1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/mm.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/preempt.h> 17 #include <linux/msi.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/rcupdate.h> 21 #include <linux/ratelimit.h> 22 #include <linux/err.h> 23 #include <linux/irqflags.h> 24 #include <linux/context_tracking.h> 25 #include <linux/irqbypass.h> 26 #include <linux/swait.h> 27 #include <linux/refcount.h> 28 #include <linux/nospec.h> 29 #include <asm/signal.h> 30 31 #include <linux/kvm.h> 32 #include <linux/kvm_para.h> 33 34 #include <linux/kvm_types.h> 35 36 #include <asm/kvm_host.h> 37 38 #ifndef KVM_MAX_VCPU_ID 39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40 #endif 41 42 /* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47 #define KVM_MEMSLOT_INVALID (1UL << 16) 48 49 /* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70 /* Two fragments for cross MMIO pages. */ 71 #define KVM_MAX_MMIO_FRAGMENTS 2 72 73 #ifndef KVM_ADDRESS_SPACE_NUM 74 #define KVM_ADDRESS_SPACE_NUM 1 75 #endif 76 77 /* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84 #define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90 /* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94 static inline bool is_error_pfn(kvm_pfn_t pfn) 95 { 96 return !!(pfn & KVM_PFN_ERR_MASK); 97 } 98 99 /* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107 } 108 109 /* noslot pfn indicates that the gfn is not in slot. */ 110 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111 { 112 return pfn == KVM_PFN_NOSLOT; 113 } 114 115 /* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119 #ifndef KVM_HVA_ERR_BAD 120 121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124 static inline bool kvm_is_error_hva(unsigned long addr) 125 { 126 return addr >= PAGE_OFFSET; 127 } 128 129 #endif 130 131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133 static inline bool is_error_page(struct page *page) 134 { 135 return IS_ERR(page); 136 } 137 138 #define KVM_REQUEST_MASK GENMASK(7,0) 139 #define KVM_REQUEST_NO_WAKEUP BIT(8) 140 #define KVM_REQUEST_WAIT BIT(9) 141 /* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147 #define KVM_REQ_PENDING_TIMER 2 148 #define KVM_REQ_UNHALT 3 149 #define KVM_REQUEST_ARCH_BASE 8 150 151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154 }) 155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160 extern struct kmem_cache *kvm_vcpu_cache; 161 162 extern struct mutex kvm_lock; 163 extern struct list_head vm_list; 164 165 struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169 }; 170 171 #define NR_IOBUS_DEVS 1000 172 173 struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177 }; 178 179 enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185 }; 186 187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200 #ifdef CONFIG_KVM_ASYNC_PF 201 struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gva_t gva; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211 }; 212 213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 215 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 216 struct kvm_arch_async_pf *arch); 217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 218 #endif 219 220 enum { 221 OUTSIDE_GUEST_MODE, 222 IN_GUEST_MODE, 223 EXITING_GUEST_MODE, 224 READING_SHADOW_PAGE_TABLES, 225 }; 226 227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 228 229 struct kvm_host_map { 230 /* 231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 232 * a 'struct page' for it. When using mem= kernel parameter some memory 233 * can be used as guest memory but they are not managed by host 234 * kernel). 235 * If 'pfn' is not managed by the host kernel, this field is 236 * initialized to KVM_UNMAPPED_PAGE. 237 */ 238 struct page *page; 239 void *hva; 240 kvm_pfn_t pfn; 241 kvm_pfn_t gfn; 242 }; 243 244 /* 245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 246 * directly to check for that. 247 */ 248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 249 { 250 return !!map->hva; 251 } 252 253 /* 254 * Sometimes a large or cross-page mmio needs to be broken up into separate 255 * exits for userspace servicing. 256 */ 257 struct kvm_mmio_fragment { 258 gpa_t gpa; 259 void *data; 260 unsigned len; 261 }; 262 263 struct kvm_vcpu { 264 struct kvm *kvm; 265 #ifdef CONFIG_PREEMPT_NOTIFIERS 266 struct preempt_notifier preempt_notifier; 267 #endif 268 int cpu; 269 int vcpu_id; /* id given by userspace at creation */ 270 int vcpu_idx; /* index in kvm->vcpus array */ 271 int srcu_idx; 272 int mode; 273 u64 requests; 274 unsigned long guest_debug; 275 276 int pre_pcpu; 277 struct list_head blocked_vcpu_list; 278 279 struct mutex mutex; 280 struct kvm_run *run; 281 282 struct swait_queue_head wq; 283 struct pid __rcu *pid; 284 int sigset_active; 285 sigset_t sigset; 286 struct kvm_vcpu_stat stat; 287 unsigned int halt_poll_ns; 288 bool valid_wakeup; 289 290 #ifdef CONFIG_HAS_IOMEM 291 int mmio_needed; 292 int mmio_read_completed; 293 int mmio_is_write; 294 int mmio_cur_fragment; 295 int mmio_nr_fragments; 296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 297 #endif 298 299 #ifdef CONFIG_KVM_ASYNC_PF 300 struct { 301 u32 queued; 302 struct list_head queue; 303 struct list_head done; 304 spinlock_t lock; 305 } async_pf; 306 #endif 307 308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 309 /* 310 * Cpu relax intercept or pause loop exit optimization 311 * in_spin_loop: set when a vcpu does a pause loop exit 312 * or cpu relax intercepted. 313 * dy_eligible: indicates whether vcpu is eligible for directed yield. 314 */ 315 struct { 316 bool in_spin_loop; 317 bool dy_eligible; 318 } spin_loop; 319 #endif 320 bool preempted; 321 bool ready; 322 struct kvm_vcpu_arch arch; 323 struct dentry *debugfs_dentry; 324 }; 325 326 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 327 { 328 /* 329 * The memory barrier ensures a previous write to vcpu->requests cannot 330 * be reordered with the read of vcpu->mode. It pairs with the general 331 * memory barrier following the write of vcpu->mode in VCPU RUN. 332 */ 333 smp_mb__before_atomic(); 334 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 335 } 336 337 /* 338 * Some of the bitops functions do not support too long bitmaps. 339 * This number must be determined not to exceed such limits. 340 */ 341 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 342 343 struct kvm_memory_slot { 344 gfn_t base_gfn; 345 unsigned long npages; 346 unsigned long *dirty_bitmap; 347 struct kvm_arch_memory_slot arch; 348 unsigned long userspace_addr; 349 u32 flags; 350 short id; 351 }; 352 353 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 354 { 355 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 356 } 357 358 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 359 { 360 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 361 362 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 363 } 364 365 struct kvm_s390_adapter_int { 366 u64 ind_addr; 367 u64 summary_addr; 368 u64 ind_offset; 369 u32 summary_offset; 370 u32 adapter_id; 371 }; 372 373 struct kvm_hv_sint { 374 u32 vcpu; 375 u32 sint; 376 }; 377 378 struct kvm_kernel_irq_routing_entry { 379 u32 gsi; 380 u32 type; 381 int (*set)(struct kvm_kernel_irq_routing_entry *e, 382 struct kvm *kvm, int irq_source_id, int level, 383 bool line_status); 384 union { 385 struct { 386 unsigned irqchip; 387 unsigned pin; 388 } irqchip; 389 struct { 390 u32 address_lo; 391 u32 address_hi; 392 u32 data; 393 u32 flags; 394 u32 devid; 395 } msi; 396 struct kvm_s390_adapter_int adapter; 397 struct kvm_hv_sint hv_sint; 398 }; 399 struct hlist_node link; 400 }; 401 402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 403 struct kvm_irq_routing_table { 404 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 405 u32 nr_rt_entries; 406 /* 407 * Array indexed by gsi. Each entry contains list of irq chips 408 * the gsi is connected to. 409 */ 410 struct hlist_head map[0]; 411 }; 412 #endif 413 414 #ifndef KVM_PRIVATE_MEM_SLOTS 415 #define KVM_PRIVATE_MEM_SLOTS 0 416 #endif 417 418 #ifndef KVM_MEM_SLOTS_NUM 419 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 420 #endif 421 422 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 423 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 424 { 425 return 0; 426 } 427 #endif 428 429 /* 430 * Note: 431 * memslots are not sorted by id anymore, please use id_to_memslot() 432 * to get the memslot by its id. 433 */ 434 struct kvm_memslots { 435 u64 generation; 436 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 437 /* The mapping table from slot id to the index in memslots[]. */ 438 short id_to_index[KVM_MEM_SLOTS_NUM]; 439 atomic_t lru_slot; 440 int used_slots; 441 }; 442 443 struct kvm { 444 spinlock_t mmu_lock; 445 struct mutex slots_lock; 446 struct mm_struct *mm; /* userspace tied to this vm */ 447 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 448 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 449 450 /* 451 * created_vcpus is protected by kvm->lock, and is incremented 452 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 453 * incremented after storing the kvm_vcpu pointer in vcpus, 454 * and is accessed atomically. 455 */ 456 atomic_t online_vcpus; 457 int created_vcpus; 458 int last_boosted_vcpu; 459 struct list_head vm_list; 460 struct mutex lock; 461 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 462 #ifdef CONFIG_HAVE_KVM_EVENTFD 463 struct { 464 spinlock_t lock; 465 struct list_head items; 466 struct list_head resampler_list; 467 struct mutex resampler_lock; 468 } irqfds; 469 struct list_head ioeventfds; 470 #endif 471 struct kvm_vm_stat stat; 472 struct kvm_arch arch; 473 refcount_t users_count; 474 #ifdef CONFIG_KVM_MMIO 475 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 476 spinlock_t ring_lock; 477 struct list_head coalesced_zones; 478 #endif 479 480 struct mutex irq_lock; 481 #ifdef CONFIG_HAVE_KVM_IRQCHIP 482 /* 483 * Update side is protected by irq_lock. 484 */ 485 struct kvm_irq_routing_table __rcu *irq_routing; 486 #endif 487 #ifdef CONFIG_HAVE_KVM_IRQFD 488 struct hlist_head irq_ack_notifier_list; 489 #endif 490 491 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 492 struct mmu_notifier mmu_notifier; 493 unsigned long mmu_notifier_seq; 494 long mmu_notifier_count; 495 #endif 496 long tlbs_dirty; 497 struct list_head devices; 498 bool manual_dirty_log_protect; 499 struct dentry *debugfs_dentry; 500 struct kvm_stat_data **debugfs_stat_data; 501 struct srcu_struct srcu; 502 struct srcu_struct irq_srcu; 503 pid_t userspace_pid; 504 }; 505 506 #define kvm_err(fmt, ...) \ 507 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 508 #define kvm_info(fmt, ...) \ 509 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510 #define kvm_debug(fmt, ...) \ 511 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512 #define kvm_debug_ratelimited(fmt, ...) \ 513 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 514 ## __VA_ARGS__) 515 #define kvm_pr_unimpl(fmt, ...) \ 516 pr_err_ratelimited("kvm [%i]: " fmt, \ 517 task_tgid_nr(current), ## __VA_ARGS__) 518 519 /* The guest did something we don't support. */ 520 #define vcpu_unimpl(vcpu, fmt, ...) \ 521 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 522 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 523 524 #define vcpu_debug(vcpu, fmt, ...) \ 525 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 526 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 527 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 528 ## __VA_ARGS__) 529 #define vcpu_err(vcpu, fmt, ...) \ 530 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 531 532 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 533 { 534 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 535 lockdep_is_held(&kvm->slots_lock) || 536 !refcount_read(&kvm->users_count)); 537 } 538 539 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 540 { 541 int num_vcpus = atomic_read(&kvm->online_vcpus); 542 i = array_index_nospec(i, num_vcpus); 543 544 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 545 smp_rmb(); 546 return kvm->vcpus[i]; 547 } 548 549 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 550 for (idx = 0; \ 551 idx < atomic_read(&kvm->online_vcpus) && \ 552 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 553 idx++) 554 555 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 556 { 557 struct kvm_vcpu *vcpu = NULL; 558 int i; 559 560 if (id < 0) 561 return NULL; 562 if (id < KVM_MAX_VCPUS) 563 vcpu = kvm_get_vcpu(kvm, id); 564 if (vcpu && vcpu->vcpu_id == id) 565 return vcpu; 566 kvm_for_each_vcpu(i, vcpu, kvm) 567 if (vcpu->vcpu_id == id) 568 return vcpu; 569 return NULL; 570 } 571 572 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 573 { 574 return vcpu->vcpu_idx; 575 } 576 577 #define kvm_for_each_memslot(memslot, slots) \ 578 for (memslot = &slots->memslots[0]; \ 579 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 580 memslot++) 581 582 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 583 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 584 585 void vcpu_load(struct kvm_vcpu *vcpu); 586 void vcpu_put(struct kvm_vcpu *vcpu); 587 588 #ifdef __KVM_HAVE_IOAPIC 589 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 590 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 591 #else 592 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 593 { 594 } 595 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 596 { 597 } 598 #endif 599 600 #ifdef CONFIG_HAVE_KVM_IRQFD 601 int kvm_irqfd_init(void); 602 void kvm_irqfd_exit(void); 603 #else 604 static inline int kvm_irqfd_init(void) 605 { 606 return 0; 607 } 608 609 static inline void kvm_irqfd_exit(void) 610 { 611 } 612 #endif 613 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 614 struct module *module); 615 void kvm_exit(void); 616 617 void kvm_get_kvm(struct kvm *kvm); 618 void kvm_put_kvm(struct kvm *kvm); 619 void kvm_put_kvm_no_destroy(struct kvm *kvm); 620 621 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 622 { 623 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 624 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 625 lockdep_is_held(&kvm->slots_lock) || 626 !refcount_read(&kvm->users_count)); 627 } 628 629 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 630 { 631 return __kvm_memslots(kvm, 0); 632 } 633 634 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 635 { 636 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 637 638 return __kvm_memslots(vcpu->kvm, as_id); 639 } 640 641 static inline struct kvm_memory_slot * 642 id_to_memslot(struct kvm_memslots *slots, int id) 643 { 644 int index = slots->id_to_index[id]; 645 struct kvm_memory_slot *slot; 646 647 slot = &slots->memslots[index]; 648 649 WARN_ON(slot->id != id); 650 return slot; 651 } 652 653 /* 654 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 655 * - create a new memory slot 656 * - delete an existing memory slot 657 * - modify an existing memory slot 658 * -- move it in the guest physical memory space 659 * -- just change its flags 660 * 661 * Since flags can be changed by some of these operations, the following 662 * differentiation is the best we can do for __kvm_set_memory_region(): 663 */ 664 enum kvm_mr_change { 665 KVM_MR_CREATE, 666 KVM_MR_DELETE, 667 KVM_MR_MOVE, 668 KVM_MR_FLAGS_ONLY, 669 }; 670 671 int kvm_set_memory_region(struct kvm *kvm, 672 const struct kvm_userspace_memory_region *mem); 673 int __kvm_set_memory_region(struct kvm *kvm, 674 const struct kvm_userspace_memory_region *mem); 675 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 676 struct kvm_memory_slot *dont); 677 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 678 unsigned long npages); 679 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 680 int kvm_arch_prepare_memory_region(struct kvm *kvm, 681 struct kvm_memory_slot *memslot, 682 const struct kvm_userspace_memory_region *mem, 683 enum kvm_mr_change change); 684 void kvm_arch_commit_memory_region(struct kvm *kvm, 685 const struct kvm_userspace_memory_region *mem, 686 const struct kvm_memory_slot *old, 687 const struct kvm_memory_slot *new, 688 enum kvm_mr_change change); 689 bool kvm_largepages_enabled(void); 690 void kvm_disable_largepages(void); 691 /* flush all memory translations */ 692 void kvm_arch_flush_shadow_all(struct kvm *kvm); 693 /* flush memory translations pointing to 'slot' */ 694 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 695 struct kvm_memory_slot *slot); 696 697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 698 struct page **pages, int nr_pages); 699 700 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 701 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 702 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 703 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 704 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 705 bool *writable); 706 void kvm_release_page_clean(struct page *page); 707 void kvm_release_page_dirty(struct page *page); 708 void kvm_set_page_accessed(struct page *page); 709 710 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 711 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 712 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 713 bool *writable); 714 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 715 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 716 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 717 bool atomic, bool *async, bool write_fault, 718 bool *writable); 719 720 void kvm_release_pfn_clean(kvm_pfn_t pfn); 721 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 722 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 723 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 724 void kvm_get_pfn(kvm_pfn_t pfn); 725 726 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 727 int len); 728 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 729 unsigned long len); 730 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 731 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 732 void *data, unsigned long len); 733 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 734 int offset, int len); 735 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 736 unsigned long len); 737 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 738 void *data, unsigned long len); 739 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 740 void *data, unsigned int offset, 741 unsigned long len); 742 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 743 gpa_t gpa, unsigned long len); 744 745 #define __kvm_put_guest(kvm, gfn, offset, value, type) \ 746 ({ \ 747 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 748 type __user *__uaddr = (type __user *)(__addr + offset); \ 749 int __ret = -EFAULT; \ 750 \ 751 if (!kvm_is_error_hva(__addr)) \ 752 __ret = put_user(value, __uaddr); \ 753 if (!__ret) \ 754 mark_page_dirty(kvm, gfn); \ 755 __ret; \ 756 }) 757 758 #define kvm_put_guest(kvm, gpa, value, type) \ 759 ({ \ 760 gpa_t __gpa = gpa; \ 761 struct kvm *__kvm = kvm; \ 762 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 763 offset_in_page(__gpa), (value), type); \ 764 }) 765 766 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 767 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 768 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 769 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 770 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 771 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 772 773 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 774 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 775 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 776 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 777 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 778 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 779 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 780 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 781 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 782 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 783 int len); 784 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 785 unsigned long len); 786 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 787 unsigned long len); 788 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 789 int offset, int len); 790 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 791 unsigned long len); 792 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 793 794 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 795 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 796 797 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 798 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 799 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 800 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 801 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 802 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 803 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 804 805 void kvm_flush_remote_tlbs(struct kvm *kvm); 806 void kvm_reload_remote_mmus(struct kvm *kvm); 807 808 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 809 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 810 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 811 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 812 unsigned long *vcpu_bitmap); 813 814 long kvm_arch_dev_ioctl(struct file *filp, 815 unsigned int ioctl, unsigned long arg); 816 long kvm_arch_vcpu_ioctl(struct file *filp, 817 unsigned int ioctl, unsigned long arg); 818 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 819 820 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 821 822 int kvm_get_dirty_log(struct kvm *kvm, 823 struct kvm_dirty_log *log, int *is_dirty); 824 825 int kvm_get_dirty_log_protect(struct kvm *kvm, 826 struct kvm_dirty_log *log, bool *flush); 827 int kvm_clear_dirty_log_protect(struct kvm *kvm, 828 struct kvm_clear_dirty_log *log, bool *flush); 829 830 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 831 struct kvm_memory_slot *slot, 832 gfn_t gfn_offset, 833 unsigned long mask); 834 835 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 836 struct kvm_dirty_log *log); 837 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 838 struct kvm_clear_dirty_log *log); 839 840 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 841 bool line_status); 842 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 843 struct kvm_enable_cap *cap); 844 long kvm_arch_vm_ioctl(struct file *filp, 845 unsigned int ioctl, unsigned long arg); 846 847 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 848 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 849 850 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 851 struct kvm_translation *tr); 852 853 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 854 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 855 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 856 struct kvm_sregs *sregs); 857 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 858 struct kvm_sregs *sregs); 859 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 860 struct kvm_mp_state *mp_state); 861 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 862 struct kvm_mp_state *mp_state); 863 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 864 struct kvm_guest_debug *dbg); 865 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 866 867 int kvm_arch_init(void *opaque); 868 void kvm_arch_exit(void); 869 870 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 871 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 872 873 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 874 875 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 876 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 877 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 878 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 879 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 880 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 881 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 882 883 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 884 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 885 #endif 886 887 int kvm_arch_hardware_enable(void); 888 void kvm_arch_hardware_disable(void); 889 int kvm_arch_hardware_setup(void); 890 void kvm_arch_hardware_unsetup(void); 891 int kvm_arch_check_processor_compat(void); 892 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 893 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 894 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 895 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 896 897 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 898 /* 899 * All architectures that want to use vzalloc currently also 900 * need their own kvm_arch_alloc_vm implementation. 901 */ 902 static inline struct kvm *kvm_arch_alloc_vm(void) 903 { 904 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 905 } 906 907 static inline void kvm_arch_free_vm(struct kvm *kvm) 908 { 909 kfree(kvm); 910 } 911 #endif 912 913 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 914 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 915 { 916 return -ENOTSUPP; 917 } 918 #endif 919 920 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 921 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 922 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 923 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 924 #else 925 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 926 { 927 } 928 929 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 930 { 931 } 932 933 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 934 { 935 return false; 936 } 937 #endif 938 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 939 void kvm_arch_start_assignment(struct kvm *kvm); 940 void kvm_arch_end_assignment(struct kvm *kvm); 941 bool kvm_arch_has_assigned_device(struct kvm *kvm); 942 #else 943 static inline void kvm_arch_start_assignment(struct kvm *kvm) 944 { 945 } 946 947 static inline void kvm_arch_end_assignment(struct kvm *kvm) 948 { 949 } 950 951 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 952 { 953 return false; 954 } 955 #endif 956 957 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 958 { 959 #ifdef __KVM_HAVE_ARCH_WQP 960 return vcpu->arch.wqp; 961 #else 962 return &vcpu->wq; 963 #endif 964 } 965 966 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 967 /* 968 * returns true if the virtual interrupt controller is initialized and 969 * ready to accept virtual IRQ. On some architectures the virtual interrupt 970 * controller is dynamically instantiated and this is not always true. 971 */ 972 bool kvm_arch_intc_initialized(struct kvm *kvm); 973 #else 974 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 975 { 976 return true; 977 } 978 #endif 979 980 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 981 void kvm_arch_destroy_vm(struct kvm *kvm); 982 void kvm_arch_sync_events(struct kvm *kvm); 983 984 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 985 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 986 987 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 988 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 989 990 struct kvm_irq_ack_notifier { 991 struct hlist_node link; 992 unsigned gsi; 993 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 994 }; 995 996 int kvm_irq_map_gsi(struct kvm *kvm, 997 struct kvm_kernel_irq_routing_entry *entries, int gsi); 998 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 999 1000 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1001 bool line_status); 1002 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1003 int irq_source_id, int level, bool line_status); 1004 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1005 struct kvm *kvm, int irq_source_id, 1006 int level, bool line_status); 1007 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1008 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1009 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1010 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1011 struct kvm_irq_ack_notifier *kian); 1012 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1013 struct kvm_irq_ack_notifier *kian); 1014 int kvm_request_irq_source_id(struct kvm *kvm); 1015 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1016 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1017 1018 /* 1019 * search_memslots() and __gfn_to_memslot() are here because they are 1020 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1021 * gfn_to_memslot() itself isn't here as an inline because that would 1022 * bloat other code too much. 1023 */ 1024 static inline struct kvm_memory_slot * 1025 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1026 { 1027 int start = 0, end = slots->used_slots; 1028 int slot = atomic_read(&slots->lru_slot); 1029 struct kvm_memory_slot *memslots = slots->memslots; 1030 1031 if (gfn >= memslots[slot].base_gfn && 1032 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1033 return &memslots[slot]; 1034 1035 while (start < end) { 1036 slot = start + (end - start) / 2; 1037 1038 if (gfn >= memslots[slot].base_gfn) 1039 end = slot; 1040 else 1041 start = slot + 1; 1042 } 1043 1044 if (gfn >= memslots[start].base_gfn && 1045 gfn < memslots[start].base_gfn + memslots[start].npages) { 1046 atomic_set(&slots->lru_slot, start); 1047 return &memslots[start]; 1048 } 1049 1050 return NULL; 1051 } 1052 1053 static inline struct kvm_memory_slot * 1054 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1055 { 1056 return search_memslots(slots, gfn); 1057 } 1058 1059 static inline unsigned long 1060 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1061 { 1062 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1063 } 1064 1065 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1066 { 1067 return gfn_to_memslot(kvm, gfn)->id; 1068 } 1069 1070 static inline gfn_t 1071 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1072 { 1073 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1074 1075 return slot->base_gfn + gfn_offset; 1076 } 1077 1078 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1079 { 1080 return (gpa_t)gfn << PAGE_SHIFT; 1081 } 1082 1083 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1084 { 1085 return (gfn_t)(gpa >> PAGE_SHIFT); 1086 } 1087 1088 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1089 { 1090 return (hpa_t)pfn << PAGE_SHIFT; 1091 } 1092 1093 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1094 gpa_t gpa) 1095 { 1096 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1097 } 1098 1099 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1100 { 1101 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1102 1103 return kvm_is_error_hva(hva); 1104 } 1105 1106 enum kvm_stat_kind { 1107 KVM_STAT_VM, 1108 KVM_STAT_VCPU, 1109 }; 1110 1111 struct kvm_stat_data { 1112 int offset; 1113 int mode; 1114 struct kvm *kvm; 1115 }; 1116 1117 struct kvm_stats_debugfs_item { 1118 const char *name; 1119 int offset; 1120 enum kvm_stat_kind kind; 1121 int mode; 1122 }; 1123 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1124 extern struct dentry *kvm_debugfs_dir; 1125 1126 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1127 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1128 { 1129 if (unlikely(kvm->mmu_notifier_count)) 1130 return 1; 1131 /* 1132 * Ensure the read of mmu_notifier_count happens before the read 1133 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1134 * mmu_notifier_invalidate_range_end to make sure that the caller 1135 * either sees the old (non-zero) value of mmu_notifier_count or 1136 * the new (incremented) value of mmu_notifier_seq. 1137 * PowerPC Book3s HV KVM calls this under a per-page lock 1138 * rather than under kvm->mmu_lock, for scalability, so 1139 * can't rely on kvm->mmu_lock to keep things ordered. 1140 */ 1141 smp_rmb(); 1142 if (kvm->mmu_notifier_seq != mmu_seq) 1143 return 1; 1144 return 0; 1145 } 1146 #endif 1147 1148 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1149 1150 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1151 1152 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1153 int kvm_set_irq_routing(struct kvm *kvm, 1154 const struct kvm_irq_routing_entry *entries, 1155 unsigned nr, 1156 unsigned flags); 1157 int kvm_set_routing_entry(struct kvm *kvm, 1158 struct kvm_kernel_irq_routing_entry *e, 1159 const struct kvm_irq_routing_entry *ue); 1160 void kvm_free_irq_routing(struct kvm *kvm); 1161 1162 #else 1163 1164 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1165 1166 #endif 1167 1168 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1169 1170 #ifdef CONFIG_HAVE_KVM_EVENTFD 1171 1172 void kvm_eventfd_init(struct kvm *kvm); 1173 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1174 1175 #ifdef CONFIG_HAVE_KVM_IRQFD 1176 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1177 void kvm_irqfd_release(struct kvm *kvm); 1178 void kvm_irq_routing_update(struct kvm *); 1179 #else 1180 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1181 { 1182 return -EINVAL; 1183 } 1184 1185 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1186 #endif 1187 1188 #else 1189 1190 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1191 1192 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1193 { 1194 return -EINVAL; 1195 } 1196 1197 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1198 1199 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1200 static inline void kvm_irq_routing_update(struct kvm *kvm) 1201 { 1202 } 1203 #endif 1204 1205 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1206 { 1207 return -ENOSYS; 1208 } 1209 1210 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1211 1212 void kvm_arch_irq_routing_update(struct kvm *kvm); 1213 1214 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1215 { 1216 /* 1217 * Ensure the rest of the request is published to kvm_check_request's 1218 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1219 */ 1220 smp_wmb(); 1221 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1222 } 1223 1224 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1225 { 1226 return READ_ONCE(vcpu->requests); 1227 } 1228 1229 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1230 { 1231 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1232 } 1233 1234 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1235 { 1236 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1237 } 1238 1239 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1240 { 1241 if (kvm_test_request(req, vcpu)) { 1242 kvm_clear_request(req, vcpu); 1243 1244 /* 1245 * Ensure the rest of the request is visible to kvm_check_request's 1246 * caller. Paired with the smp_wmb in kvm_make_request. 1247 */ 1248 smp_mb__after_atomic(); 1249 return true; 1250 } else { 1251 return false; 1252 } 1253 } 1254 1255 extern bool kvm_rebooting; 1256 1257 extern unsigned int halt_poll_ns; 1258 extern unsigned int halt_poll_ns_grow; 1259 extern unsigned int halt_poll_ns_grow_start; 1260 extern unsigned int halt_poll_ns_shrink; 1261 1262 struct kvm_device { 1263 const struct kvm_device_ops *ops; 1264 struct kvm *kvm; 1265 void *private; 1266 struct list_head vm_node; 1267 }; 1268 1269 /* create, destroy, and name are mandatory */ 1270 struct kvm_device_ops { 1271 const char *name; 1272 1273 /* 1274 * create is called holding kvm->lock and any operations not suitable 1275 * to do while holding the lock should be deferred to init (see 1276 * below). 1277 */ 1278 int (*create)(struct kvm_device *dev, u32 type); 1279 1280 /* 1281 * init is called after create if create is successful and is called 1282 * outside of holding kvm->lock. 1283 */ 1284 void (*init)(struct kvm_device *dev); 1285 1286 /* 1287 * Destroy is responsible for freeing dev. 1288 * 1289 * Destroy may be called before or after destructors are called 1290 * on emulated I/O regions, depending on whether a reference is 1291 * held by a vcpu or other kvm component that gets destroyed 1292 * after the emulated I/O. 1293 */ 1294 void (*destroy)(struct kvm_device *dev); 1295 1296 /* 1297 * Release is an alternative method to free the device. It is 1298 * called when the device file descriptor is closed. Once 1299 * release is called, the destroy method will not be called 1300 * anymore as the device is removed from the device list of 1301 * the VM. kvm->lock is held. 1302 */ 1303 void (*release)(struct kvm_device *dev); 1304 1305 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1306 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1307 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1308 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1309 unsigned long arg); 1310 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1311 }; 1312 1313 void kvm_device_get(struct kvm_device *dev); 1314 void kvm_device_put(struct kvm_device *dev); 1315 struct kvm_device *kvm_device_from_filp(struct file *filp); 1316 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1317 void kvm_unregister_device_ops(u32 type); 1318 1319 extern struct kvm_device_ops kvm_mpic_ops; 1320 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1321 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1322 1323 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1324 1325 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1326 { 1327 vcpu->spin_loop.in_spin_loop = val; 1328 } 1329 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1330 { 1331 vcpu->spin_loop.dy_eligible = val; 1332 } 1333 1334 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1335 1336 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1337 { 1338 } 1339 1340 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1341 { 1342 } 1343 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1344 1345 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1346 bool kvm_arch_has_irq_bypass(void); 1347 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1348 struct irq_bypass_producer *); 1349 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1350 struct irq_bypass_producer *); 1351 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1352 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1353 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1354 uint32_t guest_irq, bool set); 1355 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1356 1357 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1358 /* If we wakeup during the poll time, was it a sucessful poll? */ 1359 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1360 { 1361 return vcpu->valid_wakeup; 1362 } 1363 1364 #else 1365 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1366 { 1367 return true; 1368 } 1369 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1370 1371 #ifdef CONFIG_HAVE_KVM_NO_POLL 1372 /* Callback that tells if we must not poll */ 1373 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1374 #else 1375 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1376 { 1377 return false; 1378 } 1379 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1380 1381 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1382 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1383 unsigned int ioctl, unsigned long arg); 1384 #else 1385 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1386 unsigned int ioctl, 1387 unsigned long arg) 1388 { 1389 return -ENOIOCTLCMD; 1390 } 1391 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1392 1393 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1394 unsigned long start, unsigned long end, bool blockable); 1395 1396 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1397 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1398 #else 1399 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1400 { 1401 return 0; 1402 } 1403 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1404 1405 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1406 1407 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1408 uintptr_t data, const char *name, 1409 struct task_struct **thread_ptr); 1410 1411 #endif 1412