1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/minmax.h> 15 #include <linux/mm.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/preempt.h> 18 #include <linux/msi.h> 19 #include <linux/slab.h> 20 #include <linux/vmalloc.h> 21 #include <linux/rcupdate.h> 22 #include <linux/ratelimit.h> 23 #include <linux/err.h> 24 #include <linux/irqflags.h> 25 #include <linux/context_tracking.h> 26 #include <linux/irqbypass.h> 27 #include <linux/rcuwait.h> 28 #include <linux/refcount.h> 29 #include <linux/nospec.h> 30 #include <asm/signal.h> 31 32 #include <linux/kvm.h> 33 #include <linux/kvm_para.h> 34 35 #include <linux/kvm_types.h> 36 37 #include <asm/kvm_host.h> 38 #include <linux/kvm_dirty_ring.h> 39 40 #ifndef KVM_MAX_VCPU_ID 41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 42 #endif 43 44 /* 45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 46 * in kvm, other bits are visible for userspace which are defined in 47 * include/linux/kvm_h. 48 */ 49 #define KVM_MEMSLOT_INVALID (1UL << 16) 50 51 /* 52 * Bit 63 of the memslot generation number is an "update in-progress flag", 53 * e.g. is temporarily set for the duration of install_new_memslots(). 54 * This flag effectively creates a unique generation number that is used to 55 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 56 * i.e. may (or may not) have come from the previous memslots generation. 57 * 58 * This is necessary because the actual memslots update is not atomic with 59 * respect to the generation number update. Updating the generation number 60 * first would allow a vCPU to cache a spte from the old memslots using the 61 * new generation number, and updating the generation number after switching 62 * to the new memslots would allow cache hits using the old generation number 63 * to reference the defunct memslots. 64 * 65 * This mechanism is used to prevent getting hits in KVM's caches while a 66 * memslot update is in-progress, and to prevent cache hits *after* updating 67 * the actual generation number against accesses that were inserted into the 68 * cache *before* the memslots were updated. 69 */ 70 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 71 72 /* Two fragments for cross MMIO pages. */ 73 #define KVM_MAX_MMIO_FRAGMENTS 2 74 75 #ifndef KVM_ADDRESS_SPACE_NUM 76 #define KVM_ADDRESS_SPACE_NUM 1 77 #endif 78 79 /* 80 * For the normal pfn, the highest 12 bits should be zero, 81 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 82 * mask bit 63 to indicate the noslot pfn. 83 */ 84 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 85 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 86 #define KVM_PFN_NOSLOT (0x1ULL << 63) 87 88 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 89 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 90 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 91 92 /* 93 * error pfns indicate that the gfn is in slot but faild to 94 * translate it to pfn on host. 95 */ 96 static inline bool is_error_pfn(kvm_pfn_t pfn) 97 { 98 return !!(pfn & KVM_PFN_ERR_MASK); 99 } 100 101 /* 102 * error_noslot pfns indicate that the gfn can not be 103 * translated to pfn - it is not in slot or failed to 104 * translate it to pfn. 105 */ 106 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 109 } 110 111 /* noslot pfn indicates that the gfn is not in slot. */ 112 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 113 { 114 return pfn == KVM_PFN_NOSLOT; 115 } 116 117 /* 118 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 119 * provide own defines and kvm_is_error_hva 120 */ 121 #ifndef KVM_HVA_ERR_BAD 122 123 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 124 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 125 126 static inline bool kvm_is_error_hva(unsigned long addr) 127 { 128 return addr >= PAGE_OFFSET; 129 } 130 131 #endif 132 133 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 134 135 static inline bool is_error_page(struct page *page) 136 { 137 return IS_ERR(page); 138 } 139 140 #define KVM_REQUEST_MASK GENMASK(7,0) 141 #define KVM_REQUEST_NO_WAKEUP BIT(8) 142 #define KVM_REQUEST_WAIT BIT(9) 143 /* 144 * Architecture-independent vcpu->requests bit members 145 * Bits 4-7 are reserved for more arch-independent bits. 146 */ 147 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 148 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149 #define KVM_REQ_PENDING_TIMER 2 150 #define KVM_REQ_UNHALT 3 151 #define KVM_REQUEST_ARCH_BASE 8 152 153 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 154 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 155 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 156 }) 157 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 158 159 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 160 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 161 162 extern struct mutex kvm_lock; 163 extern struct list_head vm_list; 164 165 struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169 }; 170 171 #define NR_IOBUS_DEVS 1000 172 173 struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177 }; 178 179 enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185 }; 186 187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200 #ifdef CONFIG_KVM_ASYNC_PF 201 struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gpa_t cr2_or_gpa; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211 bool notpresent_injected; 212 }; 213 214 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 215 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 216 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 217 unsigned long hva, struct kvm_arch_async_pf *arch); 218 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 219 #endif 220 221 enum { 222 OUTSIDE_GUEST_MODE, 223 IN_GUEST_MODE, 224 EXITING_GUEST_MODE, 225 READING_SHADOW_PAGE_TABLES, 226 }; 227 228 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 229 230 struct kvm_host_map { 231 /* 232 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 233 * a 'struct page' for it. When using mem= kernel parameter some memory 234 * can be used as guest memory but they are not managed by host 235 * kernel). 236 * If 'pfn' is not managed by the host kernel, this field is 237 * initialized to KVM_UNMAPPED_PAGE. 238 */ 239 struct page *page; 240 void *hva; 241 kvm_pfn_t pfn; 242 kvm_pfn_t gfn; 243 }; 244 245 /* 246 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 247 * directly to check for that. 248 */ 249 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 250 { 251 return !!map->hva; 252 } 253 254 /* 255 * Sometimes a large or cross-page mmio needs to be broken up into separate 256 * exits for userspace servicing. 257 */ 258 struct kvm_mmio_fragment { 259 gpa_t gpa; 260 void *data; 261 unsigned len; 262 }; 263 264 struct kvm_vcpu { 265 struct kvm *kvm; 266 #ifdef CONFIG_PREEMPT_NOTIFIERS 267 struct preempt_notifier preempt_notifier; 268 #endif 269 int cpu; 270 int vcpu_id; /* id given by userspace at creation */ 271 int vcpu_idx; /* index in kvm->vcpus array */ 272 int srcu_idx; 273 int mode; 274 u64 requests; 275 unsigned long guest_debug; 276 277 int pre_pcpu; 278 struct list_head blocked_vcpu_list; 279 280 struct mutex mutex; 281 struct kvm_run *run; 282 283 struct rcuwait wait; 284 struct pid __rcu *pid; 285 int sigset_active; 286 sigset_t sigset; 287 struct kvm_vcpu_stat stat; 288 unsigned int halt_poll_ns; 289 bool valid_wakeup; 290 291 #ifdef CONFIG_HAS_IOMEM 292 int mmio_needed; 293 int mmio_read_completed; 294 int mmio_is_write; 295 int mmio_cur_fragment; 296 int mmio_nr_fragments; 297 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 298 #endif 299 300 #ifdef CONFIG_KVM_ASYNC_PF 301 struct { 302 u32 queued; 303 struct list_head queue; 304 struct list_head done; 305 spinlock_t lock; 306 } async_pf; 307 #endif 308 309 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 310 /* 311 * Cpu relax intercept or pause loop exit optimization 312 * in_spin_loop: set when a vcpu does a pause loop exit 313 * or cpu relax intercepted. 314 * dy_eligible: indicates whether vcpu is eligible for directed yield. 315 */ 316 struct { 317 bool in_spin_loop; 318 bool dy_eligible; 319 } spin_loop; 320 #endif 321 bool preempted; 322 bool ready; 323 struct kvm_vcpu_arch arch; 324 struct kvm_dirty_ring dirty_ring; 325 }; 326 327 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 328 { 329 /* 330 * The memory barrier ensures a previous write to vcpu->requests cannot 331 * be reordered with the read of vcpu->mode. It pairs with the general 332 * memory barrier following the write of vcpu->mode in VCPU RUN. 333 */ 334 smp_mb__before_atomic(); 335 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 336 } 337 338 /* 339 * Some of the bitops functions do not support too long bitmaps. 340 * This number must be determined not to exceed such limits. 341 */ 342 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 343 344 struct kvm_memory_slot { 345 gfn_t base_gfn; 346 unsigned long npages; 347 unsigned long *dirty_bitmap; 348 struct kvm_arch_memory_slot arch; 349 unsigned long userspace_addr; 350 u32 flags; 351 short id; 352 u16 as_id; 353 }; 354 355 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 356 { 357 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 358 } 359 360 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 361 { 362 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 363 } 364 365 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 366 { 367 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 368 369 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 370 } 371 372 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 373 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 374 #endif 375 376 struct kvm_s390_adapter_int { 377 u64 ind_addr; 378 u64 summary_addr; 379 u64 ind_offset; 380 u32 summary_offset; 381 u32 adapter_id; 382 }; 383 384 struct kvm_hv_sint { 385 u32 vcpu; 386 u32 sint; 387 }; 388 389 struct kvm_kernel_irq_routing_entry { 390 u32 gsi; 391 u32 type; 392 int (*set)(struct kvm_kernel_irq_routing_entry *e, 393 struct kvm *kvm, int irq_source_id, int level, 394 bool line_status); 395 union { 396 struct { 397 unsigned irqchip; 398 unsigned pin; 399 } irqchip; 400 struct { 401 u32 address_lo; 402 u32 address_hi; 403 u32 data; 404 u32 flags; 405 u32 devid; 406 } msi; 407 struct kvm_s390_adapter_int adapter; 408 struct kvm_hv_sint hv_sint; 409 }; 410 struct hlist_node link; 411 }; 412 413 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 414 struct kvm_irq_routing_table { 415 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 416 u32 nr_rt_entries; 417 /* 418 * Array indexed by gsi. Each entry contains list of irq chips 419 * the gsi is connected to. 420 */ 421 struct hlist_head map[]; 422 }; 423 #endif 424 425 #ifndef KVM_PRIVATE_MEM_SLOTS 426 #define KVM_PRIVATE_MEM_SLOTS 0 427 #endif 428 429 #define KVM_MEM_SLOTS_NUM SHRT_MAX 430 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 431 432 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 433 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 434 { 435 return 0; 436 } 437 #endif 438 439 /* 440 * Note: 441 * memslots are not sorted by id anymore, please use id_to_memslot() 442 * to get the memslot by its id. 443 */ 444 struct kvm_memslots { 445 u64 generation; 446 /* The mapping table from slot id to the index in memslots[]. */ 447 short id_to_index[KVM_MEM_SLOTS_NUM]; 448 atomic_t lru_slot; 449 int used_slots; 450 struct kvm_memory_slot memslots[]; 451 }; 452 453 struct kvm { 454 #ifdef KVM_HAVE_MMU_RWLOCK 455 rwlock_t mmu_lock; 456 #else 457 spinlock_t mmu_lock; 458 #endif /* KVM_HAVE_MMU_RWLOCK */ 459 460 struct mutex slots_lock; 461 struct mm_struct *mm; /* userspace tied to this vm */ 462 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 463 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 464 465 /* 466 * created_vcpus is protected by kvm->lock, and is incremented 467 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 468 * incremented after storing the kvm_vcpu pointer in vcpus, 469 * and is accessed atomically. 470 */ 471 atomic_t online_vcpus; 472 int created_vcpus; 473 int last_boosted_vcpu; 474 struct list_head vm_list; 475 struct mutex lock; 476 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 477 #ifdef CONFIG_HAVE_KVM_EVENTFD 478 struct { 479 spinlock_t lock; 480 struct list_head items; 481 struct list_head resampler_list; 482 struct mutex resampler_lock; 483 } irqfds; 484 struct list_head ioeventfds; 485 #endif 486 struct kvm_vm_stat stat; 487 struct kvm_arch arch; 488 refcount_t users_count; 489 #ifdef CONFIG_KVM_MMIO 490 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 491 spinlock_t ring_lock; 492 struct list_head coalesced_zones; 493 #endif 494 495 struct mutex irq_lock; 496 #ifdef CONFIG_HAVE_KVM_IRQCHIP 497 /* 498 * Update side is protected by irq_lock. 499 */ 500 struct kvm_irq_routing_table __rcu *irq_routing; 501 #endif 502 #ifdef CONFIG_HAVE_KVM_IRQFD 503 struct hlist_head irq_ack_notifier_list; 504 #endif 505 506 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 507 struct mmu_notifier mmu_notifier; 508 unsigned long mmu_notifier_seq; 509 long mmu_notifier_count; 510 unsigned long mmu_notifier_range_start; 511 unsigned long mmu_notifier_range_end; 512 #endif 513 long tlbs_dirty; 514 struct list_head devices; 515 u64 manual_dirty_log_protect; 516 struct dentry *debugfs_dentry; 517 struct kvm_stat_data **debugfs_stat_data; 518 struct srcu_struct srcu; 519 struct srcu_struct irq_srcu; 520 pid_t userspace_pid; 521 unsigned int max_halt_poll_ns; 522 u32 dirty_ring_size; 523 }; 524 525 #define kvm_err(fmt, ...) \ 526 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 527 #define kvm_info(fmt, ...) \ 528 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 529 #define kvm_debug(fmt, ...) \ 530 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 531 #define kvm_debug_ratelimited(fmt, ...) \ 532 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 533 ## __VA_ARGS__) 534 #define kvm_pr_unimpl(fmt, ...) \ 535 pr_err_ratelimited("kvm [%i]: " fmt, \ 536 task_tgid_nr(current), ## __VA_ARGS__) 537 538 /* The guest did something we don't support. */ 539 #define vcpu_unimpl(vcpu, fmt, ...) \ 540 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 541 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 542 543 #define vcpu_debug(vcpu, fmt, ...) \ 544 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 545 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 546 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 547 ## __VA_ARGS__) 548 #define vcpu_err(vcpu, fmt, ...) \ 549 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 550 551 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 552 { 553 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 554 } 555 556 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 557 { 558 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 559 lockdep_is_held(&kvm->slots_lock) || 560 !refcount_read(&kvm->users_count)); 561 } 562 563 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 564 { 565 int num_vcpus = atomic_read(&kvm->online_vcpus); 566 i = array_index_nospec(i, num_vcpus); 567 568 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 569 smp_rmb(); 570 return kvm->vcpus[i]; 571 } 572 573 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 574 for (idx = 0; \ 575 idx < atomic_read(&kvm->online_vcpus) && \ 576 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 577 idx++) 578 579 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 580 { 581 struct kvm_vcpu *vcpu = NULL; 582 int i; 583 584 if (id < 0) 585 return NULL; 586 if (id < KVM_MAX_VCPUS) 587 vcpu = kvm_get_vcpu(kvm, id); 588 if (vcpu && vcpu->vcpu_id == id) 589 return vcpu; 590 kvm_for_each_vcpu(i, vcpu, kvm) 591 if (vcpu->vcpu_id == id) 592 return vcpu; 593 return NULL; 594 } 595 596 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 597 { 598 return vcpu->vcpu_idx; 599 } 600 601 #define kvm_for_each_memslot(memslot, slots) \ 602 for (memslot = &slots->memslots[0]; \ 603 memslot < slots->memslots + slots->used_slots; memslot++) \ 604 if (WARN_ON_ONCE(!memslot->npages)) { \ 605 } else 606 607 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 608 609 void vcpu_load(struct kvm_vcpu *vcpu); 610 void vcpu_put(struct kvm_vcpu *vcpu); 611 612 #ifdef __KVM_HAVE_IOAPIC 613 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 614 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 615 #else 616 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 617 { 618 } 619 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 620 { 621 } 622 #endif 623 624 #ifdef CONFIG_HAVE_KVM_IRQFD 625 int kvm_irqfd_init(void); 626 void kvm_irqfd_exit(void); 627 #else 628 static inline int kvm_irqfd_init(void) 629 { 630 return 0; 631 } 632 633 static inline void kvm_irqfd_exit(void) 634 { 635 } 636 #endif 637 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 638 struct module *module); 639 void kvm_exit(void); 640 641 void kvm_get_kvm(struct kvm *kvm); 642 void kvm_put_kvm(struct kvm *kvm); 643 void kvm_put_kvm_no_destroy(struct kvm *kvm); 644 645 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 646 { 647 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 648 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 649 lockdep_is_held(&kvm->slots_lock) || 650 !refcount_read(&kvm->users_count)); 651 } 652 653 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 654 { 655 return __kvm_memslots(kvm, 0); 656 } 657 658 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 659 { 660 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 661 662 return __kvm_memslots(vcpu->kvm, as_id); 663 } 664 665 static inline 666 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 667 { 668 int index = slots->id_to_index[id]; 669 struct kvm_memory_slot *slot; 670 671 if (index < 0) 672 return NULL; 673 674 slot = &slots->memslots[index]; 675 676 WARN_ON(slot->id != id); 677 return slot; 678 } 679 680 /* 681 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 682 * - create a new memory slot 683 * - delete an existing memory slot 684 * - modify an existing memory slot 685 * -- move it in the guest physical memory space 686 * -- just change its flags 687 * 688 * Since flags can be changed by some of these operations, the following 689 * differentiation is the best we can do for __kvm_set_memory_region(): 690 */ 691 enum kvm_mr_change { 692 KVM_MR_CREATE, 693 KVM_MR_DELETE, 694 KVM_MR_MOVE, 695 KVM_MR_FLAGS_ONLY, 696 }; 697 698 int kvm_set_memory_region(struct kvm *kvm, 699 const struct kvm_userspace_memory_region *mem); 700 int __kvm_set_memory_region(struct kvm *kvm, 701 const struct kvm_userspace_memory_region *mem); 702 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 703 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 704 int kvm_arch_prepare_memory_region(struct kvm *kvm, 705 struct kvm_memory_slot *memslot, 706 const struct kvm_userspace_memory_region *mem, 707 enum kvm_mr_change change); 708 void kvm_arch_commit_memory_region(struct kvm *kvm, 709 const struct kvm_userspace_memory_region *mem, 710 struct kvm_memory_slot *old, 711 const struct kvm_memory_slot *new, 712 enum kvm_mr_change change); 713 /* flush all memory translations */ 714 void kvm_arch_flush_shadow_all(struct kvm *kvm); 715 /* flush memory translations pointing to 'slot' */ 716 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 717 struct kvm_memory_slot *slot); 718 719 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 720 struct page **pages, int nr_pages); 721 722 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 723 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 724 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 725 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 726 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 727 bool *writable); 728 void kvm_release_page_clean(struct page *page); 729 void kvm_release_page_dirty(struct page *page); 730 void kvm_set_page_accessed(struct page *page); 731 732 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 733 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 734 bool *writable); 735 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 736 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 737 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 738 bool atomic, bool *async, bool write_fault, 739 bool *writable, hva_t *hva); 740 741 void kvm_release_pfn_clean(kvm_pfn_t pfn); 742 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 743 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 744 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 745 void kvm_get_pfn(kvm_pfn_t pfn); 746 747 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 748 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 749 int len); 750 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 751 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 752 void *data, unsigned long len); 753 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 754 void *data, unsigned int offset, 755 unsigned long len); 756 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 757 int offset, int len); 758 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 759 unsigned long len); 760 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 761 void *data, unsigned long len); 762 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 763 void *data, unsigned int offset, 764 unsigned long len); 765 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 766 gpa_t gpa, unsigned long len); 767 768 #define __kvm_get_guest(kvm, gfn, offset, v) \ 769 ({ \ 770 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 771 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 772 int __ret = -EFAULT; \ 773 \ 774 if (!kvm_is_error_hva(__addr)) \ 775 __ret = get_user(v, __uaddr); \ 776 __ret; \ 777 }) 778 779 #define kvm_get_guest(kvm, gpa, v) \ 780 ({ \ 781 gpa_t __gpa = gpa; \ 782 struct kvm *__kvm = kvm; \ 783 \ 784 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 785 offset_in_page(__gpa), v); \ 786 }) 787 788 #define __kvm_put_guest(kvm, gfn, offset, v) \ 789 ({ \ 790 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 791 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 792 int __ret = -EFAULT; \ 793 \ 794 if (!kvm_is_error_hva(__addr)) \ 795 __ret = put_user(v, __uaddr); \ 796 if (!__ret) \ 797 mark_page_dirty(kvm, gfn); \ 798 __ret; \ 799 }) 800 801 #define kvm_put_guest(kvm, gpa, v) \ 802 ({ \ 803 gpa_t __gpa = gpa; \ 804 struct kvm *__kvm = kvm; \ 805 \ 806 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 807 offset_in_page(__gpa), v); \ 808 }) 809 810 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 811 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 812 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 813 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 814 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 815 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 816 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 817 818 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 819 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 820 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 821 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 822 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 823 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 824 struct gfn_to_pfn_cache *cache, bool atomic); 825 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 826 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 827 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 828 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 829 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 830 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 831 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 832 int len); 833 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 834 unsigned long len); 835 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 836 unsigned long len); 837 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 838 int offset, int len); 839 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 840 unsigned long len); 841 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 842 843 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 844 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 845 846 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 847 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 848 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 849 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 850 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 851 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 852 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 853 854 void kvm_flush_remote_tlbs(struct kvm *kvm); 855 void kvm_reload_remote_mmus(struct kvm *kvm); 856 857 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 858 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 859 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 860 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 861 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 862 #endif 863 864 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 865 struct kvm_vcpu *except, 866 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 867 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 868 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 869 struct kvm_vcpu *except); 870 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 871 unsigned long *vcpu_bitmap); 872 873 long kvm_arch_dev_ioctl(struct file *filp, 874 unsigned int ioctl, unsigned long arg); 875 long kvm_arch_vcpu_ioctl(struct file *filp, 876 unsigned int ioctl, unsigned long arg); 877 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 878 879 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 880 881 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 882 struct kvm_memory_slot *slot, 883 gfn_t gfn_offset, 884 unsigned long mask); 885 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 886 887 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 888 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 889 struct kvm_memory_slot *memslot); 890 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 891 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 892 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 893 int *is_dirty, struct kvm_memory_slot **memslot); 894 #endif 895 896 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 897 bool line_status); 898 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 899 struct kvm_enable_cap *cap); 900 long kvm_arch_vm_ioctl(struct file *filp, 901 unsigned int ioctl, unsigned long arg); 902 903 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 904 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 905 906 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 907 struct kvm_translation *tr); 908 909 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 910 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 911 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 912 struct kvm_sregs *sregs); 913 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 914 struct kvm_sregs *sregs); 915 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 916 struct kvm_mp_state *mp_state); 917 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 918 struct kvm_mp_state *mp_state); 919 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 920 struct kvm_guest_debug *dbg); 921 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 922 923 int kvm_arch_init(void *opaque); 924 void kvm_arch_exit(void); 925 926 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 927 928 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 929 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 930 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 931 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 932 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 933 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 934 935 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 936 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 937 #endif 938 939 int kvm_arch_hardware_enable(void); 940 void kvm_arch_hardware_disable(void); 941 int kvm_arch_hardware_setup(void *opaque); 942 void kvm_arch_hardware_unsetup(void); 943 int kvm_arch_check_processor_compat(void *opaque); 944 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 945 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 946 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 947 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 948 int kvm_arch_post_init_vm(struct kvm *kvm); 949 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 950 951 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 952 /* 953 * All architectures that want to use vzalloc currently also 954 * need their own kvm_arch_alloc_vm implementation. 955 */ 956 static inline struct kvm *kvm_arch_alloc_vm(void) 957 { 958 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 959 } 960 961 static inline void kvm_arch_free_vm(struct kvm *kvm) 962 { 963 kfree(kvm); 964 } 965 #endif 966 967 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 968 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 969 { 970 return -ENOTSUPP; 971 } 972 #endif 973 974 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 975 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 976 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 977 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 978 #else 979 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 980 { 981 } 982 983 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 984 { 985 } 986 987 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 988 { 989 return false; 990 } 991 #endif 992 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 993 void kvm_arch_start_assignment(struct kvm *kvm); 994 void kvm_arch_end_assignment(struct kvm *kvm); 995 bool kvm_arch_has_assigned_device(struct kvm *kvm); 996 #else 997 static inline void kvm_arch_start_assignment(struct kvm *kvm) 998 { 999 } 1000 1001 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1002 { 1003 } 1004 1005 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1006 { 1007 return false; 1008 } 1009 #endif 1010 1011 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1012 { 1013 #ifdef __KVM_HAVE_ARCH_WQP 1014 return vcpu->arch.waitp; 1015 #else 1016 return &vcpu->wait; 1017 #endif 1018 } 1019 1020 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1021 /* 1022 * returns true if the virtual interrupt controller is initialized and 1023 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1024 * controller is dynamically instantiated and this is not always true. 1025 */ 1026 bool kvm_arch_intc_initialized(struct kvm *kvm); 1027 #else 1028 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1029 { 1030 return true; 1031 } 1032 #endif 1033 1034 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1035 void kvm_arch_destroy_vm(struct kvm *kvm); 1036 void kvm_arch_sync_events(struct kvm *kvm); 1037 1038 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1039 1040 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1041 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1042 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1043 1044 struct kvm_irq_ack_notifier { 1045 struct hlist_node link; 1046 unsigned gsi; 1047 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1048 }; 1049 1050 int kvm_irq_map_gsi(struct kvm *kvm, 1051 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1052 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1053 1054 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1055 bool line_status); 1056 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1057 int irq_source_id, int level, bool line_status); 1058 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1059 struct kvm *kvm, int irq_source_id, 1060 int level, bool line_status); 1061 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1062 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1063 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1064 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1065 struct kvm_irq_ack_notifier *kian); 1066 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1067 struct kvm_irq_ack_notifier *kian); 1068 int kvm_request_irq_source_id(struct kvm *kvm); 1069 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1070 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1071 1072 /* 1073 * search_memslots() and __gfn_to_memslot() are here because they are 1074 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1075 * gfn_to_memslot() itself isn't here as an inline because that would 1076 * bloat other code too much. 1077 * 1078 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1079 */ 1080 static inline struct kvm_memory_slot * 1081 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1082 { 1083 int start = 0, end = slots->used_slots; 1084 int slot = atomic_read(&slots->lru_slot); 1085 struct kvm_memory_slot *memslots = slots->memslots; 1086 1087 if (unlikely(!slots->used_slots)) 1088 return NULL; 1089 1090 if (gfn >= memslots[slot].base_gfn && 1091 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1092 return &memslots[slot]; 1093 1094 while (start < end) { 1095 slot = start + (end - start) / 2; 1096 1097 if (gfn >= memslots[slot].base_gfn) 1098 end = slot; 1099 else 1100 start = slot + 1; 1101 } 1102 1103 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1104 gfn < memslots[start].base_gfn + memslots[start].npages) { 1105 atomic_set(&slots->lru_slot, start); 1106 return &memslots[start]; 1107 } 1108 1109 return NULL; 1110 } 1111 1112 static inline struct kvm_memory_slot * 1113 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1114 { 1115 return search_memslots(slots, gfn); 1116 } 1117 1118 static inline unsigned long 1119 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1120 { 1121 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1122 } 1123 1124 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1125 { 1126 return gfn_to_memslot(kvm, gfn)->id; 1127 } 1128 1129 static inline gfn_t 1130 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1131 { 1132 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1133 1134 return slot->base_gfn + gfn_offset; 1135 } 1136 1137 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1138 { 1139 return (gpa_t)gfn << PAGE_SHIFT; 1140 } 1141 1142 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1143 { 1144 return (gfn_t)(gpa >> PAGE_SHIFT); 1145 } 1146 1147 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1148 { 1149 return (hpa_t)pfn << PAGE_SHIFT; 1150 } 1151 1152 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1153 gpa_t gpa) 1154 { 1155 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1156 } 1157 1158 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1159 { 1160 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1161 1162 return kvm_is_error_hva(hva); 1163 } 1164 1165 enum kvm_stat_kind { 1166 KVM_STAT_VM, 1167 KVM_STAT_VCPU, 1168 }; 1169 1170 struct kvm_stat_data { 1171 struct kvm *kvm; 1172 struct kvm_stats_debugfs_item *dbgfs_item; 1173 }; 1174 1175 struct kvm_stats_debugfs_item { 1176 const char *name; 1177 int offset; 1178 enum kvm_stat_kind kind; 1179 int mode; 1180 }; 1181 1182 #define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1183 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1184 1185 #define VM_STAT(n, x, ...) \ 1186 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ } 1187 #define VCPU_STAT(n, x, ...) \ 1188 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ } 1189 1190 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1191 extern struct dentry *kvm_debugfs_dir; 1192 1193 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1194 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1195 { 1196 if (unlikely(kvm->mmu_notifier_count)) 1197 return 1; 1198 /* 1199 * Ensure the read of mmu_notifier_count happens before the read 1200 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1201 * mmu_notifier_invalidate_range_end to make sure that the caller 1202 * either sees the old (non-zero) value of mmu_notifier_count or 1203 * the new (incremented) value of mmu_notifier_seq. 1204 * PowerPC Book3s HV KVM calls this under a per-page lock 1205 * rather than under kvm->mmu_lock, for scalability, so 1206 * can't rely on kvm->mmu_lock to keep things ordered. 1207 */ 1208 smp_rmb(); 1209 if (kvm->mmu_notifier_seq != mmu_seq) 1210 return 1; 1211 return 0; 1212 } 1213 1214 static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1215 unsigned long mmu_seq, 1216 unsigned long hva) 1217 { 1218 lockdep_assert_held(&kvm->mmu_lock); 1219 /* 1220 * If mmu_notifier_count is non-zero, then the range maintained by 1221 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1222 * might be being invalidated. Note that it may include some false 1223 * positives, due to shortcuts when handing concurrent invalidations. 1224 */ 1225 if (unlikely(kvm->mmu_notifier_count) && 1226 hva >= kvm->mmu_notifier_range_start && 1227 hva < kvm->mmu_notifier_range_end) 1228 return 1; 1229 if (kvm->mmu_notifier_seq != mmu_seq) 1230 return 1; 1231 return 0; 1232 } 1233 #endif 1234 1235 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1236 1237 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1238 1239 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1240 int kvm_set_irq_routing(struct kvm *kvm, 1241 const struct kvm_irq_routing_entry *entries, 1242 unsigned nr, 1243 unsigned flags); 1244 int kvm_set_routing_entry(struct kvm *kvm, 1245 struct kvm_kernel_irq_routing_entry *e, 1246 const struct kvm_irq_routing_entry *ue); 1247 void kvm_free_irq_routing(struct kvm *kvm); 1248 1249 #else 1250 1251 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1252 1253 #endif 1254 1255 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1256 1257 #ifdef CONFIG_HAVE_KVM_EVENTFD 1258 1259 void kvm_eventfd_init(struct kvm *kvm); 1260 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1261 1262 #ifdef CONFIG_HAVE_KVM_IRQFD 1263 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1264 void kvm_irqfd_release(struct kvm *kvm); 1265 void kvm_irq_routing_update(struct kvm *); 1266 #else 1267 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1268 { 1269 return -EINVAL; 1270 } 1271 1272 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1273 #endif 1274 1275 #else 1276 1277 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1278 1279 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1280 { 1281 return -EINVAL; 1282 } 1283 1284 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1285 1286 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1287 static inline void kvm_irq_routing_update(struct kvm *kvm) 1288 { 1289 } 1290 #endif 1291 1292 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1293 { 1294 return -ENOSYS; 1295 } 1296 1297 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1298 1299 void kvm_arch_irq_routing_update(struct kvm *kvm); 1300 1301 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1302 { 1303 /* 1304 * Ensure the rest of the request is published to kvm_check_request's 1305 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1306 */ 1307 smp_wmb(); 1308 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1309 } 1310 1311 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1312 { 1313 return READ_ONCE(vcpu->requests); 1314 } 1315 1316 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1317 { 1318 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1319 } 1320 1321 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1322 { 1323 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1324 } 1325 1326 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1327 { 1328 if (kvm_test_request(req, vcpu)) { 1329 kvm_clear_request(req, vcpu); 1330 1331 /* 1332 * Ensure the rest of the request is visible to kvm_check_request's 1333 * caller. Paired with the smp_wmb in kvm_make_request. 1334 */ 1335 smp_mb__after_atomic(); 1336 return true; 1337 } else { 1338 return false; 1339 } 1340 } 1341 1342 extern bool kvm_rebooting; 1343 1344 extern unsigned int halt_poll_ns; 1345 extern unsigned int halt_poll_ns_grow; 1346 extern unsigned int halt_poll_ns_grow_start; 1347 extern unsigned int halt_poll_ns_shrink; 1348 1349 struct kvm_device { 1350 const struct kvm_device_ops *ops; 1351 struct kvm *kvm; 1352 void *private; 1353 struct list_head vm_node; 1354 }; 1355 1356 /* create, destroy, and name are mandatory */ 1357 struct kvm_device_ops { 1358 const char *name; 1359 1360 /* 1361 * create is called holding kvm->lock and any operations not suitable 1362 * to do while holding the lock should be deferred to init (see 1363 * below). 1364 */ 1365 int (*create)(struct kvm_device *dev, u32 type); 1366 1367 /* 1368 * init is called after create if create is successful and is called 1369 * outside of holding kvm->lock. 1370 */ 1371 void (*init)(struct kvm_device *dev); 1372 1373 /* 1374 * Destroy is responsible for freeing dev. 1375 * 1376 * Destroy may be called before or after destructors are called 1377 * on emulated I/O regions, depending on whether a reference is 1378 * held by a vcpu or other kvm component that gets destroyed 1379 * after the emulated I/O. 1380 */ 1381 void (*destroy)(struct kvm_device *dev); 1382 1383 /* 1384 * Release is an alternative method to free the device. It is 1385 * called when the device file descriptor is closed. Once 1386 * release is called, the destroy method will not be called 1387 * anymore as the device is removed from the device list of 1388 * the VM. kvm->lock is held. 1389 */ 1390 void (*release)(struct kvm_device *dev); 1391 1392 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1393 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1394 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1395 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1396 unsigned long arg); 1397 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1398 }; 1399 1400 void kvm_device_get(struct kvm_device *dev); 1401 void kvm_device_put(struct kvm_device *dev); 1402 struct kvm_device *kvm_device_from_filp(struct file *filp); 1403 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1404 void kvm_unregister_device_ops(u32 type); 1405 1406 extern struct kvm_device_ops kvm_mpic_ops; 1407 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1408 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1409 1410 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1411 1412 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1413 { 1414 vcpu->spin_loop.in_spin_loop = val; 1415 } 1416 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1417 { 1418 vcpu->spin_loop.dy_eligible = val; 1419 } 1420 1421 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1422 1423 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1424 { 1425 } 1426 1427 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1428 { 1429 } 1430 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1431 1432 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1433 { 1434 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1435 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1436 } 1437 1438 struct kvm_vcpu *kvm_get_running_vcpu(void); 1439 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1440 1441 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1442 bool kvm_arch_has_irq_bypass(void); 1443 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1444 struct irq_bypass_producer *); 1445 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1446 struct irq_bypass_producer *); 1447 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1448 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1449 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1450 uint32_t guest_irq, bool set); 1451 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1452 1453 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1454 /* If we wakeup during the poll time, was it a sucessful poll? */ 1455 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1456 { 1457 return vcpu->valid_wakeup; 1458 } 1459 1460 #else 1461 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1462 { 1463 return true; 1464 } 1465 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1466 1467 #ifdef CONFIG_HAVE_KVM_NO_POLL 1468 /* Callback that tells if we must not poll */ 1469 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1470 #else 1471 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1472 { 1473 return false; 1474 } 1475 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1476 1477 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1478 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1479 unsigned int ioctl, unsigned long arg); 1480 #else 1481 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1482 unsigned int ioctl, 1483 unsigned long arg) 1484 { 1485 return -ENOIOCTLCMD; 1486 } 1487 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1488 1489 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1490 unsigned long start, unsigned long end); 1491 1492 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1493 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1494 #else 1495 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1496 { 1497 return 0; 1498 } 1499 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1500 1501 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1502 1503 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1504 uintptr_t data, const char *name, 1505 struct task_struct **thread_ptr); 1506 1507 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1508 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1509 { 1510 vcpu->run->exit_reason = KVM_EXIT_INTR; 1511 vcpu->stat.signal_exits++; 1512 } 1513 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1514 1515 /* 1516 * This defines how many reserved entries we want to keep before we 1517 * kick the vcpu to the userspace to avoid dirty ring full. This 1518 * value can be tuned to higher if e.g. PML is enabled on the host. 1519 */ 1520 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 1521 1522 /* Max number of entries allowed for each kvm dirty ring */ 1523 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 1524 1525 #endif 1526