1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/mm.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/preempt.h> 17 #include <linux/msi.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/rcupdate.h> 21 #include <linux/ratelimit.h> 22 #include <linux/err.h> 23 #include <linux/irqflags.h> 24 #include <linux/context_tracking.h> 25 #include <linux/irqbypass.h> 26 #include <linux/swait.h> 27 #include <linux/refcount.h> 28 #include <linux/nospec.h> 29 #include <asm/signal.h> 30 31 #include <linux/kvm.h> 32 #include <linux/kvm_para.h> 33 34 #include <linux/kvm_types.h> 35 36 #include <asm/kvm_host.h> 37 38 #ifndef KVM_MAX_VCPU_ID 39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40 #endif 41 42 /* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47 #define KVM_MEMSLOT_INVALID (1UL << 16) 48 49 /* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70 /* Two fragments for cross MMIO pages. */ 71 #define KVM_MAX_MMIO_FRAGMENTS 2 72 73 #ifndef KVM_ADDRESS_SPACE_NUM 74 #define KVM_ADDRESS_SPACE_NUM 1 75 #endif 76 77 /* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84 #define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90 /* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94 static inline bool is_error_pfn(kvm_pfn_t pfn) 95 { 96 return !!(pfn & KVM_PFN_ERR_MASK); 97 } 98 99 /* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107 } 108 109 /* noslot pfn indicates that the gfn is not in slot. */ 110 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111 { 112 return pfn == KVM_PFN_NOSLOT; 113 } 114 115 /* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119 #ifndef KVM_HVA_ERR_BAD 120 121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124 static inline bool kvm_is_error_hva(unsigned long addr) 125 { 126 return addr >= PAGE_OFFSET; 127 } 128 129 #endif 130 131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133 static inline bool is_error_page(struct page *page) 134 { 135 return IS_ERR(page); 136 } 137 138 #define KVM_REQUEST_MASK GENMASK(7,0) 139 #define KVM_REQUEST_NO_WAKEUP BIT(8) 140 #define KVM_REQUEST_WAIT BIT(9) 141 /* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147 #define KVM_REQ_PENDING_TIMER 2 148 #define KVM_REQ_UNHALT 3 149 #define KVM_REQUEST_ARCH_BASE 8 150 151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154 }) 155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160 extern struct mutex kvm_lock; 161 extern struct list_head vm_list; 162 163 struct kvm_io_range { 164 gpa_t addr; 165 int len; 166 struct kvm_io_device *dev; 167 }; 168 169 #define NR_IOBUS_DEVS 1000 170 171 struct kvm_io_bus { 172 int dev_count; 173 int ioeventfd_count; 174 struct kvm_io_range range[]; 175 }; 176 177 enum kvm_bus { 178 KVM_MMIO_BUS, 179 KVM_PIO_BUS, 180 KVM_VIRTIO_CCW_NOTIFY_BUS, 181 KVM_FAST_MMIO_BUS, 182 KVM_NR_BUSES 183 }; 184 185 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 186 int len, const void *val); 187 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 188 gpa_t addr, int len, const void *val, long cookie); 189 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, void *val); 191 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 192 int len, struct kvm_io_device *dev); 193 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 194 struct kvm_io_device *dev); 195 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 gpa_t addr); 197 198 #ifdef CONFIG_KVM_ASYNC_PF 199 struct kvm_async_pf { 200 struct work_struct work; 201 struct list_head link; 202 struct list_head queue; 203 struct kvm_vcpu *vcpu; 204 struct mm_struct *mm; 205 gpa_t cr2_or_gpa; 206 unsigned long addr; 207 struct kvm_arch_async_pf arch; 208 bool wakeup_all; 209 }; 210 211 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 212 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 213 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 214 unsigned long hva, struct kvm_arch_async_pf *arch); 215 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 216 #endif 217 218 enum { 219 OUTSIDE_GUEST_MODE, 220 IN_GUEST_MODE, 221 EXITING_GUEST_MODE, 222 READING_SHADOW_PAGE_TABLES, 223 }; 224 225 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 226 227 struct kvm_host_map { 228 /* 229 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 230 * a 'struct page' for it. When using mem= kernel parameter some memory 231 * can be used as guest memory but they are not managed by host 232 * kernel). 233 * If 'pfn' is not managed by the host kernel, this field is 234 * initialized to KVM_UNMAPPED_PAGE. 235 */ 236 struct page *page; 237 void *hva; 238 kvm_pfn_t pfn; 239 kvm_pfn_t gfn; 240 }; 241 242 /* 243 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 244 * directly to check for that. 245 */ 246 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 247 { 248 return !!map->hva; 249 } 250 251 /* 252 * Sometimes a large or cross-page mmio needs to be broken up into separate 253 * exits for userspace servicing. 254 */ 255 struct kvm_mmio_fragment { 256 gpa_t gpa; 257 void *data; 258 unsigned len; 259 }; 260 261 struct kvm_vcpu { 262 struct kvm *kvm; 263 #ifdef CONFIG_PREEMPT_NOTIFIERS 264 struct preempt_notifier preempt_notifier; 265 #endif 266 int cpu; 267 int vcpu_id; /* id given by userspace at creation */ 268 int vcpu_idx; /* index in kvm->vcpus array */ 269 int srcu_idx; 270 int mode; 271 u64 requests; 272 unsigned long guest_debug; 273 274 int pre_pcpu; 275 struct list_head blocked_vcpu_list; 276 277 struct mutex mutex; 278 struct kvm_run *run; 279 280 struct swait_queue_head wq; 281 struct pid __rcu *pid; 282 int sigset_active; 283 sigset_t sigset; 284 struct kvm_vcpu_stat stat; 285 unsigned int halt_poll_ns; 286 bool valid_wakeup; 287 288 #ifdef CONFIG_HAS_IOMEM 289 int mmio_needed; 290 int mmio_read_completed; 291 int mmio_is_write; 292 int mmio_cur_fragment; 293 int mmio_nr_fragments; 294 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 295 #endif 296 297 #ifdef CONFIG_KVM_ASYNC_PF 298 struct { 299 u32 queued; 300 struct list_head queue; 301 struct list_head done; 302 spinlock_t lock; 303 } async_pf; 304 #endif 305 306 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 307 /* 308 * Cpu relax intercept or pause loop exit optimization 309 * in_spin_loop: set when a vcpu does a pause loop exit 310 * or cpu relax intercepted. 311 * dy_eligible: indicates whether vcpu is eligible for directed yield. 312 */ 313 struct { 314 bool in_spin_loop; 315 bool dy_eligible; 316 } spin_loop; 317 #endif 318 bool preempted; 319 bool ready; 320 struct kvm_vcpu_arch arch; 321 struct dentry *debugfs_dentry; 322 }; 323 324 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 325 { 326 /* 327 * The memory barrier ensures a previous write to vcpu->requests cannot 328 * be reordered with the read of vcpu->mode. It pairs with the general 329 * memory barrier following the write of vcpu->mode in VCPU RUN. 330 */ 331 smp_mb__before_atomic(); 332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 333 } 334 335 /* 336 * Some of the bitops functions do not support too long bitmaps. 337 * This number must be determined not to exceed such limits. 338 */ 339 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 340 341 struct kvm_memory_slot { 342 gfn_t base_gfn; 343 unsigned long npages; 344 unsigned long *dirty_bitmap; 345 struct kvm_arch_memory_slot arch; 346 unsigned long userspace_addr; 347 u32 flags; 348 short id; 349 }; 350 351 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 352 { 353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 354 } 355 356 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 357 { 358 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 359 360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 361 } 362 363 struct kvm_s390_adapter_int { 364 u64 ind_addr; 365 u64 summary_addr; 366 u64 ind_offset; 367 u32 summary_offset; 368 u32 adapter_id; 369 }; 370 371 struct kvm_hv_sint { 372 u32 vcpu; 373 u32 sint; 374 }; 375 376 struct kvm_kernel_irq_routing_entry { 377 u32 gsi; 378 u32 type; 379 int (*set)(struct kvm_kernel_irq_routing_entry *e, 380 struct kvm *kvm, int irq_source_id, int level, 381 bool line_status); 382 union { 383 struct { 384 unsigned irqchip; 385 unsigned pin; 386 } irqchip; 387 struct { 388 u32 address_lo; 389 u32 address_hi; 390 u32 data; 391 u32 flags; 392 u32 devid; 393 } msi; 394 struct kvm_s390_adapter_int adapter; 395 struct kvm_hv_sint hv_sint; 396 }; 397 struct hlist_node link; 398 }; 399 400 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 401 struct kvm_irq_routing_table { 402 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 403 u32 nr_rt_entries; 404 /* 405 * Array indexed by gsi. Each entry contains list of irq chips 406 * the gsi is connected to. 407 */ 408 struct hlist_head map[0]; 409 }; 410 #endif 411 412 #ifndef KVM_PRIVATE_MEM_SLOTS 413 #define KVM_PRIVATE_MEM_SLOTS 0 414 #endif 415 416 #ifndef KVM_MEM_SLOTS_NUM 417 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 418 #endif 419 420 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 421 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 422 { 423 return 0; 424 } 425 #endif 426 427 /* 428 * Note: 429 * memslots are not sorted by id anymore, please use id_to_memslot() 430 * to get the memslot by its id. 431 */ 432 struct kvm_memslots { 433 u64 generation; 434 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 435 /* The mapping table from slot id to the index in memslots[]. */ 436 short id_to_index[KVM_MEM_SLOTS_NUM]; 437 atomic_t lru_slot; 438 int used_slots; 439 }; 440 441 struct kvm { 442 spinlock_t mmu_lock; 443 struct mutex slots_lock; 444 struct mm_struct *mm; /* userspace tied to this vm */ 445 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 446 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 447 448 /* 449 * created_vcpus is protected by kvm->lock, and is incremented 450 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 451 * incremented after storing the kvm_vcpu pointer in vcpus, 452 * and is accessed atomically. 453 */ 454 atomic_t online_vcpus; 455 int created_vcpus; 456 int last_boosted_vcpu; 457 struct list_head vm_list; 458 struct mutex lock; 459 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 460 #ifdef CONFIG_HAVE_KVM_EVENTFD 461 struct { 462 spinlock_t lock; 463 struct list_head items; 464 struct list_head resampler_list; 465 struct mutex resampler_lock; 466 } irqfds; 467 struct list_head ioeventfds; 468 #endif 469 struct kvm_vm_stat stat; 470 struct kvm_arch arch; 471 refcount_t users_count; 472 #ifdef CONFIG_KVM_MMIO 473 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 474 spinlock_t ring_lock; 475 struct list_head coalesced_zones; 476 #endif 477 478 struct mutex irq_lock; 479 #ifdef CONFIG_HAVE_KVM_IRQCHIP 480 /* 481 * Update side is protected by irq_lock. 482 */ 483 struct kvm_irq_routing_table __rcu *irq_routing; 484 #endif 485 #ifdef CONFIG_HAVE_KVM_IRQFD 486 struct hlist_head irq_ack_notifier_list; 487 #endif 488 489 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 490 struct mmu_notifier mmu_notifier; 491 unsigned long mmu_notifier_seq; 492 long mmu_notifier_count; 493 #endif 494 long tlbs_dirty; 495 struct list_head devices; 496 bool manual_dirty_log_protect; 497 struct dentry *debugfs_dentry; 498 struct kvm_stat_data **debugfs_stat_data; 499 struct srcu_struct srcu; 500 struct srcu_struct irq_srcu; 501 pid_t userspace_pid; 502 }; 503 504 #define kvm_err(fmt, ...) \ 505 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 506 #define kvm_info(fmt, ...) \ 507 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 508 #define kvm_debug(fmt, ...) \ 509 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510 #define kvm_debug_ratelimited(fmt, ...) \ 511 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 512 ## __VA_ARGS__) 513 #define kvm_pr_unimpl(fmt, ...) \ 514 pr_err_ratelimited("kvm [%i]: " fmt, \ 515 task_tgid_nr(current), ## __VA_ARGS__) 516 517 /* The guest did something we don't support. */ 518 #define vcpu_unimpl(vcpu, fmt, ...) \ 519 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 520 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 521 522 #define vcpu_debug(vcpu, fmt, ...) \ 523 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 524 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 525 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 526 ## __VA_ARGS__) 527 #define vcpu_err(vcpu, fmt, ...) \ 528 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 529 530 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 531 { 532 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 533 lockdep_is_held(&kvm->slots_lock) || 534 !refcount_read(&kvm->users_count)); 535 } 536 537 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 538 { 539 int num_vcpus = atomic_read(&kvm->online_vcpus); 540 i = array_index_nospec(i, num_vcpus); 541 542 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 543 smp_rmb(); 544 return kvm->vcpus[i]; 545 } 546 547 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 548 for (idx = 0; \ 549 idx < atomic_read(&kvm->online_vcpus) && \ 550 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 551 idx++) 552 553 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 554 { 555 struct kvm_vcpu *vcpu = NULL; 556 int i; 557 558 if (id < 0) 559 return NULL; 560 if (id < KVM_MAX_VCPUS) 561 vcpu = kvm_get_vcpu(kvm, id); 562 if (vcpu && vcpu->vcpu_id == id) 563 return vcpu; 564 kvm_for_each_vcpu(i, vcpu, kvm) 565 if (vcpu->vcpu_id == id) 566 return vcpu; 567 return NULL; 568 } 569 570 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 571 { 572 return vcpu->vcpu_idx; 573 } 574 575 #define kvm_for_each_memslot(memslot, slots) \ 576 for (memslot = &slots->memslots[0]; \ 577 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 578 memslot++) 579 580 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 581 582 void vcpu_load(struct kvm_vcpu *vcpu); 583 void vcpu_put(struct kvm_vcpu *vcpu); 584 585 #ifdef __KVM_HAVE_IOAPIC 586 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 587 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 588 #else 589 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 590 { 591 } 592 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 593 { 594 } 595 #endif 596 597 #ifdef CONFIG_HAVE_KVM_IRQFD 598 int kvm_irqfd_init(void); 599 void kvm_irqfd_exit(void); 600 #else 601 static inline int kvm_irqfd_init(void) 602 { 603 return 0; 604 } 605 606 static inline void kvm_irqfd_exit(void) 607 { 608 } 609 #endif 610 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 611 struct module *module); 612 void kvm_exit(void); 613 614 void kvm_get_kvm(struct kvm *kvm); 615 void kvm_put_kvm(struct kvm *kvm); 616 void kvm_put_kvm_no_destroy(struct kvm *kvm); 617 618 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 619 { 620 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 621 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 622 lockdep_is_held(&kvm->slots_lock) || 623 !refcount_read(&kvm->users_count)); 624 } 625 626 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 627 { 628 return __kvm_memslots(kvm, 0); 629 } 630 631 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 632 { 633 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 634 635 return __kvm_memslots(vcpu->kvm, as_id); 636 } 637 638 static inline struct kvm_memory_slot * 639 id_to_memslot(struct kvm_memslots *slots, int id) 640 { 641 int index = slots->id_to_index[id]; 642 struct kvm_memory_slot *slot; 643 644 slot = &slots->memslots[index]; 645 646 WARN_ON(slot->id != id); 647 return slot; 648 } 649 650 /* 651 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 652 * - create a new memory slot 653 * - delete an existing memory slot 654 * - modify an existing memory slot 655 * -- move it in the guest physical memory space 656 * -- just change its flags 657 * 658 * Since flags can be changed by some of these operations, the following 659 * differentiation is the best we can do for __kvm_set_memory_region(): 660 */ 661 enum kvm_mr_change { 662 KVM_MR_CREATE, 663 KVM_MR_DELETE, 664 KVM_MR_MOVE, 665 KVM_MR_FLAGS_ONLY, 666 }; 667 668 int kvm_set_memory_region(struct kvm *kvm, 669 const struct kvm_userspace_memory_region *mem); 670 int __kvm_set_memory_region(struct kvm *kvm, 671 const struct kvm_userspace_memory_region *mem); 672 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 673 struct kvm_memory_slot *dont); 674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 675 unsigned long npages); 676 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 677 int kvm_arch_prepare_memory_region(struct kvm *kvm, 678 struct kvm_memory_slot *memslot, 679 const struct kvm_userspace_memory_region *mem, 680 enum kvm_mr_change change); 681 void kvm_arch_commit_memory_region(struct kvm *kvm, 682 const struct kvm_userspace_memory_region *mem, 683 const struct kvm_memory_slot *old, 684 const struct kvm_memory_slot *new, 685 enum kvm_mr_change change); 686 bool kvm_largepages_enabled(void); 687 void kvm_disable_largepages(void); 688 /* flush all memory translations */ 689 void kvm_arch_flush_shadow_all(struct kvm *kvm); 690 /* flush memory translations pointing to 'slot' */ 691 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 692 struct kvm_memory_slot *slot); 693 694 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 695 struct page **pages, int nr_pages); 696 697 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 698 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 699 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 700 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 701 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 702 bool *writable); 703 void kvm_release_page_clean(struct page *page); 704 void kvm_release_page_dirty(struct page *page); 705 void kvm_set_page_accessed(struct page *page); 706 707 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 708 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 709 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 710 bool *writable); 711 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 712 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 713 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 714 bool atomic, bool *async, bool write_fault, 715 bool *writable); 716 717 void kvm_release_pfn_clean(kvm_pfn_t pfn); 718 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 719 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 720 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 721 void kvm_get_pfn(kvm_pfn_t pfn); 722 723 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 724 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 725 int len); 726 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 727 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 728 void *data, unsigned long len); 729 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 730 int offset, int len); 731 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 732 unsigned long len); 733 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 734 void *data, unsigned long len); 735 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 736 void *data, unsigned int offset, 737 unsigned long len); 738 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 739 gpa_t gpa, unsigned long len); 740 741 #define __kvm_put_guest(kvm, gfn, offset, value, type) \ 742 ({ \ 743 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 744 type __user *__uaddr = (type __user *)(__addr + offset); \ 745 int __ret = -EFAULT; \ 746 \ 747 if (!kvm_is_error_hva(__addr)) \ 748 __ret = put_user(value, __uaddr); \ 749 if (!__ret) \ 750 mark_page_dirty(kvm, gfn); \ 751 __ret; \ 752 }) 753 754 #define kvm_put_guest(kvm, gpa, value, type) \ 755 ({ \ 756 gpa_t __gpa = gpa; \ 757 struct kvm *__kvm = kvm; \ 758 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 759 offset_in_page(__gpa), (value), type); \ 760 }) 761 762 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 763 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 764 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 765 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 766 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 767 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 768 769 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 770 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 771 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 772 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 773 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 774 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 775 struct gfn_to_pfn_cache *cache, bool atomic); 776 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 777 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 778 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 779 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 780 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 781 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 782 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 783 int len); 784 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 785 unsigned long len); 786 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 787 unsigned long len); 788 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 789 int offset, int len); 790 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 791 unsigned long len); 792 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 793 794 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 795 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 796 797 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 798 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 799 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 800 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 801 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 802 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 803 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 804 805 void kvm_flush_remote_tlbs(struct kvm *kvm); 806 void kvm_reload_remote_mmus(struct kvm *kvm); 807 808 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 809 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 810 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 811 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 812 unsigned long *vcpu_bitmap); 813 814 long kvm_arch_dev_ioctl(struct file *filp, 815 unsigned int ioctl, unsigned long arg); 816 long kvm_arch_vcpu_ioctl(struct file *filp, 817 unsigned int ioctl, unsigned long arg); 818 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 819 820 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 821 822 int kvm_get_dirty_log(struct kvm *kvm, 823 struct kvm_dirty_log *log, int *is_dirty); 824 825 int kvm_get_dirty_log_protect(struct kvm *kvm, 826 struct kvm_dirty_log *log, bool *flush); 827 int kvm_clear_dirty_log_protect(struct kvm *kvm, 828 struct kvm_clear_dirty_log *log, bool *flush); 829 830 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 831 struct kvm_memory_slot *slot, 832 gfn_t gfn_offset, 833 unsigned long mask); 834 835 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 836 struct kvm_dirty_log *log); 837 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 838 struct kvm_clear_dirty_log *log); 839 840 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 841 bool line_status); 842 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 843 struct kvm_enable_cap *cap); 844 long kvm_arch_vm_ioctl(struct file *filp, 845 unsigned int ioctl, unsigned long arg); 846 847 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 848 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 849 850 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 851 struct kvm_translation *tr); 852 853 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 854 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 855 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 856 struct kvm_sregs *sregs); 857 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 858 struct kvm_sregs *sregs); 859 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 860 struct kvm_mp_state *mp_state); 861 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 862 struct kvm_mp_state *mp_state); 863 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 864 struct kvm_guest_debug *dbg); 865 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 866 867 int kvm_arch_init(void *opaque); 868 void kvm_arch_exit(void); 869 870 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 871 872 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 873 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 874 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 875 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 876 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 877 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 878 879 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 880 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 881 #endif 882 883 int kvm_arch_hardware_enable(void); 884 void kvm_arch_hardware_disable(void); 885 int kvm_arch_hardware_setup(void); 886 void kvm_arch_hardware_unsetup(void); 887 int kvm_arch_check_processor_compat(void); 888 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 889 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 890 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 891 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 892 int kvm_arch_post_init_vm(struct kvm *kvm); 893 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 894 895 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 896 /* 897 * All architectures that want to use vzalloc currently also 898 * need their own kvm_arch_alloc_vm implementation. 899 */ 900 static inline struct kvm *kvm_arch_alloc_vm(void) 901 { 902 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 903 } 904 905 static inline void kvm_arch_free_vm(struct kvm *kvm) 906 { 907 kfree(kvm); 908 } 909 #endif 910 911 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 912 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 913 { 914 return -ENOTSUPP; 915 } 916 #endif 917 918 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 919 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 920 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 921 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 922 #else 923 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 924 { 925 } 926 927 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 928 { 929 } 930 931 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 932 { 933 return false; 934 } 935 #endif 936 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 937 void kvm_arch_start_assignment(struct kvm *kvm); 938 void kvm_arch_end_assignment(struct kvm *kvm); 939 bool kvm_arch_has_assigned_device(struct kvm *kvm); 940 #else 941 static inline void kvm_arch_start_assignment(struct kvm *kvm) 942 { 943 } 944 945 static inline void kvm_arch_end_assignment(struct kvm *kvm) 946 { 947 } 948 949 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 950 { 951 return false; 952 } 953 #endif 954 955 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 956 { 957 #ifdef __KVM_HAVE_ARCH_WQP 958 return vcpu->arch.wqp; 959 #else 960 return &vcpu->wq; 961 #endif 962 } 963 964 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 965 /* 966 * returns true if the virtual interrupt controller is initialized and 967 * ready to accept virtual IRQ. On some architectures the virtual interrupt 968 * controller is dynamically instantiated and this is not always true. 969 */ 970 bool kvm_arch_intc_initialized(struct kvm *kvm); 971 #else 972 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 973 { 974 return true; 975 } 976 #endif 977 978 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 979 void kvm_arch_destroy_vm(struct kvm *kvm); 980 void kvm_arch_sync_events(struct kvm *kvm); 981 982 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 983 984 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 985 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 986 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 987 988 struct kvm_irq_ack_notifier { 989 struct hlist_node link; 990 unsigned gsi; 991 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 992 }; 993 994 int kvm_irq_map_gsi(struct kvm *kvm, 995 struct kvm_kernel_irq_routing_entry *entries, int gsi); 996 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 997 998 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 999 bool line_status); 1000 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1001 int irq_source_id, int level, bool line_status); 1002 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1003 struct kvm *kvm, int irq_source_id, 1004 int level, bool line_status); 1005 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1006 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1007 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1008 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1009 struct kvm_irq_ack_notifier *kian); 1010 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1011 struct kvm_irq_ack_notifier *kian); 1012 int kvm_request_irq_source_id(struct kvm *kvm); 1013 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1014 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1015 1016 /* 1017 * search_memslots() and __gfn_to_memslot() are here because they are 1018 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1019 * gfn_to_memslot() itself isn't here as an inline because that would 1020 * bloat other code too much. 1021 */ 1022 static inline struct kvm_memory_slot * 1023 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1024 { 1025 int start = 0, end = slots->used_slots; 1026 int slot = atomic_read(&slots->lru_slot); 1027 struct kvm_memory_slot *memslots = slots->memslots; 1028 1029 if (gfn >= memslots[slot].base_gfn && 1030 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1031 return &memslots[slot]; 1032 1033 while (start < end) { 1034 slot = start + (end - start) / 2; 1035 1036 if (gfn >= memslots[slot].base_gfn) 1037 end = slot; 1038 else 1039 start = slot + 1; 1040 } 1041 1042 if (gfn >= memslots[start].base_gfn && 1043 gfn < memslots[start].base_gfn + memslots[start].npages) { 1044 atomic_set(&slots->lru_slot, start); 1045 return &memslots[start]; 1046 } 1047 1048 return NULL; 1049 } 1050 1051 static inline struct kvm_memory_slot * 1052 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1053 { 1054 return search_memslots(slots, gfn); 1055 } 1056 1057 static inline unsigned long 1058 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1059 { 1060 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1061 } 1062 1063 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1064 { 1065 return gfn_to_memslot(kvm, gfn)->id; 1066 } 1067 1068 static inline gfn_t 1069 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1070 { 1071 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1072 1073 return slot->base_gfn + gfn_offset; 1074 } 1075 1076 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1077 { 1078 return (gpa_t)gfn << PAGE_SHIFT; 1079 } 1080 1081 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1082 { 1083 return (gfn_t)(gpa >> PAGE_SHIFT); 1084 } 1085 1086 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1087 { 1088 return (hpa_t)pfn << PAGE_SHIFT; 1089 } 1090 1091 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1092 gpa_t gpa) 1093 { 1094 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1095 } 1096 1097 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1098 { 1099 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1100 1101 return kvm_is_error_hva(hva); 1102 } 1103 1104 enum kvm_stat_kind { 1105 KVM_STAT_VM, 1106 KVM_STAT_VCPU, 1107 }; 1108 1109 struct kvm_stat_data { 1110 struct kvm *kvm; 1111 struct kvm_stats_debugfs_item *dbgfs_item; 1112 }; 1113 1114 struct kvm_stats_debugfs_item { 1115 const char *name; 1116 int offset; 1117 enum kvm_stat_kind kind; 1118 int mode; 1119 }; 1120 1121 #define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1122 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1123 1124 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1125 extern struct dentry *kvm_debugfs_dir; 1126 1127 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1128 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1129 { 1130 if (unlikely(kvm->mmu_notifier_count)) 1131 return 1; 1132 /* 1133 * Ensure the read of mmu_notifier_count happens before the read 1134 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1135 * mmu_notifier_invalidate_range_end to make sure that the caller 1136 * either sees the old (non-zero) value of mmu_notifier_count or 1137 * the new (incremented) value of mmu_notifier_seq. 1138 * PowerPC Book3s HV KVM calls this under a per-page lock 1139 * rather than under kvm->mmu_lock, for scalability, so 1140 * can't rely on kvm->mmu_lock to keep things ordered. 1141 */ 1142 smp_rmb(); 1143 if (kvm->mmu_notifier_seq != mmu_seq) 1144 return 1; 1145 return 0; 1146 } 1147 #endif 1148 1149 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1150 1151 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1152 1153 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1154 int kvm_set_irq_routing(struct kvm *kvm, 1155 const struct kvm_irq_routing_entry *entries, 1156 unsigned nr, 1157 unsigned flags); 1158 int kvm_set_routing_entry(struct kvm *kvm, 1159 struct kvm_kernel_irq_routing_entry *e, 1160 const struct kvm_irq_routing_entry *ue); 1161 void kvm_free_irq_routing(struct kvm *kvm); 1162 1163 #else 1164 1165 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1166 1167 #endif 1168 1169 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1170 1171 #ifdef CONFIG_HAVE_KVM_EVENTFD 1172 1173 void kvm_eventfd_init(struct kvm *kvm); 1174 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1175 1176 #ifdef CONFIG_HAVE_KVM_IRQFD 1177 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1178 void kvm_irqfd_release(struct kvm *kvm); 1179 void kvm_irq_routing_update(struct kvm *); 1180 #else 1181 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1182 { 1183 return -EINVAL; 1184 } 1185 1186 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1187 #endif 1188 1189 #else 1190 1191 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1192 1193 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1194 { 1195 return -EINVAL; 1196 } 1197 1198 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1199 1200 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1201 static inline void kvm_irq_routing_update(struct kvm *kvm) 1202 { 1203 } 1204 #endif 1205 1206 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1207 { 1208 return -ENOSYS; 1209 } 1210 1211 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1212 1213 void kvm_arch_irq_routing_update(struct kvm *kvm); 1214 1215 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1216 { 1217 /* 1218 * Ensure the rest of the request is published to kvm_check_request's 1219 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1220 */ 1221 smp_wmb(); 1222 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1223 } 1224 1225 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1226 { 1227 return READ_ONCE(vcpu->requests); 1228 } 1229 1230 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1231 { 1232 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1233 } 1234 1235 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1236 { 1237 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1238 } 1239 1240 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1241 { 1242 if (kvm_test_request(req, vcpu)) { 1243 kvm_clear_request(req, vcpu); 1244 1245 /* 1246 * Ensure the rest of the request is visible to kvm_check_request's 1247 * caller. Paired with the smp_wmb in kvm_make_request. 1248 */ 1249 smp_mb__after_atomic(); 1250 return true; 1251 } else { 1252 return false; 1253 } 1254 } 1255 1256 extern bool kvm_rebooting; 1257 1258 extern unsigned int halt_poll_ns; 1259 extern unsigned int halt_poll_ns_grow; 1260 extern unsigned int halt_poll_ns_grow_start; 1261 extern unsigned int halt_poll_ns_shrink; 1262 1263 struct kvm_device { 1264 const struct kvm_device_ops *ops; 1265 struct kvm *kvm; 1266 void *private; 1267 struct list_head vm_node; 1268 }; 1269 1270 /* create, destroy, and name are mandatory */ 1271 struct kvm_device_ops { 1272 const char *name; 1273 1274 /* 1275 * create is called holding kvm->lock and any operations not suitable 1276 * to do while holding the lock should be deferred to init (see 1277 * below). 1278 */ 1279 int (*create)(struct kvm_device *dev, u32 type); 1280 1281 /* 1282 * init is called after create if create is successful and is called 1283 * outside of holding kvm->lock. 1284 */ 1285 void (*init)(struct kvm_device *dev); 1286 1287 /* 1288 * Destroy is responsible for freeing dev. 1289 * 1290 * Destroy may be called before or after destructors are called 1291 * on emulated I/O regions, depending on whether a reference is 1292 * held by a vcpu or other kvm component that gets destroyed 1293 * after the emulated I/O. 1294 */ 1295 void (*destroy)(struct kvm_device *dev); 1296 1297 /* 1298 * Release is an alternative method to free the device. It is 1299 * called when the device file descriptor is closed. Once 1300 * release is called, the destroy method will not be called 1301 * anymore as the device is removed from the device list of 1302 * the VM. kvm->lock is held. 1303 */ 1304 void (*release)(struct kvm_device *dev); 1305 1306 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1307 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1308 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1309 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1310 unsigned long arg); 1311 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1312 }; 1313 1314 void kvm_device_get(struct kvm_device *dev); 1315 void kvm_device_put(struct kvm_device *dev); 1316 struct kvm_device *kvm_device_from_filp(struct file *filp); 1317 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1318 void kvm_unregister_device_ops(u32 type); 1319 1320 extern struct kvm_device_ops kvm_mpic_ops; 1321 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1322 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1323 1324 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1325 1326 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1327 { 1328 vcpu->spin_loop.in_spin_loop = val; 1329 } 1330 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1331 { 1332 vcpu->spin_loop.dy_eligible = val; 1333 } 1334 1335 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1336 1337 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1338 { 1339 } 1340 1341 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1342 { 1343 } 1344 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1345 1346 struct kvm_vcpu *kvm_get_running_vcpu(void); 1347 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1348 1349 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1350 bool kvm_arch_has_irq_bypass(void); 1351 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1352 struct irq_bypass_producer *); 1353 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1354 struct irq_bypass_producer *); 1355 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1356 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1357 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1358 uint32_t guest_irq, bool set); 1359 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1360 1361 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1362 /* If we wakeup during the poll time, was it a sucessful poll? */ 1363 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1364 { 1365 return vcpu->valid_wakeup; 1366 } 1367 1368 #else 1369 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1370 { 1371 return true; 1372 } 1373 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1374 1375 #ifdef CONFIG_HAVE_KVM_NO_POLL 1376 /* Callback that tells if we must not poll */ 1377 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1378 #else 1379 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1380 { 1381 return false; 1382 } 1383 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1384 1385 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1386 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1387 unsigned int ioctl, unsigned long arg); 1388 #else 1389 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1390 unsigned int ioctl, 1391 unsigned long arg) 1392 { 1393 return -ENOIOCTLCMD; 1394 } 1395 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1396 1397 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1398 unsigned long start, unsigned long end, bool blockable); 1399 1400 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1401 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1402 #else 1403 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1404 { 1405 return 0; 1406 } 1407 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1408 1409 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1410 1411 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1412 uintptr_t data, const char *name, 1413 struct task_struct **thread_ptr); 1414 1415 #endif 1416