xref: /openbmc/linux/include/linux/kvm_host.h (revision 68f436a80fc89faa474134edfe442d95528be17a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
151 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
152 
153 static inline bool is_error_page(struct page *page)
154 {
155 	return IS_ERR(page);
156 }
157 
158 #define KVM_REQUEST_MASK           GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
160 #define KVM_REQUEST_WAIT           BIT(9)
161 #define KVM_REQUEST_NO_ACTION      BIT(10)
162 /*
163  * Architecture-independent vcpu->requests bit members
164  * Bits 3-7 are reserved for more arch-independent bits.
165  */
166 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK			2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
170 #define KVM_REQUEST_ARCH_BASE		8
171 
172 /*
173  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
177  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178  * guarantee the vCPU received an IPI and has actually exited guest mode.
179  */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181 
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
187 
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 				 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 				      struct kvm_vcpu *except);
193 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
194 				unsigned long *vcpu_bitmap);
195 
196 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
197 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
198 
199 extern struct mutex kvm_lock;
200 extern struct list_head vm_list;
201 
202 struct kvm_io_range {
203 	gpa_t addr;
204 	int len;
205 	struct kvm_io_device *dev;
206 };
207 
208 #define NR_IOBUS_DEVS 1000
209 
210 struct kvm_io_bus {
211 	int dev_count;
212 	int ioeventfd_count;
213 	struct kvm_io_range range[];
214 };
215 
216 enum kvm_bus {
217 	KVM_MMIO_BUS,
218 	KVM_PIO_BUS,
219 	KVM_VIRTIO_CCW_NOTIFY_BUS,
220 	KVM_FAST_MMIO_BUS,
221 	KVM_NR_BUSES
222 };
223 
224 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 		     int len, const void *val);
226 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
227 			    gpa_t addr, int len, const void *val, long cookie);
228 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
229 		    int len, void *val);
230 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
231 			    int len, struct kvm_io_device *dev);
232 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 			      struct kvm_io_device *dev);
234 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 					 gpa_t addr);
236 
237 #ifdef CONFIG_KVM_ASYNC_PF
238 struct kvm_async_pf {
239 	struct work_struct work;
240 	struct list_head link;
241 	struct list_head queue;
242 	struct kvm_vcpu *vcpu;
243 	struct mm_struct *mm;
244 	gpa_t cr2_or_gpa;
245 	unsigned long addr;
246 	struct kvm_arch_async_pf arch;
247 	bool   wakeup_all;
248 	bool notpresent_injected;
249 };
250 
251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 			unsigned long hva, struct kvm_arch_async_pf *arch);
255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256 #endif
257 
258 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
259 struct kvm_gfn_range {
260 	struct kvm_memory_slot *slot;
261 	gfn_t start;
262 	gfn_t end;
263 	pte_t pte;
264 	bool may_block;
265 };
266 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
267 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
269 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270 #endif
271 
272 enum {
273 	OUTSIDE_GUEST_MODE,
274 	IN_GUEST_MODE,
275 	EXITING_GUEST_MODE,
276 	READING_SHADOW_PAGE_TABLES,
277 };
278 
279 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
280 
281 struct kvm_host_map {
282 	/*
283 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
284 	 * a 'struct page' for it. When using mem= kernel parameter some memory
285 	 * can be used as guest memory but they are not managed by host
286 	 * kernel).
287 	 * If 'pfn' is not managed by the host kernel, this field is
288 	 * initialized to KVM_UNMAPPED_PAGE.
289 	 */
290 	struct page *page;
291 	void *hva;
292 	kvm_pfn_t pfn;
293 	kvm_pfn_t gfn;
294 };
295 
296 /*
297  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
298  * directly to check for that.
299  */
300 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
301 {
302 	return !!map->hva;
303 }
304 
305 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
306 {
307 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
308 }
309 
310 /*
311  * Sometimes a large or cross-page mmio needs to be broken up into separate
312  * exits for userspace servicing.
313  */
314 struct kvm_mmio_fragment {
315 	gpa_t gpa;
316 	void *data;
317 	unsigned len;
318 };
319 
320 struct kvm_vcpu {
321 	struct kvm *kvm;
322 #ifdef CONFIG_PREEMPT_NOTIFIERS
323 	struct preempt_notifier preempt_notifier;
324 #endif
325 	int cpu;
326 	int vcpu_id; /* id given by userspace at creation */
327 	int vcpu_idx; /* index into kvm->vcpu_array */
328 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
329 #ifdef CONFIG_PROVE_RCU
330 	int srcu_depth;
331 #endif
332 	int mode;
333 	u64 requests;
334 	unsigned long guest_debug;
335 
336 	struct mutex mutex;
337 	struct kvm_run *run;
338 
339 #ifndef __KVM_HAVE_ARCH_WQP
340 	struct rcuwait wait;
341 #endif
342 	struct pid __rcu *pid;
343 	int sigset_active;
344 	sigset_t sigset;
345 	unsigned int halt_poll_ns;
346 	bool valid_wakeup;
347 
348 #ifdef CONFIG_HAS_IOMEM
349 	int mmio_needed;
350 	int mmio_read_completed;
351 	int mmio_is_write;
352 	int mmio_cur_fragment;
353 	int mmio_nr_fragments;
354 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
355 #endif
356 
357 #ifdef CONFIG_KVM_ASYNC_PF
358 	struct {
359 		u32 queued;
360 		struct list_head queue;
361 		struct list_head done;
362 		spinlock_t lock;
363 	} async_pf;
364 #endif
365 
366 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
367 	/*
368 	 * Cpu relax intercept or pause loop exit optimization
369 	 * in_spin_loop: set when a vcpu does a pause loop exit
370 	 *  or cpu relax intercepted.
371 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
372 	 */
373 	struct {
374 		bool in_spin_loop;
375 		bool dy_eligible;
376 	} spin_loop;
377 #endif
378 	bool preempted;
379 	bool ready;
380 	struct kvm_vcpu_arch arch;
381 	struct kvm_vcpu_stat stat;
382 	char stats_id[KVM_STATS_NAME_SIZE];
383 	struct kvm_dirty_ring dirty_ring;
384 
385 	/*
386 	 * The most recently used memslot by this vCPU and the slots generation
387 	 * for which it is valid.
388 	 * No wraparound protection is needed since generations won't overflow in
389 	 * thousands of years, even assuming 1M memslot operations per second.
390 	 */
391 	struct kvm_memory_slot *last_used_slot;
392 	u64 last_used_slot_gen;
393 };
394 
395 /*
396  * Start accounting time towards a guest.
397  * Must be called before entering guest context.
398  */
399 static __always_inline void guest_timing_enter_irqoff(void)
400 {
401 	/*
402 	 * This is running in ioctl context so its safe to assume that it's the
403 	 * stime pending cputime to flush.
404 	 */
405 	instrumentation_begin();
406 	vtime_account_guest_enter();
407 	instrumentation_end();
408 }
409 
410 /*
411  * Enter guest context and enter an RCU extended quiescent state.
412  *
413  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
414  * unsafe to use any code which may directly or indirectly use RCU, tracing
415  * (including IRQ flag tracing), or lockdep. All code in this period must be
416  * non-instrumentable.
417  */
418 static __always_inline void guest_context_enter_irqoff(void)
419 {
420 	/*
421 	 * KVM does not hold any references to rcu protected data when it
422 	 * switches CPU into a guest mode. In fact switching to a guest mode
423 	 * is very similar to exiting to userspace from rcu point of view. In
424 	 * addition CPU may stay in a guest mode for quite a long time (up to
425 	 * one time slice). Lets treat guest mode as quiescent state, just like
426 	 * we do with user-mode execution.
427 	 */
428 	if (!context_tracking_guest_enter()) {
429 		instrumentation_begin();
430 		rcu_virt_note_context_switch();
431 		instrumentation_end();
432 	}
433 }
434 
435 /*
436  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
437  * guest_state_enter_irqoff().
438  */
439 static __always_inline void guest_enter_irqoff(void)
440 {
441 	guest_timing_enter_irqoff();
442 	guest_context_enter_irqoff();
443 }
444 
445 /**
446  * guest_state_enter_irqoff - Fixup state when entering a guest
447  *
448  * Entry to a guest will enable interrupts, but the kernel state is interrupts
449  * disabled when this is invoked. Also tell RCU about it.
450  *
451  * 1) Trace interrupts on state
452  * 2) Invoke context tracking if enabled to adjust RCU state
453  * 3) Tell lockdep that interrupts are enabled
454  *
455  * Invoked from architecture specific code before entering a guest.
456  * Must be called with interrupts disabled and the caller must be
457  * non-instrumentable.
458  * The caller has to invoke guest_timing_enter_irqoff() before this.
459  *
460  * Note: this is analogous to exit_to_user_mode().
461  */
462 static __always_inline void guest_state_enter_irqoff(void)
463 {
464 	instrumentation_begin();
465 	trace_hardirqs_on_prepare();
466 	lockdep_hardirqs_on_prepare();
467 	instrumentation_end();
468 
469 	guest_context_enter_irqoff();
470 	lockdep_hardirqs_on(CALLER_ADDR0);
471 }
472 
473 /*
474  * Exit guest context and exit an RCU extended quiescent state.
475  *
476  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
477  * unsafe to use any code which may directly or indirectly use RCU, tracing
478  * (including IRQ flag tracing), or lockdep. All code in this period must be
479  * non-instrumentable.
480  */
481 static __always_inline void guest_context_exit_irqoff(void)
482 {
483 	context_tracking_guest_exit();
484 }
485 
486 /*
487  * Stop accounting time towards a guest.
488  * Must be called after exiting guest context.
489  */
490 static __always_inline void guest_timing_exit_irqoff(void)
491 {
492 	instrumentation_begin();
493 	/* Flush the guest cputime we spent on the guest */
494 	vtime_account_guest_exit();
495 	instrumentation_end();
496 }
497 
498 /*
499  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
500  * guest_timing_exit_irqoff().
501  */
502 static __always_inline void guest_exit_irqoff(void)
503 {
504 	guest_context_exit_irqoff();
505 	guest_timing_exit_irqoff();
506 }
507 
508 static inline void guest_exit(void)
509 {
510 	unsigned long flags;
511 
512 	local_irq_save(flags);
513 	guest_exit_irqoff();
514 	local_irq_restore(flags);
515 }
516 
517 /**
518  * guest_state_exit_irqoff - Establish state when returning from guest mode
519  *
520  * Entry from a guest disables interrupts, but guest mode is traced as
521  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
522  *
523  * 1) Tell lockdep that interrupts are disabled
524  * 2) Invoke context tracking if enabled to reactivate RCU
525  * 3) Trace interrupts off state
526  *
527  * Invoked from architecture specific code after exiting a guest.
528  * Must be invoked with interrupts disabled and the caller must be
529  * non-instrumentable.
530  * The caller has to invoke guest_timing_exit_irqoff() after this.
531  *
532  * Note: this is analogous to enter_from_user_mode().
533  */
534 static __always_inline void guest_state_exit_irqoff(void)
535 {
536 	lockdep_hardirqs_off(CALLER_ADDR0);
537 	guest_context_exit_irqoff();
538 
539 	instrumentation_begin();
540 	trace_hardirqs_off_finish();
541 	instrumentation_end();
542 }
543 
544 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
545 {
546 	/*
547 	 * The memory barrier ensures a previous write to vcpu->requests cannot
548 	 * be reordered with the read of vcpu->mode.  It pairs with the general
549 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
550 	 */
551 	smp_mb__before_atomic();
552 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
553 }
554 
555 /*
556  * Some of the bitops functions do not support too long bitmaps.
557  * This number must be determined not to exceed such limits.
558  */
559 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
560 
561 /*
562  * Since at idle each memslot belongs to two memslot sets it has to contain
563  * two embedded nodes for each data structure that it forms a part of.
564  *
565  * Two memslot sets (one active and one inactive) are necessary so the VM
566  * continues to run on one memslot set while the other is being modified.
567  *
568  * These two memslot sets normally point to the same set of memslots.
569  * They can, however, be desynchronized when performing a memslot management
570  * operation by replacing the memslot to be modified by its copy.
571  * After the operation is complete, both memslot sets once again point to
572  * the same, common set of memslot data.
573  *
574  * The memslots themselves are independent of each other so they can be
575  * individually added or deleted.
576  */
577 struct kvm_memory_slot {
578 	struct hlist_node id_node[2];
579 	struct interval_tree_node hva_node[2];
580 	struct rb_node gfn_node[2];
581 	gfn_t base_gfn;
582 	unsigned long npages;
583 	unsigned long *dirty_bitmap;
584 	struct kvm_arch_memory_slot arch;
585 	unsigned long userspace_addr;
586 	u32 flags;
587 	short id;
588 	u16 as_id;
589 };
590 
591 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
592 {
593 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
594 }
595 
596 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
597 {
598 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
599 }
600 
601 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
602 {
603 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
604 
605 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
606 }
607 
608 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
609 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
610 #endif
611 
612 struct kvm_s390_adapter_int {
613 	u64 ind_addr;
614 	u64 summary_addr;
615 	u64 ind_offset;
616 	u32 summary_offset;
617 	u32 adapter_id;
618 };
619 
620 struct kvm_hv_sint {
621 	u32 vcpu;
622 	u32 sint;
623 };
624 
625 struct kvm_xen_evtchn {
626 	u32 port;
627 	u32 vcpu_id;
628 	int vcpu_idx;
629 	u32 priority;
630 };
631 
632 struct kvm_kernel_irq_routing_entry {
633 	u32 gsi;
634 	u32 type;
635 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
636 		   struct kvm *kvm, int irq_source_id, int level,
637 		   bool line_status);
638 	union {
639 		struct {
640 			unsigned irqchip;
641 			unsigned pin;
642 		} irqchip;
643 		struct {
644 			u32 address_lo;
645 			u32 address_hi;
646 			u32 data;
647 			u32 flags;
648 			u32 devid;
649 		} msi;
650 		struct kvm_s390_adapter_int adapter;
651 		struct kvm_hv_sint hv_sint;
652 		struct kvm_xen_evtchn xen_evtchn;
653 	};
654 	struct hlist_node link;
655 };
656 
657 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
658 struct kvm_irq_routing_table {
659 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
660 	u32 nr_rt_entries;
661 	/*
662 	 * Array indexed by gsi. Each entry contains list of irq chips
663 	 * the gsi is connected to.
664 	 */
665 	struct hlist_head map[];
666 };
667 #endif
668 
669 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
670 
671 #ifndef KVM_INTERNAL_MEM_SLOTS
672 #define KVM_INTERNAL_MEM_SLOTS 0
673 #endif
674 
675 #define KVM_MEM_SLOTS_NUM SHRT_MAX
676 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
677 
678 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
679 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
680 {
681 	return 0;
682 }
683 #endif
684 
685 struct kvm_memslots {
686 	u64 generation;
687 	atomic_long_t last_used_slot;
688 	struct rb_root_cached hva_tree;
689 	struct rb_root gfn_tree;
690 	/*
691 	 * The mapping table from slot id to memslot.
692 	 *
693 	 * 7-bit bucket count matches the size of the old id to index array for
694 	 * 512 slots, while giving good performance with this slot count.
695 	 * Higher bucket counts bring only small performance improvements but
696 	 * always result in higher memory usage (even for lower memslot counts).
697 	 */
698 	DECLARE_HASHTABLE(id_hash, 7);
699 	int node_idx;
700 };
701 
702 struct kvm {
703 #ifdef KVM_HAVE_MMU_RWLOCK
704 	rwlock_t mmu_lock;
705 #else
706 	spinlock_t mmu_lock;
707 #endif /* KVM_HAVE_MMU_RWLOCK */
708 
709 	struct mutex slots_lock;
710 
711 	/*
712 	 * Protects the arch-specific fields of struct kvm_memory_slots in
713 	 * use by the VM. To be used under the slots_lock (above) or in a
714 	 * kvm->srcu critical section where acquiring the slots_lock would
715 	 * lead to deadlock with the synchronize_srcu in
716 	 * kvm_swap_active_memslots().
717 	 */
718 	struct mutex slots_arch_lock;
719 	struct mm_struct *mm; /* userspace tied to this vm */
720 	unsigned long nr_memslot_pages;
721 	/* The two memslot sets - active and inactive (per address space) */
722 	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
723 	/* The current active memslot set for each address space */
724 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
725 	struct xarray vcpu_array;
726 	/*
727 	 * Protected by slots_lock, but can be read outside if an
728 	 * incorrect answer is acceptable.
729 	 */
730 	atomic_t nr_memslots_dirty_logging;
731 
732 	/* Used to wait for completion of MMU notifiers.  */
733 	spinlock_t mn_invalidate_lock;
734 	unsigned long mn_active_invalidate_count;
735 	struct rcuwait mn_memslots_update_rcuwait;
736 
737 	/* For management / invalidation of gfn_to_pfn_caches */
738 	spinlock_t gpc_lock;
739 	struct list_head gpc_list;
740 
741 	/*
742 	 * created_vcpus is protected by kvm->lock, and is incremented
743 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
744 	 * incremented after storing the kvm_vcpu pointer in vcpus,
745 	 * and is accessed atomically.
746 	 */
747 	atomic_t online_vcpus;
748 	int max_vcpus;
749 	int created_vcpus;
750 	int last_boosted_vcpu;
751 	struct list_head vm_list;
752 	struct mutex lock;
753 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
754 #ifdef CONFIG_HAVE_KVM_EVENTFD
755 	struct {
756 		spinlock_t        lock;
757 		struct list_head  items;
758 		/* resampler_list update side is protected by resampler_lock. */
759 		struct list_head  resampler_list;
760 		struct mutex      resampler_lock;
761 	} irqfds;
762 	struct list_head ioeventfds;
763 #endif
764 	struct kvm_vm_stat stat;
765 	struct kvm_arch arch;
766 	refcount_t users_count;
767 #ifdef CONFIG_KVM_MMIO
768 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
769 	spinlock_t ring_lock;
770 	struct list_head coalesced_zones;
771 #endif
772 
773 	struct mutex irq_lock;
774 #ifdef CONFIG_HAVE_KVM_IRQCHIP
775 	/*
776 	 * Update side is protected by irq_lock.
777 	 */
778 	struct kvm_irq_routing_table __rcu *irq_routing;
779 #endif
780 #ifdef CONFIG_HAVE_KVM_IRQFD
781 	struct hlist_head irq_ack_notifier_list;
782 #endif
783 
784 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
785 	struct mmu_notifier mmu_notifier;
786 	unsigned long mmu_invalidate_seq;
787 	long mmu_invalidate_in_progress;
788 	unsigned long mmu_invalidate_range_start;
789 	unsigned long mmu_invalidate_range_end;
790 #endif
791 	struct list_head devices;
792 	u64 manual_dirty_log_protect;
793 	struct dentry *debugfs_dentry;
794 	struct kvm_stat_data **debugfs_stat_data;
795 	struct srcu_struct srcu;
796 	struct srcu_struct irq_srcu;
797 	pid_t userspace_pid;
798 	bool override_halt_poll_ns;
799 	unsigned int max_halt_poll_ns;
800 	u32 dirty_ring_size;
801 	bool dirty_ring_with_bitmap;
802 	bool vm_bugged;
803 	bool vm_dead;
804 
805 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
806 	struct notifier_block pm_notifier;
807 #endif
808 	char stats_id[KVM_STATS_NAME_SIZE];
809 };
810 
811 #define kvm_err(fmt, ...) \
812 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
813 #define kvm_info(fmt, ...) \
814 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
815 #define kvm_debug(fmt, ...) \
816 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
817 #define kvm_debug_ratelimited(fmt, ...) \
818 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
819 			     ## __VA_ARGS__)
820 #define kvm_pr_unimpl(fmt, ...) \
821 	pr_err_ratelimited("kvm [%i]: " fmt, \
822 			   task_tgid_nr(current), ## __VA_ARGS__)
823 
824 /* The guest did something we don't support. */
825 #define vcpu_unimpl(vcpu, fmt, ...)					\
826 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
827 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
828 
829 #define vcpu_debug(vcpu, fmt, ...)					\
830 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
831 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
832 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
833 			      ## __VA_ARGS__)
834 #define vcpu_err(vcpu, fmt, ...)					\
835 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
836 
837 static inline void kvm_vm_dead(struct kvm *kvm)
838 {
839 	kvm->vm_dead = true;
840 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
841 }
842 
843 static inline void kvm_vm_bugged(struct kvm *kvm)
844 {
845 	kvm->vm_bugged = true;
846 	kvm_vm_dead(kvm);
847 }
848 
849 
850 #define KVM_BUG(cond, kvm, fmt...)				\
851 ({								\
852 	bool __ret = !!(cond);					\
853 								\
854 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
855 		kvm_vm_bugged(kvm);				\
856 	unlikely(__ret);					\
857 })
858 
859 #define KVM_BUG_ON(cond, kvm)					\
860 ({								\
861 	bool __ret = !!(cond);					\
862 								\
863 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
864 		kvm_vm_bugged(kvm);				\
865 	unlikely(__ret);					\
866 })
867 
868 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
869 {
870 #ifdef CONFIG_PROVE_RCU
871 	WARN_ONCE(vcpu->srcu_depth++,
872 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
873 #endif
874 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
875 }
876 
877 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
878 {
879 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
880 
881 #ifdef CONFIG_PROVE_RCU
882 	WARN_ONCE(--vcpu->srcu_depth,
883 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
884 #endif
885 }
886 
887 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
888 {
889 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
890 }
891 
892 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
893 {
894 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
895 				      lockdep_is_held(&kvm->slots_lock) ||
896 				      !refcount_read(&kvm->users_count));
897 }
898 
899 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
900 {
901 	int num_vcpus = atomic_read(&kvm->online_vcpus);
902 	i = array_index_nospec(i, num_vcpus);
903 
904 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
905 	smp_rmb();
906 	return xa_load(&kvm->vcpu_array, i);
907 }
908 
909 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
910 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
911 			  (atomic_read(&kvm->online_vcpus) - 1))
912 
913 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
914 {
915 	struct kvm_vcpu *vcpu = NULL;
916 	unsigned long i;
917 
918 	if (id < 0)
919 		return NULL;
920 	if (id < KVM_MAX_VCPUS)
921 		vcpu = kvm_get_vcpu(kvm, id);
922 	if (vcpu && vcpu->vcpu_id == id)
923 		return vcpu;
924 	kvm_for_each_vcpu(i, vcpu, kvm)
925 		if (vcpu->vcpu_id == id)
926 			return vcpu;
927 	return NULL;
928 }
929 
930 void kvm_destroy_vcpus(struct kvm *kvm);
931 
932 void vcpu_load(struct kvm_vcpu *vcpu);
933 void vcpu_put(struct kvm_vcpu *vcpu);
934 
935 #ifdef __KVM_HAVE_IOAPIC
936 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
937 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
938 #else
939 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
940 {
941 }
942 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
943 {
944 }
945 #endif
946 
947 #ifdef CONFIG_HAVE_KVM_IRQFD
948 int kvm_irqfd_init(void);
949 void kvm_irqfd_exit(void);
950 #else
951 static inline int kvm_irqfd_init(void)
952 {
953 	return 0;
954 }
955 
956 static inline void kvm_irqfd_exit(void)
957 {
958 }
959 #endif
960 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
961 void kvm_exit(void);
962 
963 void kvm_get_kvm(struct kvm *kvm);
964 bool kvm_get_kvm_safe(struct kvm *kvm);
965 void kvm_put_kvm(struct kvm *kvm);
966 bool file_is_kvm(struct file *file);
967 void kvm_put_kvm_no_destroy(struct kvm *kvm);
968 
969 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
970 {
971 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
972 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
973 			lockdep_is_held(&kvm->slots_lock) ||
974 			!refcount_read(&kvm->users_count));
975 }
976 
977 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
978 {
979 	return __kvm_memslots(kvm, 0);
980 }
981 
982 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
983 {
984 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
985 
986 	return __kvm_memslots(vcpu->kvm, as_id);
987 }
988 
989 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
990 {
991 	return RB_EMPTY_ROOT(&slots->gfn_tree);
992 }
993 
994 bool kvm_are_all_memslots_empty(struct kvm *kvm);
995 
996 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
997 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
998 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
999 		} else
1000 
1001 static inline
1002 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1003 {
1004 	struct kvm_memory_slot *slot;
1005 	int idx = slots->node_idx;
1006 
1007 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1008 		if (slot->id == id)
1009 			return slot;
1010 	}
1011 
1012 	return NULL;
1013 }
1014 
1015 /* Iterator used for walking memslots that overlap a gfn range. */
1016 struct kvm_memslot_iter {
1017 	struct kvm_memslots *slots;
1018 	struct rb_node *node;
1019 	struct kvm_memory_slot *slot;
1020 };
1021 
1022 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1023 {
1024 	iter->node = rb_next(iter->node);
1025 	if (!iter->node)
1026 		return;
1027 
1028 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1029 }
1030 
1031 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1032 					  struct kvm_memslots *slots,
1033 					  gfn_t start)
1034 {
1035 	int idx = slots->node_idx;
1036 	struct rb_node *tmp;
1037 	struct kvm_memory_slot *slot;
1038 
1039 	iter->slots = slots;
1040 
1041 	/*
1042 	 * Find the so called "upper bound" of a key - the first node that has
1043 	 * its key strictly greater than the searched one (the start gfn in our case).
1044 	 */
1045 	iter->node = NULL;
1046 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1047 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1048 		if (start < slot->base_gfn) {
1049 			iter->node = tmp;
1050 			tmp = tmp->rb_left;
1051 		} else {
1052 			tmp = tmp->rb_right;
1053 		}
1054 	}
1055 
1056 	/*
1057 	 * Find the slot with the lowest gfn that can possibly intersect with
1058 	 * the range, so we'll ideally have slot start <= range start
1059 	 */
1060 	if (iter->node) {
1061 		/*
1062 		 * A NULL previous node means that the very first slot
1063 		 * already has a higher start gfn.
1064 		 * In this case slot start > range start.
1065 		 */
1066 		tmp = rb_prev(iter->node);
1067 		if (tmp)
1068 			iter->node = tmp;
1069 	} else {
1070 		/* a NULL node below means no slots */
1071 		iter->node = rb_last(&slots->gfn_tree);
1072 	}
1073 
1074 	if (iter->node) {
1075 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1076 
1077 		/*
1078 		 * It is possible in the slot start < range start case that the
1079 		 * found slot ends before or at range start (slot end <= range start)
1080 		 * and so it does not overlap the requested range.
1081 		 *
1082 		 * In such non-overlapping case the next slot (if it exists) will
1083 		 * already have slot start > range start, otherwise the logic above
1084 		 * would have found it instead of the current slot.
1085 		 */
1086 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1087 			kvm_memslot_iter_next(iter);
1088 	}
1089 }
1090 
1091 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1092 {
1093 	if (!iter->node)
1094 		return false;
1095 
1096 	/*
1097 	 * If this slot starts beyond or at the end of the range so does
1098 	 * every next one
1099 	 */
1100 	return iter->slot->base_gfn < end;
1101 }
1102 
1103 /* Iterate over each memslot at least partially intersecting [start, end) range */
1104 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1105 	for (kvm_memslot_iter_start(iter, slots, start);		\
1106 	     kvm_memslot_iter_is_valid(iter, end);			\
1107 	     kvm_memslot_iter_next(iter))
1108 
1109 /*
1110  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1111  * - create a new memory slot
1112  * - delete an existing memory slot
1113  * - modify an existing memory slot
1114  *   -- move it in the guest physical memory space
1115  *   -- just change its flags
1116  *
1117  * Since flags can be changed by some of these operations, the following
1118  * differentiation is the best we can do for __kvm_set_memory_region():
1119  */
1120 enum kvm_mr_change {
1121 	KVM_MR_CREATE,
1122 	KVM_MR_DELETE,
1123 	KVM_MR_MOVE,
1124 	KVM_MR_FLAGS_ONLY,
1125 };
1126 
1127 int kvm_set_memory_region(struct kvm *kvm,
1128 			  const struct kvm_userspace_memory_region *mem);
1129 int __kvm_set_memory_region(struct kvm *kvm,
1130 			    const struct kvm_userspace_memory_region *mem);
1131 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1132 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1133 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1134 				const struct kvm_memory_slot *old,
1135 				struct kvm_memory_slot *new,
1136 				enum kvm_mr_change change);
1137 void kvm_arch_commit_memory_region(struct kvm *kvm,
1138 				struct kvm_memory_slot *old,
1139 				const struct kvm_memory_slot *new,
1140 				enum kvm_mr_change change);
1141 /* flush all memory translations */
1142 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1143 /* flush memory translations pointing to 'slot' */
1144 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1145 				   struct kvm_memory_slot *slot);
1146 
1147 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1148 			    struct page **pages, int nr_pages);
1149 
1150 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1151 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1152 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1153 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1154 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1155 				      bool *writable);
1156 void kvm_release_page_clean(struct page *page);
1157 void kvm_release_page_dirty(struct page *page);
1158 
1159 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1160 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1161 		      bool *writable);
1162 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1163 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1164 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1165 			       bool atomic, bool interruptible, bool *async,
1166 			       bool write_fault, bool *writable, hva_t *hva);
1167 
1168 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1169 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1170 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1171 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1172 
1173 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1174 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1175 			int len);
1176 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1177 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1178 			   void *data, unsigned long len);
1179 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1180 				 void *data, unsigned int offset,
1181 				 unsigned long len);
1182 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1183 			 int offset, int len);
1184 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1185 		    unsigned long len);
1186 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1187 			   void *data, unsigned long len);
1188 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1189 				  void *data, unsigned int offset,
1190 				  unsigned long len);
1191 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1192 			      gpa_t gpa, unsigned long len);
1193 
1194 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1195 ({									\
1196 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1197 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1198 	int __ret = -EFAULT;						\
1199 									\
1200 	if (!kvm_is_error_hva(__addr))					\
1201 		__ret = get_user(v, __uaddr);				\
1202 	__ret;								\
1203 })
1204 
1205 #define kvm_get_guest(kvm, gpa, v)					\
1206 ({									\
1207 	gpa_t __gpa = gpa;						\
1208 	struct kvm *__kvm = kvm;					\
1209 									\
1210 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1211 			offset_in_page(__gpa), v);			\
1212 })
1213 
1214 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1215 ({									\
1216 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1217 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1218 	int __ret = -EFAULT;						\
1219 									\
1220 	if (!kvm_is_error_hva(__addr))					\
1221 		__ret = put_user(v, __uaddr);				\
1222 	if (!__ret)							\
1223 		mark_page_dirty(kvm, gfn);				\
1224 	__ret;								\
1225 })
1226 
1227 #define kvm_put_guest(kvm, gpa, v)					\
1228 ({									\
1229 	gpa_t __gpa = gpa;						\
1230 	struct kvm *__kvm = kvm;					\
1231 									\
1232 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1233 			offset_in_page(__gpa), v);			\
1234 })
1235 
1236 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1237 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1238 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1239 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1240 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1241 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1242 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1243 
1244 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1245 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1246 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1247 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1248 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1249 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1250 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1251 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1252 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1253 			     int len);
1254 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1255 			       unsigned long len);
1256 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1257 			unsigned long len);
1258 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1259 			      int offset, int len);
1260 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1261 			 unsigned long len);
1262 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1263 
1264 /**
1265  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1266  *
1267  * @gpc:	   struct gfn_to_pfn_cache object.
1268  * @kvm:	   pointer to kvm instance.
1269  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1270  *		   invalidation.
1271  * @usage:	   indicates if the resulting host physical PFN is used while
1272  *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1273  *		   the cache from MMU notifiers---but not for KVM memslot
1274  *		   changes!---will also force @vcpu to exit the guest and
1275  *		   refresh the cache); and/or if the PFN used directly
1276  *		   by KVM (and thus needs a kernel virtual mapping).
1277  *
1278  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1279  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1280  * the caller before init).
1281  */
1282 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1283 		  struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1284 
1285 /**
1286  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1287  *                    physical address.
1288  *
1289  * @gpc:	   struct gfn_to_pfn_cache object.
1290  * @gpa:	   guest physical address to map.
1291  * @len:	   sanity check; the range being access must fit a single page.
1292  *
1293  * @return:	   0 for success.
1294  *		   -EINVAL for a mapping which would cross a page boundary.
1295  *		   -EFAULT for an untranslatable guest physical address.
1296  *
1297  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1298  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1299  * to ensure that the cache is valid before accessing the target page.
1300  */
1301 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1302 
1303 /**
1304  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1305  *
1306  * @gpc:	   struct gfn_to_pfn_cache object.
1307  * @len:	   sanity check; the range being access must fit a single page.
1308  *
1309  * @return:	   %true if the cache is still valid and the address matches.
1310  *		   %false if the cache is not valid.
1311  *
1312  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1313  * while calling this function, and then continue to hold the lock until the
1314  * access is complete.
1315  *
1316  * Callers in IN_GUEST_MODE may do so without locking, although they should
1317  * still hold a read lock on kvm->scru for the memslot checks.
1318  */
1319 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1320 
1321 /**
1322  * kvm_gpc_refresh - update a previously initialized cache.
1323  *
1324  * @gpc:	   struct gfn_to_pfn_cache object.
1325  * @len:	   sanity check; the range being access must fit a single page.
1326  *
1327  * @return:	   0 for success.
1328  *		   -EINVAL for a mapping which would cross a page boundary.
1329  *		   -EFAULT for an untranslatable guest physical address.
1330  *
1331  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1332  * return from this function does not mean the page can be immediately
1333  * accessed because it may have raced with an invalidation. Callers must
1334  * still lock and check the cache status, as this function does not return
1335  * with the lock still held to permit access.
1336  */
1337 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1338 
1339 /**
1340  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1341  *
1342  * @gpc:	   struct gfn_to_pfn_cache object.
1343  *
1344  * This removes a cache from the VM's list to be processed on MMU notifier
1345  * invocation.
1346  */
1347 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1348 
1349 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1350 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1351 
1352 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1353 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1354 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1355 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1356 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1357 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1358 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1359 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1360 
1361 void kvm_flush_remote_tlbs(struct kvm *kvm);
1362 
1363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1364 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1365 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1366 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1367 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1368 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1369 #endif
1370 
1371 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1372 			      unsigned long end);
1373 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1374 			    unsigned long end);
1375 
1376 long kvm_arch_dev_ioctl(struct file *filp,
1377 			unsigned int ioctl, unsigned long arg);
1378 long kvm_arch_vcpu_ioctl(struct file *filp,
1379 			 unsigned int ioctl, unsigned long arg);
1380 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1381 
1382 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1383 
1384 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1385 					struct kvm_memory_slot *slot,
1386 					gfn_t gfn_offset,
1387 					unsigned long mask);
1388 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1389 
1390 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1391 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1392 					const struct kvm_memory_slot *memslot);
1393 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1394 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1395 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1396 		      int *is_dirty, struct kvm_memory_slot **memslot);
1397 #endif
1398 
1399 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1400 			bool line_status);
1401 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1402 			    struct kvm_enable_cap *cap);
1403 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1404 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1405 			      unsigned long arg);
1406 
1407 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1408 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1409 
1410 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1411 				    struct kvm_translation *tr);
1412 
1413 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1414 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1415 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1416 				  struct kvm_sregs *sregs);
1417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1418 				  struct kvm_sregs *sregs);
1419 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1420 				    struct kvm_mp_state *mp_state);
1421 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1422 				    struct kvm_mp_state *mp_state);
1423 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1424 					struct kvm_guest_debug *dbg);
1425 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1426 
1427 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1428 
1429 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1430 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1431 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1432 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1433 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1434 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1435 
1436 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1437 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1438 #endif
1439 
1440 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1441 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1442 #else
1443 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1444 #endif
1445 
1446 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1447 int kvm_arch_hardware_enable(void);
1448 void kvm_arch_hardware_disable(void);
1449 #endif
1450 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1451 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1452 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1453 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1454 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1455 int kvm_arch_post_init_vm(struct kvm *kvm);
1456 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1457 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1458 
1459 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1460 /*
1461  * All architectures that want to use vzalloc currently also
1462  * need their own kvm_arch_alloc_vm implementation.
1463  */
1464 static inline struct kvm *kvm_arch_alloc_vm(void)
1465 {
1466 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1467 }
1468 #endif
1469 
1470 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1471 {
1472 	kvfree(kvm);
1473 }
1474 
1475 #ifndef __KVM_HAVE_ARCH_VM_FREE
1476 static inline void kvm_arch_free_vm(struct kvm *kvm)
1477 {
1478 	__kvm_arch_free_vm(kvm);
1479 }
1480 #endif
1481 
1482 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1483 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1484 {
1485 	return -ENOTSUPP;
1486 }
1487 #endif
1488 
1489 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1490 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1491 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1492 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1493 #else
1494 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1495 {
1496 }
1497 
1498 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1499 {
1500 }
1501 
1502 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1503 {
1504 	return false;
1505 }
1506 #endif
1507 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1508 void kvm_arch_start_assignment(struct kvm *kvm);
1509 void kvm_arch_end_assignment(struct kvm *kvm);
1510 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1511 #else
1512 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1513 {
1514 }
1515 
1516 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1517 {
1518 }
1519 
1520 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1521 {
1522 	return false;
1523 }
1524 #endif
1525 
1526 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1527 {
1528 #ifdef __KVM_HAVE_ARCH_WQP
1529 	return vcpu->arch.waitp;
1530 #else
1531 	return &vcpu->wait;
1532 #endif
1533 }
1534 
1535 /*
1536  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1537  * true if the vCPU was blocking and was awakened, false otherwise.
1538  */
1539 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1540 {
1541 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1542 }
1543 
1544 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1545 {
1546 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1547 }
1548 
1549 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1550 /*
1551  * returns true if the virtual interrupt controller is initialized and
1552  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1553  * controller is dynamically instantiated and this is not always true.
1554  */
1555 bool kvm_arch_intc_initialized(struct kvm *kvm);
1556 #else
1557 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1558 {
1559 	return true;
1560 }
1561 #endif
1562 
1563 #ifdef CONFIG_GUEST_PERF_EVENTS
1564 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1565 
1566 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1567 void kvm_unregister_perf_callbacks(void);
1568 #else
1569 static inline void kvm_register_perf_callbacks(void *ign) {}
1570 static inline void kvm_unregister_perf_callbacks(void) {}
1571 #endif /* CONFIG_GUEST_PERF_EVENTS */
1572 
1573 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1574 void kvm_arch_destroy_vm(struct kvm *kvm);
1575 void kvm_arch_sync_events(struct kvm *kvm);
1576 
1577 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1578 
1579 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1580 bool kvm_is_zone_device_page(struct page *page);
1581 
1582 struct kvm_irq_ack_notifier {
1583 	struct hlist_node link;
1584 	unsigned gsi;
1585 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1586 };
1587 
1588 int kvm_irq_map_gsi(struct kvm *kvm,
1589 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1590 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1591 
1592 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1593 		bool line_status);
1594 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1595 		int irq_source_id, int level, bool line_status);
1596 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1597 			       struct kvm *kvm, int irq_source_id,
1598 			       int level, bool line_status);
1599 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1600 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1601 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1602 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1603 				   struct kvm_irq_ack_notifier *kian);
1604 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1605 				   struct kvm_irq_ack_notifier *kian);
1606 int kvm_request_irq_source_id(struct kvm *kvm);
1607 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1608 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1609 
1610 /*
1611  * Returns a pointer to the memslot if it contains gfn.
1612  * Otherwise returns NULL.
1613  */
1614 static inline struct kvm_memory_slot *
1615 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1616 {
1617 	if (!slot)
1618 		return NULL;
1619 
1620 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1621 		return slot;
1622 	else
1623 		return NULL;
1624 }
1625 
1626 /*
1627  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1628  *
1629  * With "approx" set returns the memslot also when the address falls
1630  * in a hole. In that case one of the memslots bordering the hole is
1631  * returned.
1632  */
1633 static inline struct kvm_memory_slot *
1634 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1635 {
1636 	struct kvm_memory_slot *slot;
1637 	struct rb_node *node;
1638 	int idx = slots->node_idx;
1639 
1640 	slot = NULL;
1641 	for (node = slots->gfn_tree.rb_node; node; ) {
1642 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1643 		if (gfn >= slot->base_gfn) {
1644 			if (gfn < slot->base_gfn + slot->npages)
1645 				return slot;
1646 			node = node->rb_right;
1647 		} else
1648 			node = node->rb_left;
1649 	}
1650 
1651 	return approx ? slot : NULL;
1652 }
1653 
1654 static inline struct kvm_memory_slot *
1655 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1656 {
1657 	struct kvm_memory_slot *slot;
1658 
1659 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1660 	slot = try_get_memslot(slot, gfn);
1661 	if (slot)
1662 		return slot;
1663 
1664 	slot = search_memslots(slots, gfn, approx);
1665 	if (slot) {
1666 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1667 		return slot;
1668 	}
1669 
1670 	return NULL;
1671 }
1672 
1673 /*
1674  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1675  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1676  * because that would bloat other code too much.
1677  */
1678 static inline struct kvm_memory_slot *
1679 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1680 {
1681 	return ____gfn_to_memslot(slots, gfn, false);
1682 }
1683 
1684 static inline unsigned long
1685 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1686 {
1687 	/*
1688 	 * The index was checked originally in search_memslots.  To avoid
1689 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1690 	 * table walks, do not let the processor speculate loads outside
1691 	 * the guest's registered memslots.
1692 	 */
1693 	unsigned long offset = gfn - slot->base_gfn;
1694 	offset = array_index_nospec(offset, slot->npages);
1695 	return slot->userspace_addr + offset * PAGE_SIZE;
1696 }
1697 
1698 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1699 {
1700 	return gfn_to_memslot(kvm, gfn)->id;
1701 }
1702 
1703 static inline gfn_t
1704 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1705 {
1706 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1707 
1708 	return slot->base_gfn + gfn_offset;
1709 }
1710 
1711 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1712 {
1713 	return (gpa_t)gfn << PAGE_SHIFT;
1714 }
1715 
1716 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1717 {
1718 	return (gfn_t)(gpa >> PAGE_SHIFT);
1719 }
1720 
1721 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1722 {
1723 	return (hpa_t)pfn << PAGE_SHIFT;
1724 }
1725 
1726 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1727 {
1728 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1729 
1730 	return kvm_is_error_hva(hva);
1731 }
1732 
1733 enum kvm_stat_kind {
1734 	KVM_STAT_VM,
1735 	KVM_STAT_VCPU,
1736 };
1737 
1738 struct kvm_stat_data {
1739 	struct kvm *kvm;
1740 	const struct _kvm_stats_desc *desc;
1741 	enum kvm_stat_kind kind;
1742 };
1743 
1744 struct _kvm_stats_desc {
1745 	struct kvm_stats_desc desc;
1746 	char name[KVM_STATS_NAME_SIZE];
1747 };
1748 
1749 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1750 	.flags = type | unit | base |					       \
1751 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1752 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1753 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1754 	.exponent = exp,						       \
1755 	.size = sz,							       \
1756 	.bucket_size = bsz
1757 
1758 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1759 	{								       \
1760 		{							       \
1761 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1762 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1763 		},							       \
1764 		.name = #stat,						       \
1765 	}
1766 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1767 	{								       \
1768 		{							       \
1769 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1770 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1771 		},							       \
1772 		.name = #stat,						       \
1773 	}
1774 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1775 	{								       \
1776 		{							       \
1777 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1778 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1779 		},							       \
1780 		.name = #stat,						       \
1781 	}
1782 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1783 	{								       \
1784 		{							       \
1785 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1786 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1787 		},							       \
1788 		.name = #stat,						       \
1789 	}
1790 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1791 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1792 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1793 
1794 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1795 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1796 		unit, base, exponent, 1, 0)
1797 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1798 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1799 		unit, base, exponent, 1, 0)
1800 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1801 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1802 		unit, base, exponent, 1, 0)
1803 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1804 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1805 		unit, base, exponent, sz, bsz)
1806 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1807 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1808 		unit, base, exponent, sz, 0)
1809 
1810 /* Cumulative counter, read/write */
1811 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1812 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1813 		KVM_STATS_BASE_POW10, 0)
1814 /* Instantaneous counter, read only */
1815 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1816 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1817 		KVM_STATS_BASE_POW10, 0)
1818 /* Peak counter, read/write */
1819 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1820 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1821 		KVM_STATS_BASE_POW10, 0)
1822 
1823 /* Instantaneous boolean value, read only */
1824 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1825 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1826 		KVM_STATS_BASE_POW10, 0)
1827 /* Peak (sticky) boolean value, read/write */
1828 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1829 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1830 		KVM_STATS_BASE_POW10, 0)
1831 
1832 /* Cumulative time in nanosecond */
1833 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1834 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1835 		KVM_STATS_BASE_POW10, -9)
1836 /* Linear histogram for time in nanosecond */
1837 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1838 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1839 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1840 /* Logarithmic histogram for time in nanosecond */
1841 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1842 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1843 		KVM_STATS_BASE_POW10, -9, sz)
1844 
1845 #define KVM_GENERIC_VM_STATS()						       \
1846 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1847 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1848 
1849 #define KVM_GENERIC_VCPU_STATS()					       \
1850 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1851 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1852 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1853 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1854 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1855 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1856 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1857 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1858 			HALT_POLL_HIST_COUNT),				       \
1859 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1860 			HALT_POLL_HIST_COUNT),				       \
1861 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1862 			HALT_POLL_HIST_COUNT),				       \
1863 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1864 
1865 extern struct dentry *kvm_debugfs_dir;
1866 
1867 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1868 		       const struct _kvm_stats_desc *desc,
1869 		       void *stats, size_t size_stats,
1870 		       char __user *user_buffer, size_t size, loff_t *offset);
1871 
1872 /**
1873  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1874  * statistics data.
1875  *
1876  * @data: start address of the stats data
1877  * @size: the number of bucket of the stats data
1878  * @value: the new value used to update the linear histogram's bucket
1879  * @bucket_size: the size (width) of a bucket
1880  */
1881 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1882 						u64 value, size_t bucket_size)
1883 {
1884 	size_t index = div64_u64(value, bucket_size);
1885 
1886 	index = min(index, size - 1);
1887 	++data[index];
1888 }
1889 
1890 /**
1891  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1892  * statistics data.
1893  *
1894  * @data: start address of the stats data
1895  * @size: the number of bucket of the stats data
1896  * @value: the new value used to update the logarithmic histogram's bucket
1897  */
1898 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1899 {
1900 	size_t index = fls64(value);
1901 
1902 	index = min(index, size - 1);
1903 	++data[index];
1904 }
1905 
1906 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1907 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1908 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1909 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1910 
1911 
1912 extern const struct kvm_stats_header kvm_vm_stats_header;
1913 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1914 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1915 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1916 
1917 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1918 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1919 {
1920 	if (unlikely(kvm->mmu_invalidate_in_progress))
1921 		return 1;
1922 	/*
1923 	 * Ensure the read of mmu_invalidate_in_progress happens before
1924 	 * the read of mmu_invalidate_seq.  This interacts with the
1925 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1926 	 * that the caller either sees the old (non-zero) value of
1927 	 * mmu_invalidate_in_progress or the new (incremented) value of
1928 	 * mmu_invalidate_seq.
1929 	 *
1930 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1931 	 * than under kvm->mmu_lock, for scalability, so can't rely on
1932 	 * kvm->mmu_lock to keep things ordered.
1933 	 */
1934 	smp_rmb();
1935 	if (kvm->mmu_invalidate_seq != mmu_seq)
1936 		return 1;
1937 	return 0;
1938 }
1939 
1940 static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1941 					   unsigned long mmu_seq,
1942 					   unsigned long hva)
1943 {
1944 	lockdep_assert_held(&kvm->mmu_lock);
1945 	/*
1946 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1947 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1948 	 * that might be being invalidated. Note that it may include some false
1949 	 * positives, due to shortcuts when handing concurrent invalidations.
1950 	 */
1951 	if (unlikely(kvm->mmu_invalidate_in_progress) &&
1952 	    hva >= kvm->mmu_invalidate_range_start &&
1953 	    hva < kvm->mmu_invalidate_range_end)
1954 		return 1;
1955 	if (kvm->mmu_invalidate_seq != mmu_seq)
1956 		return 1;
1957 	return 0;
1958 }
1959 #endif
1960 
1961 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1962 
1963 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1964 
1965 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1966 int kvm_set_irq_routing(struct kvm *kvm,
1967 			const struct kvm_irq_routing_entry *entries,
1968 			unsigned nr,
1969 			unsigned flags);
1970 int kvm_set_routing_entry(struct kvm *kvm,
1971 			  struct kvm_kernel_irq_routing_entry *e,
1972 			  const struct kvm_irq_routing_entry *ue);
1973 void kvm_free_irq_routing(struct kvm *kvm);
1974 
1975 #else
1976 
1977 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1978 
1979 #endif
1980 
1981 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1982 
1983 #ifdef CONFIG_HAVE_KVM_EVENTFD
1984 
1985 void kvm_eventfd_init(struct kvm *kvm);
1986 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1987 
1988 #ifdef CONFIG_HAVE_KVM_IRQFD
1989 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1990 void kvm_irqfd_release(struct kvm *kvm);
1991 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
1992 				unsigned int irqchip,
1993 				unsigned int pin);
1994 void kvm_irq_routing_update(struct kvm *);
1995 #else
1996 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1997 {
1998 	return -EINVAL;
1999 }
2000 
2001 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2002 
2003 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2004 					      unsigned int irqchip,
2005 					      unsigned int pin)
2006 {
2007 	return false;
2008 }
2009 #endif
2010 
2011 #else
2012 
2013 static inline void kvm_eventfd_init(struct kvm *kvm) {}
2014 
2015 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2016 {
2017 	return -EINVAL;
2018 }
2019 
2020 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2021 
2022 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2023 static inline void kvm_irq_routing_update(struct kvm *kvm)
2024 {
2025 }
2026 #endif
2027 
2028 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2029 {
2030 	return -ENOSYS;
2031 }
2032 
2033 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2034 
2035 void kvm_arch_irq_routing_update(struct kvm *kvm);
2036 
2037 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2038 {
2039 	/*
2040 	 * Ensure the rest of the request is published to kvm_check_request's
2041 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2042 	 */
2043 	smp_wmb();
2044 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2045 }
2046 
2047 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2048 {
2049 	/*
2050 	 * Request that don't require vCPU action should never be logged in
2051 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2052 	 * logged indefinitely and prevent the vCPU from entering the guest.
2053 	 */
2054 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2055 		     (req & KVM_REQUEST_NO_ACTION));
2056 
2057 	__kvm_make_request(req, vcpu);
2058 }
2059 
2060 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2061 {
2062 	return READ_ONCE(vcpu->requests);
2063 }
2064 
2065 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2066 {
2067 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2068 }
2069 
2070 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2071 {
2072 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2073 }
2074 
2075 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2076 {
2077 	if (kvm_test_request(req, vcpu)) {
2078 		kvm_clear_request(req, vcpu);
2079 
2080 		/*
2081 		 * Ensure the rest of the request is visible to kvm_check_request's
2082 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2083 		 */
2084 		smp_mb__after_atomic();
2085 		return true;
2086 	} else {
2087 		return false;
2088 	}
2089 }
2090 
2091 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2092 extern bool kvm_rebooting;
2093 #endif
2094 
2095 extern unsigned int halt_poll_ns;
2096 extern unsigned int halt_poll_ns_grow;
2097 extern unsigned int halt_poll_ns_grow_start;
2098 extern unsigned int halt_poll_ns_shrink;
2099 
2100 struct kvm_device {
2101 	const struct kvm_device_ops *ops;
2102 	struct kvm *kvm;
2103 	void *private;
2104 	struct list_head vm_node;
2105 };
2106 
2107 /* create, destroy, and name are mandatory */
2108 struct kvm_device_ops {
2109 	const char *name;
2110 
2111 	/*
2112 	 * create is called holding kvm->lock and any operations not suitable
2113 	 * to do while holding the lock should be deferred to init (see
2114 	 * below).
2115 	 */
2116 	int (*create)(struct kvm_device *dev, u32 type);
2117 
2118 	/*
2119 	 * init is called after create if create is successful and is called
2120 	 * outside of holding kvm->lock.
2121 	 */
2122 	void (*init)(struct kvm_device *dev);
2123 
2124 	/*
2125 	 * Destroy is responsible for freeing dev.
2126 	 *
2127 	 * Destroy may be called before or after destructors are called
2128 	 * on emulated I/O regions, depending on whether a reference is
2129 	 * held by a vcpu or other kvm component that gets destroyed
2130 	 * after the emulated I/O.
2131 	 */
2132 	void (*destroy)(struct kvm_device *dev);
2133 
2134 	/*
2135 	 * Release is an alternative method to free the device. It is
2136 	 * called when the device file descriptor is closed. Once
2137 	 * release is called, the destroy method will not be called
2138 	 * anymore as the device is removed from the device list of
2139 	 * the VM. kvm->lock is held.
2140 	 */
2141 	void (*release)(struct kvm_device *dev);
2142 
2143 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2144 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2145 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2146 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2147 		      unsigned long arg);
2148 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2149 };
2150 
2151 void kvm_device_get(struct kvm_device *dev);
2152 void kvm_device_put(struct kvm_device *dev);
2153 struct kvm_device *kvm_device_from_filp(struct file *filp);
2154 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2155 void kvm_unregister_device_ops(u32 type);
2156 
2157 extern struct kvm_device_ops kvm_mpic_ops;
2158 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2159 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2160 
2161 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2162 
2163 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2164 {
2165 	vcpu->spin_loop.in_spin_loop = val;
2166 }
2167 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2168 {
2169 	vcpu->spin_loop.dy_eligible = val;
2170 }
2171 
2172 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2173 
2174 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2175 {
2176 }
2177 
2178 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2179 {
2180 }
2181 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2182 
2183 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2184 {
2185 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2186 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2187 }
2188 
2189 struct kvm_vcpu *kvm_get_running_vcpu(void);
2190 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2191 
2192 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2193 bool kvm_arch_has_irq_bypass(void);
2194 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2195 			   struct irq_bypass_producer *);
2196 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2197 			   struct irq_bypass_producer *);
2198 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2199 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2200 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2201 				  uint32_t guest_irq, bool set);
2202 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2203 				  struct kvm_kernel_irq_routing_entry *);
2204 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2205 
2206 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2207 /* If we wakeup during the poll time, was it a sucessful poll? */
2208 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2209 {
2210 	return vcpu->valid_wakeup;
2211 }
2212 
2213 #else
2214 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2215 {
2216 	return true;
2217 }
2218 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2219 
2220 #ifdef CONFIG_HAVE_KVM_NO_POLL
2221 /* Callback that tells if we must not poll */
2222 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2223 #else
2224 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2225 {
2226 	return false;
2227 }
2228 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2229 
2230 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2231 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2232 			       unsigned int ioctl, unsigned long arg);
2233 #else
2234 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2235 					     unsigned int ioctl,
2236 					     unsigned long arg)
2237 {
2238 	return -ENOIOCTLCMD;
2239 }
2240 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2241 
2242 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2243 
2244 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2245 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2246 #else
2247 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2248 {
2249 	return 0;
2250 }
2251 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2252 
2253 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2254 
2255 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2256 				uintptr_t data, const char *name,
2257 				struct task_struct **thread_ptr);
2258 
2259 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2260 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2261 {
2262 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2263 	vcpu->stat.signal_exits++;
2264 }
2265 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2266 
2267 /*
2268  * If more than one page is being (un)accounted, @virt must be the address of
2269  * the first page of a block of pages what were allocated together (i.e
2270  * accounted together).
2271  *
2272  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2273  * is thread-safe.
2274  */
2275 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2276 {
2277 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2278 }
2279 
2280 /*
2281  * This defines how many reserved entries we want to keep before we
2282  * kick the vcpu to the userspace to avoid dirty ring full.  This
2283  * value can be tuned to higher if e.g. PML is enabled on the host.
2284  */
2285 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2286 
2287 /* Max number of entries allowed for each kvm dirty ring */
2288 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2289 
2290 #endif
2291