1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/mm.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/preempt.h> 17 #include <linux/msi.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/rcupdate.h> 21 #include <linux/ratelimit.h> 22 #include <linux/err.h> 23 #include <linux/irqflags.h> 24 #include <linux/context_tracking.h> 25 #include <linux/irqbypass.h> 26 #include <linux/rcuwait.h> 27 #include <linux/refcount.h> 28 #include <linux/nospec.h> 29 #include <asm/signal.h> 30 31 #include <linux/kvm.h> 32 #include <linux/kvm_para.h> 33 34 #include <linux/kvm_types.h> 35 36 #include <asm/kvm_host.h> 37 38 #ifndef KVM_MAX_VCPU_ID 39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40 #endif 41 42 /* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47 #define KVM_MEMSLOT_INVALID (1UL << 16) 48 49 /* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70 /* Two fragments for cross MMIO pages. */ 71 #define KVM_MAX_MMIO_FRAGMENTS 2 72 73 #ifndef KVM_ADDRESS_SPACE_NUM 74 #define KVM_ADDRESS_SPACE_NUM 1 75 #endif 76 77 /* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84 #define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90 /* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94 static inline bool is_error_pfn(kvm_pfn_t pfn) 95 { 96 return !!(pfn & KVM_PFN_ERR_MASK); 97 } 98 99 /* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107 } 108 109 /* noslot pfn indicates that the gfn is not in slot. */ 110 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111 { 112 return pfn == KVM_PFN_NOSLOT; 113 } 114 115 /* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119 #ifndef KVM_HVA_ERR_BAD 120 121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124 static inline bool kvm_is_error_hva(unsigned long addr) 125 { 126 return addr >= PAGE_OFFSET; 127 } 128 129 #endif 130 131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133 static inline bool is_error_page(struct page *page) 134 { 135 return IS_ERR(page); 136 } 137 138 #define KVM_REQUEST_MASK GENMASK(7,0) 139 #define KVM_REQUEST_NO_WAKEUP BIT(8) 140 #define KVM_REQUEST_WAIT BIT(9) 141 /* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147 #define KVM_REQ_PENDING_TIMER 2 148 #define KVM_REQ_UNHALT 3 149 #define KVM_REQUEST_ARCH_BASE 8 150 151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154 }) 155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160 extern struct mutex kvm_lock; 161 extern struct list_head vm_list; 162 163 struct kvm_io_range { 164 gpa_t addr; 165 int len; 166 struct kvm_io_device *dev; 167 }; 168 169 #define NR_IOBUS_DEVS 1000 170 171 struct kvm_io_bus { 172 int dev_count; 173 int ioeventfd_count; 174 struct kvm_io_range range[]; 175 }; 176 177 enum kvm_bus { 178 KVM_MMIO_BUS, 179 KVM_PIO_BUS, 180 KVM_VIRTIO_CCW_NOTIFY_BUS, 181 KVM_FAST_MMIO_BUS, 182 KVM_NR_BUSES 183 }; 184 185 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 186 int len, const void *val); 187 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 188 gpa_t addr, int len, const void *val, long cookie); 189 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, void *val); 191 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 192 int len, struct kvm_io_device *dev); 193 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 194 struct kvm_io_device *dev); 195 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 gpa_t addr); 197 198 #ifdef CONFIG_KVM_ASYNC_PF 199 struct kvm_async_pf { 200 struct work_struct work; 201 struct list_head link; 202 struct list_head queue; 203 struct kvm_vcpu *vcpu; 204 struct mm_struct *mm; 205 gpa_t cr2_or_gpa; 206 unsigned long addr; 207 struct kvm_arch_async_pf arch; 208 bool wakeup_all; 209 bool notpresent_injected; 210 }; 211 212 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 213 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 214 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 215 unsigned long hva, struct kvm_arch_async_pf *arch); 216 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 217 #endif 218 219 enum { 220 OUTSIDE_GUEST_MODE, 221 IN_GUEST_MODE, 222 EXITING_GUEST_MODE, 223 READING_SHADOW_PAGE_TABLES, 224 }; 225 226 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 227 228 struct kvm_host_map { 229 /* 230 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 231 * a 'struct page' for it. When using mem= kernel parameter some memory 232 * can be used as guest memory but they are not managed by host 233 * kernel). 234 * If 'pfn' is not managed by the host kernel, this field is 235 * initialized to KVM_UNMAPPED_PAGE. 236 */ 237 struct page *page; 238 void *hva; 239 kvm_pfn_t pfn; 240 kvm_pfn_t gfn; 241 }; 242 243 /* 244 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 245 * directly to check for that. 246 */ 247 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 248 { 249 return !!map->hva; 250 } 251 252 /* 253 * Sometimes a large or cross-page mmio needs to be broken up into separate 254 * exits for userspace servicing. 255 */ 256 struct kvm_mmio_fragment { 257 gpa_t gpa; 258 void *data; 259 unsigned len; 260 }; 261 262 struct kvm_vcpu { 263 struct kvm *kvm; 264 #ifdef CONFIG_PREEMPT_NOTIFIERS 265 struct preempt_notifier preempt_notifier; 266 #endif 267 int cpu; 268 int vcpu_id; /* id given by userspace at creation */ 269 int vcpu_idx; /* index in kvm->vcpus array */ 270 int srcu_idx; 271 int mode; 272 u64 requests; 273 unsigned long guest_debug; 274 275 int pre_pcpu; 276 struct list_head blocked_vcpu_list; 277 278 struct mutex mutex; 279 struct kvm_run *run; 280 281 struct rcuwait wait; 282 struct pid __rcu *pid; 283 int sigset_active; 284 sigset_t sigset; 285 struct kvm_vcpu_stat stat; 286 unsigned int halt_poll_ns; 287 bool valid_wakeup; 288 289 #ifdef CONFIG_HAS_IOMEM 290 int mmio_needed; 291 int mmio_read_completed; 292 int mmio_is_write; 293 int mmio_cur_fragment; 294 int mmio_nr_fragments; 295 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 296 #endif 297 298 #ifdef CONFIG_KVM_ASYNC_PF 299 struct { 300 u32 queued; 301 struct list_head queue; 302 struct list_head done; 303 spinlock_t lock; 304 } async_pf; 305 #endif 306 307 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 308 /* 309 * Cpu relax intercept or pause loop exit optimization 310 * in_spin_loop: set when a vcpu does a pause loop exit 311 * or cpu relax intercepted. 312 * dy_eligible: indicates whether vcpu is eligible for directed yield. 313 */ 314 struct { 315 bool in_spin_loop; 316 bool dy_eligible; 317 } spin_loop; 318 #endif 319 bool preempted; 320 bool ready; 321 struct kvm_vcpu_arch arch; 322 }; 323 324 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 325 { 326 /* 327 * The memory barrier ensures a previous write to vcpu->requests cannot 328 * be reordered with the read of vcpu->mode. It pairs with the general 329 * memory barrier following the write of vcpu->mode in VCPU RUN. 330 */ 331 smp_mb__before_atomic(); 332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 333 } 334 335 /* 336 * Some of the bitops functions do not support too long bitmaps. 337 * This number must be determined not to exceed such limits. 338 */ 339 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 340 341 struct kvm_memory_slot { 342 gfn_t base_gfn; 343 unsigned long npages; 344 unsigned long *dirty_bitmap; 345 struct kvm_arch_memory_slot arch; 346 unsigned long userspace_addr; 347 u32 flags; 348 short id; 349 u16 as_id; 350 }; 351 352 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 353 { 354 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 355 } 356 357 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 358 { 359 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 360 361 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 362 } 363 364 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 365 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 366 #endif 367 368 struct kvm_s390_adapter_int { 369 u64 ind_addr; 370 u64 summary_addr; 371 u64 ind_offset; 372 u32 summary_offset; 373 u32 adapter_id; 374 }; 375 376 struct kvm_hv_sint { 377 u32 vcpu; 378 u32 sint; 379 }; 380 381 struct kvm_kernel_irq_routing_entry { 382 u32 gsi; 383 u32 type; 384 int (*set)(struct kvm_kernel_irq_routing_entry *e, 385 struct kvm *kvm, int irq_source_id, int level, 386 bool line_status); 387 union { 388 struct { 389 unsigned irqchip; 390 unsigned pin; 391 } irqchip; 392 struct { 393 u32 address_lo; 394 u32 address_hi; 395 u32 data; 396 u32 flags; 397 u32 devid; 398 } msi; 399 struct kvm_s390_adapter_int adapter; 400 struct kvm_hv_sint hv_sint; 401 }; 402 struct hlist_node link; 403 }; 404 405 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 406 struct kvm_irq_routing_table { 407 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 408 u32 nr_rt_entries; 409 /* 410 * Array indexed by gsi. Each entry contains list of irq chips 411 * the gsi is connected to. 412 */ 413 struct hlist_head map[]; 414 }; 415 #endif 416 417 #ifndef KVM_PRIVATE_MEM_SLOTS 418 #define KVM_PRIVATE_MEM_SLOTS 0 419 #endif 420 421 #ifndef KVM_MEM_SLOTS_NUM 422 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 423 #endif 424 425 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 426 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 427 { 428 return 0; 429 } 430 #endif 431 432 /* 433 * Note: 434 * memslots are not sorted by id anymore, please use id_to_memslot() 435 * to get the memslot by its id. 436 */ 437 struct kvm_memslots { 438 u64 generation; 439 /* The mapping table from slot id to the index in memslots[]. */ 440 short id_to_index[KVM_MEM_SLOTS_NUM]; 441 atomic_t lru_slot; 442 int used_slots; 443 struct kvm_memory_slot memslots[]; 444 }; 445 446 struct kvm { 447 spinlock_t mmu_lock; 448 struct mutex slots_lock; 449 struct mm_struct *mm; /* userspace tied to this vm */ 450 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 451 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 452 453 /* 454 * created_vcpus is protected by kvm->lock, and is incremented 455 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 456 * incremented after storing the kvm_vcpu pointer in vcpus, 457 * and is accessed atomically. 458 */ 459 atomic_t online_vcpus; 460 int created_vcpus; 461 int last_boosted_vcpu; 462 struct list_head vm_list; 463 struct mutex lock; 464 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 465 #ifdef CONFIG_HAVE_KVM_EVENTFD 466 struct { 467 spinlock_t lock; 468 struct list_head items; 469 struct list_head resampler_list; 470 struct mutex resampler_lock; 471 } irqfds; 472 struct list_head ioeventfds; 473 #endif 474 struct kvm_vm_stat stat; 475 struct kvm_arch arch; 476 refcount_t users_count; 477 #ifdef CONFIG_KVM_MMIO 478 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 479 spinlock_t ring_lock; 480 struct list_head coalesced_zones; 481 #endif 482 483 struct mutex irq_lock; 484 #ifdef CONFIG_HAVE_KVM_IRQCHIP 485 /* 486 * Update side is protected by irq_lock. 487 */ 488 struct kvm_irq_routing_table __rcu *irq_routing; 489 #endif 490 #ifdef CONFIG_HAVE_KVM_IRQFD 491 struct hlist_head irq_ack_notifier_list; 492 #endif 493 494 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 495 struct mmu_notifier mmu_notifier; 496 unsigned long mmu_notifier_seq; 497 long mmu_notifier_count; 498 #endif 499 long tlbs_dirty; 500 struct list_head devices; 501 u64 manual_dirty_log_protect; 502 struct dentry *debugfs_dentry; 503 struct kvm_stat_data **debugfs_stat_data; 504 struct srcu_struct srcu; 505 struct srcu_struct irq_srcu; 506 pid_t userspace_pid; 507 unsigned int max_halt_poll_ns; 508 }; 509 510 #define kvm_err(fmt, ...) \ 511 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512 #define kvm_info(fmt, ...) \ 513 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 514 #define kvm_debug(fmt, ...) \ 515 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 516 #define kvm_debug_ratelimited(fmt, ...) \ 517 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 518 ## __VA_ARGS__) 519 #define kvm_pr_unimpl(fmt, ...) \ 520 pr_err_ratelimited("kvm [%i]: " fmt, \ 521 task_tgid_nr(current), ## __VA_ARGS__) 522 523 /* The guest did something we don't support. */ 524 #define vcpu_unimpl(vcpu, fmt, ...) \ 525 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 526 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 527 528 #define vcpu_debug(vcpu, fmt, ...) \ 529 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 530 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 531 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 532 ## __VA_ARGS__) 533 #define vcpu_err(vcpu, fmt, ...) \ 534 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 535 536 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 537 { 538 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 539 } 540 541 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 542 { 543 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 544 lockdep_is_held(&kvm->slots_lock) || 545 !refcount_read(&kvm->users_count)); 546 } 547 548 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 549 { 550 int num_vcpus = atomic_read(&kvm->online_vcpus); 551 i = array_index_nospec(i, num_vcpus); 552 553 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 554 smp_rmb(); 555 return kvm->vcpus[i]; 556 } 557 558 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 559 for (idx = 0; \ 560 idx < atomic_read(&kvm->online_vcpus) && \ 561 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 562 idx++) 563 564 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 565 { 566 struct kvm_vcpu *vcpu = NULL; 567 int i; 568 569 if (id < 0) 570 return NULL; 571 if (id < KVM_MAX_VCPUS) 572 vcpu = kvm_get_vcpu(kvm, id); 573 if (vcpu && vcpu->vcpu_id == id) 574 return vcpu; 575 kvm_for_each_vcpu(i, vcpu, kvm) 576 if (vcpu->vcpu_id == id) 577 return vcpu; 578 return NULL; 579 } 580 581 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 582 { 583 return vcpu->vcpu_idx; 584 } 585 586 #define kvm_for_each_memslot(memslot, slots) \ 587 for (memslot = &slots->memslots[0]; \ 588 memslot < slots->memslots + slots->used_slots; memslot++) \ 589 if (WARN_ON_ONCE(!memslot->npages)) { \ 590 } else 591 592 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 593 594 void vcpu_load(struct kvm_vcpu *vcpu); 595 void vcpu_put(struct kvm_vcpu *vcpu); 596 597 #ifdef __KVM_HAVE_IOAPIC 598 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 599 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 600 #else 601 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 602 { 603 } 604 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 605 { 606 } 607 #endif 608 609 #ifdef CONFIG_HAVE_KVM_IRQFD 610 int kvm_irqfd_init(void); 611 void kvm_irqfd_exit(void); 612 #else 613 static inline int kvm_irqfd_init(void) 614 { 615 return 0; 616 } 617 618 static inline void kvm_irqfd_exit(void) 619 { 620 } 621 #endif 622 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 623 struct module *module); 624 void kvm_exit(void); 625 626 void kvm_get_kvm(struct kvm *kvm); 627 void kvm_put_kvm(struct kvm *kvm); 628 void kvm_put_kvm_no_destroy(struct kvm *kvm); 629 630 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 631 { 632 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 633 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 634 lockdep_is_held(&kvm->slots_lock) || 635 !refcount_read(&kvm->users_count)); 636 } 637 638 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 639 { 640 return __kvm_memslots(kvm, 0); 641 } 642 643 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 644 { 645 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 646 647 return __kvm_memslots(vcpu->kvm, as_id); 648 } 649 650 static inline 651 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 652 { 653 int index = slots->id_to_index[id]; 654 struct kvm_memory_slot *slot; 655 656 if (index < 0) 657 return NULL; 658 659 slot = &slots->memslots[index]; 660 661 WARN_ON(slot->id != id); 662 return slot; 663 } 664 665 /* 666 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 667 * - create a new memory slot 668 * - delete an existing memory slot 669 * - modify an existing memory slot 670 * -- move it in the guest physical memory space 671 * -- just change its flags 672 * 673 * Since flags can be changed by some of these operations, the following 674 * differentiation is the best we can do for __kvm_set_memory_region(): 675 */ 676 enum kvm_mr_change { 677 KVM_MR_CREATE, 678 KVM_MR_DELETE, 679 KVM_MR_MOVE, 680 KVM_MR_FLAGS_ONLY, 681 }; 682 683 int kvm_set_memory_region(struct kvm *kvm, 684 const struct kvm_userspace_memory_region *mem); 685 int __kvm_set_memory_region(struct kvm *kvm, 686 const struct kvm_userspace_memory_region *mem); 687 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 688 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 689 int kvm_arch_prepare_memory_region(struct kvm *kvm, 690 struct kvm_memory_slot *memslot, 691 const struct kvm_userspace_memory_region *mem, 692 enum kvm_mr_change change); 693 void kvm_arch_commit_memory_region(struct kvm *kvm, 694 const struct kvm_userspace_memory_region *mem, 695 struct kvm_memory_slot *old, 696 const struct kvm_memory_slot *new, 697 enum kvm_mr_change change); 698 /* flush all memory translations */ 699 void kvm_arch_flush_shadow_all(struct kvm *kvm); 700 /* flush memory translations pointing to 'slot' */ 701 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 702 struct kvm_memory_slot *slot); 703 704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 705 struct page **pages, int nr_pages); 706 707 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 708 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 709 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 710 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 711 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 712 bool *writable); 713 void kvm_release_page_clean(struct page *page); 714 void kvm_release_page_dirty(struct page *page); 715 void kvm_set_page_accessed(struct page *page); 716 717 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 718 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 719 bool *writable); 720 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 721 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 722 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 723 bool atomic, bool *async, bool write_fault, 724 bool *writable); 725 726 void kvm_release_pfn_clean(kvm_pfn_t pfn); 727 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 728 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 729 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 730 void kvm_get_pfn(kvm_pfn_t pfn); 731 732 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 733 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 734 int len); 735 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 736 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 737 void *data, unsigned long len); 738 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 739 void *data, unsigned int offset, 740 unsigned long len); 741 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 742 int offset, int len); 743 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 744 unsigned long len); 745 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 746 void *data, unsigned long len); 747 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 748 void *data, unsigned int offset, 749 unsigned long len); 750 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 751 gpa_t gpa, unsigned long len); 752 753 #define __kvm_get_guest(kvm, gfn, offset, v) \ 754 ({ \ 755 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 756 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 757 int __ret = -EFAULT; \ 758 \ 759 if (!kvm_is_error_hva(__addr)) \ 760 __ret = get_user(v, __uaddr); \ 761 __ret; \ 762 }) 763 764 #define kvm_get_guest(kvm, gpa, v) \ 765 ({ \ 766 gpa_t __gpa = gpa; \ 767 struct kvm *__kvm = kvm; \ 768 \ 769 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 770 offset_in_page(__gpa), v); \ 771 }) 772 773 #define __kvm_put_guest(kvm, gfn, offset, v) \ 774 ({ \ 775 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 776 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 777 int __ret = -EFAULT; \ 778 \ 779 if (!kvm_is_error_hva(__addr)) \ 780 __ret = put_user(v, __uaddr); \ 781 if (!__ret) \ 782 mark_page_dirty(kvm, gfn); \ 783 __ret; \ 784 }) 785 786 #define kvm_put_guest(kvm, gpa, v) \ 787 ({ \ 788 gpa_t __gpa = gpa; \ 789 struct kvm *__kvm = kvm; \ 790 \ 791 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 792 offset_in_page(__gpa), v); \ 793 }) 794 795 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 796 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 797 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 798 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 799 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 800 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 801 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 802 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 803 804 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 805 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 806 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 807 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 808 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 809 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 810 struct gfn_to_pfn_cache *cache, bool atomic); 811 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 812 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 813 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 814 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 815 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 816 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 817 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 818 int len); 819 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 820 unsigned long len); 821 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 822 unsigned long len); 823 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 824 int offset, int len); 825 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 826 unsigned long len); 827 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 828 829 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 830 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 831 832 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 833 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 834 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 835 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 836 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 837 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 838 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 839 840 void kvm_flush_remote_tlbs(struct kvm *kvm); 841 void kvm_reload_remote_mmus(struct kvm *kvm); 842 843 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 844 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 845 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 846 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 847 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 848 #endif 849 850 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 851 struct kvm_vcpu *except, 852 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 853 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 854 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 855 struct kvm_vcpu *except); 856 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 857 unsigned long *vcpu_bitmap); 858 859 long kvm_arch_dev_ioctl(struct file *filp, 860 unsigned int ioctl, unsigned long arg); 861 long kvm_arch_vcpu_ioctl(struct file *filp, 862 unsigned int ioctl, unsigned long arg); 863 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 864 865 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 866 867 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 868 struct kvm_memory_slot *slot, 869 gfn_t gfn_offset, 870 unsigned long mask); 871 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 872 873 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 874 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 875 struct kvm_memory_slot *memslot); 876 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 877 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 878 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 879 int *is_dirty, struct kvm_memory_slot **memslot); 880 #endif 881 882 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 883 bool line_status); 884 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 885 struct kvm_enable_cap *cap); 886 long kvm_arch_vm_ioctl(struct file *filp, 887 unsigned int ioctl, unsigned long arg); 888 889 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 890 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 891 892 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 893 struct kvm_translation *tr); 894 895 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 896 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 897 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 898 struct kvm_sregs *sregs); 899 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 900 struct kvm_sregs *sregs); 901 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 902 struct kvm_mp_state *mp_state); 903 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 904 struct kvm_mp_state *mp_state); 905 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 906 struct kvm_guest_debug *dbg); 907 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 908 909 int kvm_arch_init(void *opaque); 910 void kvm_arch_exit(void); 911 912 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 913 914 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 915 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 916 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 917 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 918 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 919 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 920 921 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 922 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 923 #endif 924 925 int kvm_arch_hardware_enable(void); 926 void kvm_arch_hardware_disable(void); 927 int kvm_arch_hardware_setup(void *opaque); 928 void kvm_arch_hardware_unsetup(void); 929 int kvm_arch_check_processor_compat(void *opaque); 930 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 931 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 932 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 933 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 934 int kvm_arch_post_init_vm(struct kvm *kvm); 935 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 936 937 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 938 /* 939 * All architectures that want to use vzalloc currently also 940 * need their own kvm_arch_alloc_vm implementation. 941 */ 942 static inline struct kvm *kvm_arch_alloc_vm(void) 943 { 944 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 945 } 946 947 static inline void kvm_arch_free_vm(struct kvm *kvm) 948 { 949 kfree(kvm); 950 } 951 #endif 952 953 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 954 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 955 { 956 return -ENOTSUPP; 957 } 958 #endif 959 960 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 961 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 962 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 963 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 964 #else 965 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 966 { 967 } 968 969 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 970 { 971 } 972 973 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 974 { 975 return false; 976 } 977 #endif 978 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 979 void kvm_arch_start_assignment(struct kvm *kvm); 980 void kvm_arch_end_assignment(struct kvm *kvm); 981 bool kvm_arch_has_assigned_device(struct kvm *kvm); 982 #else 983 static inline void kvm_arch_start_assignment(struct kvm *kvm) 984 { 985 } 986 987 static inline void kvm_arch_end_assignment(struct kvm *kvm) 988 { 989 } 990 991 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 992 { 993 return false; 994 } 995 #endif 996 997 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 998 { 999 #ifdef __KVM_HAVE_ARCH_WQP 1000 return vcpu->arch.waitp; 1001 #else 1002 return &vcpu->wait; 1003 #endif 1004 } 1005 1006 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1007 /* 1008 * returns true if the virtual interrupt controller is initialized and 1009 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1010 * controller is dynamically instantiated and this is not always true. 1011 */ 1012 bool kvm_arch_intc_initialized(struct kvm *kvm); 1013 #else 1014 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1015 { 1016 return true; 1017 } 1018 #endif 1019 1020 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1021 void kvm_arch_destroy_vm(struct kvm *kvm); 1022 void kvm_arch_sync_events(struct kvm *kvm); 1023 1024 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1025 1026 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1027 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1028 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1029 1030 struct kvm_irq_ack_notifier { 1031 struct hlist_node link; 1032 unsigned gsi; 1033 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1034 }; 1035 1036 int kvm_irq_map_gsi(struct kvm *kvm, 1037 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1038 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1039 1040 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1041 bool line_status); 1042 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1043 int irq_source_id, int level, bool line_status); 1044 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1045 struct kvm *kvm, int irq_source_id, 1046 int level, bool line_status); 1047 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1048 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1049 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1050 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1051 struct kvm_irq_ack_notifier *kian); 1052 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1053 struct kvm_irq_ack_notifier *kian); 1054 int kvm_request_irq_source_id(struct kvm *kvm); 1055 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1056 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1057 1058 /* 1059 * search_memslots() and __gfn_to_memslot() are here because they are 1060 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1061 * gfn_to_memslot() itself isn't here as an inline because that would 1062 * bloat other code too much. 1063 * 1064 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1065 */ 1066 static inline struct kvm_memory_slot * 1067 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1068 { 1069 int start = 0, end = slots->used_slots; 1070 int slot = atomic_read(&slots->lru_slot); 1071 struct kvm_memory_slot *memslots = slots->memslots; 1072 1073 if (unlikely(!slots->used_slots)) 1074 return NULL; 1075 1076 if (gfn >= memslots[slot].base_gfn && 1077 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1078 return &memslots[slot]; 1079 1080 while (start < end) { 1081 slot = start + (end - start) / 2; 1082 1083 if (gfn >= memslots[slot].base_gfn) 1084 end = slot; 1085 else 1086 start = slot + 1; 1087 } 1088 1089 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1090 gfn < memslots[start].base_gfn + memslots[start].npages) { 1091 atomic_set(&slots->lru_slot, start); 1092 return &memslots[start]; 1093 } 1094 1095 return NULL; 1096 } 1097 1098 static inline struct kvm_memory_slot * 1099 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1100 { 1101 return search_memslots(slots, gfn); 1102 } 1103 1104 static inline unsigned long 1105 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1106 { 1107 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1108 } 1109 1110 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1111 { 1112 return gfn_to_memslot(kvm, gfn)->id; 1113 } 1114 1115 static inline gfn_t 1116 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1117 { 1118 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1119 1120 return slot->base_gfn + gfn_offset; 1121 } 1122 1123 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1124 { 1125 return (gpa_t)gfn << PAGE_SHIFT; 1126 } 1127 1128 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1129 { 1130 return (gfn_t)(gpa >> PAGE_SHIFT); 1131 } 1132 1133 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1134 { 1135 return (hpa_t)pfn << PAGE_SHIFT; 1136 } 1137 1138 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1139 gpa_t gpa) 1140 { 1141 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1142 } 1143 1144 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1145 { 1146 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1147 1148 return kvm_is_error_hva(hva); 1149 } 1150 1151 enum kvm_stat_kind { 1152 KVM_STAT_VM, 1153 KVM_STAT_VCPU, 1154 }; 1155 1156 struct kvm_stat_data { 1157 struct kvm *kvm; 1158 struct kvm_stats_debugfs_item *dbgfs_item; 1159 }; 1160 1161 struct kvm_stats_debugfs_item { 1162 const char *name; 1163 int offset; 1164 enum kvm_stat_kind kind; 1165 int mode; 1166 }; 1167 1168 #define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1169 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1170 1171 #define VM_STAT(n, x, ...) \ 1172 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ } 1173 #define VCPU_STAT(n, x, ...) \ 1174 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ } 1175 1176 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1177 extern struct dentry *kvm_debugfs_dir; 1178 1179 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1180 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1181 { 1182 if (unlikely(kvm->mmu_notifier_count)) 1183 return 1; 1184 /* 1185 * Ensure the read of mmu_notifier_count happens before the read 1186 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1187 * mmu_notifier_invalidate_range_end to make sure that the caller 1188 * either sees the old (non-zero) value of mmu_notifier_count or 1189 * the new (incremented) value of mmu_notifier_seq. 1190 * PowerPC Book3s HV KVM calls this under a per-page lock 1191 * rather than under kvm->mmu_lock, for scalability, so 1192 * can't rely on kvm->mmu_lock to keep things ordered. 1193 */ 1194 smp_rmb(); 1195 if (kvm->mmu_notifier_seq != mmu_seq) 1196 return 1; 1197 return 0; 1198 } 1199 #endif 1200 1201 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1202 1203 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1204 1205 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1206 int kvm_set_irq_routing(struct kvm *kvm, 1207 const struct kvm_irq_routing_entry *entries, 1208 unsigned nr, 1209 unsigned flags); 1210 int kvm_set_routing_entry(struct kvm *kvm, 1211 struct kvm_kernel_irq_routing_entry *e, 1212 const struct kvm_irq_routing_entry *ue); 1213 void kvm_free_irq_routing(struct kvm *kvm); 1214 1215 #else 1216 1217 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1218 1219 #endif 1220 1221 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1222 1223 #ifdef CONFIG_HAVE_KVM_EVENTFD 1224 1225 void kvm_eventfd_init(struct kvm *kvm); 1226 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1227 1228 #ifdef CONFIG_HAVE_KVM_IRQFD 1229 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1230 void kvm_irqfd_release(struct kvm *kvm); 1231 void kvm_irq_routing_update(struct kvm *); 1232 #else 1233 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1234 { 1235 return -EINVAL; 1236 } 1237 1238 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1239 #endif 1240 1241 #else 1242 1243 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1244 1245 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1246 { 1247 return -EINVAL; 1248 } 1249 1250 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1251 1252 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1253 static inline void kvm_irq_routing_update(struct kvm *kvm) 1254 { 1255 } 1256 #endif 1257 1258 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1259 { 1260 return -ENOSYS; 1261 } 1262 1263 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1264 1265 void kvm_arch_irq_routing_update(struct kvm *kvm); 1266 1267 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1268 { 1269 /* 1270 * Ensure the rest of the request is published to kvm_check_request's 1271 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1272 */ 1273 smp_wmb(); 1274 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1275 } 1276 1277 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1278 { 1279 return READ_ONCE(vcpu->requests); 1280 } 1281 1282 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1283 { 1284 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1285 } 1286 1287 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1288 { 1289 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1290 } 1291 1292 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1293 { 1294 if (kvm_test_request(req, vcpu)) { 1295 kvm_clear_request(req, vcpu); 1296 1297 /* 1298 * Ensure the rest of the request is visible to kvm_check_request's 1299 * caller. Paired with the smp_wmb in kvm_make_request. 1300 */ 1301 smp_mb__after_atomic(); 1302 return true; 1303 } else { 1304 return false; 1305 } 1306 } 1307 1308 extern bool kvm_rebooting; 1309 1310 extern unsigned int halt_poll_ns; 1311 extern unsigned int halt_poll_ns_grow; 1312 extern unsigned int halt_poll_ns_grow_start; 1313 extern unsigned int halt_poll_ns_shrink; 1314 1315 struct kvm_device { 1316 const struct kvm_device_ops *ops; 1317 struct kvm *kvm; 1318 void *private; 1319 struct list_head vm_node; 1320 }; 1321 1322 /* create, destroy, and name are mandatory */ 1323 struct kvm_device_ops { 1324 const char *name; 1325 1326 /* 1327 * create is called holding kvm->lock and any operations not suitable 1328 * to do while holding the lock should be deferred to init (see 1329 * below). 1330 */ 1331 int (*create)(struct kvm_device *dev, u32 type); 1332 1333 /* 1334 * init is called after create if create is successful and is called 1335 * outside of holding kvm->lock. 1336 */ 1337 void (*init)(struct kvm_device *dev); 1338 1339 /* 1340 * Destroy is responsible for freeing dev. 1341 * 1342 * Destroy may be called before or after destructors are called 1343 * on emulated I/O regions, depending on whether a reference is 1344 * held by a vcpu or other kvm component that gets destroyed 1345 * after the emulated I/O. 1346 */ 1347 void (*destroy)(struct kvm_device *dev); 1348 1349 /* 1350 * Release is an alternative method to free the device. It is 1351 * called when the device file descriptor is closed. Once 1352 * release is called, the destroy method will not be called 1353 * anymore as the device is removed from the device list of 1354 * the VM. kvm->lock is held. 1355 */ 1356 void (*release)(struct kvm_device *dev); 1357 1358 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1359 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1360 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1361 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1362 unsigned long arg); 1363 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1364 }; 1365 1366 void kvm_device_get(struct kvm_device *dev); 1367 void kvm_device_put(struct kvm_device *dev); 1368 struct kvm_device *kvm_device_from_filp(struct file *filp); 1369 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1370 void kvm_unregister_device_ops(u32 type); 1371 1372 extern struct kvm_device_ops kvm_mpic_ops; 1373 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1374 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1375 1376 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1377 1378 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1379 { 1380 vcpu->spin_loop.in_spin_loop = val; 1381 } 1382 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1383 { 1384 vcpu->spin_loop.dy_eligible = val; 1385 } 1386 1387 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1388 1389 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1390 { 1391 } 1392 1393 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1394 { 1395 } 1396 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1397 1398 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1399 { 1400 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1401 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1402 } 1403 1404 struct kvm_vcpu *kvm_get_running_vcpu(void); 1405 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1406 1407 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1408 bool kvm_arch_has_irq_bypass(void); 1409 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1410 struct irq_bypass_producer *); 1411 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1412 struct irq_bypass_producer *); 1413 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1414 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1415 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1416 uint32_t guest_irq, bool set); 1417 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1418 1419 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1420 /* If we wakeup during the poll time, was it a sucessful poll? */ 1421 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1422 { 1423 return vcpu->valid_wakeup; 1424 } 1425 1426 #else 1427 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1428 { 1429 return true; 1430 } 1431 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1432 1433 #ifdef CONFIG_HAVE_KVM_NO_POLL 1434 /* Callback that tells if we must not poll */ 1435 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1436 #else 1437 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1438 { 1439 return false; 1440 } 1441 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1442 1443 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1444 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1445 unsigned int ioctl, unsigned long arg); 1446 #else 1447 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1448 unsigned int ioctl, 1449 unsigned long arg) 1450 { 1451 return -ENOIOCTLCMD; 1452 } 1453 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1454 1455 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1456 unsigned long start, unsigned long end); 1457 1458 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1459 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1460 #else 1461 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1462 { 1463 return 0; 1464 } 1465 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1466 1467 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1468 1469 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1470 uintptr_t data, const char *name, 1471 struct task_struct **thread_ptr); 1472 1473 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1474 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1475 { 1476 vcpu->run->exit_reason = KVM_EXIT_INTR; 1477 vcpu->stat.signal_exits++; 1478 } 1479 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1480 1481 #endif 1482