1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_ADDRESS_SPACE_NUM 84 #define KVM_ADDRESS_SPACE_NUM 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 152 153 static inline bool is_error_page(struct page *page) 154 { 155 return IS_ERR(page); 156 } 157 158 #define KVM_REQUEST_MASK GENMASK(7,0) 159 #define KVM_REQUEST_NO_WAKEUP BIT(8) 160 #define KVM_REQUEST_WAIT BIT(9) 161 #define KVM_REQUEST_NO_ACTION BIT(10) 162 /* 163 * Architecture-independent vcpu->requests bit members 164 * Bits 3-7 are reserved for more arch-independent bits. 165 */ 166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 168 #define KVM_REQ_UNBLOCK 2 169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 170 #define KVM_REQUEST_ARCH_BASE 8 171 172 /* 173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 178 * guarantee the vCPU received an IPI and has actually exited guest mode. 179 */ 180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 181 182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 185 }) 186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 187 188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 189 unsigned long *vcpu_bitmap); 190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 192 struct kvm_vcpu *except); 193 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 194 unsigned long *vcpu_bitmap); 195 196 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 197 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 198 199 extern struct mutex kvm_lock; 200 extern struct list_head vm_list; 201 202 struct kvm_io_range { 203 gpa_t addr; 204 int len; 205 struct kvm_io_device *dev; 206 }; 207 208 #define NR_IOBUS_DEVS 1000 209 210 struct kvm_io_bus { 211 int dev_count; 212 int ioeventfd_count; 213 struct kvm_io_range range[]; 214 }; 215 216 enum kvm_bus { 217 KVM_MMIO_BUS, 218 KVM_PIO_BUS, 219 KVM_VIRTIO_CCW_NOTIFY_BUS, 220 KVM_FAST_MMIO_BUS, 221 KVM_NR_BUSES 222 }; 223 224 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, const void *val); 226 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 227 gpa_t addr, int len, const void *val, long cookie); 228 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 229 int len, void *val); 230 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 231 int len, struct kvm_io_device *dev); 232 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 233 struct kvm_io_device *dev); 234 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 235 gpa_t addr); 236 237 #ifdef CONFIG_KVM_ASYNC_PF 238 struct kvm_async_pf { 239 struct work_struct work; 240 struct list_head link; 241 struct list_head queue; 242 struct kvm_vcpu *vcpu; 243 struct mm_struct *mm; 244 gpa_t cr2_or_gpa; 245 unsigned long addr; 246 struct kvm_arch_async_pf arch; 247 bool wakeup_all; 248 bool notpresent_injected; 249 }; 250 251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 254 unsigned long hva, struct kvm_arch_async_pf *arch); 255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 256 #endif 257 258 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 259 struct kvm_gfn_range { 260 struct kvm_memory_slot *slot; 261 gfn_t start; 262 gfn_t end; 263 pte_t pte; 264 bool may_block; 265 }; 266 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 267 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 268 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 269 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 270 #endif 271 272 enum { 273 OUTSIDE_GUEST_MODE, 274 IN_GUEST_MODE, 275 EXITING_GUEST_MODE, 276 READING_SHADOW_PAGE_TABLES, 277 }; 278 279 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 280 281 struct kvm_host_map { 282 /* 283 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 284 * a 'struct page' for it. When using mem= kernel parameter some memory 285 * can be used as guest memory but they are not managed by host 286 * kernel). 287 * If 'pfn' is not managed by the host kernel, this field is 288 * initialized to KVM_UNMAPPED_PAGE. 289 */ 290 struct page *page; 291 void *hva; 292 kvm_pfn_t pfn; 293 kvm_pfn_t gfn; 294 }; 295 296 /* 297 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 298 * directly to check for that. 299 */ 300 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 301 { 302 return !!map->hva; 303 } 304 305 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 306 { 307 return single_task_running() && !need_resched() && ktime_before(cur, stop); 308 } 309 310 /* 311 * Sometimes a large or cross-page mmio needs to be broken up into separate 312 * exits for userspace servicing. 313 */ 314 struct kvm_mmio_fragment { 315 gpa_t gpa; 316 void *data; 317 unsigned len; 318 }; 319 320 struct kvm_vcpu { 321 struct kvm *kvm; 322 #ifdef CONFIG_PREEMPT_NOTIFIERS 323 struct preempt_notifier preempt_notifier; 324 #endif 325 int cpu; 326 int vcpu_id; /* id given by userspace at creation */ 327 int vcpu_idx; /* index into kvm->vcpu_array */ 328 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 329 #ifdef CONFIG_PROVE_RCU 330 int srcu_depth; 331 #endif 332 int mode; 333 u64 requests; 334 unsigned long guest_debug; 335 336 struct mutex mutex; 337 struct kvm_run *run; 338 339 #ifndef __KVM_HAVE_ARCH_WQP 340 struct rcuwait wait; 341 #endif 342 struct pid __rcu *pid; 343 int sigset_active; 344 sigset_t sigset; 345 unsigned int halt_poll_ns; 346 bool valid_wakeup; 347 348 #ifdef CONFIG_HAS_IOMEM 349 int mmio_needed; 350 int mmio_read_completed; 351 int mmio_is_write; 352 int mmio_cur_fragment; 353 int mmio_nr_fragments; 354 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 355 #endif 356 357 #ifdef CONFIG_KVM_ASYNC_PF 358 struct { 359 u32 queued; 360 struct list_head queue; 361 struct list_head done; 362 spinlock_t lock; 363 } async_pf; 364 #endif 365 366 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 367 /* 368 * Cpu relax intercept or pause loop exit optimization 369 * in_spin_loop: set when a vcpu does a pause loop exit 370 * or cpu relax intercepted. 371 * dy_eligible: indicates whether vcpu is eligible for directed yield. 372 */ 373 struct { 374 bool in_spin_loop; 375 bool dy_eligible; 376 } spin_loop; 377 #endif 378 bool preempted; 379 bool ready; 380 struct kvm_vcpu_arch arch; 381 struct kvm_vcpu_stat stat; 382 char stats_id[KVM_STATS_NAME_SIZE]; 383 struct kvm_dirty_ring dirty_ring; 384 385 /* 386 * The most recently used memslot by this vCPU and the slots generation 387 * for which it is valid. 388 * No wraparound protection is needed since generations won't overflow in 389 * thousands of years, even assuming 1M memslot operations per second. 390 */ 391 struct kvm_memory_slot *last_used_slot; 392 u64 last_used_slot_gen; 393 }; 394 395 /* 396 * Start accounting time towards a guest. 397 * Must be called before entering guest context. 398 */ 399 static __always_inline void guest_timing_enter_irqoff(void) 400 { 401 /* 402 * This is running in ioctl context so its safe to assume that it's the 403 * stime pending cputime to flush. 404 */ 405 instrumentation_begin(); 406 vtime_account_guest_enter(); 407 instrumentation_end(); 408 } 409 410 /* 411 * Enter guest context and enter an RCU extended quiescent state. 412 * 413 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 414 * unsafe to use any code which may directly or indirectly use RCU, tracing 415 * (including IRQ flag tracing), or lockdep. All code in this period must be 416 * non-instrumentable. 417 */ 418 static __always_inline void guest_context_enter_irqoff(void) 419 { 420 /* 421 * KVM does not hold any references to rcu protected data when it 422 * switches CPU into a guest mode. In fact switching to a guest mode 423 * is very similar to exiting to userspace from rcu point of view. In 424 * addition CPU may stay in a guest mode for quite a long time (up to 425 * one time slice). Lets treat guest mode as quiescent state, just like 426 * we do with user-mode execution. 427 */ 428 if (!context_tracking_guest_enter()) { 429 instrumentation_begin(); 430 rcu_virt_note_context_switch(); 431 instrumentation_end(); 432 } 433 } 434 435 /* 436 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 437 * guest_state_enter_irqoff(). 438 */ 439 static __always_inline void guest_enter_irqoff(void) 440 { 441 guest_timing_enter_irqoff(); 442 guest_context_enter_irqoff(); 443 } 444 445 /** 446 * guest_state_enter_irqoff - Fixup state when entering a guest 447 * 448 * Entry to a guest will enable interrupts, but the kernel state is interrupts 449 * disabled when this is invoked. Also tell RCU about it. 450 * 451 * 1) Trace interrupts on state 452 * 2) Invoke context tracking if enabled to adjust RCU state 453 * 3) Tell lockdep that interrupts are enabled 454 * 455 * Invoked from architecture specific code before entering a guest. 456 * Must be called with interrupts disabled and the caller must be 457 * non-instrumentable. 458 * The caller has to invoke guest_timing_enter_irqoff() before this. 459 * 460 * Note: this is analogous to exit_to_user_mode(). 461 */ 462 static __always_inline void guest_state_enter_irqoff(void) 463 { 464 instrumentation_begin(); 465 trace_hardirqs_on_prepare(); 466 lockdep_hardirqs_on_prepare(); 467 instrumentation_end(); 468 469 guest_context_enter_irqoff(); 470 lockdep_hardirqs_on(CALLER_ADDR0); 471 } 472 473 /* 474 * Exit guest context and exit an RCU extended quiescent state. 475 * 476 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 477 * unsafe to use any code which may directly or indirectly use RCU, tracing 478 * (including IRQ flag tracing), or lockdep. All code in this period must be 479 * non-instrumentable. 480 */ 481 static __always_inline void guest_context_exit_irqoff(void) 482 { 483 context_tracking_guest_exit(); 484 } 485 486 /* 487 * Stop accounting time towards a guest. 488 * Must be called after exiting guest context. 489 */ 490 static __always_inline void guest_timing_exit_irqoff(void) 491 { 492 instrumentation_begin(); 493 /* Flush the guest cputime we spent on the guest */ 494 vtime_account_guest_exit(); 495 instrumentation_end(); 496 } 497 498 /* 499 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 500 * guest_timing_exit_irqoff(). 501 */ 502 static __always_inline void guest_exit_irqoff(void) 503 { 504 guest_context_exit_irqoff(); 505 guest_timing_exit_irqoff(); 506 } 507 508 static inline void guest_exit(void) 509 { 510 unsigned long flags; 511 512 local_irq_save(flags); 513 guest_exit_irqoff(); 514 local_irq_restore(flags); 515 } 516 517 /** 518 * guest_state_exit_irqoff - Establish state when returning from guest mode 519 * 520 * Entry from a guest disables interrupts, but guest mode is traced as 521 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 522 * 523 * 1) Tell lockdep that interrupts are disabled 524 * 2) Invoke context tracking if enabled to reactivate RCU 525 * 3) Trace interrupts off state 526 * 527 * Invoked from architecture specific code after exiting a guest. 528 * Must be invoked with interrupts disabled and the caller must be 529 * non-instrumentable. 530 * The caller has to invoke guest_timing_exit_irqoff() after this. 531 * 532 * Note: this is analogous to enter_from_user_mode(). 533 */ 534 static __always_inline void guest_state_exit_irqoff(void) 535 { 536 lockdep_hardirqs_off(CALLER_ADDR0); 537 guest_context_exit_irqoff(); 538 539 instrumentation_begin(); 540 trace_hardirqs_off_finish(); 541 instrumentation_end(); 542 } 543 544 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 545 { 546 /* 547 * The memory barrier ensures a previous write to vcpu->requests cannot 548 * be reordered with the read of vcpu->mode. It pairs with the general 549 * memory barrier following the write of vcpu->mode in VCPU RUN. 550 */ 551 smp_mb__before_atomic(); 552 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 553 } 554 555 /* 556 * Some of the bitops functions do not support too long bitmaps. 557 * This number must be determined not to exceed such limits. 558 */ 559 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 560 561 /* 562 * Since at idle each memslot belongs to two memslot sets it has to contain 563 * two embedded nodes for each data structure that it forms a part of. 564 * 565 * Two memslot sets (one active and one inactive) are necessary so the VM 566 * continues to run on one memslot set while the other is being modified. 567 * 568 * These two memslot sets normally point to the same set of memslots. 569 * They can, however, be desynchronized when performing a memslot management 570 * operation by replacing the memslot to be modified by its copy. 571 * After the operation is complete, both memslot sets once again point to 572 * the same, common set of memslot data. 573 * 574 * The memslots themselves are independent of each other so they can be 575 * individually added or deleted. 576 */ 577 struct kvm_memory_slot { 578 struct hlist_node id_node[2]; 579 struct interval_tree_node hva_node[2]; 580 struct rb_node gfn_node[2]; 581 gfn_t base_gfn; 582 unsigned long npages; 583 unsigned long *dirty_bitmap; 584 struct kvm_arch_memory_slot arch; 585 unsigned long userspace_addr; 586 u32 flags; 587 short id; 588 u16 as_id; 589 }; 590 591 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 592 { 593 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 594 } 595 596 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 597 { 598 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 599 } 600 601 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 602 { 603 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 604 605 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 606 } 607 608 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 609 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 610 #endif 611 612 struct kvm_s390_adapter_int { 613 u64 ind_addr; 614 u64 summary_addr; 615 u64 ind_offset; 616 u32 summary_offset; 617 u32 adapter_id; 618 }; 619 620 struct kvm_hv_sint { 621 u32 vcpu; 622 u32 sint; 623 }; 624 625 struct kvm_xen_evtchn { 626 u32 port; 627 u32 vcpu_id; 628 int vcpu_idx; 629 u32 priority; 630 }; 631 632 struct kvm_kernel_irq_routing_entry { 633 u32 gsi; 634 u32 type; 635 int (*set)(struct kvm_kernel_irq_routing_entry *e, 636 struct kvm *kvm, int irq_source_id, int level, 637 bool line_status); 638 union { 639 struct { 640 unsigned irqchip; 641 unsigned pin; 642 } irqchip; 643 struct { 644 u32 address_lo; 645 u32 address_hi; 646 u32 data; 647 u32 flags; 648 u32 devid; 649 } msi; 650 struct kvm_s390_adapter_int adapter; 651 struct kvm_hv_sint hv_sint; 652 struct kvm_xen_evtchn xen_evtchn; 653 }; 654 struct hlist_node link; 655 }; 656 657 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 658 struct kvm_irq_routing_table { 659 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 660 u32 nr_rt_entries; 661 /* 662 * Array indexed by gsi. Each entry contains list of irq chips 663 * the gsi is connected to. 664 */ 665 struct hlist_head map[]; 666 }; 667 #endif 668 669 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 670 671 #ifndef KVM_INTERNAL_MEM_SLOTS 672 #define KVM_INTERNAL_MEM_SLOTS 0 673 #endif 674 675 #define KVM_MEM_SLOTS_NUM SHRT_MAX 676 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 677 678 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 679 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 680 { 681 return 0; 682 } 683 #endif 684 685 struct kvm_memslots { 686 u64 generation; 687 atomic_long_t last_used_slot; 688 struct rb_root_cached hva_tree; 689 struct rb_root gfn_tree; 690 /* 691 * The mapping table from slot id to memslot. 692 * 693 * 7-bit bucket count matches the size of the old id to index array for 694 * 512 slots, while giving good performance with this slot count. 695 * Higher bucket counts bring only small performance improvements but 696 * always result in higher memory usage (even for lower memslot counts). 697 */ 698 DECLARE_HASHTABLE(id_hash, 7); 699 int node_idx; 700 }; 701 702 struct kvm { 703 #ifdef KVM_HAVE_MMU_RWLOCK 704 rwlock_t mmu_lock; 705 #else 706 spinlock_t mmu_lock; 707 #endif /* KVM_HAVE_MMU_RWLOCK */ 708 709 struct mutex slots_lock; 710 711 /* 712 * Protects the arch-specific fields of struct kvm_memory_slots in 713 * use by the VM. To be used under the slots_lock (above) or in a 714 * kvm->srcu critical section where acquiring the slots_lock would 715 * lead to deadlock with the synchronize_srcu in 716 * kvm_swap_active_memslots(). 717 */ 718 struct mutex slots_arch_lock; 719 struct mm_struct *mm; /* userspace tied to this vm */ 720 unsigned long nr_memslot_pages; 721 /* The two memslot sets - active and inactive (per address space) */ 722 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 723 /* The current active memslot set for each address space */ 724 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 725 struct xarray vcpu_array; 726 /* 727 * Protected by slots_lock, but can be read outside if an 728 * incorrect answer is acceptable. 729 */ 730 atomic_t nr_memslots_dirty_logging; 731 732 /* Used to wait for completion of MMU notifiers. */ 733 spinlock_t mn_invalidate_lock; 734 unsigned long mn_active_invalidate_count; 735 struct rcuwait mn_memslots_update_rcuwait; 736 737 /* For management / invalidation of gfn_to_pfn_caches */ 738 spinlock_t gpc_lock; 739 struct list_head gpc_list; 740 741 /* 742 * created_vcpus is protected by kvm->lock, and is incremented 743 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 744 * incremented after storing the kvm_vcpu pointer in vcpus, 745 * and is accessed atomically. 746 */ 747 atomic_t online_vcpus; 748 int max_vcpus; 749 int created_vcpus; 750 int last_boosted_vcpu; 751 struct list_head vm_list; 752 struct mutex lock; 753 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 754 #ifdef CONFIG_HAVE_KVM_EVENTFD 755 struct { 756 spinlock_t lock; 757 struct list_head items; 758 /* resampler_list update side is protected by resampler_lock. */ 759 struct list_head resampler_list; 760 struct mutex resampler_lock; 761 } irqfds; 762 struct list_head ioeventfds; 763 #endif 764 struct kvm_vm_stat stat; 765 struct kvm_arch arch; 766 refcount_t users_count; 767 #ifdef CONFIG_KVM_MMIO 768 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 769 spinlock_t ring_lock; 770 struct list_head coalesced_zones; 771 #endif 772 773 struct mutex irq_lock; 774 #ifdef CONFIG_HAVE_KVM_IRQCHIP 775 /* 776 * Update side is protected by irq_lock. 777 */ 778 struct kvm_irq_routing_table __rcu *irq_routing; 779 #endif 780 #ifdef CONFIG_HAVE_KVM_IRQFD 781 struct hlist_head irq_ack_notifier_list; 782 #endif 783 784 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 785 struct mmu_notifier mmu_notifier; 786 unsigned long mmu_invalidate_seq; 787 long mmu_invalidate_in_progress; 788 unsigned long mmu_invalidate_range_start; 789 unsigned long mmu_invalidate_range_end; 790 #endif 791 struct list_head devices; 792 u64 manual_dirty_log_protect; 793 struct dentry *debugfs_dentry; 794 struct kvm_stat_data **debugfs_stat_data; 795 struct srcu_struct srcu; 796 struct srcu_struct irq_srcu; 797 pid_t userspace_pid; 798 bool override_halt_poll_ns; 799 unsigned int max_halt_poll_ns; 800 u32 dirty_ring_size; 801 bool dirty_ring_with_bitmap; 802 bool vm_bugged; 803 bool vm_dead; 804 805 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 806 struct notifier_block pm_notifier; 807 #endif 808 char stats_id[KVM_STATS_NAME_SIZE]; 809 }; 810 811 #define kvm_err(fmt, ...) \ 812 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 813 #define kvm_info(fmt, ...) \ 814 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 815 #define kvm_debug(fmt, ...) \ 816 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 817 #define kvm_debug_ratelimited(fmt, ...) \ 818 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 819 ## __VA_ARGS__) 820 #define kvm_pr_unimpl(fmt, ...) \ 821 pr_err_ratelimited("kvm [%i]: " fmt, \ 822 task_tgid_nr(current), ## __VA_ARGS__) 823 824 /* The guest did something we don't support. */ 825 #define vcpu_unimpl(vcpu, fmt, ...) \ 826 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 827 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 828 829 #define vcpu_debug(vcpu, fmt, ...) \ 830 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 831 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 832 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 833 ## __VA_ARGS__) 834 #define vcpu_err(vcpu, fmt, ...) \ 835 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 836 837 static inline void kvm_vm_dead(struct kvm *kvm) 838 { 839 kvm->vm_dead = true; 840 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 841 } 842 843 static inline void kvm_vm_bugged(struct kvm *kvm) 844 { 845 kvm->vm_bugged = true; 846 kvm_vm_dead(kvm); 847 } 848 849 850 #define KVM_BUG(cond, kvm, fmt...) \ 851 ({ \ 852 bool __ret = !!(cond); \ 853 \ 854 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 855 kvm_vm_bugged(kvm); \ 856 unlikely(__ret); \ 857 }) 858 859 #define KVM_BUG_ON(cond, kvm) \ 860 ({ \ 861 bool __ret = !!(cond); \ 862 \ 863 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 864 kvm_vm_bugged(kvm); \ 865 unlikely(__ret); \ 866 }) 867 868 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 869 { 870 #ifdef CONFIG_PROVE_RCU 871 WARN_ONCE(vcpu->srcu_depth++, 872 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 873 #endif 874 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 875 } 876 877 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 878 { 879 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 880 881 #ifdef CONFIG_PROVE_RCU 882 WARN_ONCE(--vcpu->srcu_depth, 883 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 884 #endif 885 } 886 887 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 888 { 889 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 890 } 891 892 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 893 { 894 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 895 lockdep_is_held(&kvm->slots_lock) || 896 !refcount_read(&kvm->users_count)); 897 } 898 899 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 900 { 901 int num_vcpus = atomic_read(&kvm->online_vcpus); 902 i = array_index_nospec(i, num_vcpus); 903 904 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 905 smp_rmb(); 906 return xa_load(&kvm->vcpu_array, i); 907 } 908 909 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 910 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 911 (atomic_read(&kvm->online_vcpus) - 1)) 912 913 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 914 { 915 struct kvm_vcpu *vcpu = NULL; 916 unsigned long i; 917 918 if (id < 0) 919 return NULL; 920 if (id < KVM_MAX_VCPUS) 921 vcpu = kvm_get_vcpu(kvm, id); 922 if (vcpu && vcpu->vcpu_id == id) 923 return vcpu; 924 kvm_for_each_vcpu(i, vcpu, kvm) 925 if (vcpu->vcpu_id == id) 926 return vcpu; 927 return NULL; 928 } 929 930 void kvm_destroy_vcpus(struct kvm *kvm); 931 932 void vcpu_load(struct kvm_vcpu *vcpu); 933 void vcpu_put(struct kvm_vcpu *vcpu); 934 935 #ifdef __KVM_HAVE_IOAPIC 936 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 937 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 938 #else 939 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 940 { 941 } 942 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 943 { 944 } 945 #endif 946 947 #ifdef CONFIG_HAVE_KVM_IRQFD 948 int kvm_irqfd_init(void); 949 void kvm_irqfd_exit(void); 950 #else 951 static inline int kvm_irqfd_init(void) 952 { 953 return 0; 954 } 955 956 static inline void kvm_irqfd_exit(void) 957 { 958 } 959 #endif 960 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 961 void kvm_exit(void); 962 963 void kvm_get_kvm(struct kvm *kvm); 964 bool kvm_get_kvm_safe(struct kvm *kvm); 965 void kvm_put_kvm(struct kvm *kvm); 966 bool file_is_kvm(struct file *file); 967 void kvm_put_kvm_no_destroy(struct kvm *kvm); 968 969 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 970 { 971 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 972 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 973 lockdep_is_held(&kvm->slots_lock) || 974 !refcount_read(&kvm->users_count)); 975 } 976 977 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 978 { 979 return __kvm_memslots(kvm, 0); 980 } 981 982 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 983 { 984 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 985 986 return __kvm_memslots(vcpu->kvm, as_id); 987 } 988 989 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 990 { 991 return RB_EMPTY_ROOT(&slots->gfn_tree); 992 } 993 994 bool kvm_are_all_memslots_empty(struct kvm *kvm); 995 996 #define kvm_for_each_memslot(memslot, bkt, slots) \ 997 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 998 if (WARN_ON_ONCE(!memslot->npages)) { \ 999 } else 1000 1001 static inline 1002 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1003 { 1004 struct kvm_memory_slot *slot; 1005 int idx = slots->node_idx; 1006 1007 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1008 if (slot->id == id) 1009 return slot; 1010 } 1011 1012 return NULL; 1013 } 1014 1015 /* Iterator used for walking memslots that overlap a gfn range. */ 1016 struct kvm_memslot_iter { 1017 struct kvm_memslots *slots; 1018 struct rb_node *node; 1019 struct kvm_memory_slot *slot; 1020 }; 1021 1022 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1023 { 1024 iter->node = rb_next(iter->node); 1025 if (!iter->node) 1026 return; 1027 1028 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1029 } 1030 1031 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1032 struct kvm_memslots *slots, 1033 gfn_t start) 1034 { 1035 int idx = slots->node_idx; 1036 struct rb_node *tmp; 1037 struct kvm_memory_slot *slot; 1038 1039 iter->slots = slots; 1040 1041 /* 1042 * Find the so called "upper bound" of a key - the first node that has 1043 * its key strictly greater than the searched one (the start gfn in our case). 1044 */ 1045 iter->node = NULL; 1046 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1047 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1048 if (start < slot->base_gfn) { 1049 iter->node = tmp; 1050 tmp = tmp->rb_left; 1051 } else { 1052 tmp = tmp->rb_right; 1053 } 1054 } 1055 1056 /* 1057 * Find the slot with the lowest gfn that can possibly intersect with 1058 * the range, so we'll ideally have slot start <= range start 1059 */ 1060 if (iter->node) { 1061 /* 1062 * A NULL previous node means that the very first slot 1063 * already has a higher start gfn. 1064 * In this case slot start > range start. 1065 */ 1066 tmp = rb_prev(iter->node); 1067 if (tmp) 1068 iter->node = tmp; 1069 } else { 1070 /* a NULL node below means no slots */ 1071 iter->node = rb_last(&slots->gfn_tree); 1072 } 1073 1074 if (iter->node) { 1075 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1076 1077 /* 1078 * It is possible in the slot start < range start case that the 1079 * found slot ends before or at range start (slot end <= range start) 1080 * and so it does not overlap the requested range. 1081 * 1082 * In such non-overlapping case the next slot (if it exists) will 1083 * already have slot start > range start, otherwise the logic above 1084 * would have found it instead of the current slot. 1085 */ 1086 if (iter->slot->base_gfn + iter->slot->npages <= start) 1087 kvm_memslot_iter_next(iter); 1088 } 1089 } 1090 1091 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1092 { 1093 if (!iter->node) 1094 return false; 1095 1096 /* 1097 * If this slot starts beyond or at the end of the range so does 1098 * every next one 1099 */ 1100 return iter->slot->base_gfn < end; 1101 } 1102 1103 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1104 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1105 for (kvm_memslot_iter_start(iter, slots, start); \ 1106 kvm_memslot_iter_is_valid(iter, end); \ 1107 kvm_memslot_iter_next(iter)) 1108 1109 /* 1110 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1111 * - create a new memory slot 1112 * - delete an existing memory slot 1113 * - modify an existing memory slot 1114 * -- move it in the guest physical memory space 1115 * -- just change its flags 1116 * 1117 * Since flags can be changed by some of these operations, the following 1118 * differentiation is the best we can do for __kvm_set_memory_region(): 1119 */ 1120 enum kvm_mr_change { 1121 KVM_MR_CREATE, 1122 KVM_MR_DELETE, 1123 KVM_MR_MOVE, 1124 KVM_MR_FLAGS_ONLY, 1125 }; 1126 1127 int kvm_set_memory_region(struct kvm *kvm, 1128 const struct kvm_userspace_memory_region *mem); 1129 int __kvm_set_memory_region(struct kvm *kvm, 1130 const struct kvm_userspace_memory_region *mem); 1131 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1132 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1133 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1134 const struct kvm_memory_slot *old, 1135 struct kvm_memory_slot *new, 1136 enum kvm_mr_change change); 1137 void kvm_arch_commit_memory_region(struct kvm *kvm, 1138 struct kvm_memory_slot *old, 1139 const struct kvm_memory_slot *new, 1140 enum kvm_mr_change change); 1141 /* flush all memory translations */ 1142 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1143 /* flush memory translations pointing to 'slot' */ 1144 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1145 struct kvm_memory_slot *slot); 1146 1147 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1148 struct page **pages, int nr_pages); 1149 1150 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1151 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1152 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1153 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1154 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1155 bool *writable); 1156 void kvm_release_page_clean(struct page *page); 1157 void kvm_release_page_dirty(struct page *page); 1158 1159 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1160 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1161 bool *writable); 1162 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1163 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1164 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1165 bool atomic, bool interruptible, bool *async, 1166 bool write_fault, bool *writable, hva_t *hva); 1167 1168 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1169 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1170 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1171 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1172 1173 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1174 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1175 int len); 1176 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1177 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1178 void *data, unsigned long len); 1179 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1180 void *data, unsigned int offset, 1181 unsigned long len); 1182 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1183 int offset, int len); 1184 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1185 unsigned long len); 1186 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1187 void *data, unsigned long len); 1188 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1189 void *data, unsigned int offset, 1190 unsigned long len); 1191 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1192 gpa_t gpa, unsigned long len); 1193 1194 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1195 ({ \ 1196 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1197 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1198 int __ret = -EFAULT; \ 1199 \ 1200 if (!kvm_is_error_hva(__addr)) \ 1201 __ret = get_user(v, __uaddr); \ 1202 __ret; \ 1203 }) 1204 1205 #define kvm_get_guest(kvm, gpa, v) \ 1206 ({ \ 1207 gpa_t __gpa = gpa; \ 1208 struct kvm *__kvm = kvm; \ 1209 \ 1210 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1211 offset_in_page(__gpa), v); \ 1212 }) 1213 1214 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1215 ({ \ 1216 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1217 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1218 int __ret = -EFAULT; \ 1219 \ 1220 if (!kvm_is_error_hva(__addr)) \ 1221 __ret = put_user(v, __uaddr); \ 1222 if (!__ret) \ 1223 mark_page_dirty(kvm, gfn); \ 1224 __ret; \ 1225 }) 1226 1227 #define kvm_put_guest(kvm, gpa, v) \ 1228 ({ \ 1229 gpa_t __gpa = gpa; \ 1230 struct kvm *__kvm = kvm; \ 1231 \ 1232 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1233 offset_in_page(__gpa), v); \ 1234 }) 1235 1236 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1237 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1238 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1239 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1240 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1241 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1242 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1243 1244 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1245 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1246 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1247 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1248 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1249 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1250 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1251 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1252 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1253 int len); 1254 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1255 unsigned long len); 1256 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1257 unsigned long len); 1258 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1259 int offset, int len); 1260 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1261 unsigned long len); 1262 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1263 1264 /** 1265 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1266 * 1267 * @gpc: struct gfn_to_pfn_cache object. 1268 * @kvm: pointer to kvm instance. 1269 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1270 * invalidation. 1271 * @usage: indicates if the resulting host physical PFN is used while 1272 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1273 * the cache from MMU notifiers---but not for KVM memslot 1274 * changes!---will also force @vcpu to exit the guest and 1275 * refresh the cache); and/or if the PFN used directly 1276 * by KVM (and thus needs a kernel virtual mapping). 1277 * 1278 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1279 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1280 * the caller before init). 1281 */ 1282 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm, 1283 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage); 1284 1285 /** 1286 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1287 * physical address. 1288 * 1289 * @gpc: struct gfn_to_pfn_cache object. 1290 * @gpa: guest physical address to map. 1291 * @len: sanity check; the range being access must fit a single page. 1292 * 1293 * @return: 0 for success. 1294 * -EINVAL for a mapping which would cross a page boundary. 1295 * -EFAULT for an untranslatable guest physical address. 1296 * 1297 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1298 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1299 * to ensure that the cache is valid before accessing the target page. 1300 */ 1301 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1302 1303 /** 1304 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1305 * 1306 * @gpc: struct gfn_to_pfn_cache object. 1307 * @len: sanity check; the range being access must fit a single page. 1308 * 1309 * @return: %true if the cache is still valid and the address matches. 1310 * %false if the cache is not valid. 1311 * 1312 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1313 * while calling this function, and then continue to hold the lock until the 1314 * access is complete. 1315 * 1316 * Callers in IN_GUEST_MODE may do so without locking, although they should 1317 * still hold a read lock on kvm->scru for the memslot checks. 1318 */ 1319 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1320 1321 /** 1322 * kvm_gpc_refresh - update a previously initialized cache. 1323 * 1324 * @gpc: struct gfn_to_pfn_cache object. 1325 * @len: sanity check; the range being access must fit a single page. 1326 * 1327 * @return: 0 for success. 1328 * -EINVAL for a mapping which would cross a page boundary. 1329 * -EFAULT for an untranslatable guest physical address. 1330 * 1331 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1332 * return from this function does not mean the page can be immediately 1333 * accessed because it may have raced with an invalidation. Callers must 1334 * still lock and check the cache status, as this function does not return 1335 * with the lock still held to permit access. 1336 */ 1337 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1338 1339 /** 1340 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1341 * 1342 * @gpc: struct gfn_to_pfn_cache object. 1343 * 1344 * This removes a cache from the VM's list to be processed on MMU notifier 1345 * invocation. 1346 */ 1347 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1348 1349 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1350 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1351 1352 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1353 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1354 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1355 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1356 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1357 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1358 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1359 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1360 1361 void kvm_flush_remote_tlbs(struct kvm *kvm); 1362 1363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1364 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1365 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1366 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1367 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1368 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1369 #endif 1370 1371 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 1372 unsigned long end); 1373 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 1374 unsigned long end); 1375 1376 long kvm_arch_dev_ioctl(struct file *filp, 1377 unsigned int ioctl, unsigned long arg); 1378 long kvm_arch_vcpu_ioctl(struct file *filp, 1379 unsigned int ioctl, unsigned long arg); 1380 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1381 1382 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1383 1384 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1385 struct kvm_memory_slot *slot, 1386 gfn_t gfn_offset, 1387 unsigned long mask); 1388 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1389 1390 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1391 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1392 const struct kvm_memory_slot *memslot); 1393 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1394 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1395 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1396 int *is_dirty, struct kvm_memory_slot **memslot); 1397 #endif 1398 1399 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1400 bool line_status); 1401 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1402 struct kvm_enable_cap *cap); 1403 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1404 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1405 unsigned long arg); 1406 1407 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1408 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1409 1410 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1411 struct kvm_translation *tr); 1412 1413 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1414 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1415 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1416 struct kvm_sregs *sregs); 1417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1418 struct kvm_sregs *sregs); 1419 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1420 struct kvm_mp_state *mp_state); 1421 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1422 struct kvm_mp_state *mp_state); 1423 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1424 struct kvm_guest_debug *dbg); 1425 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1426 1427 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1428 1429 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1430 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1431 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1432 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1433 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1434 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1435 1436 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1437 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1438 #endif 1439 1440 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1441 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1442 #else 1443 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1444 #endif 1445 1446 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1447 int kvm_arch_hardware_enable(void); 1448 void kvm_arch_hardware_disable(void); 1449 #endif 1450 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1451 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1452 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1453 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1454 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1455 int kvm_arch_post_init_vm(struct kvm *kvm); 1456 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1457 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1458 1459 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1460 /* 1461 * All architectures that want to use vzalloc currently also 1462 * need their own kvm_arch_alloc_vm implementation. 1463 */ 1464 static inline struct kvm *kvm_arch_alloc_vm(void) 1465 { 1466 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1467 } 1468 #endif 1469 1470 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1471 { 1472 kvfree(kvm); 1473 } 1474 1475 #ifndef __KVM_HAVE_ARCH_VM_FREE 1476 static inline void kvm_arch_free_vm(struct kvm *kvm) 1477 { 1478 __kvm_arch_free_vm(kvm); 1479 } 1480 #endif 1481 1482 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1483 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1484 { 1485 return -ENOTSUPP; 1486 } 1487 #endif 1488 1489 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1490 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1491 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1492 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1493 #else 1494 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1495 { 1496 } 1497 1498 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1499 { 1500 } 1501 1502 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1503 { 1504 return false; 1505 } 1506 #endif 1507 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1508 void kvm_arch_start_assignment(struct kvm *kvm); 1509 void kvm_arch_end_assignment(struct kvm *kvm); 1510 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1511 #else 1512 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1513 { 1514 } 1515 1516 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1517 { 1518 } 1519 1520 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1521 { 1522 return false; 1523 } 1524 #endif 1525 1526 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1527 { 1528 #ifdef __KVM_HAVE_ARCH_WQP 1529 return vcpu->arch.waitp; 1530 #else 1531 return &vcpu->wait; 1532 #endif 1533 } 1534 1535 /* 1536 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1537 * true if the vCPU was blocking and was awakened, false otherwise. 1538 */ 1539 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1540 { 1541 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1542 } 1543 1544 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1545 { 1546 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1547 } 1548 1549 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1550 /* 1551 * returns true if the virtual interrupt controller is initialized and 1552 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1553 * controller is dynamically instantiated and this is not always true. 1554 */ 1555 bool kvm_arch_intc_initialized(struct kvm *kvm); 1556 #else 1557 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1558 { 1559 return true; 1560 } 1561 #endif 1562 1563 #ifdef CONFIG_GUEST_PERF_EVENTS 1564 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1565 1566 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1567 void kvm_unregister_perf_callbacks(void); 1568 #else 1569 static inline void kvm_register_perf_callbacks(void *ign) {} 1570 static inline void kvm_unregister_perf_callbacks(void) {} 1571 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1572 1573 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1574 void kvm_arch_destroy_vm(struct kvm *kvm); 1575 void kvm_arch_sync_events(struct kvm *kvm); 1576 1577 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1578 1579 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1580 bool kvm_is_zone_device_page(struct page *page); 1581 1582 struct kvm_irq_ack_notifier { 1583 struct hlist_node link; 1584 unsigned gsi; 1585 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1586 }; 1587 1588 int kvm_irq_map_gsi(struct kvm *kvm, 1589 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1590 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1591 1592 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1593 bool line_status); 1594 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1595 int irq_source_id, int level, bool line_status); 1596 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1597 struct kvm *kvm, int irq_source_id, 1598 int level, bool line_status); 1599 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1600 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1601 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1602 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1603 struct kvm_irq_ack_notifier *kian); 1604 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1605 struct kvm_irq_ack_notifier *kian); 1606 int kvm_request_irq_source_id(struct kvm *kvm); 1607 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1608 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1609 1610 /* 1611 * Returns a pointer to the memslot if it contains gfn. 1612 * Otherwise returns NULL. 1613 */ 1614 static inline struct kvm_memory_slot * 1615 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1616 { 1617 if (!slot) 1618 return NULL; 1619 1620 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1621 return slot; 1622 else 1623 return NULL; 1624 } 1625 1626 /* 1627 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1628 * 1629 * With "approx" set returns the memslot also when the address falls 1630 * in a hole. In that case one of the memslots bordering the hole is 1631 * returned. 1632 */ 1633 static inline struct kvm_memory_slot * 1634 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1635 { 1636 struct kvm_memory_slot *slot; 1637 struct rb_node *node; 1638 int idx = slots->node_idx; 1639 1640 slot = NULL; 1641 for (node = slots->gfn_tree.rb_node; node; ) { 1642 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1643 if (gfn >= slot->base_gfn) { 1644 if (gfn < slot->base_gfn + slot->npages) 1645 return slot; 1646 node = node->rb_right; 1647 } else 1648 node = node->rb_left; 1649 } 1650 1651 return approx ? slot : NULL; 1652 } 1653 1654 static inline struct kvm_memory_slot * 1655 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1656 { 1657 struct kvm_memory_slot *slot; 1658 1659 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1660 slot = try_get_memslot(slot, gfn); 1661 if (slot) 1662 return slot; 1663 1664 slot = search_memslots(slots, gfn, approx); 1665 if (slot) { 1666 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1667 return slot; 1668 } 1669 1670 return NULL; 1671 } 1672 1673 /* 1674 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1675 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1676 * because that would bloat other code too much. 1677 */ 1678 static inline struct kvm_memory_slot * 1679 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1680 { 1681 return ____gfn_to_memslot(slots, gfn, false); 1682 } 1683 1684 static inline unsigned long 1685 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1686 { 1687 /* 1688 * The index was checked originally in search_memslots. To avoid 1689 * that a malicious guest builds a Spectre gadget out of e.g. page 1690 * table walks, do not let the processor speculate loads outside 1691 * the guest's registered memslots. 1692 */ 1693 unsigned long offset = gfn - slot->base_gfn; 1694 offset = array_index_nospec(offset, slot->npages); 1695 return slot->userspace_addr + offset * PAGE_SIZE; 1696 } 1697 1698 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1699 { 1700 return gfn_to_memslot(kvm, gfn)->id; 1701 } 1702 1703 static inline gfn_t 1704 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1705 { 1706 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1707 1708 return slot->base_gfn + gfn_offset; 1709 } 1710 1711 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1712 { 1713 return (gpa_t)gfn << PAGE_SHIFT; 1714 } 1715 1716 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1717 { 1718 return (gfn_t)(gpa >> PAGE_SHIFT); 1719 } 1720 1721 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1722 { 1723 return (hpa_t)pfn << PAGE_SHIFT; 1724 } 1725 1726 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1727 { 1728 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1729 1730 return kvm_is_error_hva(hva); 1731 } 1732 1733 enum kvm_stat_kind { 1734 KVM_STAT_VM, 1735 KVM_STAT_VCPU, 1736 }; 1737 1738 struct kvm_stat_data { 1739 struct kvm *kvm; 1740 const struct _kvm_stats_desc *desc; 1741 enum kvm_stat_kind kind; 1742 }; 1743 1744 struct _kvm_stats_desc { 1745 struct kvm_stats_desc desc; 1746 char name[KVM_STATS_NAME_SIZE]; 1747 }; 1748 1749 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1750 .flags = type | unit | base | \ 1751 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1752 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1753 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1754 .exponent = exp, \ 1755 .size = sz, \ 1756 .bucket_size = bsz 1757 1758 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1759 { \ 1760 { \ 1761 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1762 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1763 }, \ 1764 .name = #stat, \ 1765 } 1766 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1767 { \ 1768 { \ 1769 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1770 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1771 }, \ 1772 .name = #stat, \ 1773 } 1774 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1775 { \ 1776 { \ 1777 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1778 .offset = offsetof(struct kvm_vm_stat, stat) \ 1779 }, \ 1780 .name = #stat, \ 1781 } 1782 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1783 { \ 1784 { \ 1785 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1786 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1787 }, \ 1788 .name = #stat, \ 1789 } 1790 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1791 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1792 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1793 1794 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1795 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1796 unit, base, exponent, 1, 0) 1797 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1798 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1799 unit, base, exponent, 1, 0) 1800 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1801 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1802 unit, base, exponent, 1, 0) 1803 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1804 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1805 unit, base, exponent, sz, bsz) 1806 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1807 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1808 unit, base, exponent, sz, 0) 1809 1810 /* Cumulative counter, read/write */ 1811 #define STATS_DESC_COUNTER(SCOPE, name) \ 1812 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1813 KVM_STATS_BASE_POW10, 0) 1814 /* Instantaneous counter, read only */ 1815 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1816 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1817 KVM_STATS_BASE_POW10, 0) 1818 /* Peak counter, read/write */ 1819 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1820 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1821 KVM_STATS_BASE_POW10, 0) 1822 1823 /* Instantaneous boolean value, read only */ 1824 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1825 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1826 KVM_STATS_BASE_POW10, 0) 1827 /* Peak (sticky) boolean value, read/write */ 1828 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1829 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1830 KVM_STATS_BASE_POW10, 0) 1831 1832 /* Cumulative time in nanosecond */ 1833 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1834 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1835 KVM_STATS_BASE_POW10, -9) 1836 /* Linear histogram for time in nanosecond */ 1837 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1838 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1839 KVM_STATS_BASE_POW10, -9, sz, bsz) 1840 /* Logarithmic histogram for time in nanosecond */ 1841 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1842 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1843 KVM_STATS_BASE_POW10, -9, sz) 1844 1845 #define KVM_GENERIC_VM_STATS() \ 1846 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1847 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1848 1849 #define KVM_GENERIC_VCPU_STATS() \ 1850 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1851 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1852 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1853 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1854 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1855 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1856 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1857 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1858 HALT_POLL_HIST_COUNT), \ 1859 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1860 HALT_POLL_HIST_COUNT), \ 1861 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1862 HALT_POLL_HIST_COUNT), \ 1863 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1864 1865 extern struct dentry *kvm_debugfs_dir; 1866 1867 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1868 const struct _kvm_stats_desc *desc, 1869 void *stats, size_t size_stats, 1870 char __user *user_buffer, size_t size, loff_t *offset); 1871 1872 /** 1873 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1874 * statistics data. 1875 * 1876 * @data: start address of the stats data 1877 * @size: the number of bucket of the stats data 1878 * @value: the new value used to update the linear histogram's bucket 1879 * @bucket_size: the size (width) of a bucket 1880 */ 1881 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1882 u64 value, size_t bucket_size) 1883 { 1884 size_t index = div64_u64(value, bucket_size); 1885 1886 index = min(index, size - 1); 1887 ++data[index]; 1888 } 1889 1890 /** 1891 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1892 * statistics data. 1893 * 1894 * @data: start address of the stats data 1895 * @size: the number of bucket of the stats data 1896 * @value: the new value used to update the logarithmic histogram's bucket 1897 */ 1898 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1899 { 1900 size_t index = fls64(value); 1901 1902 index = min(index, size - 1); 1903 ++data[index]; 1904 } 1905 1906 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1907 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1908 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1909 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1910 1911 1912 extern const struct kvm_stats_header kvm_vm_stats_header; 1913 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1914 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1915 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1916 1917 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1918 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 1919 { 1920 if (unlikely(kvm->mmu_invalidate_in_progress)) 1921 return 1; 1922 /* 1923 * Ensure the read of mmu_invalidate_in_progress happens before 1924 * the read of mmu_invalidate_seq. This interacts with the 1925 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 1926 * that the caller either sees the old (non-zero) value of 1927 * mmu_invalidate_in_progress or the new (incremented) value of 1928 * mmu_invalidate_seq. 1929 * 1930 * PowerPC Book3s HV KVM calls this under a per-page lock rather 1931 * than under kvm->mmu_lock, for scalability, so can't rely on 1932 * kvm->mmu_lock to keep things ordered. 1933 */ 1934 smp_rmb(); 1935 if (kvm->mmu_invalidate_seq != mmu_seq) 1936 return 1; 1937 return 0; 1938 } 1939 1940 static inline int mmu_invalidate_retry_hva(struct kvm *kvm, 1941 unsigned long mmu_seq, 1942 unsigned long hva) 1943 { 1944 lockdep_assert_held(&kvm->mmu_lock); 1945 /* 1946 * If mmu_invalidate_in_progress is non-zero, then the range maintained 1947 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 1948 * that might be being invalidated. Note that it may include some false 1949 * positives, due to shortcuts when handing concurrent invalidations. 1950 */ 1951 if (unlikely(kvm->mmu_invalidate_in_progress) && 1952 hva >= kvm->mmu_invalidate_range_start && 1953 hva < kvm->mmu_invalidate_range_end) 1954 return 1; 1955 if (kvm->mmu_invalidate_seq != mmu_seq) 1956 return 1; 1957 return 0; 1958 } 1959 #endif 1960 1961 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1962 1963 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1964 1965 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1966 int kvm_set_irq_routing(struct kvm *kvm, 1967 const struct kvm_irq_routing_entry *entries, 1968 unsigned nr, 1969 unsigned flags); 1970 int kvm_set_routing_entry(struct kvm *kvm, 1971 struct kvm_kernel_irq_routing_entry *e, 1972 const struct kvm_irq_routing_entry *ue); 1973 void kvm_free_irq_routing(struct kvm *kvm); 1974 1975 #else 1976 1977 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1978 1979 #endif 1980 1981 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1982 1983 #ifdef CONFIG_HAVE_KVM_EVENTFD 1984 1985 void kvm_eventfd_init(struct kvm *kvm); 1986 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1987 1988 #ifdef CONFIG_HAVE_KVM_IRQFD 1989 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1990 void kvm_irqfd_release(struct kvm *kvm); 1991 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 1992 unsigned int irqchip, 1993 unsigned int pin); 1994 void kvm_irq_routing_update(struct kvm *); 1995 #else 1996 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1997 { 1998 return -EINVAL; 1999 } 2000 2001 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2002 2003 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2004 unsigned int irqchip, 2005 unsigned int pin) 2006 { 2007 return false; 2008 } 2009 #endif 2010 2011 #else 2012 2013 static inline void kvm_eventfd_init(struct kvm *kvm) {} 2014 2015 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2016 { 2017 return -EINVAL; 2018 } 2019 2020 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2021 2022 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2023 static inline void kvm_irq_routing_update(struct kvm *kvm) 2024 { 2025 } 2026 #endif 2027 2028 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 2029 { 2030 return -ENOSYS; 2031 } 2032 2033 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 2034 2035 void kvm_arch_irq_routing_update(struct kvm *kvm); 2036 2037 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2038 { 2039 /* 2040 * Ensure the rest of the request is published to kvm_check_request's 2041 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2042 */ 2043 smp_wmb(); 2044 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2045 } 2046 2047 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2048 { 2049 /* 2050 * Request that don't require vCPU action should never be logged in 2051 * vcpu->requests. The vCPU won't clear the request, so it will stay 2052 * logged indefinitely and prevent the vCPU from entering the guest. 2053 */ 2054 BUILD_BUG_ON(!__builtin_constant_p(req) || 2055 (req & KVM_REQUEST_NO_ACTION)); 2056 2057 __kvm_make_request(req, vcpu); 2058 } 2059 2060 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2061 { 2062 return READ_ONCE(vcpu->requests); 2063 } 2064 2065 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2066 { 2067 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2068 } 2069 2070 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2071 { 2072 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2073 } 2074 2075 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2076 { 2077 if (kvm_test_request(req, vcpu)) { 2078 kvm_clear_request(req, vcpu); 2079 2080 /* 2081 * Ensure the rest of the request is visible to kvm_check_request's 2082 * caller. Paired with the smp_wmb in kvm_make_request. 2083 */ 2084 smp_mb__after_atomic(); 2085 return true; 2086 } else { 2087 return false; 2088 } 2089 } 2090 2091 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2092 extern bool kvm_rebooting; 2093 #endif 2094 2095 extern unsigned int halt_poll_ns; 2096 extern unsigned int halt_poll_ns_grow; 2097 extern unsigned int halt_poll_ns_grow_start; 2098 extern unsigned int halt_poll_ns_shrink; 2099 2100 struct kvm_device { 2101 const struct kvm_device_ops *ops; 2102 struct kvm *kvm; 2103 void *private; 2104 struct list_head vm_node; 2105 }; 2106 2107 /* create, destroy, and name are mandatory */ 2108 struct kvm_device_ops { 2109 const char *name; 2110 2111 /* 2112 * create is called holding kvm->lock and any operations not suitable 2113 * to do while holding the lock should be deferred to init (see 2114 * below). 2115 */ 2116 int (*create)(struct kvm_device *dev, u32 type); 2117 2118 /* 2119 * init is called after create if create is successful and is called 2120 * outside of holding kvm->lock. 2121 */ 2122 void (*init)(struct kvm_device *dev); 2123 2124 /* 2125 * Destroy is responsible for freeing dev. 2126 * 2127 * Destroy may be called before or after destructors are called 2128 * on emulated I/O regions, depending on whether a reference is 2129 * held by a vcpu or other kvm component that gets destroyed 2130 * after the emulated I/O. 2131 */ 2132 void (*destroy)(struct kvm_device *dev); 2133 2134 /* 2135 * Release is an alternative method to free the device. It is 2136 * called when the device file descriptor is closed. Once 2137 * release is called, the destroy method will not be called 2138 * anymore as the device is removed from the device list of 2139 * the VM. kvm->lock is held. 2140 */ 2141 void (*release)(struct kvm_device *dev); 2142 2143 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2144 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2145 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2146 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2147 unsigned long arg); 2148 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2149 }; 2150 2151 void kvm_device_get(struct kvm_device *dev); 2152 void kvm_device_put(struct kvm_device *dev); 2153 struct kvm_device *kvm_device_from_filp(struct file *filp); 2154 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2155 void kvm_unregister_device_ops(u32 type); 2156 2157 extern struct kvm_device_ops kvm_mpic_ops; 2158 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2159 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2160 2161 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2162 2163 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2164 { 2165 vcpu->spin_loop.in_spin_loop = val; 2166 } 2167 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2168 { 2169 vcpu->spin_loop.dy_eligible = val; 2170 } 2171 2172 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2173 2174 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2175 { 2176 } 2177 2178 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2179 { 2180 } 2181 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2182 2183 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2184 { 2185 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2186 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2187 } 2188 2189 struct kvm_vcpu *kvm_get_running_vcpu(void); 2190 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2191 2192 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2193 bool kvm_arch_has_irq_bypass(void); 2194 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2195 struct irq_bypass_producer *); 2196 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2197 struct irq_bypass_producer *); 2198 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2199 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2200 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2201 uint32_t guest_irq, bool set); 2202 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2203 struct kvm_kernel_irq_routing_entry *); 2204 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2205 2206 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2207 /* If we wakeup during the poll time, was it a sucessful poll? */ 2208 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2209 { 2210 return vcpu->valid_wakeup; 2211 } 2212 2213 #else 2214 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2215 { 2216 return true; 2217 } 2218 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2219 2220 #ifdef CONFIG_HAVE_KVM_NO_POLL 2221 /* Callback that tells if we must not poll */ 2222 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2223 #else 2224 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2225 { 2226 return false; 2227 } 2228 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2229 2230 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2231 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2232 unsigned int ioctl, unsigned long arg); 2233 #else 2234 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2235 unsigned int ioctl, 2236 unsigned long arg) 2237 { 2238 return -ENOIOCTLCMD; 2239 } 2240 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2241 2242 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2243 2244 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2245 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2246 #else 2247 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2248 { 2249 return 0; 2250 } 2251 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2252 2253 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2254 2255 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2256 uintptr_t data, const char *name, 2257 struct task_struct **thread_ptr); 2258 2259 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2260 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2261 { 2262 vcpu->run->exit_reason = KVM_EXIT_INTR; 2263 vcpu->stat.signal_exits++; 2264 } 2265 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2266 2267 /* 2268 * If more than one page is being (un)accounted, @virt must be the address of 2269 * the first page of a block of pages what were allocated together (i.e 2270 * accounted together). 2271 * 2272 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2273 * is thread-safe. 2274 */ 2275 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2276 { 2277 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2278 } 2279 2280 /* 2281 * This defines how many reserved entries we want to keep before we 2282 * kick the vcpu to the userspace to avoid dirty ring full. This 2283 * value can be tuned to higher if e.g. PML is enabled on the host. 2284 */ 2285 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2286 2287 /* Max number of entries allowed for each kvm dirty ring */ 2288 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2289 2290 #endif 2291