS 1000 207 208 struct kvm_io_bus { 209 int dev_count; 210 int ioeventfd_count; 211 struct kvm_io_range range[]; 212 }; 213 214 enum kvm_bus { 215 KVM_MMIO_BUS, 216 KVM_PIO_BUS, 217 KVM_VIRTIO_CCW_NOTIFY_BUS, 218 KVM_FAST_MMIO_BUS, 219 KVM_NR_BUSES 220 }; 221 222 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 223 int len, const void *val); 224 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 225 gpa_t addr, int len, const void *val, long cookie); 226 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 227 int len, void *val); 228 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 229 int len, struct kvm_io_device *dev); 230 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 struct kvm_io_device *dev); 232 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 233 gpa_t addr); 234 235 #ifdef CONFIG_KVM_ASYNC_PF 236 struct kvm_async_pf { 237 struct work_struct work; 238 struct list_head link; 239 struct list_head queue; 240 struct kvm_vcpu *vcpu; 241 struct mm_struct *mm; 242 gpa_t cr2_or_gpa; 243 unsigned long addr; 244 struct kvm_arch_async_pf arch; 245 bool wakeup_all; 246 bool notpresent_injected; 247 }; 248 249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 252 unsigned long hva, struct kvm_arch_async_pf *arch); 253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 254 #endif 255 256 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 257 union kvm_mmu_notifier_arg { 258 pte_t pte; 259 }; 260 261 struct kvm_gfn_range { 262 struct kvm_memory_slot *slot; 263 gfn_t start; 264 gfn_t end; 265 union kvm_mmu_notifier_arg arg; 266 bool may_block; 267 }; 268 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 269 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 270 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 271 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 272 #endif 273 274 enum { 275 OUTSIDE_GUEST_MODE, 276 IN_GUEST_MODE, 277 EXITING_GUEST_MODE, 278 READING_SHADOW_PAGE_TABLES, 279 }; 280 281 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 282 283 struct kvm_host_map { 284 /* 285 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 286 * a 'struct page' for it. When using mem= kernel parameter some memory 287 * can be used as guest memory but they are not managed by host 288 * kernel). 289 * If 'pfn' is not managed by the host kernel, this field is 290 * initialized to KVM_UNMAPPED_PAGE. 291 */ 292 struct page *page; 293 void *hva; 294 kvm_pfn_t pfn; 295 kvm_pfn_t gfn; 296 }; 297 298 /* 299 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 300 * directly to check for that. 301 */ 302 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 303 { 304 return !!map->hva; 305 } 306 307 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 308 { 309 return single_task_running() && !need_resched() && ktime_before(cur, stop); 310 } 311 312 /* 313 * Sometimes a large or cross-page mmio needs to be broken up into separate 314 * exits for userspace servicing. 315 */ 316 struct kvm_mmio_fragment { 317 gpa_t gpa; 318 void *data; 319 unsigned len; 320 }; 321 322 struct kvm_vcpu { 323 struct kvm *kvm; 324 #ifdef CONFIG_PREEMPT_NOTIFIERS 325 struct preempt_notifier preempt_notifier; 326 #endif 327 int cpu; 328 int vcpu_id; /* id given by userspace at creation */ 329 int vcpu_idx; /* index into kvm->vcpu_array */ 330 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 331 #ifdef CONFIG_PROVE_RCU 332 int srcu_depth; 333 #endif 334 int mode; 335 u64 requests; 336 unsigned long guest_debug; 337 338 struct mutex mutex; 339 struct kvm_run *run; 340 341 #ifndef __KVM_HAVE_ARCH_WQP 342 struct rcuwait wait; 343 #endif 344 struct pid __rcu *pid; 345 int sigset_active; 346 sigset_t sigset; 347 unsigned int halt_poll_ns; 348 bool valid_wakeup; 349 350 #ifdef CONFIG_HAS_IOMEM 351 int mmio_needed; 352 int mmio_read_completed; 353 int mmio_is_write; 354 int mmio_cur_fragment; 355 int mmio_nr_fragments; 356 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 357 #endif 358 359 #ifdef CONFIG_KVM_ASYNC_PF 360 struct { 361 u32 queued; 362 struct list_head queue; 363 struct list_head done; 364 spinlock_t lock; 365 } async_pf; 366 #endif 367 368 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 369 /* 370 * Cpu relax intercept or pause loop exit optimization 371 * in_spin_loop: set when a vcpu does a pause loop exit 372 * or cpu relax intercepted. 373 * dy_eligible: indicates whether vcpu is eligible for directed yield. 374 */ 375 struct { 376 bool in_spin_loop; 377 bool dy_eligible; 378 } spin_loop; 379 #endif 380 bool preempted; 381 bool ready; 382 struct kvm_vcpu_arch arch; 383 struct kvm_vcpu_stat stat; 384 char stats_id[KVM_STATS_NAME_SIZE]; 385 struct kvm_dirty_ring dirty_ring; 386 387 /* 388 * The most recently used memslot by this vCPU and the slots generation 389 * for which it is valid. 390 * No wraparound protection is needed since generations won't overflow in 391 * thousands of years, even assuming 1M memslot operations per second. 392 */ 393 struct kvm_memory_slot *last_used_slot; 394 u64 last_used_slot_gen; 395 }; 396 397 /* 398 * Start accounting time towards a guest. 399 * Must be called before entering guest context. 400 */ 401 static __always_inline void guest_timing_enter_irqoff(void) 402 { 403 /* 404 * This is running in ioctl context so its safe to assume that it's the 405 * stime pending cputime to flush. 406 */ 407 instrumentation_begin(); 408 vtime_account_guest_enter(); 409 instrumentation_end(); 410 } 411 412 /* 413 * Enter guest context and enter an RCU extended quiescent state. 414 * 415 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 416 * unsafe to use any code which may directly or indirectly use RCU, tracing 417 * (including IRQ flag tracing), or lockdep. All code in this period must be 418 * non-instrumentable. 419 */ 420 static __always_inline void guest_context_enter_irqoff(void) 421 { 422 /* 423 * KVM does not hold any references to rcu protected data when it 424 * switches CPU into a guest mode. In fact switching to a guest mode 425 * is very similar to exiting to userspace from rcu point of view. In 426 * addition CPU may stay in a guest mode for quite a long time (up to 427 * one time slice). Lets treat guest mode as quiescent state, just like 428 * we do with user-mode execution. 429 */ 430 if (!context_tracking_guest_enter()) { 431 instrumentation_begin(); 432 rcu_virt_note_context_switch(); 433 instrumentation_end(); 434 } 435 } 436 437 /* 438 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 439 * guest_state_enter_irqoff(). 440 */ 441 static __always_inline void guest_enter_irqoff(void) 442 { 443 guest_timing_enter_irqoff(); 444 guest_context_enter_irqoff(); 445 } 446 447 /** 448 * guest_state_enter_irqoff - Fixup state when entering a guest 449 * 450 * Entry to a guest will enable interrupts, but the kernel state is interrupts 451 * disabled when this is invoked. Also tell RCU about it. 452 * 453 * 1) Trace interrupts on state 454 * 2) Invoke context tracking if enabled to adjust RCU state 455 * 3) Tell lockdep that interrupts are enabled 456 * 457 * Invoked from architecture specific code before entering a guest. 458 * Must be called with interrupts disabled and the caller must be 459 * non-instrumentable. 460 * The caller has to invoke guest_timing_enter_irqoff() before this. 461 * 462 * Note: this is analogous to exit_to_user_mode(). 463 */ 464 static __always_inline void guest_state_enter_irqoff(void) 465 { 466 instrumentation_begin(); 467 trace_hardirqs_on_prepare(); 468 lockdep_hardirqs_on_prepare(); 469 instrumentation_end(); 470 471 guest_context_enter_irqoff(); 472 lockdep_hardirqs_on(CALLER_ADDR0); 473 } 474 475 /* 476 * Exit guest context and exit an RCU extended quiescent state. 477 * 478 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 479 * unsafe to use any code which may directly or indirectly use RCU, tracing 480 * (including IRQ flag tracing), or lockdep. All code in this period must be 481 * non-instrumentable. 482 */ 483 static __always_inline void guest_context_exit_irqoff(void) 484 { 485 context_tracking_guest_exit(); 486 } 487 488 /* 489 * Stop accounting time towards a guest. 490 * Must be called after exiting guest context. 491 */ 492 static __always_inline void guest_timing_exit_irqoff(void) 493 { 494 instrumentation_begin(); 495 /* Flush the guest cputime we spent on the guest */ 496 vtime_account_guest_exit(); 497 instrumentation_end(); 498 } 499 500 /* 501 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 502 * guest_timing_exit_irqoff(). 503 */ 504 static __always_inline void guest_exit_irqoff(void) 505 { 506 guest_context_exit_irqoff(); 507 guest_timing_exit_irqoff(); 508 } 509 510 static inline void guest_exit(void) 511 { 512 unsigned long flags; 513 514 local_irq_save(flags); 515 guest_exit_irqoff(); 516 local_irq_restore(flags); 517 } 518 519 /** 520 * guest_state_exit_irqoff - Establish state when returning from guest mode 521 * 522 * Entry from a guest disables interrupts, but guest mode is traced as 523 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 524 * 525 * 1) Tell lockdep that interrupts are disabled 526 * 2) Invoke context tracking if enabled to reactivate RCU 527 * 3) Trace interrupts off state 528 * 529 * Invoked from architecture specific code after exiting a guest. 530 * Must be invoked with interrupts disabled and the caller must be 531 * non-instrumentable. 532 * The caller has to invoke guest_timing_exit_irqoff() after this. 533 * 534 * Note: this is analogous to enter_from_user_mode(). 535 */ 536 static __always_inline void guest_state_exit_irqoff(void) 537 { 538 lockdep_hardirqs_off(CALLER_ADDR0); 539 guest_context_exit_irqoff(); 540 541 instrumentation_begin(); 542 trace_hardirqs_off_finish(); 543 instrumentation_end(); 544 } 545 546 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 547 { 548 /* 549 * The memory barrier ensures a previous write to vcpu->requests cannot 550 * be reordered with the read of vcpu->mode. It pairs with the general 551 * memory barrier following the write of vcpu->mode in VCPU RUN. 552 */ 553 smp_mb__before_atomic(); 554 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 555 } 556 557 /* 558 * Some of the bitops functions do not support too long bitmaps. 559 * This number must be determined not to exceed such limits. 560 */ 561 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 562 563 /* 564 * Since at idle each memslot belongs to two memslot sets it has to contain 565 * two embedded nodes for each data structure that it forms a part of. 566 * 567 * Two memslot sets (one active and one inactive) are necessary so the VM 568 * continues to run on one memslot set while the other is being modified. 569 * 570 * These two memslot sets normally point to the same set of memslots. 571 * They can, however, be desynchronized when performing a memslot management 572 * operation by replacing the memslot to be modified by its copy. 573 * After the operation is complete, both memslot sets once again point to 574 * the same, common set of memslot data. 575 * 576 * The memslots themselves are independent of each other so they can be 577 * individually added or deleted. 578 */ 579 struct kvm_memory_slot { 580 struct hlist_node id_node[2]; 581 struct interval_tree_node hva_node[2]; 582 struct rb_node gfn_node[2]; 583 gfn_t base_gfn; 584 unsigned long npages; 585 unsigned long *dirty_bitmap; 586 struct kvm_arch_memory_slot arch; 587 unsigned long userspace_addr; 588 u32 flags; 589 short id; 590 u16 as_id; 591 }; 592 593 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 594 { 595 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 596 } 597 598 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 599 { 600 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 601 } 602 603 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 604 { 605 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 606 607 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 608 } 609 610 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 611 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 612 #endif 613 614 struct kvm_s390_adapter_int { 615 u64 ind_addr; 616 u64 summary_addr; 617 u64 ind_offset; 618 u32 summary_offset; 619 u32 adapter_id; 620 }; 621 622 struct kvm_hv_sint { 623 u32 vcpu; 624 u32 sint; 625 }; 626 627 struct kvm_xen_evtchn { 628 u32 port; 629 u32 vcpu_id; 630 int vcpu_idx; 631 u32 priority; 632 }; 633 634 struct kvm_kernel_irq_routing_entry { 635 u32 gsi; 636 u32 type; 637 int (*set)(struct kvm_kernel_irq_routing_entry *e, 638 struct kvm *kvm, int irq_source_id, int level, 639 bool line_status); 640 union { 641 struct { 642 unsigned irqchip; 643 unsigned pin; 644 } irqchip; 645 struct { 646 u32 address_lo; 647 u32 address_hi; 648 u32 data; 649 u32 flags; 650 u32 devid; 651 } msi; 652 struct kvm_s390_adapter_int adapter; 653 struct kvm_hv_sint hv_sint; 654 struct kvm_xen_evtchn xen_evtchn; 655 }; 656 struct hlist_node link; 657 }; 658 659 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 660 struct kvm_irq_routing_table { 661 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 662 u32 nr_rt_entries; 663 /* 664 * Array indexed by gsi. Each entry contains list of irq chips 665 * the gsi is connected to. 666 */ 667 struct hlist_head map[]; 668 }; 669 #endif 670 671 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 672 673 #ifndef KVM_INTERNAL_MEM_SLOTS 674 #define KVM_INTERNAL_MEM_SLOTS 0 675 #endif 676 677 #define KVM_MEM_SLOTS_NUM SHRT_MAX 678 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 679 680 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 681 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 682 { 683 return 0; 684 } 685 #endif 686 687 struct kvm_memslots { 688 u64 generation; 689 atomic_long_t last_used_slot; 690 struct rb_root_cached hva_tree; 691 struct rb_root gfn_tree; 692 /* 693 * The mapping table from slot id to memslot. 694 * 695 * 7-bit bucket count matches the size of the old id to index array for 696 * 512 slots, while giving good performance with this slot count. 697 * Higher bucket counts bring only small performance improvements but 698 * always result in higher memory usage (even for lower memslot counts). 699 */ 700 DECLARE_HASHTABLE(id_hash, 7); 701 int node_idx; 702 }; 703 704 struct kvm { 705 #ifdef KVM_HAVE_MMU_RWLOCK 706 rwlock_t mmu_lock; 707 #else 708 spinlock_t mmu_lock; 709 #endif /* KVM_HAVE_MMU_RWLOCK */ 710 711 struct mutex slots_lock; 712 713 /* 714 * Protects the arch-specific fields of struct kvm_memory_slots in 715 * use by the VM. To be used under the slots_lock (above) or in a 716 * kvm->srcu critical section where acquiring the slots_lock would 717 * lead to deadlock with the synchronize_srcu in 718 * kvm_swap_active_memslots(). 719 */ 720 struct mutex slots_arch_lock; 721 struct mm_struct *mm; /* userspace tied to this vm */ 722 unsigned long nr_memslot_pages; 723 /* The two memslot sets - active and inactive (per address space) */ 724 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 725 /* The current active memslot set for each address space */ 726 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 727 struct xarray vcpu_array; 728 /* 729 * Protected by slots_lock, but can be read outside if an 730 * incorrect answer is acceptable. 731 */ 732 atomic_t nr_memslots_dirty_logging; 733 734 /* Used to wait for completion of MMU notifiers. */ 735 spinlock_t mn_invalidate_lock; 736 unsigned long mn_active_invalidate_count; 737 struct rcuwait mn_memslots_update_rcuwait; 738 739 /* For management / invalidation of gfn_to_pfn_caches */ 740 spinlock_t gpc_lock; 741 struct list_head gpc_list; 742 743 /* 744 * created_vcpus is protected by kvm->lock, and is incremented 745 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 746 * incremented after storing the kvm_vcpu pointer in vcpus, 747 * and is accessed atomically. 748 */ 749 atomic_t online_vcpus; 750 int max_vcpus; 751 int created_vcpus; 752 int last_boosted_vcpu; 753 struct list_head vm_list; 754 struct mutex lock; 755 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 756 #ifdef CONFIG_HAVE_KVM_EVENTFD 757 struct { 758 spinlock_t lock; 759 struct list_head items; 760 /* resampler_list update side is protected by resampler_lock. */ 761 struct list_head resampler_list; 762 struct mutex resampler_lock; 763 } irqfds; 764 struct list_head ioeventfds; 765 #endif 766 struct kvm_vm_stat stat; 767 struct kvm_arch arch; 768 refcount_t users_count; 769 #ifdef CONFIG_KVM_MMIO 770 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 771 spinlock_t ring_lock; 772 struct list_head coalesced_zones; 773 #endif 774 775 struct mutex irq_lock; 776 #ifdef CONFIG_HAVE_KVM_IRQCHIP 777 /* 778 * Update side is protected by irq_lock. 779 */ 780 struct kvm_irq_routing_table __rcu *irq_routing; 781 #endif 782 #ifdef CONFIG_HAVE_KVM_IRQFD 783 struct hlist_head irq_ack_notifier_list; 784 #endif 785 786 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 787 struct mmu_notifier mmu_notifier; 788 unsigned long mmu_invalidate_seq; 789 long mmu_invalidate_in_progress; 790 unsigned long mmu_invalidate_range_start; 791 unsigned long mmu_invalidate_range_end; 792 #endif 793 struct list_head devices; 794 u64 manual_dirty_log_protect; 795 struct dentry *debugfs_dentry; 796 struct kvm_stat_data **debugfs_stat_data; 797 struct srcu_struct srcu; 798 struct srcu_struct irq_srcu; 799 pid_t userspace_pid; 800 bool override_halt_poll_ns; 801 unsigned int max_halt_poll_ns; 802 u32 dirty_ring_size; 803 bool dirty_ring_with_bitmap; 804 bool vm_bugged; 805 bool vm_dead; 806 807 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 808 struct notifier_block pm_notifier; 809 #endif 810 char stats_id[KVM_STATS_NAME_SIZE]; 811 }; 812 813 #define kvm_err(fmt, ...) \ 814 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 815 #define kvm_info(fmt, ...) \ 816 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 817 #define kvm_debug(fmt, ...) \ 818 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 819 #define kvm_debug_ratelimited(fmt, ...) \ 820 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 821 ## __VA_ARGS__) 822 #define kvm_pr_unimpl(fmt, ...) \ 823 pr_err_ratelimited("kvm [%i]: " fmt, \ 824 task_tgid_nr(current), ## __VA_ARGS__) 825 826 /* The guest did something we don't support. */ 827 #define vcpu_unimpl(vcpu, fmt, ...) \ 828 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 829 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 830 831 #define vcpu_debug(vcpu, fmt, ...) \ 832 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 833 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 834 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 835 ## __VA_ARGS__) 836 #define vcpu_err(vcpu, fmt, ...) \ 837 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 838 839 static inline void kvm_vm_dead(struct kvm *kvm) 840 { 841 kvm->vm_dead = true; 842 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 843 } 844 845 static inline void kvm_vm_bugged(struct kvm *kvm) 846 { 847 kvm->vm_bugged = true; 848 kvm_vm_dead(kvm); 849 } 850 851 852 #define KVM_BUG(cond, kvm, fmt...) \ 853 ({ \ 854 bool __ret = !!(cond); \ 855 \ 856 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 857 kvm_vm_bugged(kvm); \ 858 unlikely(__ret); \ 859 }) 860 861 #define KVM_BUG_ON(cond, kvm) \ 862 ({ \ 863 bool __ret = !!(cond); \ 864 \ 865 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 866 kvm_vm_bugged(kvm); \ 867 unlikely(__ret); \ 868 }) 869 870 /* 871 * Note, "data corruption" refers to corruption of host kernel data structures, 872 * not guest data. Guest data corruption, suspected or confirmed, that is tied 873 * and contained to a single VM should *never* BUG() and potentially panic the 874 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 875 * is corrupted and that corruption can have a cascading effect to other parts 876 * of the hosts and/or to other VMs. 877 */ 878 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 879 ({ \ 880 bool __ret = !!(cond); \ 881 \ 882 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 883 BUG_ON(__ret); \ 884 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 885 kvm_vm_bugged(kvm); \ 886 unlikely(__ret); \ 887 }) 888 889 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 890 { 891 #ifdef CONFIG_PROVE_RCU 892 WARN_ONCE(vcpu->srcu_depth++, 893 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 894 #endif 895 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 896 } 897 898 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 899 { 900 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 901 902 #ifdef CONFIG_PROVE_RCU 903 WARN_ONCE(--vcpu->srcu_depth, 904 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 905 #endif 906 } 907 908 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 909 { 910 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 911 } 912 913 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 914 { 915 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 916 lockdep_is_held(&kvm->slots_lock) || 917 !refcount_read(&kvm->users_count)); 918 } 919 920 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 921 { 922 int num_vcpus = atomic_read(&kvm->online_vcpus); 923 i = array_index_nospec(i, num_vcpus); 924 925 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 926 smp_rmb(); 927 return xa_load(&kvm->vcpu_array, i); 928 } 929 930 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 931 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 932 (atomic_read(&kvm->online_vcpus) - 1)) 933 934 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 935 { 936 struct kvm_vcpu *vcpu = NULL; 937 unsigned long i; 938 939 if (id < 0) 940 return NULL; 941 if (id < KVM_MAX_VCPUS) 942 vcpu = kvm_get_vcpu(kvm, id); 943 if (vcpu && vcpu->vcpu_id == id) 944 return vcpu; 945 kvm_for_each_vcpu(i, vcpu, kvm) 946 if (vcpu->vcpu_id == id) 947 return vcpu; 948 return NULL; 949 } 950 951 void kvm_destroy_vcpus(struct kvm *kvm); 952 953 void vcpu_load(struct kvm_vcpu *vcpu); 954 void vcpu_put(struct kvm_vcpu *vcpu); 955 956 #ifdef __KVM_HAVE_IOAPIC 957 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 958 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 959 #else 960 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 961 { 962 } 963 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 964 { 965 } 966 #endif 967 968 #ifdef CONFIG_HAVE_KVM_IRQFD 969 int kvm_irqfd_init(void); 970 void kvm_irqfd_exit(void); 971 #else 972 static inline int kvm_irqfd_init(void) 973 { 974 return 0; 975 } 976 977 static inline void kvm_irqfd_exit(void) 978 { 979 } 980 #endif 981 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 982 void kvm_exit(void); 983 984 void kvm_get_kvm(struct kvm *kvm); 985 bool kvm_get_kvm_safe(struct kvm *kvm); 986 void kvm_put_kvm(struct kvm *kvm); 987 bool file_is_kvm(struct file *file); 988 void kvm_put_kvm_no_destroy(struct kvm *kvm); 989 990 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 991 { 992 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 993 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 994 lockdep_is_held(&kvm->slots_lock) || 995 !refcount_read(&kvm->users_count)); 996 } 997 998 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 999 { 1000 return __kvm_memslots(kvm, 0); 1001 } 1002 1003 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1004 { 1005 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1006 1007 return __kvm_memslots(vcpu->kvm, as_id); 1008 } 1009 1010 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1011 { 1012 return RB_EMPTY_ROOT(&slots->gfn_tree); 1013 } 1014 1015 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1016 1017 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1018 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1019 if (WARN_ON_ONCE(!memslot->npages)) { \ 1020 } else 1021 1022 static inline 1023 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1024 { 1025 struct kvm_memory_slot *slot; 1026 int idx = slots->node_idx; 1027 1028 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1029 if (slot->id == id) 1030 return slot; 1031 } 1032 1033 return NULL; 1034 } 1035 1036 /* Iterator used for walking memslots that overlap a gfn range. */ 1037 struct kvm_memslot_iter { 1038 struct kvm_memslots *slots; 1039 struct rb_node *node; 1040 struct kvm_memory_slot *slot; 1041 }; 1042 1043 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1044 { 1045 iter->node = rb_next(iter->node); 1046 if (!iter->node) 1047 return; 1048 1049 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1050 } 1051 1052 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1053 struct kvm_memslots *slots, 1054 gfn_t start) 1055 { 1056 int idx = slots->node_idx; 1057 struct rb_node *tmp; 1058 struct kvm_memory_slot *slot; 1059 1060 iter->slots = slots; 1061 1062 /* 1063 * Find the so called "upper bound" of a key - the first node that has 1064 * its key strictly greater than the searched one (the start gfn in our case). 1065 */ 1066 iter->node = NULL; 1067 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1068 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1069 if (start < slot->base_gfn) { 1070 iter->node = tmp; 1071 tmp = tmp->rb_left; 1072 } else { 1073 tmp = tmp->rb_right; 1074 } 1075 } 1076 1077 /* 1078 * Find the slot with the lowest gfn that can possibly intersect with 1079 * the range, so we'll ideally have slot start <= range start 1080 */ 1081 if (iter->node) { 1082 /* 1083 * A NULL previous node means that the very first slot 1084 * already has a higher start gfn. 1085 * In this case slot start > range start. 1086 */ 1087 tmp = rb_prev(iter->node); 1088 if (tmp) 1089 iter->node = tmp; 1090 } else { 1091 /* a NULL node below means no slots */ 1092 iter->node = rb_last(&slots->gfn_tree); 1093 } 1094 1095 if (iter->node) { 1096 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1097 1098 /* 1099 * It is possible in the slot start < range start case that the 1100 * found slot ends before or at range start (slot end <= range start) 1101 * and so it does not overlap the requested range. 1102 * 1103 * In such non-overlapping case the next slot (if it exists) will 1104 * already have slot start > range start, otherwise the logic above 1105 * would have found it instead of the current slot. 1106 */ 1107 if (iter->slot->base_gfn + iter->slot->npages <= start) 1108 kvm_memslot_iter_next(iter); 1109 } 1110 } 1111 1112 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1113 { 1114 if (!iter->node) 1115 return false; 1116 1117 /* 1118 * If this slot starts beyond or at the end of the range so does 1119 * every next one 1120 */ 1121 return iter->slot->base_gfn < end; 1122 } 1123 1124 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1125 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1126 for (kvm_memslot_iter_start(iter, slots, start); \ 1127 kvm_memslot_iter_is_valid(iter, end); \ 1128 kvm_memslot_iter_next(iter)) 1129 1130 /* 1131 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1132 * - create a new memory slot 1133 * - delete an existing memory slot 1134 * - modify an existing memory slot 1135 * -- move it in the guest physical memory space 1136 * -- just change its flags 1137 * 1138 * Since flags can be changed by some of these operations, the following 1139 * differentiation is the best we can do for __kvm_set_memory_region(): 1140 */ 1141 enum kvm_mr_change { 1142 KVM_MR_CREATE, 1143 KVM_MR_DELETE, 1144 KVM_MR_MOVE, 1145 KVM_MR_FLAGS_ONLY, 1146 }; 1147 1148 int kvm_set_memory_region(struct kvm *kvm, 1149 const struct kvm_userspace_memory_region *mem); 1150 int __kvm_set_memory_region(struct kvm *kvm, 1151 const struct kvm_userspace_memory_region *mem); 1152 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1153 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1154 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1155 const struct kvm_memory_slot *old, 1156 struct kvm_memory_slot *new, 1157 enum kvm_mr_change change); 1158 void kvm_arch_commit_memory_region(struct kvm *kvm, 1159 struct kvm_memory_slot *old, 1160 const struct kvm_memory_slot *new, 1161 enum kvm_mr_change change); 1162 /* flush all memory translations */ 1163 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1164 /* flush memory translations pointing to 'slot' */ 1165 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1166 struct kvm_memory_slot *slot); 1167 1168 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1169 struct page **pages, int nr_pages); 1170 1171 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1172 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1173 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1174 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1175 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1176 bool *writable); 1177 void kvm_release_page_clean(struct page *page); 1178 void kvm_release_page_dirty(struct page *page); 1179 1180 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1181 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1182 bool *writable); 1183 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1184 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1185 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1186 bool atomic, bool interruptible, bool *async, 1187 bool write_fault, bool *writable, hva_t *hva); 1188 1189 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1190 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1191 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1192 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1193 1194 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1195 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1196 int len); 1197 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1198 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1199 void *data, unsigned long len); 1200 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1201 void *data, unsigned int offset, 1202 unsigned long len); 1203 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1204 int offset, int len); 1205 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1206 unsigned long len); 1207 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1208 void *data, unsigned long len); 1209 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1210 void *data, unsigned int offset, 1211 unsigned long len); 1212 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1213 gpa_t gpa, unsigned long len); 1214 1215 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1216 ({ \ 1217 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1218 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1219 int __ret = -EFAULT; \ 1220 \ 1221 if (!kvm_is_error_hva(__addr)) \ 1222 __ret = get_user(v, __uaddr); \ 1223 __ret; \ 1224 }) 1225 1226 #define kvm_get_guest(kvm, gpa, v) \ 1227 ({ \ 1228 gpa_t __gpa = gpa; \ 1229 struct kvm *__kvm = kvm; \ 1230 \ 1231 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1232 offset_in_page(__gpa), v); \ 1233 }) 1234 1235 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1236 ({ \ 1237 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1238 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1239 int __ret = -EFAULT; \ 1240 \ 1241 if (!kvm_is_error_hva(__addr)) \ 1242 __ret = put_user(v, __uaddr); \ 1243 if (!__ret) \ 1244 mark_page_dirty(kvm, gfn); \ 1245 __ret; \ 1246 }) 1247 1248 #define kvm_put_guest(kvm, gpa, v) \ 1249 ({ \ 1250 gpa_t __gpa = gpa; \ 1251 struct kvm *__kvm = kvm; \ 1252 \ 1253 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1254 offset_in_page(__gpa), v); \ 1255 }) 1256 1257 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1258 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1259 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1260 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1261 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1262 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1263 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1264 1265 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1266 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1267 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1268 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1269 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1270 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1271 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1272 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1273 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1274 int len); 1275 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1276 unsigned long len); 1277 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1278 unsigned long len); 1279 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1280 int offset, int len); 1281 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1282 unsigned long len); 1283 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1284 1285 /** 1286 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1287 * 1288 * @gpc: struct gfn_to_pfn_cache object. 1289 * @kvm: pointer to kvm instance. 1290 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1291 * invalidation. 1292 * @usage: indicates if the resulting host physical PFN is used while 1293 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1294 * the cache from MMU notifiers---but not for KVM memslot 1295 * changes!---will also force @vcpu to exit the guest and 1296 * refresh the cache); and/or if the PFN used directly 1297 * by KVM (and thus needs a kernel virtual mapping). 1298 * 1299 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1300 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1301 * the caller before init). 1302 */ 1303 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm, 1304 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage); 1305 1306 /** 1307 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1308 * physical address. 1309 * 1310 * @gpc: struct gfn_to_pfn_cache object. 1311 * @gpa: guest physical address to map. 1312 * @len: sanity check; the range being access must fit a single page. 1313 * 1314 * @return: 0 for success. 1315 * -EINVAL for a mapping which would cross a page boundary. 1316 * -EFAULT for an untranslatable guest physical address. 1317 * 1318 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1319 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1320 * to ensure that the cache is valid before accessing the target page. 1321 */ 1322 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1323 1324 /** 1325 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1326 * 1327 * @gpc: struct gfn_to_pfn_cache object. 1328 * @len: sanity check; the range being access must fit a single page. 1329 * 1330 * @return: %true if the cache is still valid and the address matches. 1331 * %false if the cache is not valid. 1332 * 1333 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1334 * while calling this function, and then continue to hold the lock until the 1335 * access is complete. 1336 * 1337 * Callers in IN_GUEST_MODE may do so without locking, although they should 1338 * still hold a read lock on kvm->scru for the memslot checks. 1339 */ 1340 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1341 1342 /** 1343 * kvm_gpc_refresh - update a previously initialized cache. 1344 * 1345 * @gpc: struct gfn_to_pfn_cache object. 1346 * @len: sanity check; the range being access must fit a single page. 1347 * 1348 * @return: 0 for success. 1349 * -EINVAL for a mapping which would cross a page boundary. 1350 * -EFAULT for an untranslatable guest physical address. 1351 * 1352 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1353 * return from this function does not mean the page can be immediately 1354 * accessed because it may have raced with an invalidation. Callers must 1355 * still lock and check the cache status, as this function does not return 1356 * with the lock still held to permit access. 1357 */ 1358 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1359 1360 /** 1361 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1362 * 1363 * @gpc: struct gfn_to_pfn_cache object. 1364 * 1365 * This removes a cache from the VM's list to be processed on MMU notifier 1366 * invocation. 1367 */ 1368 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1369 1370 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1371 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1372 1373 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1374 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1375 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1376 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1377 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1378 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1379 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1380 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1381 1382 void kvm_flush_remote_tlbs(struct kvm *kvm); 1383 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1384 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1385 const struct kvm_memory_slot *memslot); 1386 1387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1388 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1389 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1391 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1392 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1393 #endif 1394 1395 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 1396 unsigned long end); 1397 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 1398 unsigned long end); 1399 1400 long kvm_arch_dev_ioctl(struct file *filp, 1401 unsigned int ioctl, unsigned long arg); 1402 long kvm_arch_vcpu_ioctl(struct file *filp, 1403 unsigned int ioctl, unsigned long arg); 1404 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1405 1406 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1407 1408 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1409 struct kvm_memory_slot *slot, 1410 gfn_t gfn_offset, 1411 unsigned long mask); 1412 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1413 1414 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1415 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1416 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1417 int *is_dirty, struct kvm_memory_slot **memslot); 1418 #endif 1419 1420 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1421 bool line_status); 1422 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1423 struct kvm_enable_cap *cap); 1424 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1425 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1426 unsigned long arg); 1427 1428 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1429 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1430 1431 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1432 struct kvm_translation *tr); 1433 1434 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1435 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1436 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1437 struct kvm_sregs *sregs); 1438 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1439 struct kvm_sregs *sregs); 1440 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1441 struct kvm_mp_state *mp_state); 1442 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1443 struct kvm_mp_state *mp_state); 1444 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1445 struct kvm_guest_debug *dbg); 1446 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1447 1448 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1449 1450 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1451 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1452 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1453 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1454 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1455 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1456 1457 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1458 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1459 #endif 1460 1461 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1462 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1463 #else 1464 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1465 #endif 1466 1467 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1468 int kvm_arch_hardware_enable(void); 1469 void kvm_arch_hardware_disable(void); 1470 #endif 1471 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1472 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1473 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1474 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1475 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1476 int kvm_arch_post_init_vm(struct kvm *kvm); 1477 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1478 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1479 1480 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1481 /* 1482 * All architectures that want to use vzalloc currently also 1483 * need their own kvm_arch_alloc_vm implementation. 1484 */ 1485 static inline struct kvm *kvm_arch_alloc_vm(void) 1486 { 1487 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1488 } 1489 #endif 1490 1491 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1492 { 1493 kvfree(kvm); 1494 } 1495 1496 #ifndef __KVM_HAVE_ARCH_VM_FREE 1497 static inline void kvm_arch_free_vm(struct kvm *kvm) 1498 { 1499 __kvm_arch_free_vm(kvm); 1500 } 1501 #endif 1502 1503 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1504 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1505 { 1506 return -ENOTSUPP; 1507 } 1508 #else 1509 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1510 #endif 1511 1512 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1513 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1514 gfn_t gfn, u64 nr_pages) 1515 { 1516 return -EOPNOTSUPP; 1517 } 1518 #else 1519 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1520 #endif 1521 1522 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1523 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1524 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1525 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1526 #else 1527 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1528 { 1529 } 1530 1531 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1532 { 1533 } 1534 1535 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1536 { 1537 return false; 1538 } 1539 #endif 1540 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1541 void kvm_arch_start_assignment(struct kvm *kvm); 1542 void kvm_arch_end_assignment(struct kvm *kvm); 1543 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1544 #else 1545 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1546 { 1547 } 1548 1549 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1550 { 1551 } 1552 1553 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1554 { 1555 return false; 1556 } 1557 #endif 1558 1559 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1560 { 1561 #ifdef __KVM_HAVE_ARCH_WQP 1562 return vcpu->arch.waitp; 1563 #else 1564 return &vcpu->wait; 1565 #endif 1566 } 1567 1568 /* 1569 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1570 * true if the vCPU was blocking and was awakened, false otherwise. 1571 */ 1572 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1573 { 1574 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1575 } 1576 1577 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1578 { 1579 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1580 } 1581 1582 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1583 /* 1584 * returns true if the virtual interrupt controller is initialized and 1585 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1586 * controller is dynamically instantiated and this is not always true. 1587 */ 1588 bool kvm_arch_intc_initialized(struct kvm *kvm); 1589 #else 1590 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1591 { 1592 return true; 1593 } 1594 #endif 1595 1596 #ifdef CONFIG_GUEST_PERF_EVENTS 1597 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1598 1599 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1600 void kvm_unregister_perf_callbacks(void); 1601 #else 1602 static inline void kvm_register_perf_callbacks(void *ign) {} 1603 static inline void kvm_unregister_perf_callbacks(void) {} 1604 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1605 1606 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1607 void kvm_arch_destroy_vm(struct kvm *kvm); 1608 void kvm_arch_sync_events(struct kvm *kvm); 1609 1610 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1611 1612 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1613 bool kvm_is_zone_device_page(struct page *page); 1614 1615 struct kvm_irq_ack_notifier { 1616 struct hlist_node link; 1617 unsigned gsi; 1618 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1619 }; 1620 1621 int kvm_irq_map_gsi(struct kvm *kvm, 1622 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1623 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1624 1625 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1626 bool line_status); 1627 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1628 int irq_source_id, int level, bool line_status); 1629 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1630 struct kvm *kvm, int irq_source_id, 1631 int level, bool line_status); 1632 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1633 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1634 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1635 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1636 struct kvm_irq_ack_notifier *kian); 1637 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1638 struct kvm_irq_ack_notifier *kian); 1639 int kvm_request_irq_source_id(struct kvm *kvm); 1640 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1641 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1642 1643 /* 1644 * Returns a pointer to the memslot if it contains gfn. 1645 * Otherwise returns NULL. 1646 */ 1647 static inline struct kvm_memory_slot * 1648 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1649 { 1650 if (!slot) 1651 return NULL; 1652 1653 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1654 return slot; 1655 else 1656 return NULL; 1657 } 1658 1659 /* 1660 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1661 * 1662 * With "approx" set returns the memslot also when the address falls 1663 * in a hole. In that case one of the memslots bordering the hole is 1664 * returned. 1665 */ 1666 static inline struct kvm_memory_slot * 1667 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1668 { 1669 struct kvm_memory_slot *slot; 1670 struct rb_node *node; 1671 int idx = slots->node_idx; 1672 1673 slot = NULL; 1674 for (node = slots->gfn_tree.rb_node; node; ) { 1675 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1676 if (gfn >= slot->base_gfn) { 1677 if (gfn < slot->base_gfn + slot->npages) 1678 return slot; 1679 node = node->rb_right; 1680 } else 1681 node = node->rb_left; 1682 } 1683 1684 return approx ? slot : NULL; 1685 } 1686 1687 static inline struct kvm_memory_slot * 1688 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1689 { 1690 struct kvm_memory_slot *slot; 1691 1692 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1693 slot = try_get_memslot(slot, gfn); 1694 if (slot) 1695 return slot; 1696 1697 slot = search_memslots(slots, gfn, approx); 1698 if (slot) { 1699 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1700 return slot; 1701 } 1702 1703 return NULL; 1704 } 1705 1706 /* 1707 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1708 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1709 * because that would bloat other code too much. 1710 */ 1711 static inline struct kvm_memory_slot * 1712 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1713 { 1714 return ____gfn_to_memslot(slots, gfn, false); 1715 } 1716 1717 static inline unsigned long 1718 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1719 { 1720 /* 1721 * The index was checked originally in search_memslots. To avoid 1722 * that a malicious guest builds a Spectre gadget out of e.g. page 1723 * table walks, do not let the processor speculate loads outside 1724 * the guest's registered memslots. 1725 */ 1726 unsigned long offset = gfn - slot->base_gfn; 1727 offset = array_index_nospec(offset, slot->npages); 1728 return slot->userspace_addr + offset * PAGE_SIZE; 1729 } 1730 1731 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1732 { 1733 return gfn_to_memslot(kvm, gfn)->id; 1734 } 1735 1736 static inline gfn_t 1737 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1738 { 1739 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1740 1741 return slot->base_gfn + gfn_offset; 1742 } 1743 1744 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1745 { 1746 return (gpa_t)gfn << PAGE_SHIFT; 1747 } 1748 1749 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1750 { 1751 return (gfn_t)(gpa >> PAGE_SHIFT); 1752 } 1753 1754 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1755 { 1756 return (hpa_t)pfn << PAGE_SHIFT; 1757 } 1758 1759 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1760 { 1761 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1762 1763 return kvm_is_error_hva(hva); 1764 } 1765 1766 enum kvm_stat_kind { 1767 KVM_STAT_VM, 1768 KVM_STAT_VCPU, 1769 }; 1770 1771 struct kvm_stat_data { 1772 struct kvm *kvm; 1773 const struct _kvm_stats_desc *desc; 1774 enum kvm_stat_kind kind; 1775 }; 1776 1777 struct _kvm_stats_desc { 1778 struct kvm_stats_desc desc; 1779 char name[KVM_STATS_NAME_SIZE]; 1780 }; 1781 1782 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1783 .flags = type | unit | base | \ 1784 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1785 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1786 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1787 .exponent = exp, \ 1788 .size = sz, \ 1789 .bucket_size = bsz 1790 1791 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1792 { \ 1793 { \ 1794 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1795 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1796 }, \ 1797 .name = #stat, \ 1798 } 1799 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1800 { \ 1801 { \ 1802 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1803 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1804 }, \ 1805 .name = #stat, \ 1806 } 1807 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1808 { \ 1809 { \ 1810 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1811 .offset = offsetof(struct kvm_vm_stat, stat) \ 1812 }, \ 1813 .name = #stat, \ 1814 } 1815 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1816 { \ 1817 { \ 1818 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1819 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1820 }, \ 1821 .name = #stat, \ 1822 } 1823 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1824 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1825 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1826 1827 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1828 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1829 unit, base, exponent, 1, 0) 1830 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1831 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1832 unit, base, exponent, 1, 0) 1833 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1834 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1835 unit, base, exponent, 1, 0) 1836 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1837 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1838 unit, base, exponent, sz, bsz) 1839 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1840 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1841 unit, base, exponent, sz, 0) 1842 1843 /* Cumulative counter, read/write */ 1844 #define STATS_DESC_COUNTER(SCOPE, name) \ 1845 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1846 KVM_STATS_BASE_POW10, 0) 1847 /* Instantaneous counter, read only */ 1848 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1849 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1850 KVM_STATS_BASE_POW10, 0) 1851 /* Peak counter, read/write */ 1852 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1853 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1854 KVM_STATS_BASE_POW10, 0) 1855 1856 /* Instantaneous boolean value, read only */ 1857 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1858 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1859 KVM_STATS_BASE_POW10, 0) 1860 /* Peak (sticky) boolean value, read/write */ 1861 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1862 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1863 KVM_STATS_BASE_POW10, 0) 1864 1865 /* Cumulative time in nanosecond */ 1866 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1867 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1868 KVM_STATS_BASE_POW10, -9) 1869 /* Linear histogram for time in nanosecond */ 1870 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1871 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1872 KVM_STATS_BASE_POW10, -9, sz, bsz) 1873 /* Logarithmic histogram for time in nanosecond */ 1874 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1875 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1876 KVM_STATS_BASE_POW10, -9, sz) 1877 1878 #define KVM_GENERIC_VM_STATS() \ 1879 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1880 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1881 1882 #define KVM_GENERIC_VCPU_STATS() \ 1883 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1884 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1885 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1886 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1887 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1888 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1889 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1890 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1891 HALT_POLL_HIST_COUNT), \ 1892 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1893 HALT_POLL_HIST_COUNT), \ 1894 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1895 HALT_POLL_HIST_COUNT), \ 1896 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1897 1898 extern struct dentry *kvm_debugfs_dir; 1899 1900 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1901 const struct _kvm_stats_desc *desc, 1902 void *stats, size_t size_stats, 1903 char __user *user_buffer, size_t size, loff_t *offset); 1904 1905 /** 1906 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1907 * statistics data. 1908 * 1909 * @data: start address of the stats data 1910 * @size: the number of bucket of the stats data 1911 * @value: the new value used to update the linear histogram's bucket 1912 * @bucket_size: the size (width) of a bucket 1913 */ 1914 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1915 u64 value, size_t bucket_size) 1916 { 1917 size_t index = div64_u64(value, bucket_size); 1918 1919 index = min(index, size - 1); 1920 ++data[index]; 1921 } 1922 1923 /** 1924 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1925 * statistics data. 1926 * 1927 * @data: start address of the stats data 1928 * @size: the number of bucket of the stats data 1929 * @value: the new value used to update the logarithmic histogram's bucket 1930 */ 1931 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1932 { 1933 size_t index = fls64(value); 1934 1935 index = min(index, size - 1); 1936 ++data[index]; 1937 } 1938 1939 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1940 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1941 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1942 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1943 1944 1945 extern const struct kvm_stats_header kvm_vm_stats_header; 1946 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1947 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1948 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1949 1950 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1951 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 1952 { 1953 if (unlikely(kvm->mmu_invalidate_in_progress)) 1954 return 1; 1955 /* 1956 * Ensure the read of mmu_invalidate_in_progress happens before 1957 * the read of mmu_invalidate_seq. This interacts with the 1958 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 1959 * that the caller either sees the old (non-zero) value of 1960 * mmu_invalidate_in_progress or the new (incremented) value of 1961 * mmu_invalidate_seq. 1962 * 1963 * PowerPC Book3s HV KVM calls this under a per-page lock rather 1964 * than under kvm->mmu_lock, for scalability, so can't rely on 1965 * kvm->mmu_lock to keep things ordered. 1966 */ 1967 smp_rmb(); 1968 if (kvm->mmu_invalidate_seq != mmu_seq) 1969 return 1; 1970 return 0; 1971 } 1972 1973 static inline int mmu_invalidate_retry_hva(struct kvm *kvm, 1974 unsigned long mmu_seq, 1975 unsigned long hva) 1976 { 1977 lockdep_assert_held(&kvm->mmu_lock); 1978 /* 1979 * If mmu_invalidate_in_progress is non-zero, then the range maintained 1980 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 1981 * that might be being invalidated. Note that it may include some false 1982 * positives, due to shortcuts when handing concurrent invalidations. 1983 */ 1984 if (unlikely(kvm->mmu_invalidate_in_progress) && 1985 hva >= kvm->mmu_invalidate_range_start && 1986 hva < kvm->mmu_invalidate_range_end) 1987 return 1; 1988 if (kvm->mmu_invalidate_seq != mmu_seq) 1989 return 1; 1990 return 0; 1991 } 1992 #endif 1993 1994 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1995 1996 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1997 1998 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1999 int kvm_set_irq_routing(struct kvm *kvm, 2000 const struct kvm_irq_routing_entry *entries, 2001 unsigned nr, 2002 unsigned flags); 2003 int kvm_set_routing_entry(struct kvm *kvm, 2004 struct kvm_kernel_irq_routing_entry *e, 2005 const struct kvm_irq_routing_entry *ue); 2006 void kvm_free_irq_routing(struct kvm *kvm); 2007 2008 #else 2009 2010 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2011 2012 #endif 2013 2014 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2015 2016 #ifdef CONFIG_HAVE_KVM_EVENTFD 2017 2018 void kvm_eventfd_init(struct kvm *kvm); 2019 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2020 2021 #ifdef CONFIG_HAVE_KVM_IRQFD 2022 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2023 void kvm_irqfd_release(struct kvm *kvm); 2024 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2025 unsigned int irqchip, 2026 unsigned int pin); 2027 void kvm_irq_routing_update(struct kvm *); 2028 #else 2029 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2030 { 2031 return -EINVAL; 2032 } 2033 2034 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2035 2036 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2037 unsigned int irqchip, 2038 unsigned int pin) 2039 { 2040 return false; 2041 } 2042 #endif 2043 2044 #else 2045 2046 static inline void kvm_eventfd_init(struct kvm *kvm) {} 2047 2048 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2049 { 2050 return -EINVAL; 2051 } 2052 2053 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2054 2055 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2056 static inline void kvm_irq_routing_update(struct kvm *kvm) 2057 { 2058 } 2059 #endif 2060 2061 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 2062 { 2063 return -ENOSYS; 2064 } 2065 2066 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 2067 2068 void kvm_arch_irq_routing_update(struct kvm *kvm); 2069 2070 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2071 { 2072 /* 2073 * Ensure the rest of the request is published to kvm_check_request's 2074 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2075 */ 2076 smp_wmb(); 2077 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2078 } 2079 2080 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2081 { 2082 /* 2083 * Request that don't require vCPU action should never be logged in 2084 * vcpu->requests. The vCPU won't clear the request, so it will stay 2085 * logged indefinitely and prevent the vCPU from entering the guest. 2086 */ 2087 BUILD_BUG_ON(!__builtin_constant_p(req) || 2088 (req & KVM_REQUEST_NO_ACTION)); 2089 2090 __kvm_make_request(req, vcpu); 2091 } 2092 2093 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2094 { 2095 return READ_ONCE(vcpu->requests); 2096 } 2097 2098 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2099 { 2100 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2101 } 2102 2103 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2104 { 2105 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2106 } 2107 2108 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2109 { 2110 if (kvm_test_request(req, vcpu)) { 2111 kvm_clear_request(req, vcpu); 2112 2113 /* 2114 * Ensure the rest of the request is visible to kvm_check_request's 2115 * caller. Paired with the smp_wmb in kvm_make_request. 2116 */ 2117 smp_mb__after_atomic(); 2118 return true; 2119 } else { 2120 return false; 2121 } 2122 } 2123 2124 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2125 extern bool kvm_rebooting; 2126 #endif 2127 2128 extern unsigned int halt_poll_ns; 2129 extern unsigned int halt_poll_ns_grow; 2130 extern unsigned int halt_poll_ns_grow_start; 2131 extern unsigned int halt_poll_ns_shrink; 2132 2133 struct kvm_device { 2134 const struct kvm_device_ops *ops; 2135 struct kvm *kvm; 2136 void *private; 2137 struct list_head vm_node; 2138 }; 2139 2140 /* create, destroy, and name are mandatory */ 2141 struct kvm_device_ops { 2142 const char *name; 2143 2144 /* 2145 * create is called holding kvm->lock and any operations not suitable 2146 * to do while holding the lock should be deferred to init (see 2147 * below). 2148 */ 2149 int (*create)(struct kvm_device *dev, u32 type); 2150 2151 /* 2152 * init is called after create if create is successful and is called 2153 * outside of holding kvm->lock. 2154 */ 2155 void (*init)(struct kvm_device *dev); 2156 2157 /* 2158 * Destroy is responsible for freeing dev. 2159 * 2160 * Destroy may be called before or after destructors are called 2161 * on emulated I/O regions, depending on whether a reference is 2162 * held by a vcpu or other kvm component that gets destroyed 2163 * after the emulated I/O. 2164 */ 2165 void (*destroy)(struct kvm_device *dev); 2166 2167 /* 2168 * Release is an alternative method to free the device. It is 2169 * called when the device file descriptor is closed. Once 2170 * release is called, the destroy method will not be called 2171 * anymore as the device is removed from the device list of 2172 * the VM. kvm->lock is held. 2173 */ 2174 void (*release)(struct kvm_device *dev); 2175 2176 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2177 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2178 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2179 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2180 unsigned long arg); 2181 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2182 }; 2183 2184 struct kvm_device *kvm_device_from_filp(struct file *filp); 2185 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2186 void kvm_unregister_device_ops(u32 type); 2187 2188 extern struct kvm_device_ops kvm_mpic_ops; 2189 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2190 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2191 2192 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2193 2194 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2195 { 2196 vcpu->spin_loop.in_spin_loop = val; 2197 } 2198 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2199 { 2200 vcpu->spin_loop.dy_eligible = val; 2201 } 2202 2203 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2204 2205 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2206 { 2207 } 2208 2209 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2210 { 2211 } 2212 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2213 2214 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2215 { 2216 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2217 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2218 } 2219 2220 struct kvm_vcpu *kvm_get_running_vcpu(void); 2221 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2222 2223 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2224 bool kvm_arch_has_irq_bypass(void); 2225 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2226 struct irq_bypass_producer *); 2227 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2228 struct irq_bypass_producer *); 2229 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2230 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2231 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2232 uint32_t guest_irq, bool set); 2233 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2234 struct kvm_kernel_irq_routing_entry *); 2235 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2236 2237 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2238 /* If we wakeup during the poll time, was it a sucessful poll? */ 2239 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2240 { 2241 return vcpu->valid_wakeup; 2242 } 2243 2244 #else 2245 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2246 { 2247 return true; 2248 } 2249 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2250 2251 #ifdef CONFIG_HAVE_KVM_NO_POLL 2252 /* Callback that tells if we must not poll */ 2253 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2254 #else 2255 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2256 { 2257 return false; 2258 } 2259 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2260 2261 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2262 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2263 unsigned int ioctl, unsigned long arg); 2264 #else 2265 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2266 unsigned int ioctl, 2267 unsigned long arg) 2268 { 2269 return -ENOIOCTLCMD; 2270 } 2271 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2272 2273 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2274 2275 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2276 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2277 #else 2278 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2279 { 2280 return 0; 2281 } 2282 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2283 2284 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2285 2286 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2287 uintptr_t data, const char *name, 2288 struct task_struct **thread_ptr); 2289 2290 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2291 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2292 { 2293 vcpu->run->exit_reason = KVM_EXIT_INTR; 2294 vcpu->stat.signal_exits++; 2295 } 2296 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2297 2298 /* 2299 * If more than one page is being (un)accounted, @virt must be the address of 2300 * the first page of a block of pages what were allocated together (i.e 2301 * accounted together). 2302 * 2303 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2304 * is thread-safe. 2305 */ 2306 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2307 { 2308 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2309 } 2310 2311 /* 2312 * This defines how many reserved entries we want to keep before we 2313 * kick the vcpu to the userspace to avoid dirty ring full. This 2314 * value can be tuned to higher if e.g. PML is enabled on the host. 2315 */ 2316 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2317 2318 /* Max number of entries allowed for each kvm dirty ring */ 2319 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2320 2321 #endif 2322